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Einige elementargeometrische Nâherungs-
konstruktionen

Von Paul Finsler, Zurich

Die folgenden Naherungskonstruktionen eischeinen bei emfacher Au&

fuhrung theoretisch oder praktisch ais ausreiehend genau1) Im Anhang
wird noch eme genaue Tangentenkonstruktion fur Elhpsen gegeben, die
fur das Zeichnen der Elhpsen von Vorteil ist

1. Wdrîelverdoppelung (Delisches Problem).

Eme wenigstens theoretisch sehr genaue und emfache Konstruktion
zur Wurfelverdoppelung ist die folgende

ABCD sei ein Seitenquadrat des gegebenen Wurfels Man verlangere
die Kante AB a bis M und N, so da6 AM MN 4 a Wird dann
ME MA und AE AC gemacht, sowie NF NE mit F auf AB, so

ist AF sehr nahe em Zehntel der gesuchten Wurfelkante von der Lange
a f2

Der Fehler m AF ist etwa Rn nnn nnn von a, also der Fehler in 10 AF

ungefahr
5 000 000

50 000 000

von a Es ist namlich

A F AB 8 — ]/62 0,125992126 (1 1)

~ 0,125992105

x) Man vergleiche etwa Th Vahlen, Konstruktionen und Approximationen
(Leipzig 1911)
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Praktisch sehi leicht zu konstruieren smd die beiden Naherungswerte
fur af2 (mit a 1)

3 —1/3 1,2679 und (1 2)

3j—1/5 1,2639 (1 3)

mit Fehlern von etwa -— bzw —- von a Subtrahiert man îhre Difïerenz

von dem klemeren Wert, so ergibt sich das auch theoretisch gute Résultat

4 +|/3 — 2 |/5=- 1,2599149 (14)

das um etwa von a zu klein ist In Fig 1 ist 1/3 3 Q 1/5 3^
luO UOU r '

Weniger bequem, aber doch noch relativ einfach smd die Werte

~t= 1,259882 (1.5)

~ (4 —1/5) 1,259951. und (1.6)

4^-|/5— 8 JL= 1,25992063. (1.7)

mit Fehlern von nuid^i^ ^ und j^ÔO V°n a"f)

2. Begulares Siebeneck.

Fur die Seite
57 0,86776748

des einem Kreis vom Radius r 1 embeschnebenen regularen Sieben
ecks ist als praktische Naherung die Halfte der Seite s3 |/3 des regularen

Dreiecks seit langem bekannt3) Der Fehler der Naherung4) ist

etwa ^ von r

<S -|- —«7 — 0,0017 (2 1)

2) Sehr einfach ist die Konstruktion von E Sorgner, Archiv f Math u Phys (3) 25

(1917) fur I/3 —1/2 1,25928 komplizieitei die fur |/|/2 + jq V% 1,2599280

ebenda, A Hetseler, Acta Acad Aboensis 8 (1935), konstruiertJ^IÏ-f j/^ — 2 1,25958

3) Vgl Vahlen, S 298

4) S soll stets die Difïerenz ,,N&herungswert — wahrer Wert" fur r 1 bedeuten
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-~ ist die Hôhe im gleichseitigen Dreieck mit der Seite r. Als scharfere

Nâherung fur s1 kann man Transversalen nehmen, die mit der Hohe
passend gewahlte spitze Winkel einschlieBen, darauf beruhen mehrere

Konstruktionen5).

Die folgende, auf dem rationalen Nàherungswert6)

^-l-(n)2= 0,8677686... (2.2)

beruhende Konstruktion scheint jedoch noch nicht bekannt zu sein :

Fig. 2

AOB und COD seien senkrechte Durchmesser des gegebenen Kreises.
OB werde um BE — BN (2 — J) r verlangert. DE trifft den Kreis in
F, CF trifft OB in G, die durch G zu ED gezogene Parallèle trifft OD in H.
Dann ist DH sehr nahe gleich der gesuchten Seite s7. Die Differenz ist

ô DH — s7 0,0000011

also ungefahr- von r.900 000

Ist M die Mitte von AO, N die Mitte von AM, so ist auch DP DM —

5) J. Plemel], Monatshefte f. Math. u. Phys. 23 (1912), S. 309, bestimmt den genauen
Winkel und gibt eme Nâherung, die im Résultat mit (2.4) uberemstimmt T R.Running,
The American Math. Monthly 30 (1923), S. 195, erhalt sehr hohe Genauigkeiten. Weitere
solche Konstruktionen bei S. M. Drach, Philosophical Magazine (4) 27 (1864), S. 320,
G. Wotherspoon, The Math. Gazette 17 (1933), S. 50 und B. Dose, Jahresbencht der
Deutschen Math.-Ver. 44 (1934), S 291.

6) Bei H. Norton, Philosophical Magazine (4) 27 (1864), S. 281, findet sich der Nahe-

rungswertUf fur sm H m der Form ^ : UT1-
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MN eine einfache und brauchbare Nàherung7). Da DM — MA — s10 die

Seite des regulàren Zehnecks ist, so ist s? nahe gleich s10 -f — ; der
1

4
Fehler ist ungefàhr von r:

«10 + ^- i]/6— i 0,86803 ô=~- 0,00027... (2.3)

Ist JV' die Mitte von MO und ikf jR i&fZ) mit B auf OJ5, so ist auch

N'B s10 -f —- nahe gleich s7, Oi2 s10 und 2)-R s5.

