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Einige elementargeometrische Néherungs-
konstruktionen

Von PavuL KFINSLER, Zirich

Die folgenden Naherungskonstruktionen erscheinen bei einfacher Aus-
fiihrung theoretisch oder praktisch als ausreichend genau!). Im Anhang
wird noch eine genaue Tangentenkonstruktion fiir Ellipsen gegeben, die
fiir das Zeichnen der Ellipsen von Vorteil ist.

1. Wiirfelverdoppelung (Delisches Problem).

Fig. 1

Eine wenigstens theoretisch sehr genaue und einfache Konstruktion
zur Wiirfelverdoppelung ist die folgende:

ABCD sei ein Seitenquadrat des gegebenen Wiirfels. Man verlingere
die Kante AB = a bis M und N, so dal AM = MN = 4 a. Wird dann
ME = MA und AE = AC gemacht, sowie NF = NE mit F auf AB, so
ist AF sehr nahe ein Zehntel der gesuchten Wiirfelkante von der Liange

ap? .

Der Fehler in AF ist etwa —— von a, also der Fehler in 10 AF

50 000 000
ungefahr 5 000 000 YoR % Es ist namlich
AF: AB =8 —)62 = 0,125992126 ..., dagegen (1.1)

1 .
75 V2 = 0125992105 ... .

1) Man vergleiche etwa Th. Vahlen, Konstruktionen und Approximationen
(Leipzig 1911).
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Praktisch sehr leicht zu konstruieren sind die beiden Naherungswerte
fiir 2 (mit @ = 1):

3 —)3=1,2679... und (1.2)
34— V5 =12639..., (1.3)

) 1 1 ) . .
mit Fehlern von etwa 195 bzw. 350 von a. Subtrahiert man ihre Differenz

von dem kleineren Wert, so ergibt sich das auch theoretisch gute Resultat

4413 —2Y5 = 1,2599149 ..., (1.4)

1
160 000

das um etwa von a zu klein ist. In Ifig. 1 ist V§ = 3Q, ]/5 = 3C.

Weniger bequem, aber doch noch relativ einfach sind die Werte

3% _ 1 250882... . (1.5)
V7
5 =,
+ (4—V5) = 1,259951... und (1.6)
12 V5 —8 L 125992063 (1.7)
]1 11-———— ) LI 3 ’ L

1 ]

55000 * 33000 “nd

von a.?)

. n R IE e g
mit Fehlern von rund 2 400 000

2. Regulires Siebeneck.

Fiir die Seite 8, = 0,86776748 ...

des einem Kreis vom Radius » = 1 einbeschriebenen reguldren Sieben-
ecks ist als praktische Naherung die Halfte der Seite s; = ]/§ des regu-
laren Dreiecks seit langem bekannt3). Der Fehler der Néherung?) ist

1
etwa 600 von 7:

1y3 = 0,8660 ..., =2 —s,=—20,0017.... (2.1)

2) Sehr einfach ist die Konstruktion von E. Sorgner, Archiv f. Math. u. Phys. (3) 25
(1917) far Vs — V2 =1,25928 ... ; komplizierter die fiir ]/V§ + V3 = 1,2599280 ...
ebenda; 4. Heiseler, Acta Acad. Aboensis 8 (1935), konstruiert@ + V3 —2=1,25958...

3) Vgl. Vahlen, S. 298.
4) § soll stets die Differenz ,,Naherungswert — wahrer Wert‘‘ fiir » = 1 bedeuten.
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f‘)i ist die Hohe im gleichseitigen Dreieck mit der Seite r. Als schérfere

Néaherung fiir s, kann man Transversalen nehmen, die mit der Hohe
passend gewahlte spitze Winkel einschlieBen; darauf beruhen mehrere
Konstruktionen?).

Die folgende, auf dem rationalen Naherungswert®)

105 4\2
o=l — (_ﬁ) — 0,8677686. . . (2.2)

beruhende Konstruktion scheint jedoch noch nicht bekannt zu sein:

D

o

AOB und COD seien senkrechte Durchmesser des gegebenen Kreises.
OB werde um BE = BN = (2 — }) r verlingert. DE trifft den Kreis in
F, CF trifftt OB in G, die durch G zu ED gezogene Parallele trifft OD in H.
Dann ist DH sehr nahe gleich der gesuchten Seite s,. Die Differenz ist

8 = DH — s, = 0,0000011 ...
1

also ungefahrm von 7.

Ist M die Mitte von AO, N die Mitte von AM, so ist auch DP = DM —

5) J. Plemelj, Monatshefte f. Math. u. Phys. 23 (1912), S. 309, bestimmt den genauen
Winkel und gibt eine Naherung, die im Resultat mit (2.4) iibereinstimmt. 7T'. R. Running,
The American Math. Monthly 30 (1923), S. 195, erhilt sehr hohe Genauigkeiten. Weitere
solche Konstruktionen bei S. M. Drach, Philosophical Magazine (4) 27 (1864), S. 320,
G. Wotherspoon, The Math. Gazette 17 (1933), S.50 und B. Dose, Jahresbericht der
Deutschen Math.-Ver. 44 (1934), S. 291.

