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QrôBte Polygone mit gegebenen Seitenvektoren
Von Anton E Mayer, Wien

Die vorhegende Arbeit befafit sich — zunachst ganz beilaufig formuhert
— damit, gegebene Vektoren zu einem moglichst weit gespannten Polygon
zusammenzusetzen, ich werde ein Ma6 der stets erreichbaren Weite er-
mitteln

Vorerst wird die Aufgabe genau umschrieben und auf eme Anwendung
in der Vanationsrechnung hmgewiesen (§1) Es zeigt sich (§2), daB es

unwesenthch ist, ob wir nur ofïene oder nur geschlossene Polygone
zulassen oder behebige Polygone Die Bestimmung des gesuchten MaBes

(§ 4) gelmgt, nachdem gewisse den Polygonen zugeordnete Polyeder
herangezogen wurden (§3) Auf eme Erorterung der numerischen Werte
des Ergebnisses (§ 5) folgen schheBhch nahere Angaben uber ebene

Polygone § 6) Ein Anhang betniït eme Verallgememerung der m § 3

emgefuhrten Polyeder, die sogenannten Langenmengen

§ 1. Bezeichnungen. Problemstellung

Wir bezeichnen mit po,ply Punkte des n dimensionalen euklidischen
Raumes Œn und zugleich die vom Ursprung o nach diesen Punkten
zielenden Vektoren, mit pop1 die Strecke, deren Enden p0 und px smd

Unter einem Polygon P p0Pi Vr nioge die geordnete, endliche
Menge PoPuPiP2> >Vr-iVr aneinanderschliefiendei Strecken verstanden
werden Dièse Strecken sollen Seiten, die Punkte p0, pl5 pr Ecken des

Polygons P heiBen Bei emem geschlossenen Polygon ist p0 pyj bei

emem offenen Po^Pr Wir nennen p, — pt_x (i 1, 2, r) emen
Seitenvektor von P, ferner p, — pk (% k 0, 1, 2, r) emen Diagonal-
vektor Zu den Diagonalvektoren gehoren also auch die Seitenvektoren
und der Nullvektor

Ist \x\ die Lange desVektors x, so besitztP die Lange l(P) =Z\pz—pt_j|
und den Durchmesser d(P) max \p}—pfc|

Zwei Polygone P und Pf heiBen kovektonell1) und wir schreiben
dann P\\Pf, wenn die Seitenvektoren des emen eine Permutation der
Seitenvektoren des anderen bilden In diesem Fall ist auch l(P) l{Pr)

Fur jedes Polygon P sei

D (P) obère Schranke d (P;)
p'\\p

x) K Menger, Die metnsche Méthode in der Vanationsrechnung, Ergebn
math Kolloqu 8 (1937), S 1—32 (bes 25)
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Wir definieren nun

Q(P) obère Schranke ^Q- (1)
p'ïïp <>(¦?)

Wegen der Langengleichheit kovektorieller Polygone ist g(P)

Die eingangs angedeutete Aufgabe kann jetzt folgendermaBen prazi-
siert werden : Man bestimme fur den />n die Konstante

q (n) untere Schranke g (P) (2)

Das Problem verdient vielleicht an sich geometrisches Interesse; da-
neben ist jedenfalls eine Anwendung von q(n) bernerkenswert. Bei der
Verwertung der metrischen Géométrie fur die Variationsrechnung,
wie sie K. Menger durchgefuhrt hat, geht nàmlich g (ri) explizit in ein
Existenztheorem fur Extremanten ein. falls der Integrand nicht uberall
stetig ist2). In diesem Zusammenhang hat Herr Menger die Berechnung
von g (ri) angeregt3).

Vertauscht man in (1) oder (2) oder in beiden Defmitionen ,,untere
Schranke" und ,,obère Schranke'4, so laBt sich jedesmal die Schranke
sofort angeben. In anderer Weise kônnen jedoch von unserer Aufgabe
durchaus nicht-triviale Umkehrungen abgeleitet werden, bei denen es

sich um das Aneinanderfugen von Vektoren auf môglichst engem Raum
handelt. Dies ist fur die Théorie der bedingt konvergenten Reihen
wichtig4).

2) Menger1), S. 29. Die dort mit x bezeichnete Zahl ist unser ç(n) — Zur Emfuhrung
in die Mengersche Théorie der Variationsrechnung* K. Menger, La géométrie des
distances et ses relations avec les autres branches des mathématiques,
Enseignement math. 35 (1936), S. 348—372; ders., Metric methods in calculus of
variations, Proceed national Acad. Sci. 23 (1937), S 244—250 Eme lehrbuchmafîige
Darstellung bereitet Herr Chr. Pauc fur die Actualités sci. et mdustr. vor.

