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GroBte Polygone mit gegebenen Seitenvektoren

Von AxToN E. MAYER, Wien

Die vorliegende Arbeit befaflt sich — zunachst ganz beildufig formuliert
— damit, gegebene Vektoren zu einem moglichst weit gespannten Polygon
zusammenzusetzen ; ich werde ein Mal3 der stets erreichbaren Weite er-
mitteln.

Vorerst wird die Aufgabe genau umschrieben und auf eine Anwendung
in der Variationsrechnung hingewiesen (§1). Es zeigt sich (§ 2), dal} es
unwesentlich ist, ob wir nur offene oder nur geschlossene Polygone
zulassen oder beliebige Polygone. Die Bestimmung des gesuchten MaBes
(§ 4) gelingt, nachdem gewisse den Polygonen zugeordnete Polyeder
herangezogen wurden (§ 3). Auf eine Erérterung der numerischen Werte
des Ergebnisses (§ 5) folgen schlieflich nihere Angaben iiber ebene
Polygone (§ 6). Ein Anhang betrifit eine Verallgemeinerung der in § 3
eingefiihrten Polyeder, die sogenannten Lingenmengen.

§ 1. Bezeichnungen. Problemstellung

Wir bezeichnen mit p,, p,, ... Punkte des n-dimensionalen euklidischen
Raumes (#, und zugleich die vom Ursprung o nach diesen Punkten
zielenden Vektoren, mit p,p, die Strecke, deren Enden p, und p, sind.

Unter einem Polygon P = p,p,...p, moge die geordnete, endliche
Menge poP1;> P1Pss - - -» Proy P, aneinanderschlieflender Strecken verstanden
werden. Diese Strecken sollen Seiten, die Punkte pg, py, ..., p, Ecken des
Polygons P heiflen. Bei einem geschlossenen Polygon ist p, = p,, bei
einem offenen p, #=p,. Wir nennen p,—p,, (¢t =1,2,...,r) einen
Seitenvektor von P, ferner p, —p, (j,k = 0,1, 2, ..., r) einen Diagonal-
vektor. Zu den Diagonalvektoren gehdren also auch die Seitenvektoren
und der Nullvektor.

Ist |x| die Linge des Vektors x, so besitzt P die Linge I (P) =2 [p;,—p ;|
und den Durchmesser d(P) = max |p;—p,|.

Zwei Polygone P und P’ heilen kovektoriell') und wir schreiben
dann P||P’, wenn die Seitenvektoren des einen eine Permutation der
Seitenvektoren des anderen bilden. In diesem Fall ist auch I(P) = I(P’).

Fiir jedes Polygon P sei

D (P) = obere Schranke d (P’) .
PP

1) K. Menger, Die metrische Methode in der Variationsrechnung, Ergebn.
math. Kolloqu. 8 (1937), S. 1—32 (bes. 25).
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Wir definieren nun

_ d (P’)
o(P) = obelgs ”Sghranke 1P - (1)

Wegen der Lingengleichheit kovektorieller Polygone ist o(P) =
D (P)/l(P).

Die eingangs angedeutete Aufgabe kann jetzt folgendermaflen prizi-
siert werden: Man bestimme fiir den £, die Konstante

o (n) = untere Schranke o (P) . (2)
P im J{;@

Das Problem verdient vielleicht an sich geometrisches Interesse; da-
neben ist jedenfalls eine Anwendung von p(n) bemerkenswert. Bei der
Verwertung der metrischen Geometrie fiir die Variationsrechnung,
wie sie K. Menger durchgefiihrt hat, geht namlich o (n) explizit in ein
Existenztheorem fiir Extremanten ein, falls der Integrand nicht iiberall
stetig ist?). In diesem Zusammenhang hat Herr Menger die Berechnung
von g(n) angeregt?).

Vertauscht man in (1) oder (2) oder in beiden Definitionen ,,untere
Schranke‘ und ,,obere Schranke‘, so laf3t sich jedesmal die Schranke
sofort angeben. In anderer Weise kénnen jedoch von unserer Aufgabe
durchaus nicht-triviale Umkehrungen abgeleitet werden, bei denen es
sich um das Aneinanderfiigen von Vektoren auf moglichst engem Raum
handelt. Dies ist fiir die Theorie der bedingt konvergenten Reihen
wichtig?).

%) Mengerl), S. 29. Die dort mit % bezeichnete Zahl ist unser g(n). — Zur Einfithrung
in die Mengersche Theorie der Variationsrechnung: K. Menger, La géométrie des
distances et ses relations avec les autres branches des mathématiques,
Enseignement math. 35 (1936), S. 348—372; ders., Metric methods in calculus of
variations, Proceed. national Acad. Sci. 23 (1937), S. 244—250. Eine lehrbuchmafige
Darstellung bereitet Herr Chr. Pauc fiir die Actualités sci. et industr. vor.