8) Bei H. Norton, Philosophical Magazine (4) 27 (1864), S. 281, findet sich der Néahe-
rungswert—;%z5 fir sin "?" in der Form —3;25- : 11_7_11
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MN eine einfache und brauchbare Niaherung?). Da DM — M4 = s,, die

Seite des reguldren Zehnecks ist, so ist s, nahe gleich s, + z ; der

4
. " 1 .
Fehler ist ungefahr 1000 Yo 7
X r 1, 1
610+2~:§]/5-1=0,86803... , 6= 0,00027 .... (2.3)

Ist N’/ die Mitte von MO und MR = MD mit R auf OB, so ist auch
N'R = sy + % nahe gleich s,, OR = s, und DR = s;.

Eine weitere Konstruktion ist die folgende:

Es seien wieder A0B und COD senkrechte Kreisdurchmesser. Die
Verbindungslinie von B mit der Mitte von AC treffe OC in E; die Ver-
bindungslinie von 4 mit der Mitte von BE treffe OF in F. Auf OB werde
OG = CE, und auf FD werde FH = CE gemacht. Dann ist GH nahe
gleich s,. Es wird:

1 -
GH = 3 ]/61 == 0,867806 ... , o = 0,000038 ... . (2.4)

3. Regulires Neuneck.
Als einfache Naherung?) fiir die Seite
sy = 0,68404029 ...

des regularen Neunecks kann das arithmetische Mittel aus der halben
Dreiecksseite und dem halben Radius genommen werden:

7) Nach R. C. Archibald, The American Math. Monthly 28 (1921), S. 476, findet sich

der N é,herungswert% (2V¥'5—1) fir 8, bei Efremoff (1892); ebenda weitere Angaben iiber
Konstruktionen von F. Q. Rober (1854), K. Hagge (1914) u. a. Eine Konstruktion fiir den

Ausdruck & (61 — ¥/6) mit § = 0,0000016 ... nur mit dem Zirkel gibt C. E. Y oungman,
The Math. Gazette 17 (1933), S. 266. Weitere Ausdriicke fiir verschiedene s, m, | 7 usw.
bei V. Q. Cavallaro, Giorn. Mat. Battaglini 74 (1936), S. 71.

Zusatz bei der Korrektur: In Giorn. Mat. 66 (1928), S. 192; 68 (1930),
S. 177; 72 (1934), S. 76 und der genannten Arbeit Bd. 74, die ich erst nachtraglich
einsehen konnte, gibt Cavallaro eine groBe Zahl von Naherungen, darunter in Bd. 66
die Werte (3.1) und (3.3) fur s,, sowie (5.2) fur s,;; in Band 72 den Wert (6.2) fir
n nach C. Schor, Rassegna di Mat. (1927).

8) M. d’Ocagne hat in Revue générale des Sciences 44 (1933), S. 625, eine Konstruktion
unbekannten Ursprungs mit & = 0,000039 ..., und ebenda 45 (1934), S. 321 zwei von
J. Cordilha herrithrende Konstruktionen veréffentlicht mit & = 0,0000017 ... und
0 = — 0,0000000020 .... Die zu den letztern gehorigen Naherungswerte fiur s, sind

V88 __ 2 und 2Y88 . In der Zeitschr. f. math. u. nat. Unterricht 62 (1931), S. 364, gibt
Widder eine Konstruktion mit & = 0,00008 ...; ebenda 68 (1937), S. 226, Heyer mit
8 = 0,0034 ... und den Ausdruck 2 ( + 0,4 /3) mit § = 0,000062 ... .
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1 (s r
§(—-2——1--‘—2—)__«0,6830..., 0 = —0,0010... . (3.1)

GroBere Genauigkeit erhalt man mit

1
—2—(87—{——;—-)_—_0,68388... .6 =—0,00016... , (3.2)
wobei fiir s, der obige Naherungswert (2.2) verwendet werden konnte.
Besser ist es jedoch, den einfacheren Naherungswert (2.3) zu nehmen;

dieser gibt das Resultat 3 NR in Fig. 2, d. h.

| e
3 (810 + gr) = {Y%il — 0,684017..., &-==—0,000023... . (3.3)

Wird in Fig. 2 auf der Geraden AB BJ = BA == 2r und OE' = DJ,
dann F’ auf DE’ und dem Kreis, G’ auf CF' und OB angenommen, so
erhilt BG’ den Wert

1
] ——=10,68377...