3) Siehe auch die vorlaufige Mitteilung: A. E. Mayer, Uber den groBten Durch-
znesser kovektorieller Polygone îm 7tk, Ergebn. math. Kolloqu. 8 (1937), S. 37.

*) Genannt seien die folgenden geometrisch emgestellten Arbeiten: E. Stemitz, Bedingt
konvergente Reihen und konvexe Système, Journ. reine u. angew. Math. 143

(1913), S. 128—175 (bes. 171, 172); W. Orofi, Bedingt konvergente Reihen, Monats-
hefte Math. u. Phys. 28 (1917), S.221—237 (bes. 229); V. Bwgstrom, Ein neuer Beweis
eines Satzes von E. Steinitz, Abhandl. math. Semm. Hamburg 8 (1931),
S. 148—152; ders Zwei Sàtze uber ebene Vektorpolygone, ebenda S. 206—214,
H. Hadwiger, Em Satz uber geschlossene Vektorpolygone des Hilbertschen
Raumes, Math. Zeitschr. 41 (1936), S. 732—738.
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§ 2. Geschlossene und offene Polygone

Jedem Polygon P pop1 pr kann ein geschlossenes Polygon SP
popi prp0 zugeordnet werden. Die Transformation S ist selbstredend

nur dann wesentlich, wenn nicht schon P geschlossen ist.
Fiigt man zu den Seitenvektoren von P den von ihrer Reihenfolge

unabhângigen Vektor s p0 — pr — £(Vi — Pt-i) nmzu, so entsteht
die Menge der Seitenvektoren von SP. Weil kovektorielle Polygone sich
blofi in der Reihenfolge der Seitenvektoren unterscheiden, ergibt sich
also SP || SP', sobald P||P' ist.

Wird, umgekehrt, von einemPolygon Q\\ SP die (bzw. eine) Seite ent-
fernt, deren Vektor s ist, so bleiben aneinanderschlieBende Strecken, das
heiBt ein Polygon P' iibrig, da ja zugleich mit SP auch Q geschlossen

war. Wir finden somit, daB Q SP' ist, wobei im Hinblick auf die
Seitenvektoren P'||P sein muB.

Folglich erzeugt S ans den mit P kovektoriellen Polygonen aile mit
SP kovektoriellen Polygone und, da S den Durchmesser unverândert
làBt, ist Z>(SP) D(P). Die Lange wird aber im allgemeinen durch S
vergrôBert: Z(SP) Z(P) + |s|. Es ergibt sich also

q(<SP) ^ q(P)

Weil g(n) als untere Schranke erklàrt wurde, genùgt es somit, bei der

Ermitthmg von g(n) blofi geschlossene Polygone zu betrachten. Wollte
man, im Gegenteil, in der Définition von g(n) ausschliefilich offene
Polygone zulassen, so erhielte man kein anderes Résultat. Zum Beweis
fûhren wir die Transformation % ein, die dem Polygon P das Polygon
%p poP! prpt entsprechen làBt, wo pt (1 — t)p0 + tpr ist
(0 < t ^ 1), demnach der Vektor yt — pr (1 — t) s. Wenn, wie wir
nun annehmen, P ein ofifenes Polygon ist, so ist auch %P offen.

Weil die Seitenvektoren kovektorieller Polygone paarweise gleich sind
und s von der Reihenfolge der Seitenvektoren nicht abhàngt, hat man
wie bei der Transformation S: Aus P\\Pr folgtîPllïP'. Ersichtlicher-
weise beeinfluBt % den Durchmesser nicht; mithin ist D(%P) ^ D(P)>

