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Uber die Zerlegung regulérer
Streckenkomplexe ungerader Ordnung

Von F. BarBLER, Gottingen

Die vorliegende Arbeit ist angeregt durch eine Bemerkung von
D. Konig!) und geht zuriick auf eine Abhandlung von J. Petersen?).
Eine Frage der Invariantentheorie veranlaffte ihn zur Untersuchung
der Voraussetzungen, unter welchen man einen reguldren Strecken-
komplex sicher in regulire Faktoren zerfillen kann. Dabei nennt er
einen Komplex K regulir n. Grades, wenn von jedem seiner Knoten-
punkte genau » Kanten ausgehen und reguliren Faktor einen reguliren
Teilkomplex, der genau alle Knotenpunkte und nur Kanten aus K ent-
halt. Die Bezeichnung Faktor wurde im Zusammenhang mit der alge-
braischen Frage gewéhlt.

Petersen stellte fest, dal man jeden reguliren Komplex vom Grad
2 » mindestens in ¢ Teilkomplexe (Faktoren) vom 2. Grad zerlegen kann.
Die Zerlegung ist im allgemeinen nicht eindeutig. Beziiglich der Kom-
plexe ungeraden Grades zeigten sich wesentlich kompliziertere Verhalt-
nisse. Da gibt es nicht zerlegbare (primitive) Komplexe jeden Grades.
Petersen hat einzig die Komplexe dritten Grades untersucht und eine
Bedingung angegeben, die eine Zerlegung gewéihrleistet. Sie besteht
darin, dal jede Kante des zusammenhédngenden, endlichen Komplexes
mit hochstens einer Ausnahme in einem Kreis, d. h. in einem doppel-
punktfreien, geschlossenen Kantenzug des Komplexes enthalten sein
muBl. Er hat die Vermutung ausgesprochen, dafl auch bei Komplexen
hoherer Ordnung analoge Verhéiltnisse vorliegen.

Spater ist der von Petersen gegebene Beweis mehrfach erheblich
vereinfacht und umgeformt worden3). Man erreichte die Vereinfachungen
hauptsdchlich dadurch, da man gewisse Eigenschaften der reguliren
Komplexe dritten Grades feststellte, welche die Verwendung der voll-
stdndigen Induktion gestatten. Bei Komplexen hoheren Grades scheinen
sich jedoch den entsprechenden Feststellungen grofle Schwierigkeiten
entgegenzustellen.

1) D. Kénig, Theorie der endlichen und unendlichen Graphen. Bd. XVI aus
Mathematik und ihre Anwendungen in Monographien und Lehrbiichern, S. 156 und 195.

2) Julius Petersen, Theorie der reguliaren Graphs, Acta Mathematica Bd. 14.

3) D. Koénig, S. 186. Dort findet man, S. 182—192, einen schénen Beweis des Satzes
von Petersen.
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Das folgende ist in verschiedenem Sinne eigentlich eine Fortsetzung
der Arbeit von Petersen. Einmal sind sein hauptsédchliches Resultat und
die von ihm ausgesprochene Vermutung als Spezialfille im Ergebnis
dieser Arbeit enthalten, und zweitens stellt, wie ich nachtrédglich be-
merkte, die Methode in mancher Beziehung eine Modifikation der von
Petersen eingeschlagenen dar. Sie besteht im iibrigen in der Sicher-
stellung eines Verfahrens, welches gestattet, die Zerlegung eines gege-
benen Komplexes wirklich durchzufiihren?).

In jedem Beweis des Satzes von Petersen wird zunéchst vorausgesetzt,
daBl jede Kante des betrachteten, endlichen, zusammenhingenden und
reguliren Streckenkomplexes dritten Grades K in einem Kreise liege.
Die Ausnahme einer einzigen verursacht dann hinterher keine Schwierig-
keiten. Diese Voraussetzung kann man auch so aussprechen: Man mul}
mindestens zwei Kanten des Komplexes entfernen, damit aus ihm zwei
nicht miteinander zusammenhingende Teile entstehen, die zusammen
alle Knotenpunkte enthalten. (Als Teil soll auch ein isolierter Knoten-
punkt ohne Kanten gelten.)