Eine weitere Konstruktion ist die folgende :

Es seien wieder AOB und COI) senkreehte Kreisdurchmesfcer. Die
Verbindungslinie von B mit der Mitte von AC trefïe OC in E; die Ver-
bindungslinie von A mit der Mitte von BE trefïe OE in jP. Auf OB werde
OG CE, und auf ZD werde FH CJ0 gemacht. Dann ist £# nahe

gleich s7. Es wird:

GH - |/6Ï 0,867806 à 0,000038 (2.4)

3. Regulâres Neuneck.

Als einfache Nàherung8) fur die Seite

s9 =¦ 0,68404029

des regulàren Neunecks kann das arithmetische Mittel aus der halben
Dreiecksseite und dem halben Radius genommen werden :

7) Nach R. C. Archibald, The American Math. Monthly 28 (1921), S. 476, findet sich

der Naherungswert j (21^5 — 1) fur s7 bei Efremoff (1892); ebenda weitere Angaben uber
Konstruktionen von F. G. Rôber (1854), K. Hagge (1914) u. a. Eine Konstruktion fur den

Ausdruck }/~ (61 — |/Î6) mit S 0,0000016 nur mit dem Zirkel gibt CE. Youngman,
The Math Gazette 17 (1933), S. 266. Weitere Ausdrucke fur verschiodene sn, tt, ^ tt usw.
bei V.G.Cavallaro, Giorn. Mat. Battaghm 74 (1936), S. 71

Zusatz bei der Korrektur: In Giorn Mat. 66 (1928), S 192; 68 (1930),
S. 177; 72 (1934), S. 76 und der genannten Arbeit Bd. 74, die ich erst nachtraghch
emsehen konnte, gibt Cavallaro eme grofie Zahl von Naherungen, darunter m Bd. 66

die Werte (3.1) und (3.3) fur «9 sowie (5.2) fur s13 ; m Band 72 den Wert (6.2) fur
n nach G. Schor, Rassegna di Mat. (1927).

8) M. d'Ocagne hat m Revue générale des Sciences 44 (1933), S. 625, eine Konstruktion
unbekannten Ursprungs mit 8 0,000039 und ebenda 45 (1934), S. 321 zwei von
J.Cordilha herruhrende Konstruktionen verofïentlicht mit 8 0,0000017... und
S — 0,0000000020 Die zu den letztern gehorigen Naherungswerte fur s9 smd

^Ml — 2 und ^S in der Zeitschr. f. math. u. nat. Unterricht 62 (1931), S. 364, gibt
Widder eme Konstruktion mit 8 0,00008...; ebenda 68 (1937), S. 226, Heyer mit
S 0,0034 und den Ausdruck | (| + 0,4 j/3) mit 8 0,000062
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^^J- + y) 0,6830... ô ~ 0,0010... (3.1)

GrôBere Genauigkeit erhalt man mit

IL +_L\ 0,68388... (5 =—0,00016... (3.2)

wobei fur s7 der obige Naherungswert (2 2) verwendet werden kônnte.
Besser ist es jedoch, den einfacheren Naherungswert (2.3) zu nehmen;
dieser gibt das Résultat ^ NE in Fig. 2, d. h

-'g + - 0,684017... (5--—0,000023... (3.3)

Wird in Fig 2 auf der Geraden AB BJ — BA -^ 2r und 0J0' -= Z>J,

dann F1 auf DJS' und dem Kreis, Gr auf CT' und OB angenommen, so

erhalt BGf den Wert

1 0,68377. ô —0,00027. (3.4)
yio

In Fig. 2 ist ferner BE BN l, also OB : BE =±, BE OE ^
und NO OE ^j. Mit AQ OQ l wird CQ )J % + |/3 und

Z)Q s12 ]/2 —1/3 Damit kann man folgende Werte konstruieren :

11-—12*ia== 1|_1|j/2 — ]/3= 0,6840490... 6-0,0000087...
(3.5)

rj : — r>

4 — ]/2 +|/3 — 8yy 0,68403948..., ^ —0,00000081... (3.6)

4. Begulâres Ëlfeck.

Fur die Seite ^
des regularen Elfecks ist die Durersche Naherung9)

i + —= (-]2 0,5625 d =—0,00097... (4.1)

genauer und bequemer zu konstruieren als die Heronische j|. Wird in
Fig. 2 auf DN das Lot NS errichtet mit S auf OC, so ist OS die gesuchte
Strecke10).

9) Vgl. Vahlen, S. 297.
10) Noch emfacher ist die Konstruktion von Graf Lavaulx, Zeitschr f. Math. u. Phys. 63

4

(1914); aie ergibt î-Va+^îâ mlt 8 0,0011
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Eme emfache Konstruktion mil hoherer Genauigkeit ist die folgende
Man beschreibe (Fig 2) um den Punkt A mit dem Radius AM |

emen Kreis, der die Gerade AOB noch in X und den gegebenen Kreis m Y
trifït, und um den Punkt B mit BY emen Kreis, der die Strecke AO
in Z trifït Dann ist XZ nahe gleich slt Man erhalt

/22 — -^=0,563508. à =• 0,000043. (4.2)

Weiter lassen sich auch die folgendenWerte verwenden, wobei j/2

wie oben bei (3 6) als CQ, I— als

konstruiert werden kann

1/5 0,563436

5]/2— 2

9

—- j/2 +1/3 — 0,5634567.