Wird andererseits in einem Polygon R \ \ %P eine Seite, deren Vektor
(1 — t) s ist, getilgt, so kônnen, weil R ofïen ist, zwei Polygone P*, P**
iibrig bleiben, deren Seitenvektoren, zusammengenommen, die Seiten-

vektorenmenge von P erzeugen. Verschiebt man in diesem Fall etwa das

Polygon P** um den Vektor (t — 1) s, so bildet es nach derVerschiebung
gemeinsam mit P* ein Polygon, das mit P kovektoriell ist. Da R die
Seitenvektorensumme —1% hat, ergànzt P** auch nach der Verschiebung
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um t% das Polygon P* zu einem mit P kovektoriellen Polygon. Dies
liefert den Hilfssatz: Der Diagonalvektor b von R ist selbst zugleich
Diagonalvektor fur ein mit P kovektorielles Polygon oder sowohl b + (t—l)s
wie b +1% sind Diagonalvektoren in Polygonen, die mit P kovektoriell sind.
Das gilt auch dann, wenn bei der Eliminierung der Seite mit dem Vektor
(1 — t) s aus dem Polygon B statt zweier Polygone P*, P** bloB ein

einziges verbleibt.
Aus dem Hilfssatz folgt, weil b + (t—l)s oder b + £s oder aile beide

langer als b sind, D{%P) <^ D(P) und, mit Rucksicht auf obenstehende

entgegengesetzte Ungleichung, D(XP) D(P) D(SP). Da 1{ZP)
l(P) + (i __j) |s| ist, haben wir

o(%P)-> q(<SP) fur t->0

Hieraus ist zu ersehen, da6 o(P) fur offene wie fur geschlossene Polygone
dieselbe untere Schranke hat.

§ 3. Polygone und zugeordnete Polyeder

Gemaô § 2 darf P fortan als geschlossenes Polygon vorausgesetzt
werden. Es gilt, D(P) zu ermitteln. Da D(P) als obère Schranke fur die
Lange der Diagonalvektoren von samtlichen Polygonen P'||P aufgefaBt
werden kann, ist es nur naturlich, wenn wir einen beliebigen solchen
Vektor p3' — p^. naher betrachten Er ist in zweierlei Weise die Summe

aus Seitenvektoren von P'. Die Punkte p?',p^. zerlegen namlich das
geschlossene Polygon P/ in zwei Teilpolygone, wofern j ^ k. Also ist
Vj — Vk die Summe der Seitenvektoren des einen und zugleich négative
Summe der Seitenvektoren des anderen Teilpolygons. Demnach gestattet
2 (p'? —p^), ubrigens sogar fur j k, folgende Darstellung:

Xet(Vt — p,-i) c, + 1 oder — 1 (3)

Und umgekehrt; falls 2 b in der Gestalt (3) geschrieben werden kann,
ist b Diagonalvektor in einem Polygon P'||P. Ordnet man namlich die
Seitenvektoren von P derart, daB aile in (3) mit positivem Vorzeichen
versehenen den etwa noch ubrigen vorangehen, so sind sie in dieser

Reihenfolge die Seitenvektoren eines Polygons P1 mit dem Diagonalvektor

b.
Der langste unter den der Darstellung (3) fahigen Vektoren hat somit die

Lange 2 D(P).
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Die Menge aller in (3) angeschriebenen Punkte ist enthalten in der
Menge

$=-^17, (p. —p.-!) — 1 ai?, g + l

Die Menge ty geht aus den Strecken hervor, deren jede einen der Punkte
(px— p0), .-., (Pr — Pr-i) mit dem an o gespiegelten Punkt verbindet,
und zwar vermoge Addition (spezieller Linearkombination) im Sinne
der Théorie der konvexen Kôrper, das heiBt entsprechend der folgenden
Définition: Sind xx, X2,. • •, Xr voneinander unabhangig variable Punkte
aus 9Jt1, 5CR2

» • • • > y^r •> 80 werde als Summe dieser Mengen die Menge
yjl E<3Rt aller durch 2(xt— o) darstellbaren Punkte bezeichnet5).

Seiner Entstehung zufolge ist ^3 ein konvexes Polyeder6) mit Mittel-
punkt. Wegen der Symmetrie bezuglich des Ursprungs o ist die grofîte
Entfernung zwischen o und einem Punkt aus ^3 halb so lang wie der
Durchmesser d(ty) des Polyeders ^p.

Der Punkt

liegt zwischen jenen Punkten, fur die r\%^H unverandert, aber rjto — 1

bzw. + 1 ist. Daher ist x nicht extremer Punkt von ^3, kann somit nicht
maximale Entfernung von o haben. Folglich kommen die Punkte aus S$,

die von 0 am iveitesten abstehen, unter den in (3) angegebenen Punkten vor,
so daB

(4)

ist.

§ 4. Die mittlere Breite

Wir fuhren nun ein Funktional von ^3 ein, das nur von der Lange l (P)
abhangt.