Analog setze ich von eimem beliebigen, endlichen, zusammenhdingenden
und reguldren Streckenkomplex K, ungeraden Grades n voraus, sein Zu-
sammenhang konne auf keine Weise durch die Entfernung von weniger als
o Kanten zerstort werden (1 < p). Einen solchen Komplex, behaupte ich,
kann man immer in zwei requlire Komplexe (Faktoren) zerspalten, von
denen jeder simtliche Knotenpunkte enthdlt, und so, daff der Grad des einen
entweder o oder o — 1 ist, je nachdem g selbst gerade oder ungerade ist.

Diese Behauptung wird bewiesen durch die Begriindung eines Ver-
fahrens, mittels dessen es gelingt, von einem Komplex einen reguliaren
Faktor (2 p, +2). Grades abzuspalten, wenn man vorher bereits einen
solchen 2 p,. Grades abgespalten hat (0 << 2 p; < po—1).

Fiir die Anschaulichkeit und die Ausdrucksweise ist es vorteilhaft,
wenn man sich die Kanten des Komplexes K, gefirbt denkt. Seien
also diejenigen des abgespaltenen Faktors vom Grade 2 g, schwarz, die
iibrigen rot.

Man erweitert nun den so gefarbten Komplex, indem man jeden seiner
Knotenpunkte durch ein Dreieck mit schwarzen Seiten ersetzt, dessen
Ecken in beliebiger Reihenfolge mit den Indizes 1, 2, 3 versehen sind.

4) Will man nur das von Petersen herriihrende Resultat beweisen, so kann man sich
auch auf dem in dieser Arbeit eingeschlagenen Wege der vollstindigen Induktion be-
dienen. Man hat dabei noch den Vorteil, den Satz von Frink bloB beziiglich sehr spezieller
Verhaltnisse zu brauchen, so daB fiir seinen Beweis wenige Zeilen gentigen.
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(Wenn kiinftig von einem Dreieck des Komplexes die Rede ist, so ist
immer ein solches gemeint.) Mit den Ecken eines jeden Dreiecks werden
diejenigen Kanten aus K, verkniipft, welche von dem ihm entsprechen-
den Knotenpunkt ausgehen (Fig. I5). Dabei verbindet man 1 und 2 mit
n—2p,—1
2
rote Kante 143t man von 3 ausgehen. Im tibrigen ist die Auswahl be-
liebig. SchlieBlich fithrt man noch n—3 neue Kanten ein, und zwar
—20,—3
2
nach 3. Der auf diese Weise aus K, abgeleitete Komplex K; ist regu-
lar ». Grades, zusammenhingend, endlich und in zwei Faktoren zerlegt,
einen schwarzen vom Grad yu = 2 9,+2 und einen roten vom Grad
yv=n—2p0,—2.

je o, schwarzen und roten; die einzige noch iibrigbleibende

rote

: n
sowohl von 1 als auch von 2 aus je g, schwarze und

Fig. I.

Wie man modifizieren wird, wenn von K, noch kein Faktor abge-
spalten ist, ist ohne weiteres klar.

Das oben angedeutete Verfahren besteht darin, daBl man vom Kom-
plex K; sukzessive wieder zum Komplex K, zuriickkehrt, indem man
die Zerfillung in die Faktoren u. und ». Grades beibehilt. Zu diesem
Zweck farbt man zunichst gewisse geeignete Kantenmengen so um,
daB3 die Zerlegung in einen schwarzen Faktor vom Grade u und einen
roten vom Grade » bis auf gewisse Ausnahmen erhalten bleibt. Dabei
sollen nach der Umfiarbung von mdoglichst vielen Dreiecken aus genau
2 0, +2 schwarze, friher K, angehorige Kanten, von allen iibrigen
genau 2 g, solche ausgehen. Hinterher 1aBt man die erstgenannten Drei-
ecke in Punkte schrumpfen. Der entstehende Komplex ist regulir vom
n. Grad und in zwei Faktoren vom u. und ». Grad zerlegt. In diesem
Schrumpfkomplex verfihrt man beziiglich der noch vorhandenen Drei-

5) In allen Figuren sind die Kanten des schwarzen Faktors stark, die des roten schwach
gezeichnet.
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ecke genau wie eben, mit der Einschrinkung, daB3 die Anzahl der von
den Schrumpfpunkten ausgehenden schwarzen Kanten nicht gedndert
werden darf.