8) Siehe auch die vorlaufige Mitteilung: A. E. Mayer, Uber den gréBten Durch-
messer kovektorieller Polygone im ‘fﬁ’k, Ergebn. math. Kolloqu. 8 (1937), S. 37.

%) Genannt seien die folgenden geometrisch eingestellten Arbeiten: E. Steinitz, Bedingt
konvergente Reihen und konvexe Systeme, Journ. reine u. angew. Math. 143
(1913), S. 128—175 (bes. 171, 172); W. Grof, Bedingt konvergente Reihen, Monats-
hefte Math. u. Phys. 28 (1917), S.221—237 (bes. 229); V. Bergstrom, Ein neuer Beweis
eines Satzes von E. Steinitz, Abhandl. math. Semin. Hamburg 8 (1931),
S. 148—152; ders., Zwei Séatze iiber ebene Vektorpolygone, ebenda S. 206—214;
H. Hadwiger, Ein Satz uber geschlossene Vektorpolygone des Hilbertschen
Raumes, Math. Zeitschr. 41 (1936), S.732—738.
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§ 2. Geschlossene und offene Polygone

Jedem Polygon P = p,p, ... p, kann ein geschlossenes Polygon SP =
PoPy .- PrP, zugeordnet werden. Die Transformation S ist selbstredend
nur dann wesentlich, wenn nicht schon P geschlossen ist.

Fiigt man zu den Seitenvektoren von P den von ihrer Reihenfolge
unabhéngigen Vektor s = p,— p, = — 2 (p; — p;—,) hinzu, so entsteht
die Menge der Seitenvektoren von SP. Weil kovektorielle Polygone sich
blof in der Reihenfolge der Seitenvektoren unterscheiden, ergibt sich
also GP || GP’, sobald P||P’ ist.

Wird, umgekehrt, von einem Polygon @ || S P die (bzw. eine) Seite ent-
fernt, deren Vektor s ist, so bleiben aneinanderschlieBende Strecken, das
heiBt ein Polygon P’ iibrig, da ja zugleich mit GP auch @ geschlossen
war. Wir finden somit, daB @ = SP’ ist, wobei im Hinblick auf die
Seitenvektoren P’||P sein mu8.

Folglich erzeugt S aus den mit P kovektoriellen Polygonen alle mit
SP kovektoriellen Polygone und, da & den Durchmesser unverandert
1a8t, ist D(SP) = D(P). Die Linge wird aber im allgemeinen durch &
vergrofert: [(SP) = I(P)+|s|. Es ergibt sich also

0(SP) = o(P) .

Weil g(n) als untere Schranke erklirt wurde, geniigt es somit, bei der
Ermittlung von ¢(n) blof geschlossene Polygone zu betrachten. Wollte
man, im Gegenteil, in der Definition von g(n) ausschliefSlich offene
Polygone zulassen, so erhielte man kein anderes Resultat. Zum Beweis
fithren wir die Transformation ¥ ein, die dem Polygon P das Polygon
IP = pop;y-.- PP, entsprechen 1liBt, wo p,=(1—1t)py+tp, ist
(0<t =1), demnach der Vektor p,—p, = (1 —?)s. Wenn, wie wir
nun annehmen, P ein offenes Polygon ist, so ist auch TP offen.

Weil die Seitenvektoren kovektorieller Polygone paarweise gleich sind
und s von der Reihenfolge der Seitenvektoren nicht abhidngt, hat man
wie bei der Transformation S: Aus P||P’ folgt TP||TP’. Ersichtlicher-
weise beeinfluBt T den Durchmesser nicht; mithin ist D(IP) = D(P).

Wird andererseits in einem Polygon R|| TP eine Seite, deren Vektor
(1 —¢t) s ist, getilgt, so konnen, weil R offen ist, zwei Polygone P*, P**
ibrig bleiben, deren Seitenvektoren, zusammengenommen, die Seiten-
vektorenmenge von P erzeugen. Verschiebt man in diesem Fall etwa das
Polygon P** um den Vektor ({ — 1) s, so bildet es nach der Verschiebung
gemeinsam mit P* ein Polygon, das mit P kovektoriell ist. Da R die
Seitenvektorensumme — ¢s hat, erginzt P** auch nach der Verschiebung
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um ¢s das Polygon P* zu einem mit P kovektoriellen Polygon. Dies
liefert den Hilfssatz: Der Diagonalvektor d von R ist selbst zugleich
Diagonalvektor fiir ein mit P kovektorielles Polygon oder sowohld + (t—1)s
wie D -+ ts sind Diagonalvektoren in Polygonen, die mit P kovektoriell sind.
Das gilt auch dann, wenn bei der Eliminierung der Seite mit dem Vektor
(1 —t)s aus dem Polygon R statt zweier Polygone P*, P** blof} ein
einziges verbleibt.