Ist e ein fester Einheitsvektor, u ein variabler Einheitsvektor, so hat
die Strecke oe in der Richtung von u die Breite |e • u|, was den Betrag
des skalaren Produkts bezeichnen môge, und daher die mittlere Breite

-£/' c-U \dcou (5)

5) Vgl T Bonnesenu. W. Fenchel, Théorie der konvexen Korper (Ergebn Math.
u Grenzgeb 3, H 1), Berlin 1934, S. 29, 30.

6) Wir folgen hier und auch sonst der Terminologie von Bonnesen u Fenchel5).
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Hierm bedeutet con die Oberflache der Emheitskugel des J?n (n ^ 2)

und das Intégral ist uber die Oberflache der Emheitskugel zu erstrecken,
dcou bezeichnet das Oberflachenelement mit der Normalenrichtung u
Das Intégral ist das doppelte (n — l)-dimensionale Volumen der ortho-
gonalen Projektion der Emheitskugel auf eme Ebene senkrecht zur
Richtung von e, also gleich 2 Kn 1? wenn yn das Volumen der Emheitskugel

îm Jln ist7)
Bei der Addition konvexer Korper gemaB der m § 3 wiedergegebenen

Définition werden auch îhre Stutzfunktionen addiert5) Mit anderen
Worten Jede Stutzebene an 931 — 2790^ entsteht durch Addition der
parallelen Stutzebenen an die Korper Wftt Daher ist der Abstand jener
beiden Stutzebenen an 93Z, die zum beliebigen Emheitsvektor u, senkrecht

smd, also die Breite von 931 tn der Richtung von u zugleich die Summe

(îm gewohnhchen Smn) der Breiten der Korper S)?z m ebendieser Richtung
Hieraus folgt dasselbe fur die mittleren Breiten, wobei wie m (5) zu
mitteln ist

Weil ty durch Addition aus Strecken erzeugt wurde, die doppelt so

lang wie die Seiten des Polygons P smd, und m Anbetracht der vorhm
berechneten mittleren Bieite emei Einheitsstrecke îesultiert fur % die
mittlere Breite

2 v^f^zl 2Z(P) (6)

Aus (4) und (6) schlieBen wir

Der Durchmesser ist auch die grofite Breite, also ist
und somit

SW^^ • (8)

Noch eme andere Minorante von q(n) werde erwahnt Wenn die
mittlere Breite b, das ist die uber aile Richtungen anthmetisch gemittelte
Breite, durch das anthmetische Mittel 6* der Breiten m den Richtunqen
der Koordmatenachsen ersetzt wird, gilt8)

6*(oe) ^— (5*)
n

7) Bonnesen u Fenchel5) S 48

8) Man ersieht (5*) augenbhcklich aus der Dreiecksungleichung [allgememer bei
H Minkowski, Géométrie der Zahlen, Leipzig u Berlin 1910, S 4]
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Hieraus kann ganz so wie vorhin gefolgert werden9) :

^ (6*

Eine Majorante von q (n) laBt sich beispielsweise von jedem Polygon P
ableiten, dessen Seitenvektoren die positiven und negativen achsen-

parallelen Einheitsvektoren sind (P ist geschlossen). Hier ist l(P) 2n,
ferner S$ das %-dimensionale Analogon des Wùrfels mit der Kantenlânge 4,

daher d(S$) 4 ]/n. Aus (7) folgt jetzt q(P) l/2]/râ, mithin

Ich behaupte, daB in (8) das Gleichheitszeichen zu Recht besteht
[in (8*) und (9) bloB fur n 1 ]. Dies wâre mittels (7) sofort bewiesen,
wenn es ein geschlossenes Polygon P gàbe, fur das d(ty) b(ty) ist.
Weil die Breite eines beschrànkten Korpers eine stetige Funktion der
Richtung ist, kônnte die letzte Gleichung nur gelten, falls ^3 in jeder
Richtung die Breite d(^) besafie. Wegen der zentrischen Symmetrie
hâtten dann die Stutzebenen an ty den konstanten Abstand ^d(^) von o
und ^P wâre eine Kugel10). Das ist in mehrdimensionalen Ràumen unver-
einbar damit, daB ty, wie wir wissen, ein Polyeder ist. Demzufolge muB

> bW) und q(P) > Kn-X\o>n sein").
[Im Qix ist allerdings jeder konvexe Kôrper eine Kugel. Weil dort

2l(P), istimmer Q(P) J= Q(l)m]
Uni dennoch in (8) die Gleichheit beweisen zu kônnen, sieht man sich

fur n ^ 2 zur Betrachtung einer Folge

9) Emen unmittelbaren Beweis von (8*) erbrmgt Menger1), S. 26 [fur ge&chlossene
Polygone].