V1o
In Fig. 2 ist ferner BE = BN = 1, also OB: BE =7, BE:OE = =
und NO : OF = % . Mit AQ =0Q =1 wird CQ =|/2 43 und

D) == g, = l/2 -—-V§ . Damit kann man folgende Werte konstruieren:

11— 12 4 Bys e
s — 152 V3= 0,6840490.... , 3= 0,0000087.... ,

, 0=—0,00027... . (3.4)

7 7
(3.5)
7 R
4512+ V3 — 81—31- = 0,68403948..., § = — 0,00000081... . (3.6)
4. Reguliires Elfeck.
Fir die Seite sy, = 0,56346511 ...
des regularen Elfecks ist die Diirersche Naherung?®)
Lo (3 = 05625 , 6=— 000097 (4.1)
-é 16 o 4 Mt ’ - ’ cre *

genauer und bequemer zu konstruieren als die Heronische ;2. Wird in
Fig. 2 auf DN das Lot NS errichtet mit S auf OC, so ist OS die gesuchte
Strecke!?).

9) Vgl. Vahlen, S. 297.
10) Noch einfacher ist die Konstruktion von Graf Lavaulz, Zeitschr. f. Math. u. Phys. 63

4
(1914); sie ergibt .L—:_V_a;_ﬂ’_ﬁ mit § = 0,0011 ... .
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Eine einfache Konstruktion mit hoherer Genauigkeit ist die folgende'

Man beschreibe (Fig.2) um den Punkt 4 mit dem Radius AM =1
einen Kreis, der die Gerade AOB noch in X und den gegebenen Kreis in Y
trifft, und um den Punkt B mit BY einen Kreis, der die Strecke A0
in Z trifft. Dann ist XZ nahe gleich s,;,. Man erhalt:

1
—VV 22 —— = 0,563508. = 0,000043... . (4.2)

9l
3 22

Weiter lassen sich auch die folgenden Werte verwenden, wobei ]/2 " }75
wie oben bei (3.6) als CQ, V als V(]/§)2+ (§)2 V?’ als %’: = QM

konstruiert werden kann:

21/5
-?;V-'%:O,563436.... , 0= —0,000029.... : (4.3

% e D
-5——]—/—%—--:0,563452.... , 0= —0,000013.... ; (4.4)
274 2 +V3=0,5634567... , &= —0,0000084... ; (4.5)

V22 ‘
t5-— 1=0,5634719... , 3= 0,0000068... ; (4.6)
4‘/5-—-7:-5-_—_ 0,5634674... , 0= 0,0000023... : (4.7)
2 _

3((2) —-7}/—23) = 0,5634666... , 0= 0,0000015... . (4.8)

5. Regulires Dreizehneck.

Fir die Seite 813 = 0,47863133 ...

des reguldren Dreizehnecks ist

Sg— 83 =1—)2 —¥Y3=104824..., 6=0,0038..., (5.1)

eine nicht sehr genaue, aber bequeme Néaherung.
Eine scharfere, einfache Néherung ergibt sich mit

1(8 , r __%4']/_2“_“ .
E(_é__*_—i—)_ i = 0,478553... , & = — 0,000078... - (5.2)
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Nur wenig genauer ist der Wert

4
;7-(4—-—]/10):.—..0,478698.... . 6=10,000087.... . (5.3)
Der Ausdruck
3 l/ 7
V11 = 0,4786344... ., 6 = 0,0000031... |, (5.4)

und der rationale Wert

56 7
117 (33— 1

= 0,4786325... , ¢J = 0,0000012... , (5.5)

liefern groflere Genauigkeit, sind aber weniger leicht zu konstruieren.

. 21/5 .. 3/ 7 . . .
Die Werte 3 V,-;- fir s;, und = Vi?f fir s,; sind als numerische, mit
den ersten Primzahlen gebildete Naherungen leicht zu merken.

6. Kreisumfang.

Fiir den Umfang uw= 27314159265

eines Kreises vom Radius 7 gibt J. Cordilha (Rio de Janeiro) eine einfache
und sehr genaue Konstruktion!!), die hier kurz wiedergegeben sei:

In einem rechtwinkligen Dreieck mit den Katheten (4 — })r und }r
wird die Hypothenuse um 24r verlangert. Die so erhaltene Strecke von

der Lénge ]/52—9_ )
____Ztlﬂ_r = 27.3,14150324. . . (6.1)

: ‘ 67 ; . ,
stimmt bis auf etwa 5000000 mit der gesuchten iiberein.

Beim praktischen Zeichnen ist oft weniger die theoretische Genauigkeit
als die Einfachheit und Giite der Konstruktion mafigebend. In diesem
Sinne diirfte sich die folgende Konstruktion empfehlen:

11) Briefliche Mitteilung vom Mai 1932; in Revue générale des Sciences 44 (1933), S. 8,
von M.d’'Ocagne verdffentlicht. Fir den halben Kreisumfang sind viele Konstruktionen

bekannt, am besten wohl die von Kochansky mit V%Q—- 2 ]/5 = 3,141533 ... . Eine
einfache Konstruktion mit %— (V141 — V6) = 3,141617 ... gibt A.Heiseler?), eine weitere

mit 2 4 \/2 —V3+2 p2 — V3 = 3,1415890 ... G. G. Kerzdirfer, Zeitschr. f. math. u.
nat. Unterricht 69 (1938), S. 36. Scharfere Annéherungen finden sich bei S. Ramanujan,
Quarterly Journal of Math. 45 (1914), Collected Papers, S. 34 f.
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Fig. 3

Auf der in 4 an den Kreis gelegten Tangente wird der Radius » von A
aus viermal abgetragen bis zum Punkt 4. Weiter ist 1C = OC = r, und
die Gerade 4C trifft den Durchmesser AOB des Kreises in D. Auf der
Tangente wird noch 3 = 3D abgetragen; dann ist AE nahe gleich dem
Umfang des Kreises.