Aus dem Hilfssatz folgt, weil D+ ({—1)s oder b 4 ¢s oder alle beide
langer als  sind, D(TP) < D(P) und, mit Riicksicht auf obenstehende
entgegengesetzte Ungleichung, D(TP) = D(P) = D(SP). Da [(TP) =
[(P) + (1 — 1) |s]| ist, haben wir

0(TP) > o(SP) fiir t— 0 .

Hieraus ist zu ersehen, daBl o (P) fir offene wre fiir geschlossene Polygone
dieselbe untere Schranke hat.

§ 3. Polygone und zugeordnete Polyeder

GemiaBl § 2 darf P fortan als geschlossenes Polygon vorausgesetzt
werden. Es gilt, D (P) zu ermitteln. Da D (P) als obere Schranke fiir die
Linge der Diagonalvektoren von simtlichen Polygonen P’||P aufgefaBt
werden kann, ist es nur natiirlich, wenn wir einen beliebigen solchen
Vektor p; — p; nédher betrachten. Er ist in zweierles Weise die Summe
aus Seitenvektoren von P’. Die Punkte p;, p; zerlegen nimlich das ge-
schlossene Polygon P’ in zwei Teilpolygone, wofern § % k. Also ist
p; — Py die Summe der Seitenvektoren des einen und zugleich negative
Summe der Seitenvektoren des anderen Teilpolygons. Demnach gestattet
2 (p; — Py), librigens sogar fiir j = k, folgende Darstellung :

2e(pi—Pi1) » g; = + 1 oder —1 . (3)

Und umgekehrt; falls 2 b in der Gestalt (3) geschrieben werden kann,
ist p Diagonalvektor in einem Polygon P’||P. Ordnet man nimlich die
Seitenvektoren von P derart, dafl alle in (3) mit positivem Vorzeichen
versehenen den etwa noch iibrigen vorangehen, so sind sie in dieser
Reihenfolge die Seitenvektoren eines Polygons P’ mit dem Diagonal-
vektor d.

Der limgste unter den der Darstellung (3) fihigen Vektoren hat somit die
Linge 2 D(P).
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Die Menge aller in (3) angeschriebenen Punkte ist enthalten in der
Menge

P==2np;:—p) s —1l1=n,=4+1.

Die Menge ‘B geht aus den Strecken hervor, deren jede einen der Punkte
(P1—7Pe)s ---» (Pr — Pr—y) mit dem an o gespiegelten Punkt verbindet,
und zwar vermoge Addition (spezieller Linearkombination) im Sinne
der Theorie der konvexen Kérper, das heit entsprechend der folgenden
Definition: Sind %x,, %,, ..., X, vonetnander unabhdingig variable Punkte
aus My, My,..., M,, so werde als Summe dieser Mengen die Menge
M = 2M, aller durch X (x;— o) darstellbaren Punkte bezeichnet®).

Seiner Entstehung zufolge ist P ein konvexes Polyeder®) mit Mittel-
punkt. Wegen der Symmetrie beziiglich des Ursprungs o ist die grofite
Entfernung zwischen o und einem Punkt aus B halb so lang wie der
Durchmesser d (‘) des Polyeders ‘.

Der Punkt
—l<n, <+1,

=21(P;i— P > — 1S iz, < + 1

liegt zwischen jenen Punkten, fir die #,_., unverdndert, aber #; =—1
bzw. 4 1 ist. Daher ist x nicht extremer Punkt von P, kann somit nicht
maximale Entfernung von o haben. Folglich kommen die Punkte aus ‘B,

die von 0 am weilesten abstehen, unter den in (3) angegebenen Punkten vor,
so dal}

2D (P) == d(P) (4)

DO -

ist.
§ 4. Die mittlere Breite

Wir fithren nun ein Funktional von ‘B ein, das nur von der Lénge I (P)
abhéangt.