10) E. Meifiner, Ûber Punktmengen konstanter Breite, Vierteljahrschr. natur-
forsch. Ges. Zurich 56 (1911), S. 42—50 (bes. 47).

n) Die Summen (Linearkombmationen) von Strecken smd im Çnz konvexe Polyeder
mit zentrisch symmetrischen Seitenflachen [W. Blaschke, Vorlesungen uber Diffe-
rentialgeometrie 2 (AffineDiff.-Geom., bearb. von K.Reidemeister), Berlin 1923, S. 250].
Unter den bekannteren Vielflachen dieser Art ergab sich der kleinste Wert von djb beim
62-flachigen archimedischen Dreikantpolyeder [vgl. M. Bruckner, Vielecke und Viel-
flâche, Leipzig 1900, S. 133, 138], namlich
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Po, Pl5...,Pv,... adinf.

von Polygonen genôtigt. Mit Hilfe von Symmetrisiemngen lâBt es sich

einrichten, daB die zugehôrigen Polyeder

gegen eine Kugel Q, konvergieren. Dabei konvergieren d(tyv) und b(S$v) als

stetige Funktionale gegen den Durchmesser von Q. Also geht gemâB (7)

womit die angekundigte Verschârfung von (8) erreicht ist.

§ 5. Abschâtzungen

Wird aus den bekannten Formeln fur xn und con in die Gleichung (8)
eingesetzt, so hat man endgùltig

(10)
1

Dies liefert auch fur n=l den richtigen Wert g(l) —, ferner

11fur w 2, 3, 4, 5 die Zahlen p(n) — —
7T 4 O

3

Allgemein gilt:
q(ïi) ist rational fur ungerades n,

7tQ(n) ist rational fur gerades n,

wie die gelâufigsten Eigenschaften der Gammafunktion erkennen lassen,
nâmlich

xr(x), x>o-, r(j) y^r. (12)

Jedes Polygon P des Çftn hann auch in den Œn+1 eingebettet werden,
wobei D(P) und l(P) erhalten bleiben. Dièse Bemerkung ergibt im Verein
damit, daB g(n) als untere Schranke erklàrt ist,

Wegen (11) seheiden die Gleichheitszeichen aus und daher ist auch

Q(n) q(n+l) < g2(n) < g(n —
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Hieraus und aus (10) folgt mit Rucksicht auf die in (12) wiedergegebene
Funktionalgleichung :

was von n 3 an genauer als (8*) und (9) ist.

Es liegt nahe, Q2(n) mit dem harmonischen Mittel lj(2n—1)jz der
beiden Abschatzungen (13) zu vergleichen, zumal dieser Zwischenwert
ebenso leicht numerisch ermittelt werden kann und ubrigens auch fur
n 1 definiert ist, wohingegen die rechten Seiten der letzten drei Un-
gleichungen fur n 1 versagen. Zieht man die Stirlingsche Reihe zu
Rate, so gelangt man dazu, daB

ist. In der neuen Majorante haben wir zugleich eine sehr genaue Approximation

fur grofies n gewonnen, ihr Fehler ist nurmehr O(n~3), wahrend
der Spielraum in (13) noch O(n~2) war12).

§ 6. Weiteres iiber ebene Polygone

FaBt man aile aus einem Polygon durch Translationen hervorgehenden
Polygone in eine Klasse zusammen, so gehoren die mit P kovektoriellen
Polygone endlichvielen Klassen an, weil die Seitenvektoren von P nur

12) Herrn W. Fenchel verdanke ich den Hinweis darauf, daB (13) auch aus der folgenden
Produktentwicklung [N. E. Norlund, Vorlesungen uber Differenzenrechnung,
Berlin 1924, S. 117] resultiert:

1 n+1 n+ 1 n + 3 n+3 +9 {n) 2n~c n n+2n + 2n + 4*"'
In der Tat kann so zusammengefafit werden.

oder

Wir wollen hier noch deuthch machen, wie fein XJngleichung (14) ist. Das Teil-
produkt von (*) mit 2{v -f- 1) Faktoren ist gleich