AE ist hier also die Summe der groBleren Kathete und der Hypothenuse
eines rechtwinkligen Dreiecks mit den Katheten 3 und 2r. Es wird

1 -
:(3+§]/97)r:2r-3,14148... : (6.2)

der Fehler ist etwa Der Naherungswert fiir & geniigt dabei der

6r
26 000°
Gleichung 3\ 2 3\ 2 2\ 2
(x“z‘) “—“(‘2‘) +(’3‘) '

7. Kreisinhalt.

Ist der Kreisumfang als Strecke bekannt, so 148t sich auch die Seite
des dem Kreise flichengleichen Quadrats von der Lange

a—=r-1,77245385 ...
konstruieren. So schneidet der Halbkreis iiber der ersten Héalfte von AE
(Fig. 3) die Verlangerung von 10 in F derart, daB AF nahe die gesuchte
Quadratseite darstellt. Es ist
AF = gi‘—/-?zr:r.l,77242l... , (7.1)

der Fehler nahe

60 000 '

Einfacher, wenn auch weniger genau, ist es, auf AE die Strecke
AQ = AD abzutragen, und die Strecke GD von B aus gegen 4 und von 4
aus gegen B bis H und K. Dann gibt die Strecke
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HK:(gﬁ_z)r::r.unz... (7.2)

)

el

1600 was noch als aus-

die Quadratseite mit einem Fehler von etwa

reichend betrachtet werden kann.

Etwas genauer ist die folgende Konstruktion:

Auf AB (Fig. 3) sei AL = AC = r}/2 abgetragen; 1C werde von 3L
in L', von 30 in O’ getroffen. Dann ist 107 4 L’L die Quadratseite mit
einer Lange von

—2#7‘::%1,77221... , (7.3)

27

rel

) 4 ) _
also einem Fehler von etwa 8000

Eine Néaherungskonstruktion fiir die vier Quadratecken mit nur einer
Zirkeloffnung fand A. Kéagi (Thayingen)?):

In den Kreis vom Radius » wird mit Kreisen vom selben Radius, die
durch den Mittelpunkt gehen, ein regelmaBliger Zwolferstern gezeichnet.
Zwel senkrechte Symmetrieachsen werden von diesen Kreisen noch im
Abstand s, = r]/ﬁ vom Mittelpunkt getroffen. Die Ecken des Quadrats
haben von diesen vier Punkten und den ihnen auf der andern Seite zu-
nachst liegenden inneren Schnittpunkten des Zwolfersterns je den
Abstand r. Die Seite des Quadrats von der Lange

Vz + Vﬁ—-—V%g (84Y3 — 141—) r=r-1,77319... (7.4)

wird um etwa zu groB.

2r
2700
8. Winkeldreiteilung.

Uber die Dreiteilung des Winkels hat M. d’Ocagne eine eingehende
Untersuchung angestelltl®). Die folgenden Bemerkungen mégen noch
einige Zusammenhénge beleuchten.

Im Gegensatz zu den bisher betrachteten Konstruktionen ist die
Winkelteilung noch von einem Parameter abhangig, namlich von der

12) Briefliche Mitteilung vom November 1934.

13) Etude rationnelle du probléme de la trisection de I'angle. L’Enseigne-
ment Mathématique 33 (1934), S. 49.
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GroBe des gegebenen Winkels ¢. Bei der Beurteilung der Einfachheit einer
solchen Konstruktion hat man zwischen der von dem Winkel ¢ unab-
héingigen Vorbereitung und der von ¢ abhéngigen Ausfithrung der Kon-
struktion zu unterscheiden. Wenn es sich nicht nur um die Teilung eines
einzigen, sondern beliebig vieler Winkel handelt, so ist besonders auf die
Einfachheit der Ausfithrung zu achten, da die Vorbereitung nur einmal
durchgefiihrt zu werden braucht.