Ist e ein fester Einheitsvektor, 1t ein variabler Einheitsvektor, so hat
die Strecke pe in der Richtung von u die Breite |¢ - 1|, was den Betrag
des skalaren Produkts bezeichnen mége, und daher die mittlere Breite

b(oe):;)—l——fle-mdwu . (5)

5) Vgl. T'. Bonnesen u. W. Fenchel, Theorie der konvexen Korper (Ergebn. Math.
u. Grenzgeb. 3, H. 1), Berlin 1934, S. 29, 30.
6) Wir folgen hier und auch sonst der Terminologie von Bonnesen u. Fenchel®).
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Hierin bedeutet o, die Oberfliche der Einheitskugel des (£Z, (n = 2)
und das Integral ist iiber die Oberflache der Einheitskugel zu erstrecken;
dw, bezeichnet das Oberflichenelement mit der Normalenrichtung u.
Das Integral ist das doppelte (n — 1)-dimensionale Volumen der ortho-
gonalen Projektion der Einheitskugel auf eine Ebene senkrecht zur
Richtung von e, also gleich 2 %, ,, wenn %, das Volumen der Einheits-
kugel im £, ist?).

Bei der Addition konvexer Korper gemall der in § 3 wiedergegebenen
Definition werden auch ihre Stiitzfunktionen addiert®). Mit anderen
Worten: Jede Stiitzebene an t= Y9I, entsteht durch Addition der
parallelen Stiitzebenen an die Korper ;. Daher ist der Abstand jener
beiden Stiitzebenen an 9Jt, die zum beliebigen Einheitsvektor u, senk-
recht sind, also die Breite von It in der Richtung von u zugleich die Summe
(im gewohnlichen Sinn) der Breiten der Korper 9t; in ebendieser Richtung.
Hieraus folgt dasselbe fiir die mittleren Breiten, wobei wie in (5) zu
mitteln ist.

Weil B durch Addition aus Strecken erzeugt wurde, die doppelt so
lang wie die Seiten des Polygons P sind, und in Anbetracht der vorhin
berechneten mittleren Breite einer EKinheitsstrecke resultiert fiir °f die
mittlere Breite

b(P) = 21 2y (p) . (6)

w’n
Aus (4) und (6) schlieBen wir:

DP)_1d®B) _ s d(H)
=70 =110~ v, 5 £

Der Durchmesser ist auch die grofite Breite; also ist d(B) =b (*B)
und somit

x

n—1 . (8)

Noch eine andere Minorante von p(n) werde erwihnt. Wenn die
mittlere Breite b, das ist die iiber alle Richtungen arithmetisch gemittelte
Breite, durch das arithmetische Mittel b* der Breiten in den Richtungen
der Koordinatenachsen ersetzt wird, gilt8)

b*(0e) = - . (5%)

7) Bonnesen u. Fenchel®), S. 48.

8) Man ersieht (5*) augenblicklich aus der Dreiecksungleichung [allgemeiner bei
H. Minkowski, Geometrie der Zahlen, Leipzig u. Berlin 1910, S. 4].
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Hieraus kann ganz so wie vorhin gefolgert werden?):

b* ()= 1(P) (6%)
1 d(p)
OET (8%)

Eine Majorante von p(n) 148t sich beispielsweise von jedem Polygon P
ableiten, dessen Seitenvektoren die positiven und negativen achsen-
parallelen Einheitsvektoren sind (P ist geschlossen). Hier ist [(P) = 2mn,
ferner ‘B das n-dimensionale Analogon des Wiirfels mit der Kantenlinge 4,
daher d(P) = 4 Yn. Aus (7) folgt jetzt ¢(P) = 1/2}/n, mithin

o) < —— . (9)

2 ]/n

Ich behaupte, daBl in (8) das Gleichheitszeichen zu Recht besteht
[in (8*) und (9) bloB fiir » = 1]. Dies wére mittels (7) sofort bewiesen,
wenn es ein geschlossenes Polygon P gibe, fiir das d () = b(P) ist.
Weil die Breite eines beschrinkten Korpers eine stetige Funktion der
Richtung ist, konnte die letzte Gleichung nur gelten, falls P in jeder
Richtung die Breite d(‘) besiBle. Wegen der zentrischen Symmetrie
hitten dann die Stiitzebenen an P den konstanten Abstand 1d(B) von o
und P wire eine Kugel'®). Das ist in mehrdimensionalen Rdumen unver-
einbar damit, dafl P, wie wir wissen, ein Polyeder ist. Demzufolge mull
d(*B) > b(P) und ¢(P) > %, ,/ w, sein').

[Im (7, ist allerdings jeder konvexe Koérper eine Kugel. Weil dort
d(P) = 2 1(P), ist immer o(P) = 1= o(1).]

Um dennoch in (8) die Gleichheit beweisen zu kénnen, sieht man sich
fiir n = 2 zur Betrachtung einer Folge

9) Einen unmittelbaren Beweis von (8%) erbringt Mengerl), S. 26 [fiir geschlossene
Polygone].