1 d l\ (n l V (i i
1 Wi + —(2n — 1)tV 2n/ \ ^"n(n+2)/ \ ^ (n + 2f/ — 2) (n + 2i/)/ V n +

es wird — man ziehe den zweiten zum letzten Klammerausdruck — mit wachsendem n
groBer als 1/(2 n — 1) %. Wahrend also schon der ers te bzw. die ersten zwei Faktoren von
(*) die Abschatzungen (13) hefern, findet man bei (14) mit kemem Teilprodukt das Aus-
langen fur aile n.
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endlichviele Permutationen zulassen. Unter den mit P kovektoriellen
Polygonen besitzen daher die Polygone mindestens einer Klasse den
Durchmesser D(P). Im vorangehenden war von diesen Polygonen
groBten Durchmessers nicht die Rede; die Einfuhrung des Polyeders ty
hatte ja gerade den Erfolg, daB es nur noch auf die Seitenvektoren von P
ankam, nicht mehr auf deren Reihenfolge.

Anscheinend ist es gar nicht leicht, fur den Q{n eine Vorschrift anzu-
geben, nach der man ein mit P kovektorielles Polygon maximalen
Durchmessers ermitteln konnte, ohne zuvor andere kovektorielle Polygone

konstruiert zu haben. Im Çftx freilich liegt eine solche Regel auf der
Hand. Wir behandeln nun den ÇJ[2.

Werden die Seitenvektoren eines ebenen geschlossenen Polygons P im
Sinne wachsender oder abnehmender Richtungswinkel geordnet, so sind
sie in der neuen Reihenfolge die Seitenvektoren eines konvexen Polygons
RP bzw. £P. Beide haben denselben Durchmesser d(RP) d(2P).
Denn StP und £P sind im wesentlichen zueinander zentrisch symmetrisch,
namlich wenn man davon abstrahiert, daB RP positiven, £P aber nega-
tiven Umlaufsinn hat (sofern P nicht linear war), und wenn uber etwa
vorhandene gleichgerichtete Seitenvektoren von P eine geeignete Ver-
abredung getrofîen wird, z. B. daB sie der GroBe nach zu reihen sind

(etwa in 51P wachsend, in £P abnehmend), was selbstredend den Durchmesser

nicht beeinfluBt. Aile konvexen mit P kovektoriellen Polygone
konnen ofïenbar aus 5tP oder fiP mittels Schiebungen erzeugt werden,
abgesehen vom Umordnen paralleler Vektoren.

Wir behaupten, ubereinstimmend mit einer Vermutung von K.Menger:
Unter den mit P kovektoriellen Polygonen besitzen die konvexen13) den

Durchmesser D(P).

Fig. 1 Fig. 2

13 Dies ergibt fur den ÇM^ neuerhch D(P)/Z(P):>l/;r, da eine entsprechende Unglei-

chung bei konvexen Bereichen bekannt ist [siehe A. Rosenthal u. O. Szâsz, Eine
Extremaleigenschaft der Kurven konstanter Breite, Jahresber. dtsch.Math.-
Veremig. 25 (1917), S. 278 — 282; K Remhardt, Extremale Polygone gegebenen
Durchmessers, ebenda 31 (1922), S. 251—270].

20 Coramentani Mathematici Helvetici "* *



Hier konnten auch ofïene Polygone zugelassen werden Dies ist aus § 2

ersichtlich, wenn man bedenkt, daB die dort emgefuhrte Transformation
S konvexe ofïene Polygone in konvexe geschlossene uberfuhrt

Der Beweis unserer Behauptung geht von einem langsten Diagonal-
vektor p b — po des Polygons P aus Die Ecken pa>Vb zerlegen P m zwei
offene Polygone P*, P** Wir bilden SP* und 6P** (Fig 1), hierauf
ftSP* und 51SP** und schieben dièse konvexen Polygone derart
anemander, daB po, p& aufemanderfolgende Ecken von beiden smd
(Fig 2) Wird jetzt die Strecke papb aus 5K5P* und RQP** getilgt,
so bleibt ein Polygon Pi||P zuruck

Beim Ubergang von P zu Px nimmt der Durchmesser zu oder wenig-
stens nicht ab d(P) |p6 —pj < ^(Px) Weil #SP* und #SP**
konvex smd, gehen an die von Px umgrenzte Flache [Px ] Stutzstrecken

jedenfalls durch aile jene Randpunkte, die nicht auf der pa und p6
verbmdenden Geraden g liegen Wenn P* oder P** ein lmeares Polygon
war, ist papb eine Randstrecke von fPJ, und nur m diesem Fall Ware
îm besonderen |p& — po| =cZ(P1), so besaBe [Px] uberdies m pa und p&
Stutzgeraden normal zu g, mithm ware Px konvex