%2 1 - 0,5634719..

4 j/5 _ 5
__ 5 71

7

3 g)'_ 7 f) 0,5634666

5. Regulâres Dreizehneck.

Fur die Seite

|/(j/2)2

<5

(3

4- |_| Lr. als -1
\3/ ' 2 2

— 0,000029.

0,000013

— 0,0000084...

0,0000068..

0,0000023.

0,0000015.

+ J/3

QM

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

5l3 0,47863133

des regularen Dreizehnecks ist

0,4824 ô 0,0038 (5 1)

eme nicht sehr genaue, aber bequeme Naherung
Eme scharfere, emfache Naherung ergibt sich mit

0,478553... ô — 0,000078...2 \2
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Nur wenig genauer ist der Wert

- (4 — |/ÎÔ) =- 0,478698 6 0,000067 (5.3)

Der Ausdruck

g \/jj=- 0,4786344... (5 0,0000031... (5.4)

und der rationale Wert

56 7

jjy 3 __ 1
0,4786325. à 0,0000012... (5.5)

liefern groBere Genauigkeit, sind aber weniger leicht zu konstruieren.

Die Werte - y- fur su und - 1/— fur su sind als numerische, mit

den ersten Primzahlen gebildete Nâherungen leicht zu merken.

6. Kreisumfang.

Fur den Umfang =-2r- 3,14159265

eines Kreises vom Radius r gibt J. Cordilha (Rio de Janeiro) eine einfache
und sehr genaue Konstruktion11), die hier kurz wiedergegeben sei:

In einem rechtwinkligen Dreieck mit den Katheten (4 — J) r und %r
wird die Hypothenuse um 2^r verlàngert. Die so erhaltene Strecke von
der Lange

]/229^+
10

^ 2r.3,14159324... (6.1)

6r
stimmt bis auf etwa - _,, _ mit der gesuchten uberein.

5 UOU \J\J\)

Beim praktischen Zeichnen ist oft weniger die theoretische Genauigkeit
als die Einfachheit und Gùte der Konstruktion maBgebend. In diesem
Sinne dûrfte sich die folgende Konstruktion empfehlen :

n) Briefliche Mitteilung vom Mai 1932; in Revue générale des Sciences 44 (1933), S. 8,

von M. d'Ocagne veroffenthcht. Fur den halben Kreisumfang sind viele Konstruktionen

bekannt, am besten wohl die von Kochansky mit j/y — 2 |/3 3,141533 Eme
einfache Konstruktion mit \ (^ïiî — J^ô) 3,141617 gibt A.Heiseler2), eme weitere

mit 2 + y 2 — 1^3 + 2 |/2 — |/3 3,1415890 O.O. Kerzdorfer, Zeitschr. f. math. u.
nat. Unterricht 69 (1938), S. 36. Schàrfere Annâherungen finden sich bei S. Ramanujan,
Quarterly Journal of Math. 45 (1914), Collected Papers, S. 34 f.
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J_

Auf der m A an den Kreis gelegten Tangente wird der Radius r von A
aus viermal abgetragen bis zum Punkt 4 Weiter ist TD OC r, und
die Gerade 40 trifït den Durchmesser J.0^ des Kreises m D Auf der
Tangente wird noch 3E — 3D abgetragen dann ist AE nahe gleich dem

Umfang des Kreise»
AE ist hier also die Summe der groBeren Kathete und der Hypothenuse

eines rechtwinkligen Dreiecks mit den Katheten 3r und ^r Es wird

1
AE (3 + -1/97) r - 2r 3,14148 (6 2)

6rder Fehler ist etM a Der Naherungswert fur n genugt dabei der

Gleichung

1. Kreisinhalt.

Ist der Kreisumfang als Strecke bekannt, so laBt sich auch die Seite
des dem Kreise flachengleichen Quadrats von dei Lange

a -= r 1,77245385

konstruieren So schneidet der Halbkreis uber der ersten Halfte von AE
(Fig 3) die Verlangerung von TD in F derart, daB AF nahe die gesuchte
Quadratseite darstellt Es ist

-r. 1,772421... (7.1)

der Fehler nahe
60 000

Emfachei wenn auçh weniger genau, ist es, auf AE die btrecke
AG AD abzutragen, und die Strecke GD von B aus gegen A und von A
aus gegen B bis H und K Dann gibt die Strecke
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HK— /|]/2 —2Jr=^r 1,7712. (7 2)

die Quadratseite mit einem Fehler von efrwa ,^nA, was noch als aus

reichend betrachtet werden kann

Etwas genauer ist die folgende Konstruktion

Auf AB (Fig 3) sei AL AC r j/2 abgetragen, \C werde von 3X
in Lr, von 30 m Or getrofïen Dann ist \Of + L'L die Quadratseite mit
emer Lange von