10) . Meifiner, Uber Punktmengen konstanter Breite, Vierteljahrschr. natur-
forsch. Ges. Zirich 56 (1911), S. 42—50 (bes. 47).

11y Die Summen (Linearkombinationen) von Strecken sind im (A3 konvexe Polyeder
mit zentrisch symmetrischen Seitenflichen [W. Blaschke, Vorlesungen iiber Diffe-
rentialgeometrie 2 (Affine Diff.-Geom., bearb. von K. Reidemeister), Berlin 1923, S. 250 ].
Unter den bekannteren Vielflachen dieser Art ergab sich der kleinste Wert von d/b beim
62-flachigen archimedischen Dreikantpolyeder [vgl. M. Brickner, Vielecke und Viel-
flache, Leipzig 1900, S. 133, 138], nédmlich

a(P) =12_5l/31 +12 V5 = 1,0140 .
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P,P,, ..., P, ... ad inf.

von Polygonen genoétigt. Mit Hilfe von Symmetrisierungen 148t es sich
einrichten, dal} die zugehorigen Polyeder

Bo, Bys ..., By, ... ad inf.

gegen eine Kugel Q konvergieren. Dabei konvergieren d(3,) und b(3,) als
stetige Funktionale gegen den Durchmesser von Q. Also geht gemif} (7)

xn—l
o(P,) — o

n

womit die angekiindigte Verscharfung von (8) erreicht ist.

§ 5. Abschitzungen

Wird aus den bekannten Formeln fiir », und o, in die Gleichung (8)
eingesetzt, so hat man endgiiltig

1 T(3)
o) == r("fij‘) : (10)

Dies liefert auch fiir » =1 den richtigen Wert ¢ (1) = %, ferner

fir n=2, 3, 4, 5 die Zahlen Q(?‘I;):%— , Ti- , 2 3
Allgemein gilt:
o(n) ist rational fiir ungerades =,
. . (11)
o (n) ist rational fiir gerades

wie die gelaufigsten Eigenschaften der Gammafunktion erkennen lassen,
namlich

Fa+l)=al(x), >0 I'H=V=. (12)

Jedes Polygon P des (R, kann auch in den (£, , eingebettet werden,
wobei D (P) und I(P) erhalten bleiben. Diese Bemerkung ergibt im Verein
damit, dafl p(n) als untere Schranke erklart ist,

e(n+1) =e(n) =e(n—1) .

Wegen (11) scheiden die Gleichheitszeichen aus und daher ist auch
e(n) e(n+1) < e*(n) <eo(n—1)e(n) .
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Hieraus und aus (10) folgt mit Riicksicht auf die in (12) wiedergegebene
Funktionalgleichung :
1

1
“—“<Qz(n)<m,

2nn (13)

was von n» =3 an genauer als (8*) und (9) ist.

Es liegt nahe, ¢%(n) mit dem harmonischen Mittel 1/(272 — 1)z der
beiden Abschitzungen (13) zu vergleichen, zumal dieser Zwischenwert
ebenso leicht numerisch ermittelt werden kann und iibrigens auch fiir
n =1 definiert ist, wohingegen die rechten Seiten der letzten drei Un-
gleichungen fiir n =1 versagen. Zieht man die Stirlingsche Reihe zu
Rate, so gelangt man dazu, dal

1
B - 14
" (") < Gn "= (14)
ist. In der neuen Majorante haben wir zugleich eine sehr genaue Approxi-

mation fir grofes n gewonnen; ihr Fehler ist nurmehr O (n—2), wihrend
der Spielraum in (13) noch O (n~2) war!?).

§ 6. Weiteres iiber ebene Polygone

Faf3t man alle aus einem Polygon durch Translationen hervorgehenden
Polygone in eine Klasse zusammen, so gehoren die mit P kovektoriellen
Polygone endlichvielen Klassen an, weil die Seitenvektoren von P nur

12) Herrn W. Fenchel verdanke ich den Hinweis darauf, da3 (13) auch aus der folgenden
Produktentwicklung [N. E. Norlund, Vorlesungen uber Differenzenrechnung,
Berlin 1924, S. 117] resultiert:

1 n4+1n4+1n4+3n43
2nx n nt+t2nt+t2nt4 (*)

0% (n) =

In der Tat kann so zusammengefafit werden :

o) = 5o (1+11(T1+_2_)) (1+(n+2>1<n+4>)'” ’

oder

e =5z (1) (L~ grep)

Wir wollen hier noch deutlich machen, wie fein Ungleichung (14) ist. Das Teil-
produkt von (*) mit 2 (v 4 1) Faktoren ist gleich