Die von Petersen stammende Methode des Umfirbens besteht darin,
daBl man eine rote Kante, die man umfarben will, in einen geschlossenen
Kantenzug einspannt, welcher, mit dieser Kante beginnend, so in einem
Zuge durchlaufen werden kann, daB abwechselnd schwarze und rote
Kanten aufeinander folgen, wobei jede nur einmal durchlaufen wird.
Ein solcher Kantenzug soll kurz Wechselzug genannt werden (Fig. IT).
Andert man die Farben aller Kanten eines Wechselzuges, so ist der
Komplex wieder in der richtigen Weise zerlegt.

Fig. II.

Bemerkung. Fiir unseren Zweck ist es sogar erlaubt, zwei rote Kanten,
die von einer Ecke eines Dreiecks ausgehen, hintereinander zu durch-
laufen, falls der Wechselzug dieses sonst immer mit einer schwarzen
Kante erreicht und mit einer roten verliflt oder umgekehrt. Ebenso
darf auch die letzte Kante des Wechselzuges rot sein, wie die erste.
Der durch Umfiarbung und nachtrigliche Schrumpfung entstehende
Komplex hat dann doch die richtige Zerlegung.

Will man ein bestimmtes Dreieck schrumpfen lassen, so hat man also
einen Wechselzug zu konstruieren, der mit einer roten Kante von ihm
ausgeht, und der schlieBlich ebenfalls mit einer roten Kante zu ihm
zuriickkehrt.

Den Beweis fiir die Existenz solcher Wechselziige beginnen wir mit
folgenden Bemerkungen:
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Erreicht man auf einem Wechselzug ein Dreieck mit einer schwarzen,
so muB man es lings einer roten Kante wieder verlassen.

Erreicht man es mit einer roten, so kann die Fortsetzung aus dem
Dreieck hinaus rot oder schwarz sein, wenigstens fiir » > 3.

Es ist moglich, daB man liangs eines Wechselzuges ein bestimmtes
Dreieck zweimal oder haufiger durchlduft, indem man es mit einer roten
Kante erreicht und mit einer roten wieder verlaBt. Unter den auf diese
Weise zusammengehorigen Kantenpaaren ist beziiglich der Durchlaufung
ein erstes und ein letztes. LaBt man das ganze Stiick des Wechselzuges
zwischen der Eintrittskante des ersten und der Austrittskante des letzten
Paares weg, so hat man immer noch einen Wechselzug (vgl. die Be-
merkung oben). Nur derart reduzierte Wechselziige sollen in Betracht
gezogen werden.

Fir die Konstruktion von Wechselziigen wird es notig sein, die
Kanten- und Knotenpunktmengen zu kennen, die man auf Wechsel-
wegen®) erreichen kann, welche mit einer festen, roten, von einem Drei-
eck ausgehenden Kante beginnen.

D, sei ein beliebiges unter diesen Dreiecken. Man verliflit es lings
einer von der Ecke 1 = 4 ausgehenden roten Kante k,. Diese, mit ihren
beiden Endpunkten, bezeichnen wir als Teilkomplex 1. Stufe, k, ohne
A als 1. Schritt und den neu erreichten Knotenpunkt als Punkt 1. Stufe.
Letzteren verli8t man gleichzeitig langs aller von ihm ausgehenden
w = 2 p; + 2 schwarzen Kanten. Die neu erreichten Knotenpunkte, falls
solche vorhanden sind, sind die Punkte 2. Stufe. Die Gesamtheit aller
bisher erreichten Knotenpunkte und durchlaufenen Kanten ist der Teil-
komplex 2. Stufe, die u schwarzen Kanten der 2. Schritt. Von jedem
Punkt der 2. Stufe gehen v = n—2 p,—2 rote Kanten aus, die man
sich wieder alle gleichzeitig durchlaufen denkt. Sie zerfallen im all-
gemeinen in drei Kategorien:

1. fortschreitende, d. h. solche, die zu neuen Punkten fiihren;

2. riicklidufige, das sind solche, die zum Punkt der ersten Stufe zuriick-
fithren (fiir v > 3);

3. schliefende, das sind diejenigen, welche zwei Punkte der 2. Stufe
verbinden.

Jede riickliufige Kante gibt im allgemeinen zu neuen Wechselwegen
AnlaB, wenigstens fir » > 3.