2 +J11y r 1,77221 (7.3)
o

2ralso emem Fehlei von etwa
8000

Eme Naherungskonstruktion fur die viei Quadratecken mit nui emer
Zirkelofïnung fand A Kagi (Thaymgen)12)

In den Kieis vom Radius r wird mit Kreisen vom selben Radius, die
durch den Mittelpunkt gehen, em regelmaBiger Zwolfeistern gezeichnet
Zwei senkrechte Symmetrieachsen werden von diesen Kreisen noch îm
Abstand s3 r |/3 vom Mittelpunkt getrofïen Die Ecken des Quadrats
haben von diesen vier Punkten und den îhnen auf der andern Seite zu
nachst liegenden mneren Schmttpunkten des Zwolfeisterns 3 e den
Abstand r Die Seite des Quadrats von der Lange

1/2 + |/3 —j/1 (84}/3--14l) r-=r 1,77319 (7 4)

2rwird um etwa zu groB

8. Wmkeldreiteilung.

Uber die Dreiteilung des Wmkels hat M d'Ocagne eme emgehende
Untersuehung angestellt13) Die folgenden Bemerkungen môgen noch

emige Zusammenhange beleuchten
Im Gegensatz zu den bishei betrachteten Konstruktionen ist die

Winkelteilung noch von emem Parameter abhangig, namhch von dei

12) Briefliche Mitteilung vom November 1934

l8) Etude rationnelle du problème de la trisection de 1 angle L Enseigne
ment Mathématique 33 (1934) S 49
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GroBe des gegebenen Winkels <p. Bei der Beurteilung der Einfachheit einer
solchen Konstruktion hat man zwischen der von dem Winkel q> unab-
hàngigen Vorbereitung und der von <p abhangigen Ausfûhrung der
Konstruktion zu unterscheiden. Wenn es sich nicht nur um die Teilung eines

einzigen, sondern beliebig vieler Winkel handelt, so ist besonders auf die
Einfachheit der Ausfûhrung zu achten, da die Vorbereitung nur einmal
durchgefûhrt zu werden braucht.

Fig. 4

Um den dritten Teil eines gegebenen Winkels <p <£ BOA zu finden,

kann man, da r*<p 3r--~- ist, einen Schenkel des Winkels verdrei-

fachen und die Lange des zugehôrigen Bogens, oder als erste Nàherung
fur kleine Winkel auch den Bogen selbst beibehalten. Ist also OB
OA r, so verlângere man den Schenkel OA ùber den Scheitel 0 hinaus
bis O! und 0", so dafî O"Or O'O OA wird, und nehme als Nàherung
den Winkel BO"A. 0" ist der ,,approximative Trisektionspunkt"14).

Wird der Nâherungswinkel jeweils mit y>, der Fehler mit ô bezeichnet,
so wird

—3°26/6// —2/36//.

Eine zweite Nàherung erhàlt man durch ,,Strecken" des Bogens AB.
Die Gerade O'B trifft den durch A gehenden Kreis mit Mittelpunkt 0f

14) VaMen, S. 82.
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in Br so, daB der Bogen AB' — rq? wird. Der Winkel B10"A ergibt die-

selbe Naherung fur^-, wie die letzte der von M. d'Ocagne13) angegebenen
S

Konslruktionen15). Es wird hier

2sinf 2sin| x ,3
tg <$¦= — -f-) + ; (8.2)24 ' 3 /2eosf 3-

<p =- 90° <5 ~= 21 '407/ <p 45° (5 2'36" <p 22|° (5 19"

Man kann geometrisch oder durch Rechnung einsehen, daB der Fehler
hier bis auf das Vorzeichen gleich groB ist, wie beim halben Winkel in
(8 1), namlich

tgd ==-- _ mit <x —-^-in (8.1) und a -^- in (8.2).e 2 cos a + cos 2 a 3 v ' 6 v ;

Auf dem Halbkreis iiber O"O liège der Punkt C so, daB der Winkel

CO"O genau gleich -~, also der Winkel CO'O gleich-—wird. Verlangert

man O"C um CD 0^1, so ist ^ CO'D - -|-, also <£ DO'A -f- und

D liegt folglich auf O'JB' Àndert sich 99, so beschreibt D eine Kreis-

konchoide (Pascalsche Schnecke), mit deren Hilfe also die folgende

exakte Dreiteilung môglich ist:

15) S. u. S. 257, sowie M d'Ocagne, Comptes Rendues 200 (1935), S 31. Ein Fehler
vom doppelten Betrag ergibt sich bei einer Konstruktion, die sich nach M Simon, Ûber
die Entwicklung der Elementar-Geometne ira XIX. Jahrhundert (Leipzig
1906), S 84, bei E. Commotto (1895) findet und anschemend schon Huygens bekannt war:
,,Man verlangert den halbierenden Radius um sich selbst und verbindet den Endpunkt
mit dem diametralen Punkt des einen Schenkels, so schneidet dièse Gerade vom andern
Schenkel aus nahezu g- ab." Der Fehler betragt jedoch bei <p 60° nur — I2y2', nicht
wie dort angegeben uber 2°. Die konstruierte Gerade bildet mit dem ersten Schenkel nahe

den Winkel -Ç mit demselben Fehler wie bei (8.2). Vgl. auch F. Vogel, Zeitschr. f math.
u. nat. Unterricht 62 (1931), S 145, wo auch fur andere Konstruktionen ausfuhrhehere
Fehlertabellen gegeben smd

Wàhrend das Strecken des Bogens AB in den Bogen AB' vom Radius 2 i exakt durch-
fuhrbar ist, kann das weitere Strecken m einen Bogen vom Radius 3 r genahert aus-
gefuhrt werden. Dies fuhrt zu der von A. HetseJer2) bearbeiteten Konstruktion von
K. Lindqvist.