\ v/ Fig. 4
('I

Um den dritten Teil eines gegebenen Winkels ¢ = <t BOA zu finden,

kann man, da r-¢= 3r--§— ist, einen Schenkel des Winkels verdrei-

fachen und die Lange des zugehorigen Bogens, oder als erste Naherung
fiir kleine Winkel auch den Bogen selbst beibehalten. Ist also OB =
OA = r, so verlingere man den Schenkel OA iiber den Scheitel O hinaus
bis O’ und 0”, so daBl 0”0’ = 0’0 = OA wird, und nehme als Naherung
den Winkel BO” A. O” ist der ,,approximative Trisektionspunkt‘14),

Wird der Naherungswinkel jeweils mit y, der Fehler mit 6 bezeichnet,
so wird

sin @ sin ¢ 1((;7)3 .
t. fucas = 5 (S:"—"' ——— o, 8-1
BY = 5T cos g 3—25in? + (8.1)

3\3

p=190° §=-—38°26"6"; @=45° 6=—21'40"; @=224° 6=—2'36".

Eine zweite Naherung erhalt man durch ,,Strecken‘‘ des Bogens 4 B.
Die Gerade O’ B trifft den durch 4 gehenden Kreis mit Mittelpunkt O’

1) Vahlen, S. 82.
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in B’ so, daB der Bogen 4 B’ — r¢ wird. Der Winkel B'0” A ergibt die-
selbe Naherung fﬁrg , wie die letzte der von M. d’Ocagne!?) angegebenen

Konstruktionen!s). Es wird hier

2gin % 2gin¥
2 2 1
tgy = = ’ ‘3:51(

Q@ = 2(‘p
1+ 20085 3—4sin -]

®\3 . ’
—3—)+.-. . (8.2)

= 90° § = 21740" ; @ =45° 6 = 2'36" ; (p:22%°(3=19”.

Man kann geometrisch oder durch Rechnung einsehen, dafl der Fehler
hier bis auf das Vorzeichen gleich gro3 ist, wie beim halben Winkel in
(8.1), namlich

4 si inz %
sin o 8in® = - .

, mit & = -——§in (8.1) und % =g in (8.2).

tg d —
g 2 cos « -+ cos 2 i

Auf dem Halbkreis iiber 0”0 liege der Punkt C so, daB3 der Winkel
CO”0 genau gleich % , also der Winkel CO’0O gleichg—g-) wird. Verlangert
man O”C um CD = OA, so ist <t CO'D = %, also < DO'4 = % , und
D liegt folglich auf O’B’. Andert sich ¢, so beschreibt D eine Kreis-
konchoide (Pascalsche Schnecke), mit deren Hilfe also die folgende

exakte Dreiteilung moglich ist:

15) S. u. 8. 257, sowie M. d’Ocagne, Comptes Rendues 200 (1935), S.31. Ein Fehler
vom doppelten Betrag ergibt sich bei einer Konstruktion, die sich nach M. Simon, Uber
die Entwicklung der Elementar-Geometrie im XIX. Jahrhundert (Leipzig
1906), S. 84, bei K. Cominotto (1895) findet und anscheinend schon Huygens bekannt war:
,,Man verlangert den halbierenden Radius um sich selbst und verbindet den Endpunkt
mit dem diametralen Punkt des einen Schenkels, so schneidet diese Gerade vom andern
Schenkel aus nahezu %— ab. Der Fehler betragt jedoch bei ¢ = 60° nur — 12%’, nicht
wie dort angegeben iiber 2°. Die konstruierte Gerade bildet mit dem ersten Schenkel nahe

den Winkel% , mit demselben Fehler wie bei (8.2). Vgl. auch F. Vogel, Zeitschr. f. math.
u. nat. Unterricht 62 (1931), S. 145, wo auch fur andere Konstruktionen ausfiihrlichere
Fehlertabellen gegeben sind.

Wiahrend das Strecken des Bogens A B in den Bogen 4 B’ vom Radius 2 r exakt durch-
fihrbar ist, kann das weitere Strecken in einen Bogen vom Radius 3 » gendhert aus-
gefithrt werden. Dies fithrt zu der von A. Heiseler?) bearbeiteten Konstruktion von
K. Lindgquist.

Eine weniger einfache Konstruktion von Frau Wiister veroffentlicht A. Meese, Zeitschr.
f. math. u. nat. Unterricht 66 (1935), S. 169. Die im Jahrbuch iiber d. Fortschr. d. Math.
62 (1936), S. 697 besprochene Arbeit von J. T'andberg, Elementér mat. Fys. Kemi 19,
S. 145, ist mir nicht zugénglich.
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Man projiziere B von O’ aus auf die Konchoide nach D, dann ist
X DO"A = 1 <X BOA.

Es ist zu bemerken, dafl bei dieser Konstruktion fiir kleinere Winkel
gerade der Teil der Konchoide verwendet wird, welcher in der Nihe des
auBeren Scheitels gelegen und dort sehr nahe kreisformig ist. Wenn man
diesen Teil durch passende Kreisbogen ersetzt, so erhdlt man gute
Naherungskonstruktionen.