6) Das sind Wege, auf denen sich abwechselnd schwarze und rote Kanten folgen,
jede nur einmal durchlaufen.
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Sind keine Kanten der 3. Kategorie vorhanden, so ist die Definition des
3. Schrittes, der Punkte 3. Stufe und des Teilkomplexes 3. Stufe vollig
analog den vorhergehenden. Dasselbe gilt fiir die nachfolgenden Stufen,
Teilkomplexe und Schritte, so lange keine schlieBenden Kanten auftreten.

Fiir Schritte gerader Stufen bestehen die drei Kanten-Kategorien im
allgemeinen fiir alle », die Bemerkung iiber die neuen Wechselwege
mittels riickldufiger Kanten fiir alle » > 3.

Fiir v = 3 ergibt, wie man sofort sieht, im allgemeinen nur ein Teil
der riickldufigen Kanten der geraden Schritte neue Wechselwege.

Um eine bestimmte Vorstellung zu haben, nehmen wir an, die erste
schlieBende Kante verlaufe zwischen Punkten einer ungeraden Stufe
— nennen wir sie die m. —; sie seien also schwarz (Fig. III). Greifen
wir eine beliebige unter ihnen s, heraus, und denken wir sie als einzige
des (m -+ 1). Schrittes durchlaufen. Ihre Endpunkte seien P, und P,.
Die Menge der Wechselwege vom Anfangspunkt nach P, werde mit
M,, die entsprechende fiir P, mit IM, bezeichnet. Jeder Wechselweg
aus I, kann lings s, nach P, und von dort aus riickwirts lings aller
Wechselwege aus I, fortgesetzt werden und umgekehrt. Alle Kanten
dieser Mengen werden auf diese Weise auf Wechselwegen, die mit £,
beginnen, in beiden Richtungen durchlaufbar. Jeder threr Knotenpunkte
kann sowohl mit einer roten, als auch mit einer schwarzen Kante erreicht
werden. Es kann aber sein, dafl zu einem oder mehreren Knotenpunkten
@ aus M, kein Wechselweg A P, P,Q) existiert, auf dem nicht eine oder
mehrere Kanten mehrmals durchlaufen werden. Analoges gilt fir I,.
Solche Punkte schlieBt man mittels folgender Uberlegung von der Be-
trachtung aus:

Unter den Kanten der Wegemengen I, und I, gibt es solche, die
in jedem Wege enthalten sind. Numeriert man diese Kanten auf jedem
Weg der Reihe nach so, wie man sie beim Durchlaufen von 4 aus trifft,
so erhilt man eine von ihnen, [,, auf allen Wegen die h6chste Nummer.
Thr Endpunkt hoéherer Stufe sei P,. Diejenige Kantenmenge, die auf
allen Wegen nach 7, durchlaufen wird, bildet mit s, zusammen einen
zusammenhéngenden, abgeschlossenen Komplex (7). Abgeschlossen ist
ein Komplex, wenn von jedem seiner Knotenpunkte mindestens zwei
Kanten ausgehen. Zu jedem Knotenpunkt aus ¢ fithren mindestens zwei
Wechselwege mit folgenden Eigenschaften:

Ste beginnen mit der Kante k,, und auf jedem von ihnen wird jede
Kante nur einmal durchlaufen. Der eine endigt mit einer roten, der andere
mat einer schwarzen Kante.

7) In Fig. IIT sind die zu @ gehérigen Kanten ausgezogen, die iibrigen gestrichelt.
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Den ganzen Komplex G zieht man nun in den Punkt P, zusammen.
P, wird Reduktionspunkt genannt. Von diesem 148t man nachtriglich
alle die Kanten ausgehen, welche G mit auBlerhalb gelegenen Punkten
verbinden. Diese Kanten zerfallen im allgemeinen in zwei Kategorien:

Fig. IIL

1. solche, die einem der m ersten Schritte angehoren;

2. solche, bei denen das nicht der Fall ist.

Alle sind sie auf Wechselwegen in der Richtung von P, weg durchlauf-
bar, mit Ausnahme derjenigen, durch die P, bestimmt wurde.

Es kann nicht sein, daf3 eine Kante der ersten Kategorie auch in der
Richtung auf P, hin durchlaufen werden kann. Sie hitte zu einem
Wechselweg der Menge I, + I, Anlall gegeben, der [, nicht enthilt.