Eine weniger emfache Konstruktion von Frau Wuster veroffentlioht A. Meese, Zeitschr.
f. math. u. nat. Unterricht 66 (1935), S. 169. Die îm Jahrbuch uber d. Fortschr. d. Math.
62 (1936), S. 697 besprochene Arbeit von J Tandberg, Elementar mat. Fys. Kemi 19,
S 145, ist mir nicht zugànghch
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Man projiziere B von O' ans auf die Konchoide nach D, dann ist
<£ DO"A i < £O4.

E& ist zu bemerken, daB bei dieser Konstruktion fur klemere Winkel
gerade der ïeil der Konchoide verwendet wird, welcher in der Nahe des
auÔeren Scheitels gelegen und dort sehr nahe kreisformig ist. Wenn man
diesen Teil durch passende Kreisbogen ersetzt, so erhalt man gute
Naherungskonstruktionen

Man wird dabei Kreise wahlen, welche die Kurve in A beruhren, deren
Mittelpunkt M also auf 0!tA zu liegen kommt. Wahlt man M in 0', so
erhâlt man wieder die obige zweite Naherung. Man kann aber M auch so

wahlen, daB der Fehler der Naherung fur y 90° verschwindet. Der Kreis
geht dann durch den Schnitt der in O" unter dem Winkel 30° und in 0'
unter dem Winkel 45° angetragenen Geraden. Dies ergibt die von
O. Perron16) und von M. d'Ocagne13) besprochene ,,Konstruktion von
Kopf", deren hohe Genauigkeit somit verstandlich ist.

Wunscht man in ahnlicher Weise fur kleine Winkel die bestmogliche
Naherung zu erhalten, so wird man die ,,interpolierende" Approximation
durch eine ,,oskulierende" ersetzen, also den Punkt M in den Krum-
mungsmittelpunkt des Punktes A der Konchoide legen.

Dieser Krummungsmittelpunkt M kann so gefunden werden: Bei der
Ànderung von (p befindet sich das jeweilige Drehzentrum fur den rechten
Winkel OnCO im Spiegelbild C von C bezuglich #'; CD ist also Normale
der Kurve in D. Der Schnitt von CD mit O"O sei mit N, der FuBpunkt
des von N auf O"C gefallten Lotes mit L, O"L mit x, LN mit y und
O"C CO mit z bezeichnet. Der gesuchte Krummungsmittelpunkt M
ergibt sich als Grenzlage von N und daher auch als Grenzlage von L,
wenn cp gegen Null strebt. Nun ist

x __ y x _*- y _ °"c °"D
o"C+off d '

und dies strebt gegen -| r. M teilt also die Strecke O'O im Verhaltnis 1 4,

und es ergibt sich folgende Konstruktion:
Auf einer Geraden seien in Abstanden von je 5 Einheiten die Punkte

Oh\O'\O und A markiert, wàhrend O'M gleich einer, also MO gleich
4 Einheiten gemacht sei. Man zeichne um O als Mittelpunkt den Kreis
ABO', und um M als Mittelpunkt den Kreis AB". Liegt dann B" auf der
Geraden O;B, so ist der Winkel B"0"A y) sehr nahe ein Drittel des

Winkels BOA. Es wird

16) Sitzungsberichte der Bayenschen Akademie der Wissensch (1933), S 439
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tg V ~ l l f1 ~ à - - m + (8 3)
9 — 5tg24 108 \ 3/

Die folgende ïabelle zeigt den Fehler, dei fur kleme Winkel sehr germg
ist und auch bei cp — 60° noch unter dem der Kopfschen Konstruktion
bleibt Dieser letztere Fehler ist (nach Perron16) 7um Vergleich mit
angegeben

Winkel 92

Fehler à

bei Kopf

Winkel y
Fehler à

bei Kopf

0°

0"
0"

72°

25,25"

14,70"

12°

0,0032"

0,187'

84°

55,07"
8 47"

24°

0 10"

1,38"

90°

78,16"

0"

36°

0,77"

4,23"

45°

2 37"

48°

3,28"

8,57"

22|°
0 074"

(>0°

10,07"

13,08"

Um auch fur grôBeie Winkel eine theoretisch sehr genaue Konstruktion
zu erhalten, kann man berucksichtigen, dafî sich jedes ganze Vielfache
von 45° exakt und emfach dritteln laBt, da der Winkel von 15° als
Djfferenz von 60° — 45° leicht konstiuierbar ist, man biaucht dann die
obige Konstruktion nur noch auf die Difïerenz zwischen dem gegebenen
Winkel (p und dem nachstgelegenen ganzzahhgen Vielfachen von 45°, also

nur auf einen Winkel von hochstens 22^° an7u\\enden Tst also

cp — n 4:5° ± x 0 < % < 224° so wird

gesetzt Damit hat man eme einfache Konstruktion fur die Dreiteilung,
bei welcher der theoretische Fehler fur beliebig groBe Winkel stets untei
halb von 0,075" verbleibt