Man wird dabei Kreise wiahlen, welche die Kurve in 4 beriihren, deren
Mittelpunkt M also auf O”A zu liegen kommt. Wihlt man M in O’, so
erhilt man wieder die obige zweite Naherung. Man kann aber M auch so
wahlen, dafl der Fehler der Naherung fiir p = 90° verschwindet. Der Kreis
geht dann durch den Schnitt der in O” unter dem Winkel 30° und in O’
unter dem Winkel 45° angetragenen Geraden. Dies ergibt die von
O. Perron'®) und von M. d’Ocagne!3) besprochene ,,Konstruktion von
Kopf*, deren hohe Genauigkeit somit verstandlich ist.

Wiinscht man in dhnlicher Weise fiir kleine Winkel die bestmogliche
Néherung zu erhalten, so wird man die ,,interpolierende‘* Approximation
durch eine ,,oskulierende‘ ersetzen, also den Punkt M in den Kriim-
mungsmittelpunkt des Punktes 4 der Konchoide legen.

Dieser Kriimmungsmittelpunkt M kann so gefunden werden: Bei der
Anderung von ¢ befindet sich das jeweilige Drehzentrum fiir den rechten
Winkel O”CO im Spiegelbild C’ von C beziiglich O’; C'D ist also Normale
der Kurve in D. Der Schnitt von C’D mit 0”0 sei mit N, der FuBpunkt
des von N auf O”C gefallten Lotes mit L, O”L mit z, LN mit y und
0’"C’ = CO mit z bezeichnet. Der gesuchte Krimmungsmittelpunkt M
ergibt sich als Grenzlage von N und daher auch als Grenzlage von L,
wenn @ gegen Null strebt. Nun ist

/) 1/
x Y T _ Y e o"C - 0"D

0”0::-—{und0”D_ g sz”C’—{-O”D’

und dies strebt gegen £ 7. M teilt also die Strecke 0’0 im Verhiltnis 1: 4,
und es ergibt sich folgende Konstruktion:

Auf einer Geraden seien in Abstéanden von je 5 Einheiten die Punkte
0”,0’,0 und A markiert, wihrend O’'M gleich einer, also MO gleich
4 Einheiten gemacht sei. Man zeichne um O als Mittelpunkt den Kreis
ABO’, und um M als Mittelpunkt den Kreis 4 B”. Liegt dann B” auf der
Geraden OB, so ist der Winkel B’0O”A = y sehr nahe ein Drittel des
Winkels BOA. Es wird

16) Sitzungsberichte der Bayerischen Akademie der Wissensch. (1933), S. 439.
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op

(15--~V81+80tg2'—if) tg < U ()5
tg p = | 222 - (m) b . (8.3)
o 5tg:? 108 \'3

Die folgende Tabelle zeigt den Fehler, der fiir kleine Winkel sehr gering
ist und auch bei ¢ = 60° noch unter dem der Kopfschen Konstruktion
bleibt. Dieser letztere Fehler ist (nach Perron!®)) zum Vergleich mit
angegeben.

Winkel ¢: 0° 12° 24° 36° 48° 60°
Fehler 6: 0” 0,0032” 0,10” 0,77" 3,287 10,077
bei Kopf: 0’ 0,18” 1,38” 423" 8,567" 13,08”
Winkel g:  72° 84° 90° 450 291°

Fehler ¢: 25,25" 55,07" 78,16" 237”7 0,074"

bei Kopf: 14,76” 8,47" 0”

Um auch fiir groflere Winkel eine theoretisch sehr genaue Konstruktion
zu erhalten, kann man beriicksichtigen, dall sich jedes ganze Vielfache
von 45° exakt und einfach dritteln 1aBt, da der Winkel von 15° als
Differenz von 60° — 45° leicht konstruierbar ist; man braucht dann die
obige Konstruktion nur noch auf die Differenz zwischen dem gegebenen
Winkel ¢ und dem néchstgelegenen ganzzahligen Vielfachen von 45°, also
nur auf einen Winkel von héchstens 223° anzuwenden. Tst also

p=n-45°+y, 0=y =<224{°, so wird

gesetzt. Damit hat man eine einfache Konstruktion fiir die Dreiteilung,
bei welcher der theoretische Fehler fiir beliebig grole Winkel stets unter-
halb von 0,075” verbleibt.

Weitere Verscharfungen ergeben sich unten bei der n-Teilung.

9. Winkel-n-Teilung.

Bei der n-Teilung??) eines gegebenen Winkels, bei der iibrigens n keine
ganze Zahl zu sein braucht, kann man in analoger Weise vorgehen, wie
bei der Dreiteilung.

17) Einen Naherungsausdruck fir cos %— gibt Laguerre, Comptes Rendues 90 (1880),
Oeuvres I, S. 1086.