Die roten unter ihnen werden zum m. Schritt mitgerechnet. Die auf
ihnen neu erreichten Punkte und auch P,, falls schwarze Kanten von
ihm ausgehen, bilden mit den nicht in P, einbezogenen friiheren, zu-
sammen die neue m. Stufe. Die aus P, hinausfiihrenden schwarzen
Kanten zdhlt man zum (m + 1). Schritt.

Wihrend unter den von P, ausgehenden roten Kanten also nur riick-
ldufige, d. h. solche nach Punkten friitherer Stufen ungeraden Ranges,
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und fortschreitende, d. h. solche nach der bisherigen m. Stufe und neuen
Punkten existieren, gibt es unter den Kanten des (m - 1). Schrittes im
allgemeinen wieder fortschreitende, riicklaufige und schlieBende. Unter
die letzteren fallen auch die schwarzen von P, aus nach Punkten der
m. Stufe.

Aus ihnen greift man wieder eine beliebige heraus und wiederholt den
eben beschriebenen Prozell. Dabei kann:

1. ein neuer Reduktionspunkt ¢, entstehen,

2. der bereits vorhandene von neuem Reduktionspunkt fiir ein er-
weitertes Kantensystem werden, oder

3. dieser mit anderen Punkten und Kantenmengen in einen Punkt
einer Stufe niedrigeren Ranges zusammengezogen werden.

Im zweiten und dritten Fall ist dem bereits Gesagten nichts beizu-
fiigen. Wie man die neue m. Stufe und den neuen (m -+ 1). Schritt er-
klart, ergibt sich von selbst.

Sind zwei Reduktionspunkte vorhanden, so haben sie héchstens eine
Verbindungskante (vgl. S. 281, Zeile 10 u.{.).

Im Fall 1 kommen zu den iibrig gebliebenen Punkten m. Stufe noch
die neuen, welche man auf den roten Kanten von ), aus erreicht, even-
tuell der Punkt ¢, selbst; zu den nicht einbezogenen Kanten des bis-
herigen (m - 1). Schrittes, die schwarzen, welche von ¢, ausgehen.

So fortfahrend, mufl man nach endlich vielen Prozessen zu einem
Komplex mit folgenden Eigenschaften kommen:

1. Jede seiner Kanten ist vom Anfangspunkt A aus auf mindestens
einem Wechselwege zu durchlaufen, der mit %, beginnt und nur aus
Kanten des Komplexes besteht.

2. Er enthalt keine schlieBende Kante; keine kann in beiden Rich-
tungen durchlaufen werden.

3. Er enthilt eine Anzahl von Knotenpunkten, welche ganze Systeme
von Kanten und Knotenpunkten reprisentieren, die Reduktionspunkte.
(Vielleicht sind alle seine Knotenpunkte solche.)

4. Alle Wechselwege, auf denen man einen Reduktionspunkt erreicht,
fithren lings ein und derselben Kante in ihn hinein.

5. Zwei Reduktionspunkte kénnen also hochstens durch eine einzige
Kante verbunden sein.

Wir nennen diesen Komplex den reduzierten Komplex (m -+ 1). Stufe,
seine Reduktionspunkte die Reduktionspunkte (m - 1). Stufe. Der zu
ihm gehorige (m + 1). Schritt heif3t gleichfalls reduziert, und, falls nicht
alle seine Kanten riicklaufig sind, erhdlt man Punkte einer neuen, der
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(m 4 1). Stufe. Von ihr gehen die Kanten des vorlaufigen (m - 2). Schrittes
aus. Wieder kénnen schlieende darunter sein. Dann wiederholt man die
eben fiir die m. Stufe und den (m 4 1). Schritt beschriebenen Prozesse.
Das Ergebnis sind die reduzierten Gebilde (m - 2). Stufe.

So fortfahrend, mufl man in endlich vielen Etappen zu einem redu-
zierten Komplex kommen, dessen letzter Schritt aus lauter riickldufigen
Kanten besteht. Wir wollen ihn SchlufSkomplex nennen. Er enthilt die
Gesamtheit aller vom Ausgangspunkt 4 aus fithrenden Wechselwege,
die mit k, beginnen.