Weitere Verscharfungen ergeben sich unten bei der n Teilung

9. Winkel-n-Teilung.

Bei der n Teilung17) emes gegebenen Winkels, bei der ubngens n keme

ganze Zahl zu sein braucht, kann man m analoger Weise vorgehen, wie
bei der Dreiteilung

17) Einen Naherungsausdruck fur cos — gibt Laguerre Comptes Rendues 90 (1880),
n

Oeuvres I, S 106
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sin <p

Es kann n > 1 vorausgesetzt werden. Ist namlich v < l und der Winkel

— zu konstruieren, so setze man — m -] wobei m eine ganze Zahl
v v n &

und n > 1 sein soll, und konstruiere — mw + —
v n

Wegen rq> — nr • — ergibt sich eine erste Naherung fur den Winkel —

bei kleinen Winkeln, wenn man den Bogen r<p beibehalt und den einen
Schenkel ver-w-facht Ist also OB OA — r und OA nr, wobei 0 auf
OA iiegen soll, so gibt der Winkel BOA ip die Naherung fur den w-ten
Teil des Winkels BOA Es wird

=_
sin y ^^ (n—1) (w—2)/y\3

w — 1 -f cos ç> 7i — 2 sin2 ^ 6 \ n /
(9.1)

Eine bessere Naherung erhalt man fur n > 1,6 wieder durch passendes
,,Strecken" des Bogens AB. Beschreibt man mit dem Durchmesser
0r0A des Kreises vom Radius r um O' als Mittelpunkt emen Kreis vom
Radius 2r und projiziert den Punkt B von O1 aus auf den zwreiten Kreis
nach B', so hat der Bogen AB' wieder die Lange rq?. Von diesem Bogen
ausgehend erhàlt man in gleicher Weise auf einem Kreis vom Radius 4r
den ,,zweimal gestreckten" Bogen AB", und durch &-maliges Wieder-
holen auf einem Kreis vom Radius 2kr den ,,&-mal gestreckten" Bogen
AB{k) von derselben Lange rcp Dabei wird k nach (9 2) am besten so

gewahlt, da8
1J6.2*"1 ^ w ^ 1,6 2fe

daB also 2k nahe bei n und der letzte Mittelpunkt nahe bei O gelegen ist.
Der Winkel B{k)ÔA y> liefert dann die gesuchte Naherung fur den

Winkel --n
Das Résultat ist genau, wenn n 2k ist; in diesem Fall liefert aber

auch schon (k — l)-malige Wiederholung eine genaue Lôsung; der letzte
Kreis ist dann uberflussig.

Allgemein wird

*" sin ôl ^ sin Tk (n—2)(n —

6-2" \J (9<2)
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Hieraus folgt, daB der Betrag des Fehlers fur kleine Winkel bei festem
n am kleinsten wird, wenn k der oben angegebenen Bedmgung gemaB
gewahlt wird

So erhalt man z B. bei der Funfteilung mit zweimaliger Streckung
1 / <p\3

(n 5, k 2) den Fehler ô — l-^l + • • •, wahrend sich fur n 5,

k — 1 <5

îfi"pf +'" ergibt. A- 0 entspricht der Konstruktion

(9 1); fur n 5, k 0 wird 5 — 2 (-f-)

Es ergibt sich fur

ç>= 180° 90° 45° 22|°
n 5, k=0 ô — 36°0/0// — 3°57/50// —27'25" — 3'21"
n 5, &=1 ^ —2°18/36// —14/ 9" — l^l" —13"
ft 5,&=2 ^= 27 ' 25" 3'21" 25" 3,1"

Der genaue Wert des Fehlers in (9 2) ergibt sich aus

m sin (n — m) oc — (n — m) sin m oc y k
m cos (n — m) oc + (w — m) cos ma nm '

Es folgt, daB der Fehler, wenn n die Forai 2* + 1 besitzt (h 1, 2, 3

fur k= x den entgegengesetzten Wert hat, wie fur & 0 bei einem
2*-mal kleineren Winkel. Man kann dies auch geometrisch einsehen.

Dieselbe Naherung wie bei (9 2) kann man auch in etwas anderer Weise
erhalten. Bestimmt man auf dem Durchmesser O!OA des Kreises vom

Radius r den Punkt O so, daB OA -^ wird, und auf dem Bogen AB des

Kreises durch &-maliges Halbieren den Punkt Bk &o, daB <£ BkOA -~

so gibt der Winkel BkOA =tp die gewunschte Naherung fur den Winkel —.

Die Formeln (9 2) gelten auch fur dièse Konstruktion. Fur n 3, k l
erhàlt man die oben bei (8 2) erwahnte Konstruktion von M. d'Ocagne

Um eine Annaherung von hoherer Ordnung zu erhalten, denke man

sich zunachst an OA bzw. OA den genauen Winkel —angetragen und den

freien Schenkel desselben mit dem freien Schenkel des wie oben kon-

struierten Winkels -^ zum Schnitt gebracht. Ândert sich 99, so beschreibt

17 Commentarii Mathematici Helvetiu ^"'



der Schnittpunkt D eine Kurve, welche in der Nahe ihres Scheitels A
nahe kreisformig verlauft und deshalb mit guter Naherung durch ihren
Krummungskreis in A ersetzt werden kann.