Die Konstruktion, die P m Px umgewandelt hat, wenden wir nunmehr
auf Px an, auf das solcherart erzeugte Polygon P2 neuerlich und so fort
Dabei entsteht eme Folge P1? P2, kovektorieller Polygone mit posi-
tivem Umlaufsmn und nicht abnehmendem Durchmesser d(P1) ^
d(P2) ^ Hier muB, weil die Durchmesser aller mit P kovektonellen
Polygone bloB eme endhche Menge bilden, nach endhchvielen Schntten
das Gleichheitszeichen gelten Dem vorigen Absatz gemaB kommt daher in
der Folge Pl5 P2, das konvexe Polygon RP \or, waszu beweisen war

Unter den mit P kovektonellen Polygonen weisen nicht immer bloB
die konvexen den Durchmesser D(P) auf Sogar aile mitemander kovek-
tonellen Polygone konnen gleiche Durchmesser haben (Fig 3)

Fig 3

Anliang : tlber Lângenmengen

In diesem Anhang darf P pop1 pr wieder ein offenes oder ge-
schlossenes Polygon sem Wie m § 3 kann man das Polyeder
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dem Polygon P zuordnen1*). Fur ty gilt Gleichung (6), weil bei der Ab-
leitung dieser Formel von der (dort allerdings vorausgesetzten) Ge-
schlossenheit des Polygons kein Gebrauch gemacht wurde. Das Folgende
gipfelt in einer Verallgemeinerung von (6).

Wir gehen nun zu einem Polygon Px uber, das mit hôchstens einer Aus-
nahme dieselben Ecken wie P hat, und zwar mittels einer der folgenden
Substitutionen (0 ^^^1):

1. p0 wird durch (1 — A) p0 + Apx ersetzt.

2. pr wird durch (1 — A)pr + hpr-i ersetzt.

3. An Stelle von p,o treten die beiden Punkte p ' (1 — A) pH + Ap, a

und p" (1 — p) pîo + fi ptQ+1

Das P1 zugeordnete Polyeder ty1 unterscheidet sich von ty durch eine
der nachstehenden Ànderungen der Vektorsumme (15):

1. rjt wird durch (1 — X) r\x ersetzt.

2. r\r wird durch (1 — A) r\r ersetzt.

3. An Stelle von rjtQ (p,o —p,^) + Vro+i (Pz0+i — P*o) tritt

ri'b' — p^) + ^(p^-pO + */'(pîo+1-p")
— 1 ^ y', 77*, rj" g + 1

Dies ist âquivalent damit, daB r\H durch (1 — X) r}' + Xrf- ersetzt wird.
und rjH+1 durch (1 —//) r\" + firj*.

Somit ist in jedem Falle <^1 g ^p.

Durch Itération des Verfahrens, das Px aus P erzeugt hat, kann man
zu jedem Polygon gelangen, das P so eingeschrieben ist, daB seine Ecken
beim Durchlaufen von P der Reihe nach angetrofïen werden. Unter
dieser Bedingung besteht also der Hilfssatz : Dem eingeschriebenen

Polygon entspricht eine Teilmenge von ty ois zugeordnetes Polyeder.
War hier vom Durchlaufen die Rede — wurde, mit anderen Worten,

das ursprùngliche Polygon als besonderes eindeutiges Streckenbild be-

trachtet, so liège nunmehr ein beliebiges eindeutiges Streckenbild C vor.
Im folgenden nennen wir P ein eingeschriebenes Polygon, wenn seine
Ecken C angehôren und auch bei der Durchlaufung von G in jener
Reihenfolge getrofïen werden, die sie auf P besitzen.

Jetzt defînieren wir mit K. Menger als Làngenmenged des eindeutigen

14) Bis auf eine Translation stimmt $Ç mit einem von Steinitz*), S. 161, auch fur ab-
zahlbar-unendhche Vektormengen emgefuhrten konvexen Korper uberem [dort mit 2 T;
bezeichnet].
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Streckenbildes G die abgeschlossene Huile der Vereinigungsmenge, die von
den zugeordneten Polyedern aller eingeschriebenen Polygone erzeugt wird15).
Im besonderen besagt dièse Définition, dem Hilfssatz zufolge, daB die
Langenmenge des Polygons P mit dem zugeordneten Polyeder ty
ubereinstimmt.