(ﬂ—i‘lﬁ(l"zin)' (1+r?(ﬁl¥’2‘))"'(1+<n+2w——12) Tear) (+irm)

es wird — man ziehe den zweiten zum letzten Klammerausdruck — mit wachsendem »n
groBer als 1/(2n — 1) 7. Wahrend also schon der erste bzw. die ersten zwei Faktoren von
(*) die Abschéatzungen (13) liefern, findet man bei (14) mit keinem Teilprodukt das Aus-
langen fur alle n.
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endlichviele Permutationen zulassen. Unter den mit P kovektoriellen
Polygonen besitzen daher die Polygone mindestens einer Klasse den
Durchmesser D(P). Im vorangehenden war von diesen Polygonen
grof3ten Durchmessers nicht die Rede; die Einfiihrung des Polyeders
hatte ja gerade den Erfolg, da3 es nur noch auf die Seitenvektoren von P
ankam, nicht mehr auf deren Reihenfolge.

Anscheinend ist es gar nicht leicht, fiir den (£, eine Vorschrift anzu-
geben, nach der man ein mit P kovektorielles Polygon maximalen
Durchmessers ermitteln kénnte, ohne zuvor andere kovektorielle Poly-
gone konstruiert zu haben. Im (#; freilich liegt eine solche Regel auf der
Hand. Wir behandeln nun den (%,.

Werden die Seitenvektoren eines ebenen geschlossenen Polygons P im
Sinne wachsender oder abnehmender Richtungswinkel geordnet, so sind
sie in der neuen Reihenfolge die Seitenvektoren eines konvexen Polygons
KP bzw. LP. Beide haben denselben Durchmesser d(RP) = d(RP).
Denn K P und £ P sind im wesentlichen zueinander zentrisch symmetrisch,
nimlich wenn man davon abstrahiert, dal &P positiven, £P aber nega-
tiven Umlaufsinn hat (sofern P nicht linear war), und wenn iiber etwa
vorhandene gleichgerichtete Seitenvektoren von P eine geeignete Ver-
abredung getroffen wird, z. B. da} sie der GroBe nach zu reihen sind
(etwa in & P wachsend, in £ P abnehmend), was selbstredend den Durch-
messer nicht beeinflut. Alle konvexen mit P kovektoriellen Polygone
konnen offenbar aus RP oder LP mittels Schiebungen erzeugt werden,
abgesehen vom Umordnen paralleler Vektoren.

Wir behaupten, iibereinstimmend mit einer Vermutung von K. Menger:
Unter den mit P kovektoriellen Polygonen besitzen die konvexen'3) den
Durchmesser D(P).

Fig. 1 Fig. 2

13) Dies ergibt fiir den (A3 neuerlich D(P)/l(P)= 1/x, da eine entsprechende Unglei-

chung bei konvexen Bereichen bekannt ist [siehe A. Rosenthal u. O. Szdsz, Eine
Extremaleigenschaft der Kurven konstanter Breite, Jahresber. dtsch. Math.-
Vereinig. 25 (1917), S.278—282; K. Reinhardt, Extremale Polygone gegebenen
Durchmessers, ebenda 31 (1922), S. 251—270].
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Hier kénnten auch offene Polygone zugelassen werden. Dies ist aus § 2
ersichtlich, wenn man bedenkt, daB die dort eingefiihrte Transformation
S konvexe offene Polygone in konvexe geschlossene iiberfiihrt.

Der Beweis unserer Behauptung geht von einem lingsten Diagonal-
vektor p, — p, des Polygons P aus. Die Ecken p,, p, zerlegen P in zwei
offene Polygone P*, P** Wir bilden GP* und SP** (Fig. 1), hierauf
KSP* und KESP** und schieben diese konvexen Polygone derart
aneinander, dal p,, p, aufeinanderfolgende Ecken von beiden sind
(Fig. 2). Wird jetzt die Strecke p,p, aus KSP* und KSP** getilgt,
so bleibt ein Polygon P,||P zuriick.

Beim Ubergang von P zu P; nimmt der Durchmesser zu oder wenig-
stens nicht ab: d(P) = |[p, — p.| = d(P,). Weil KEP* und KGSP**
konvex sind, gehen an die von P; umgrenzte Flache [P, ] Stiitzstrecken
jedenfalls durch alle jene Randpunkte, die nicht auf der p, und p,
verbindenden Geraden g liegen. Wenn P* oder P** ein lineares Polygon
war, ist p,p, eine Randstrecke von [P,], und nur in diesem Fall. Wire
im besonderen |p, — p,| =d(P,), so besdfle [P, ] iiberdies in p, und p,
Stiitzgeraden normal zu g; mithin wdre P, konvezx.