Gibt es auf thnen keine rote Kante, die in der Richtung auf die Ecken
des Drevecks D, hin durchlaufen wird, so ist es micht moglich, die Aus-
gangskante k, tn einen Wechselzug einzuspannen. Wir werden zeigen, daf
etn solcher Schlufkomplex nicht existieren kann.

Zunachst wenden wir uns seinen Reduktionspunkten zu. Je nachdem
die in irgendeinen von ihnen hineinfiihrende Kante schwarz oder rot ist,
nennen wir ihn §- oder R-Punkt. Von einem R-Punkt kénnen rote und
schwarze Kanten wegfiihren, oder blof rote oder bloB8 schwarze. Im
letzteren Falle ist ihre Anzahl gerade, da der schwarze Faktor in o, 4 1
Kreissysteme zerfillt, von denen jedes alle Knotenpunkte des urspriing-
lichen Komplexes genau einmal enthilt.

Aus demselben Grunde muB} aus jedem S-Punkt eine ungerade Anzahl
von schwarzen Kanten hinausfiihren, also mindestens eine.

Es kann keinen reduzierten Teilkomplex geben, derart, dall von einem
seiner Reduktionspunkte aus zugleich eine schwarze und eine rote Kante
nach demselben Knotenpunkt hinfiihrt. Sie kénnten in beiden Richtungen
durchlaufen werden. Falls der Grad des roten Faktors in K,, v > 3 ist,
sind daher immer alle Ecken eines Dreiecks gleichzeitig in einen Reduk-
tionspunkt einbezogen.

Fiir » = 3 sind alle Reduktionspunkte R-Punkte. Es ist hier durchaus
moglich, dal blo ein Teil der Ecken eines®) Dreiecks in einen solchen
einbezogen ist. Dann verbinden mindestens g, + 2 bzw. 2 p, 4 2 Kanten
den R-Punkt mit der oder den nicht einbezogenen Ecken, je nachdem
er 1;2; 1und 3; 2 und 3, bzw. 1 und 2 enthilt. Die Anzahl der Kanten,
welche die nicht einbezogenen mit anderen Knotenpunkten verkniipfen,
ist hochstens o, + 2, bzw. 1. Wire das ganze Dreieck Teil des Reduk-
tionspunktes, so miilten diesen auf Grund der Voraussetzungen iiber
den Zusammenhang von K, mindestens o> n—1 > 29, 4 2 Kanten mit

§) Bei mehreren, nur teilweise einbezogenen Dreiecken ist die untenstehende Ungl.
selbstversténdlich.
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den iibrigen Knotenpunkten verbinden. Unter diesen konnten eventuell
die zuletzt angefiihrten sein. Es mull daher auller ihnen immer noch
mindestens o’ > p, bzw. o’ > 0 Kanten geben, die vom R-Punkt zu anderen
Knotenpunkten laufen. Daher ist die Anzahl der von einem R-Punkt aus-
gehenden Kanten unter allen Umstinden mindestens 9 =>290,+2=u.

Ist ein Reduktionspunkt R-Punkt, und fiithren nur schwarze Kanten
aus ihm hinaus, so ist ihre Anzahl gerade und > u=2p, + 2.

Ehe wir zu den folgenden Abzdhlungen iibergehen, erinnern wir uns
nochmals an die hauptsichlichen Eigenschaften des SchluBkomplexes:
Es sind die Punkte 1—5, S.282, zu denen noch 4 neue hinzukommen,
némlich:

6. Von jedem Reduktionspunkt gehen mindestens g > 29, 4 2 Kanten
aus. Ist er R-Punkt mit einer einzigen roten Kante, so ist die Anzahl
der schwarzen gerade.

7. Alle Kanten des letzten Schrittes sind riicklaufig.

8. Er enthilt keine rote Kante, die ins Anfangsdreieck D, hineinfiihrt.

9. Keine Ecke von D, ist in einen Reduktionspunkt einbezogen (Folge
von Punkt 8).

Diejenigen Knotenpunkte, welche nicht reduziert sind, heiflen regulir.