Den zugehorigen Krummungsradius q kann man so bestimmen: Es
werde 2k m gesetzt, und 0:0, 0: m, 0: n und e: r\ seien rechtwinklige

Koordinaten der Punkte A,Oy 0 und D, wobei also <£ DOA — und
m

<£ DOA — sein soll. Aus tg — und tg — ergibt
n ° m m — r\ ° % w — r\

9? EST] £3 ^^ £8 7] £3|

und daraus — — 1 -\ [ri — e2 — 1 + • • • also
m m L nm \ ' Snm J

yi —_ e2 —Z 1_ Der Krummungsradius ist somit1 Snm &

e2
__

Snm
2rj

~ 2 (n + m)

Wenn nun der Krummungskreis m A die Schenkel des Winkels ~
in A und B trifEt, so ist y> <^c J5O^4 der gesuchte Naherungswinkel.

Es wird mit 2fc m

|/ ^m)tg|
tg y — "

— tg —
2(2 )()22| J mn2(2m — w) — (n + m) (n-

(9.3)
(n2~m2) (2n — m) (2m —n) I (f\b

135 m4

Bei festem n wird der Fehler à fur kleine Winkel absolut am kleinsten,
wenn le so gewahlt wird, daB

2*-i ^ 7i ^ ~~ 3 +^281 2k wird, oder genâhert

0,81-2*-1 ^n< 0,81-2A.

Um theoretisch moglichst geringe Fehler zu erhalten, muB man hier also
k im allgemeinen um 1 groBer wahlen als bei (9.2).

Es ergibt sich so die folgende sehr genaue Konstruktion fur die n-
Teilung eines beliebigen Winkels :
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Man bestimme die ganze Zahl k so, da/S 0 81 2k~1 < n < 0,81 2k witd
vnd setze 2k m Auf emer Geraden werde mit beliebige? Einheit OA m

OA n und MA ———¦—- abgetragen Ist dann <£ BOA mit MB=MA
der durch k mahges Halbieren (oder k maliges Strecken") gefundene

Wmkel S- so %st der Wtnkel BOA =- w sehr nahe gleich ~ Fui w und

den Fehler à gelten die Formeln (9 3)

Speziell ergeben sich fur die Dreiteilung die Werte n 3, k 2,

m 4, also OA 4, ÔL4 3, if^l 2f Damit wird

1 ± ô

45 — 7 tg2 -I 3456 \ 3
4 (9.3 3)

<p=180° ^ —9'17/7 (p 90°ô= -mi" (p 4:r>o ô- — 0,52/;

(p 22%° 0 -—0,016"

Der Betrag des Fehlers ist etwa 4|- mal klemei als bei der Konstruktion
(8 3), die dem Wert k 1 entspncht Durch die am SchluB von 8 an
gegebene Hilfskonstruktior kann jetzt erreicht werden, daB ei fur
beliebige Winkel unterhalb von 0,02 " verbleibt

Bei der Funfteilung wurde k 3 die genauesten Werte liefern Mit
k 2 erhalt man einen etwa 3 mal groBeren Fehler, aber einfachere Zahl-
werte fur die Konstruktion, was wohl meist vorzuziehen ist Es wird mit
n 5, k 2, m 4 OA 4, ÔA 5, MA 3± und

f) 2tg| 3

=—f-V-
640 \ 5 /

' 4
tg y) =-¦

' f

25 — 3 tg2 1 640 \ 5 '

4 (9.3.5)

<p 180° 0 1' 39", y 90° ô 2,99", ç> 45° ô - 0,093",

y 22|° 0 0,0029"

Bei cp — 180° liefert die Konstruktion fui tg^ den rationalen Nahe

rungswert tg y) ~ jj
Da die Seite des régulaien Zehnecks leicht konstruierbar ist, so laBt

sich auch der Winkel von 45° — 36° 9° finden, also der Winkel von
45° genau funfteilen Wendet man dann die Naherungskonstruktion
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wieder nur auf die Differenz zwischen dem gegebenen Wmkel <p und dem
nachstgelegenen ganzzahligen Vielfachen von 45° an, so hat man eine

Konstruktion, bei welcher der theoretische Fehler von \ fur beliebig
5

groBe Winkel stets unterhalb von 0,003" verbleibt

Bei der Siebenteilung ist wieder der Wert k 3 dem nur wenig ge-
naueren k 4 vorzuziehen Es wird mit n 1, k 3, m S OA — 8,
ÔA 7, MA 5f und

147 —5tg2f 2048

£ — 5,58", ç) 90° ô=—0,17", <p 45° d —0,0054",
ô — 0,00017"