Die Konstruktion, die P in P, umgewandelt hat, wenden wir nunmehr
auf P, an, auf das solcherart erzeugte Polygon P, neuerlich und so fort.
Dabei entsteht eine Folge P,, P,, ... kovektorieller Polygone mit posi-
tivem Umlaufsinn und nicht abnehmendem Durchmesser: d(P,) <
d(P,) = .... Hier muf}, weil die Durchmesser aller mit P kovektoriellen
Polygone bloB eine endliche Menge bilden, nach endlichvielen Schritten
das Gleichheitszeichen gelten. Dem vorigen Absatz gemdl kommt daher in
der Folge P,, P,, ... daskonvexe Polygon KP vor, waszu beweisen war.

Unter den mit P kovektoriellen Polygonen weisen nicht immer blof3
die konvexen den Durchmesser D (P) auf. Sogar alle miteinander kovek-
toriellen Polygone konnen gleiche Durchmesser haben (Fig. 3).

/\/\/\ A\
MR AVAV.

Fig. 3

Anhang : Uber Lingenmengen

In diesem Anhang darf P = pyp, ... p, wieder ein offenes oder ge-
schlossenes Polygon sein. Wie in § 3 kann man das Polyeder

PB=2n0;:—Ppi)> —l=s=n=+1, (15)
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dem Polygon P zuordnen'?). Fir P gilt Gleichung (6), weil bei der Ab-
leitung dieser Formel von der (dort allerdings vorausgesetzten) Ge-
schlossenheit des Polygons kein Gebrauch gemacht wurde. Das Folgende
gipfelt in einer Verallgemeinerung von (6).

Wir gehen nun zu einem Polygon P, iiber, das mit héchstens einer Aus-
nahme dieselben Ecken wie P hat, und zwar mittels einer der folgenden
Substitutionen (0 < A, u < 1):

1. po wird durch (1 — 4) p, + Ap, ersetzt.
2. p, wird durch (1 — A)p, 4+ Ap,_, ersetzt.

3. An Stelle von p, treten die beiden Punkte p’ = (1 — 1) p; + 4p,
und p” = (1 —p) Py, + #Pspsr -

Das P, zugeordnete Polyeder 3, unterscheidet sich von B durch eine
der nachstehenden Anderungen der Vektorsumme (15):

1. », wird durch (1 — 1) 5, ersetzt.

2. n, wird durch (1 — A) 7, ersetzt.

3. An Stelle von #; (p;, — Pi,—1) + Nigr1 Piya —p;,) tritt

V4

' —pi-) + 0*@"—p) + 0" P —D
—1

IA —

n', ¥, " =+ 1
Dies ist aquivalent damit, daBl »; durch (1 — 1) 5’ 4 An* ersetzt wird.
und 7;,, durch (1 — u) n” + pn*.

Somit ist in jedem Falle B, < PB.

Durch Iteration des Verfahrens, das P, aus P erzeugt hat, kann man
zu jedem Polygon gelangen, das P so eingeschrieben ist, dal} seine Ecken
beim Durchlaufen von P der Reihe nach angetroffen werden. Unter
dieser Bedingung besteht also der Hilfssatz: Dem eingeschriebenen
Polygon entspricht eine Teilmenge von P als zugeordnetes Polyeder.

War hier vom Durchlaufen die Rede — wurde, mit anderen Worten,
das urspriingliche Polygon als besonderes eindeutiges Streckenbild be-
trachtet, so liege nunmehr ein beliebiges eindeutiges Streckenbild C vor.
Im folgenden nennen wir P ein eingeschriebenes Polygon, wenn seine
Ecken C angehoren und auch bei der Durchlaufung von C in jener
Reihenfolge getroffen werden, die sie auf P besitzen.

Jetzt definieren wir mit K. Menger als Léngenmenge € des eindeutigen

14) Bis auf eine Translation stimmt {3 mit einem von Steinitz?), S. 161, auch fiir ab-
zéhlbar-unendliche Vektormengen eingefiihrten konvexen Kérper tiberein [dort mit 2 I/,
bezeichnet].
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Streckenbildes C die abgeschlossene Hiille der Vereinigungsmenge, die von
den zugeordneten Polyedern aller eingeschriebenen Polygone erzeugt wird®).
Im besonderen besagt diese Definition, dem Hilfssatz zufolge, daB3 die
Lingenmenge des Polygons P mit dem zugeordneten Polyeder
iibereinstimmt.