Nach diesen Feststellungen beginnen wir von neuem beim Punkt A
(Ecke 1 des Dreiecks D) und verlassen dasselbe lings der aus ihm hinaus-
fihrenden roten Kante k,. Ist ihr Endpunkt regulir oder ein R-Punkt,
von dem nur schwarze Kanten wegfiihren, so nennen wir ihn den Punkt
der ersten Front, die Kante selbst ohne Anfangspunkt den ersten Schritt.
Ist er dagegen ein R-Punkt, von welchem auch rote Kanten ausgehen,
so setzt man den Weg gleichzeitig lings allen diesen fort. Im Endpunkt
jeder dieser Kanten macht man Halt, wenn er regulir oder R-Punkt mit
einer einzigen roten Kante ist. Dagegen setzt man den Weg fort, wenn
er R-Punkt mit mehreren roten Kanten ist, und zwar gleichzeitig lings
aller noch nicht durchlaufenen unter ihnen. Beziiglich der auf dieser
Etappe erreichten Punkte verfihrt man gleich wie vorher und so fort.
Auf jedem Weg wird man schliefilich in einem regulidren oder in einem
R-Punkt mit einer einzigen roten Kante Halt machen, vielleicht auf
verschiedenen Wegen im gleichen. Alle diese Punkte und die bereits
durchlaufenen R-Punkte, sofern auch schwarze Kanten von ihnen
ausgehen, machen jetzt die erste Front aus, die durchlaufene Kanten-
menge den ersten Schritt.

Die Punkte der ersten Front werden gleichzeitig lings aller schwarzen
Kanten verlassen, die von ihnen ausgehen. Ist der Endpunkt einer Kante
regulidr, so macht man Halt, ist er ein S-Punkt, so verli8t man ihn lings
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aller schwarzen Kanten, die von ihm fortfiihren. So fortfahrend, erreicht
man schlieBlich auf jedem Weg einen reguliaren Punkt, auf verschiedenen
vielleicht denselben. Die Gesamtheit dieser Punkte, noch vermehrt um
die durchlaufenen S-Punkte, von denen auch rote Kanten ausgehen, ist
die zweite Front, die Gesamtheit der durchlaufenen schwarzen Kanten
der zweite Schritt.

Auf dieselbe Weise erreicht man mittels des dritten Schrittes die dritte
Front, mittels des vierten die vierte und so weiter, bis der ganze SchluB3-
komplex durchlaufen ist.

Der erste Schritt enthilt keine riicklaufige Kante (Punkt 8, S. 284).

Im zweiten Schritt aber konnen die R,=p, schwarzen mit A ver-
kniipften Kanten riickldufig sein, welche nicht nach den Ecken 2 und 3
filhren. R, wird die 2. Ricklaufzahl genannt.

Mit den Z, reguliren Punkten der ersten Front sind im Schluf3-
komplex v-Z, rote Kanten verkniipft. Y, von ihnen mdégen schon im
ersten Schritt vorkommen. Dann ist »Z,— Y, = R, die 3. Riicklauf-
zahl. Eine beliebige, die 7. Front habe Z, regulire Punkte. R, sei die
2. Riicklaufszahl; K, die Anzahl der riicklaufigen Kanten des 7. Schrittes;
Y, seiner Kanten laufen nach den Z, reguliren Punkten. Dann wird die
(¢ + 2). Riicklaufzahl definiert als

R _\ R,—K,y+pZ,—Y, fir gerades 1

#2 | R,—K,,+ vZ,—7Y, fiir ungerades ¢ .
Dabei ist zu bemerken, dafBl fiir die 4. Riicklaufzahl noch die g, +1
schwarzen Kanten hinzuzufiigen sind, welche die Ecke 3 von D, mit
der Ecke 1 verbinden. Die Kante 12 kann wegen 8 (S. 284) nicht durch-
laufen werden.

Diejenigen Kanten eines jeden Schrittes, in deren Endpunkt man
Halt macht, heillen seine SchluBkanten.

Die erste Front enthilt mindestens einen Punkt, der zweite Schritt
daher mindestens M, = 2 p, -+2 SchluBlkanten. Es ist also

M, > R,, sogar M, > R,+p0,+1.

Sei 7 gerade. Die (:—2). Front enthalte Z,_, regulire und z,_, S-Punkte;
die letzteren seien irgendwie numeriert.