265



Es kann » > 1 vorausgesetzt werden. Ist namlich » < 1 und der Winkel

. 1 1 . .
2 2 konstruieren, so setze man — = m - Y wobei m eine ganze Zahl
v v

und n > 1 sein soll, und konstruiere —Zi = me + £

n
Wegen r¢g =nr- % ergibt sich eine erste Naherung fiir den Winkel %

bei kleinen Winkeln, wenn man den Bogen r¢ beibehialt und den einen
Schenkel ver-n-facht. Ist also OB = OA = r und O4 = nr, wobei O auf
OA liegen soll, so gibt der Winkel BOA = v die Naherung fiir den n-ten
Teil des Winkels BOA. Es wird

tgy = =

n—1+4cosp n—2sin2Z 6

sin @ sin ¢ 6=-("~1)(n_2)(£)3+"‘
2

n
(9.1)

Eine bessere Nédherung erhélt man fiir » > 1,6 wieder durch passendes
,,Strecken‘‘ des Bogens AB. Beschreibt man mit dem Durchmesser
0’0A des Kreises vom Radius 7 um O’ als Mittelpunkt einen Kreis vom
Radius 27 und projiziert den Punkt B von O’ aus auf den zweiten Kreis
nach B’, so hat der Bogen 4 B’ wieder die Lange r¢. Von diesem Bogen
ausgehend erhélt man in gleicher Weise auf einem Kreis vom Radius 47
den ,,zweimal gestreckten“ Bogen AB”, und durch k-maliges Wieder-
holen auf einem Kreis vom Radius 2%r den ,,k-mal gestreckten‘‘ Bogen
AB® von derselben Linge re. Dabei wird k£ nach (9.2) am besten so
gewahlt, dall

1,6.261 < gy < 1,6.2% |

daB also 2* nahe bei # und der letzte Mittelpunkt nahe bei O gelegen ist.
Der Winkel B*0A = ¢ liefert dann die gesuchte Naherung fiir den
Winkel ¥ .

Das Resultat ist genau, wenn n = 2¥ ist; in diesem Fall liefert aber
auch schon (¥ — 1)-malige Wiederholung eine genaue Lésung; der letzte
Kreis ist dann tiberfliissig.

Allgemein wird

i P @ .
2k sin oF 2k sin 5% (n—2%) (n—2k+1) @, 3
tgy - == , 0=— (——-) +
n—2k (l—cos %) n—2"‘+lsin227(% 6. 22k n’ 9.
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Hieraus folgt, da3 der Betrag des Fehlers fiir kleine Winkel bei festem
n am kleinsten wird, wenn &k der oben angegebenen Bedingung gemil
gewahlt wird.

So erhialt man z. B. bei der Fiinfteilung mit zweimaliger Streckung

(n =25, k = 2) den Fehler § = —1-((P)3+ --+, wahrend sich fiir n =25,

32\5

1 8 y . .

k=1 6= ———g—(%) +- -+ ergibt. k =0 entspricht der Konstruktion
3
(9.1); fir n =5, k=0 wird 5::——2(—?) + ..
Es ergibt sich fiir

Q= 180° 90° 45° 22%°
n=2>5 k=0 6=—36°0'0" —357'50" —27'25" —3'21"
n=>5,k=1: 6= —2°18’36" — 1479”7 — 17417  — 13"
n=>5, k=2 0= 27’ 25" 3/ 21" 25" 3,1”

Der genaue Wert des Fehlers in (9.2) ergibt sich aus

msin (B —m) x — (n — m) sin m ®

tgé:frncos(n—~~77z)oc—}—(n—«m)cosmoc’ nm

Esfolgt, da3 der Fehler, wean n dieForm 2% + 1 besitzt (x=1, 2,3 ...),
tir k= » den entgegengesetzten Wert hat, wie fiir ¥ = 0 bei einem
2“-mal kleineren Winkel. Man kann dies auch geometrisch einsehen.

Dieselbe Naherung wie bei (9 .2) kann man auch in etwas anderer Weise
erhalten. Bestimmt man auf dem Durchmesser O'OA4 des Kreises vom

Radius 7 den Punkt O so, daf3 0A = % wird, und auf dem Bogen A B des
Kreises durch k-maliges Halbieren den Punkt B, so, dal < B, 04 = 4

TZE s
so gibt der Winkel B,ch =1y die gewiinschte Naherung fiir den Winkel —%

Die Formeln (9 .2) gelten auch fiir diese Konstruktion. Firn = 3, k = 1
erhalt man die oben bei (8.2) erwahnte Konstruktion von M. d’Ocagne.

Um eine Annéherung von hoherer Ordnung zu erhalten, denke man
sich zunéchst an 04 bzw. OA den genauen Winkel %angetragen und den
freien Schenkel desselben mit dem freien Schenkel des wie oben kon-

struierten Winkels —;—jk- zum Schnitt gebracht. Andert sich ¢, so beschreibt

[3 lod
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der Schnittpunkt D eine Kurve, welche in der Nihe ihres Scheitels 4
nahe kreisféormig verlduft und deshalb mit guter Naherung durch ihren
Krimmungskreis in 4 ersetzt werden kann.