Falls C ein Bogen (topologisches Streckenbild) ist, benétigt man fiir
die Konstruktion von § nicht alle eingeschriebenen Polygone ; vielmehr
geniigt es, eine Folge eingeschriebener Polygone

P,,P,,...,P,, ... ad inf. (16)

so zu ermitteln, dal die Ecken von P, auch Ecken von P, , sind und
jeder Punkt aus C Ecke eines Polygons der Folge oder Haufungspunkt
von Ecken ist. Fur derartige, ausgezeichnete Polygonfolgen gilt: € st die
abgeschlossene Hiille der Vereinigungsmenge fiir die Folge zugeordneter
Polyeder1®) .

Zum Beweise miissen wir zeigen: Wird die Kugelumgebung U mit dem
Radius ¢ > 0 um einen Punkt ¢ von € vorgegeben, so existiert ein zu U
nicht fremdes Polyeder B, .

Entsprechend der Definition von € gibt es ein C eingeschriebenes
Polygon P = p, ... p,, dessen zugeordnetes Polyeder } mit der Umge-
bung vom Radius 7 < ¢ (r > 0) um ¢ einen nicht leeren Durchschnitt hat.
Da die Ecken von P Punkte von C sind, 143t sich voraussetzungsgemafl
aus der Folge (16) ein Polygon P, derart auswéhlen, dal3 erstens bei jeder
oc—7

2r
daB zweitens die Ubertragung der bogenmiBigen Ordnung der Ecken
von P auf die benachbarten Ecken von P, diese wieder bogenmiBig
ordnet. Dann kommt jedem Seitenvektor von P ein Diagonalvektor von
P, dermafen nahe, dafl sich néchst jedem Punkt von  ein Punkt von
B, befindet, ndmlich in einem Abstand < ¢ — 7. Folglich hat B, mit U
mindestens einen Punkt gemein.

Ecke von P in einer Entfernung <

je eine Ecke von P, liegt und

18) K. Menger, Zur Begriindung einer Theorie der Bogenlange in Gruppen,
Ergebn. math. Kolloqu. § (1933), S. 1—6. Abweichend von der dort aufgestellten, in sehr
allgemeinen Raumen anwendbaren Definition habe ich erstens die Langenmenge mit
Hilfe von 3 statt mittels (3) erklart, im AnschluB an 4. Vilim, Langenmengen (Diss.
Univ. Wien 1934, ungedruckt). Aus einem Bogen des (R entsteht beidemale die gleiche,
weil konvexe [siehe 17)], Langenmenge. Zweitens lasse ich alle eingeschriebenen Polygone
zu, und nicht bloB jene, die mit C Anfang und Ende gemein haben. Auch das ist — man
beachte den Hilfssatz — irrelevant [vgl. die Frage bei Menger1®), daselbst FuBnote3)].

18) Mengeris), S. 4.
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Weil, im Hinblick auf unseren Hilfssatz, die Mengenfolge

§B0, SB]_: ceey SBV, ... ad inf.

monoton wdchst, ist das soeben Bewiesene gleichwertig mit: Lim B, = ¢.

Die Mengenfolge ist gleichméflig beschriankt, sobald der Bogen C
rektifizierbar ist, und nur in diesem Fall; denn nach (6) ist d(‘B,) = b(P,)=
4 o(n)l(P,), wahrend andererseits 3 d (P,) < I(P,) ist. Die gleichméaBige
Beschriankung bewirkt, dal € ein beschrinkter konvexer Korper istl?).
Dann konvergiert, als stetiges Funktional, die mittlere Breite b(B,)
gegen die mittlere Breite b(€) von €. Weil zugleich I(P,) gegen die
Bogenlinge [(C) geht, ergibt sich anhand von (6)

X

b(€) = lim b(B,) = 4 ";‘1 lim I(P,) = 4

n

n—1
=), )
also die Ausdehnung der Giiltigkeit von (6) auch auf nicht polyedrische
Lingenmengen's).

Ubrigens lehrt (17), daB Bégen mit gleicher Lingenmenge auch
gleiche Bogenlinge haben 19).

17) K. Menger, Eine Bemerkung tiber Langenmengen, Ergebn. math. Kolloqu.
6 (1935), S. 1—2. Vgl. auch H. Terasaka, Ein Satz uber Lingenmengen, ebenda
S. 3—4.

18) Im (A, folgt hieraus leicht, daf die vierfache Lange eines Bogens der Umfang
seiner Léngenmenge ist [Menger'8), S. 6; vgl. Steinitz%), S. 163, Fulinote].

19) Fir den (A2 bemerkt dies Menger15), S. 6.

(Eingegangen den 14. Mirz 1938.)
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