Es mag noch interessieren, m welcher Weise die GroBe des îelativen

Fehlers bei festem k von der Zahl n abhangig ist Setzt man —^ v und

nimmt nur das Glied mederster Ordnung m cp, wobei I ~ I durch y)5 ersetzt

werden kann, so ist der Ausdruck ô — —-— y)5 als
135

Funktion von v zu untersuchen Er besitzt die vier Nullstellen v — — 1,

jf, 1 und 2, und drei Extrême, namhch bei

und v3 1,643656^ —0,511727

mit den Werten

ôt 0,0277887 ip\ ô

v2 0,743071

2 —0,0020271 y)5 und d3 0,0102735 y)5

Die oben gegebene Bedmgung fur k liefert das Intervall
0,405 ^ v ^ 0,81 Durch passende Wahl von k kann also fur
jedes n > 1 erreicht werden, daB v m dièses Intervall fallt und so der
Fehler moglichst genng wird

Man erkennt, daB m bezug auf die GroBe des relativen Fehleis die
Verhaltnisse bei n — 3, also fur die Dreiteilung, nahezu am ungunstigsten
liegen Mit n 3, k 2 erhalt man v 0,75 und ô — 0,0020255 y)5,

was sich von dem Extremwert <52 kaum unterscheidet Auch bei n 3,

k — 1 kommt man mit v 1,5 und ô 0,00926 y>5 dem Extrem
wert <53 ziemhch nahe

Durch eine einfache Hilfskonstruktion kann die theoretische Genauig
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keit noch rasch gesteigert werden Da der Fehler m (9 3) von der GroBen-

ordnung yb ist, so braucht man die Konstruktion nur auf den halben
Wmkel anzuwenden und dann das Résultat wieder zu verdoppeln, um den
Fehler auf etwa den 16 Teil zu leduzieren Wird analog zuerst #-mal
halbiert und zum SchluB wieder g-mal verdoppelt, bo smkt der Fehlei
rund auf den 16° ten Teil Man erhalt so die Werte

w
(n(n + 2k)-(n-2*)}/9n> + é(n + 2k) (2n-2*) tg*^TlJ2* 1 tg ^

g _____

^ ^

+ ^1,2 3ô (2k+1-n)
135

Dabei kann g als ganze Zahl beliebig groB genommen werden

Es ist emleuchtend, daB die angegebenen hohen Genauigkeiten (auBei
etwa bei sehr groBen Wmkeln) beim praktischen Zeichnen meht voll aus-

genutzt weiden konnen Insbesondere ist hier die zuletzt genannte Hilfs-
konstruktion nicht zu empfehlen, da bei dem schheBhchen Vervielfachen
des Wmkels auch die unvermeidhchen Zeichenfehler vervielfacht werden
Bei numerischer Berechnung mit hinreichend vielen Stellen lassen sich
aber die Fehler nachprufen, und rem theoretisch erhalt man m (9 4) bei

passendem k und wachsendem q eme Approximation der ,nicht kon-
struierbaren" Wmkel durch ,,konstruierbare", bei welchei der Betrag des

Null geht

Fehlers wegen ô2 <~t^t: mmdestens m der Ordnung ¦ gegen

Anhang. Ellipse.

E2 A /%

q

1

Fig 5

Beim Zeichnen emer Ellipse, deren Achsen A2A0 ¦==¦ 2a und A3AX —
2 b mit a > b gegeben smd, verwendet man gerne die Krummungskrejse
in den Scheiteln Die zugehongen Krummungsmittelpunkte ergeben sich
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bekanntlich, wenn man von den Ecken des umbeschnebenen, achsen

parallelen Rechtecks EqExE2Ez Lote auf die gegenuberhegenden Diago-
nalen fallt und sie mit den Achsen zum Schnitt bimgt

Die zwischen den Krummungskieisen verlaufenden Ellipsenbogen er
hait man scharfer, wenn noch je eme passende Tangente samt Beruh
rungspunkt bekannt ist Es werden hierfur die Tangenten empfohlen,
deren Beruhrungspunkte auf den Diagonalen de& umbeschnebenen
Reehtecks gelegen smd Dièse Tangenten smd leicht zu konstruieren sie

liegen jedoeh etwas zu nahe den groBeren Krummungskreisen und nutzen
deshalb nicht sehr viel Eme gunstigere Lage haben die Tangenten, deren

Beruhrungspunkte auf den Diagonalen der klemeren Rechtecke E^AXAZE^
und AXEXE^AZ liegen Man findet sie leicht, mdem man die Schnitt
punkte dieser Diagonalen unter sich parallel der klemen und îhre Schnitt
punkte mit den zuerst genannten Diagonalen paiallel der groBen Achse

auf die auBeren Rechteckseiten projiziert und die erhaltenen Punkte

8tTt verbmdet Als Probe ergeben sich die Achsenabschnitte &+t und

b + ^ wahrend z B ^tf 0 S0E0 | und AQT0 \TQEQ ^ wird

Von den Krummungskreisen abgesehen ist die Konstruktion affiner
Natur, d h sie kann auch angewendet werden, wenn statt der Achsen

nur em Paar konjugierter Durchmesseï gegeben smd und die Rechtecke

entsprechend durch Parallélogramme ersetzt werden In Parallelkoordi
naten kann die Gleichung der Ellipse m der Form x2 + y2 — 1, die der

Tangenten m der Form ±4x±3y 5 geschneben werden \\ omit sich
die gemachten Angaben leicht bestatigen

(Emgegangen den 2 Marz 1938
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