Die kleinste iiberhaupt mogliche Anzahl der SchluBkanten des (:—1).
Schrittes ist dann
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wobei a, ,, die Anzahl der von dem A. S-Punkt ausgehenden roten
Kanten ist.
Die Anzahl der Punkte der (:—1). Front ist dann mindestens

Mi—l — A‘i—l — Ri—l bZW. M@'——-l — [Az'——l _;* 'Ri'—l] + 1 , (1)

v

je nachdem der Quotient ganz ist oder nicht. Diese Mindestzahl
kommt ja dann zustande, wenn moglichst viele Punkte der Front gleich-
zeitig auf moglichst vielen, eben » roten SchluBkanten erreicht werden.
Die Mindestzahl der SchluBkanten des ¢. Schrittes ist dann

Ich setze voraus:
II. m; > R;

und behaupte, dafy dann auch gilt:
Mype > Rype

wobei m;,, in derselben Weise aus der ¢. Front abgeleitet ist, wie m,
aus der (:—2) .

Die wirkliche Anzahl der Schlulkanten fiir den (¢—1). Schritt sei

Ki—-l = Ki—1o+K;——11‘|"Ki~11"|“ 2 Ki-12+ e +”Kz‘—1v ’ (2)

wobei K, ,, die Anzahl der riickliufigen Kanten ist; K, ,, die Anzahl
der reguliren Punkte der (:—1). Front, in die je ¢ Kanten hineinfiihren,
und K;_,, die Anzahl ihrer R-Punkte mit einer einzigen roten Kante.
Die (—1). Front hat

P =K, ,+K; s+ +K;, +K;—1v +zi—1:Zi~1+K;—11 2
Punkte. (3)

z;_, ist die Anzahl der R-Punkte im (¢—1). Schritt, von denen schwarze
und rote Kanten ausgehen. Sie seien irgendwie numeriert. a,_, ) bezeichnet
dann die Anzahl der schwarzen Kanten, die vom 4. unter ihnen ausgehen.

Wegen (2) ist
Ri+1 = Ri—r“Kz'—m + (V“‘l)Ki—u + (”_Q)Kz'—oz + e Kz'~1u—1 (4)
Aus (3) folgt fiir die Anzahl der SchluBkanten des ¢. Schrittes
2i-1

K.;>uZ;y+ K*i—11) -l-é?i—n . (5)
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Diese Anzahl zerlegt sich entsprechend (2)

K=K+ K;; +2K;3+--- +;“Km ) (6)
und man erhalt als Anzahl der Punkte der ¢. Front
Pi:Ki1+Ki2+"'+Kz'p,+zi=Zi+zi' (7)
Ferner ist
Rz‘+2= Ri““Kz'o + (,u—l)K“—{— (/‘_Q)Kiz‘l‘ et +Kiy.-—1 . (8)
Aus (7) folgt fiir die minimale Anzahl der SchluBSkanten des (¢4 1).
Schrittes

Ay =v-Z;+ 2o

A=1

Daher ist die minimale Anzahl der Punkte der (¢ +1). Front

Mi+1> “‘(Ki—11+' : -+K,-_1,,+K','_1 1)

Aiy— By 1 & R,
=7 4 — Y P e, o
v z+ » ):451 T A ”

1 .
‘l“;(Ki—10+K¢-11+2K£—12+"'+”Kq;-1p+”Ki 1)
R,

. K, ,—
> Zz—— (Zi—l + ‘Ki—-ll) + !

v

(Gl. 2)

My 22— (Zy+Kiy))+ My (GL1)
Mo =uM,, = uZ,— K,+m; (Gl 5und I)
mi+2 >(ILL—"1)K1:1+(‘L¢'—‘—2)K12+ e’ +Ki‘u.—‘1——~Ki0+Ri (Gl. 6, 7, II) Py

also: mys > Rio (Gl 8).

Fiir den 1. und 2. Schritt ist die Induktionsvoraussetzung erfiillt. Das
abgeleitete Resultat steht aber im Widerspruch mit der Endlichkeit des
SchluBkomplexes. Dieser Widerspruch 16st sich sofort, wenn man Wechsel-
ziige zuliBt, welche die Kante k, enthalten. Damit ist deren Existenz
bewiesen.

Fiir » = 3 sind alle R, fiir ungerade ¢ Null und keine Punkte mit mehr
als einer roten Kante und keine S-Punkte vorhanden. Dadurch verein-
facht sich die vorstehende Abzihlung etwas, aber es wird darin nichts
Wesentliches gedndert.

(Eingegangen den 11. Mirz 1938.)
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