Falls G ein Bogen (topologisches Streckenbild) ist, benotigt man fur
die Konstruktion von (£ nicht aile eingeschriebenen Polygone ; vielmehr
genugt es, eine Folge eingeschriebener Polygone

PO,P1}...,PV,... adinf. (16)

so zu ermitteln, daB die Ecken von Pv aueh Ecken von Pv+1 sind und
jeder Punkt aus G Ecke eines Polygons der Folge oder Haufungspunkt
von Ecken ist. Fur derartige, ausgezeichnete Polygonfolgen gilt: (£ ist die

abgeschlossene Huile der Vereinigungsmenge fur die Folge zugeordneter
Polyeder1*).

Zum Beweise mussen wir zeigen : Wird die Kugelumgebung U mit dem
Radius a > 0 um einen Punkt c von (£ vorgegeben, so existiert ein zu U
nicht fremdes Polyeder tyv.

Entsprechend der Définition von (£ gibt es em C eingeschriebenes
Polygon P p0... pr, dessen zugeordnetes Polyeder ^} mit der Umge-
bung vom Radius r < a (r > 0) um c einen nicht leeren Durchschnitt hat.
Da die Ecken von P Punkte von G sind, laBt sich voraussetzungsgemaB
aus der Folge (16) ein Polygon Pv derart auswahlen, daB erstens bei jeder

Ecke von P in einer Entfernung < —-— je eme Ecke von Pv hegt und

daB zweitens die Ûbertragung der bogenmaBigen Ordnung der Ecken
von P auf die benachbarten Ecken von Pv dièse wieder bogenmaBig
ordnet. Dann kommt jedem Seitenvektor von P em Diagonalvektor von
Pv dermaBen nahe, daB sich nachst jedem Punkt von ^3 ein Punkt von
S$v befindet, namlich in einem Abstand < a — r. Folglich hat tyv mit U
mindestens einen Punkt gemein.

15) K Menger, Zut Begrundung einer Théorie der Bogenlange in Gruppen,
Ergebn math Kolloqu 5 (1933), S 1—6 Abweichend von der dort aufgestellten, m sehr
allgememen Raumen anwendbaren Définition habe ich erstens die Langenmenge mit
Hilfe von ^ statt mittels (3) erklart, im Anschlufi an A Vihm, Langenmengen (Diss
Univ. Wien 1934, ungedruckt) Aus einem Bogen des £/fn entsteht beidemale die gleiche,
weil konvexe [siehe 17)], Langenmenge Zweitens lasse ich aile eingeschriebenen Polygone
zu, und nicht blofi jene, die mit C Anfang und Ende gemein haben. Auch das ist — man
beachte den Hilfssatz — irrelevant [vgl. die Fragebei Menger15), daselbst FuBnote3)]

16) Menger15), S. 4.
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Weil, îm Hmbhck auf unseren Hilfssatz, die Mengenfolge

<Po><Pi> tyv, ad mf

monoton wachst, ist das soeben Bewiesene gleichwertig mit Lim *py &
Die Mengenfolge ist gleichmaBig beschrankt, sobald der Bogen C

rekhfizierbar ist, und nur m diesem Fall, denn nach (6) ist d (^3V) ^ b (^3V)

4 g(n)l(Pv), wahrend andererseits Jd(tyv) ^ l(Pv) ist Die gleichmaBige
Beschrankung bewirkt, daB (£ em beschranhter Jconvexer Korper ist17)
Dann konvergieit, als stetiges Funktional, die mittlere Breite b(^v)
gegen die mittlere Breite b((£) von & Weil zugleich l(Pv) gegen die
Bogenlange l(C) geht, ergibt sich anhand von (6)

v
con wn

also die Ausdehnung der Gultigiceit von (6) auch auf nicht polyednsche
Langenmengen18)

Ubrigens lehrt (17), daB Bogen mit gleicher Langenmenge auch
gleiche Bogenlange haben19)

17) K Menger, Eme Bemerkung uber Langenmengen, Ergebn math Kolloqu
6 (1935), S 1—2 Vgl auch H TerasaJca, Em Satz uber Langenmengen, ebenda
S 3—4

18 Im CM% folgt hieraus leicht, daB die vierfache Lange eines Bogens der TJmfang
semer Langenmenge ist [Menger15), S 6, vgl Steimtz*), S 163, FuÛnote]

19) Fur den Œi bemerkt dies Menger1*), S 6

(Emgegangen den 14 Marz 1938
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