Den zugehorigen Kriimmungsradius ¢ kann man so bestimmen: Es
werde 2% = m gesetzt, und 0: 0, 0: m, 0: » und &: 5 seien rechtwinklige

Koordinaten der Punkte 4,0, 0 und D, wobei also < DOA = % und

< DOA :—g—sein soll. Aus tg%:min und tg—g—::n_s_n ergibt
und daraus ;n_ == %ll ~ n7;nm (77—-827;:"7:&) —+ ] , also
y = g? 7;1_;? + Der Krimmungsradius ist somit
5 — lime—zt 3nm
2n 2(n—+4 m)

Wenn nun der Krimmungskreis in 4 die Schenkel des Winkels Q(Z;:

in A und B trifft, so ist » = < BOA der gesuchte Naherungswinkel.

Es wird mit 2% = m:

nn+m)— o —m))/ont+ 4t m) @n—mytgr L
tg y= =tg -,
n2 (2m —n) — (n -+ m) (n —m)? tgzc;f;— 2 ®m
(9.3)
_ (—m?) @n—m) @m—n) ( g\’
0= 135 m? (7{) T

Bei festem n wird der Fehler ¢ fiir kleine Winkel absolut am kleinsten,
wenn k so gewahlt wird, daf3

—3 ’]4"7‘/281 2k-1 < gy < 8 ':‘7‘/281 2k wird, oder gendhert
0,81.2k1 < n < 0,81.2F,

Um theoretisch moglichst geringe Fehler zu erhalten, muf3 man hier also
k im allgemeinen um 1 grofer wihlen als bei (9.2).

Es ergibt sich so die folgende sehr genaue Konstruktion fiir die -
Teilung eines beliebigen Winkels:
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Man bestimme die ganze Zahl k so, dafs 0,81 - 2k-1 < n < 0,81 - 2% ward,
und setze 2% = m. Awuf einer Geraden werde mit beliebiger Einheit OA = m,

04 =nund MA = % abgetragen. 1st dann < BOA mit MB=MA
der durch k-maliges Halbieren (oder k-maliges ,,Strecken‘) gefundene
Winkel g;— , 80 ist der Winkel BOA = y sehr nahe gleich % . Fir y und
den Fehler ¢ gelten die Formeln (9.3).

Speziell ergeben sich fiir die Dreiteilung die Werte n = 3, k = 2,
m = 4, also O4 = 4, 04 = 3, M4 = 2. Damit wird

ALY 5
<21+I/81+56tg2z)-2tgz T e
tgy = - ;b= — (=) s
45 —Ttg? % 3456 \ 3
(9.3.3)
=180 6 =—9'17"; @=90°0=--16,7"; @=45" §=— 0,52";
g = 224° 6= —0,016" .

Der Betrag des Fehlers ist etwa 43-mal kleiner als bei der Konstruktion
(8.3), die dem Wert £ = 1 entspricht. Durch die am Schlufl von 8 an-
gegebene Hilfskonstruktionr kann jetzt erreicht werden, dal er fiir
beliebige Winkel unterhalb von 0,02” verbleibt.

Bei der Finfteilung wiirde k = 3 die genauesten Werte liefern. Mit
k = 2 erhalt man einen etwa 3mal grofleren Fehler, aber einfachere Zahl-
werte fiir die Konstruktion, was wohl meist vorzuziehen ist. Es wird mit
n=2>5 k=2 m=4:04 =4, 04 =5 MA = 3% und

2P\ o4 @ .
(\15~——l/25+24tg ?)-2tg% 3 9\
tgw: @ 3 a: -} T
25 — 3tg? L 640 \ 5
4 (9.3.5)

p=180° 6=1"39"; ¢ =090° 6=299"; ¢ =145 0= 0,093";
@ =224 & = 0,0029".

Bei ¢ = 180° liefert die Konstruktion fiir tg(g den rationalen Nihe-

rungswert tg y = .

Da die Seite des reguliaren Zehnecks leicht konstruierbar ist, so 14t
sich auch der Winkel von 45° — 36° = 9° finden, also der Winkel von
45° genau fiinfteilen. Wendet man dann die Naherungskonstruktion
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wieder nur auf die Differenz zwischen dem gegebenen Winkel ¢ und dem
néchstgelegenen ganzzahligen Vielfachen von 45° an, so hat man eine
'

Konstruktion, bei welcher der theoretische Fehler von 5

groBBe Winkel stets unterhalb von 0,003” verbleibt.

fiir beliebig

Bei der Siebenteilung ist wieder der Wert &k = 3 dem nur wenig ge-
naueren k = 4 vorzuziehen. Es wird mit » = 7, k = 3, m = 8:04 = 8,

04 =17, MA = 5% und

b= — — [ —

t —
gy Y
147 — 5 tg2 % 2048

K

<35+V49+40tg25§-)-4tg% 3 ((p)5+ )

i (9.3-7)
g=180° 6=—5,58"; @=90° 6=-—0,17"; @=45° 0=-—0,0054";
Q= 22%o 0 =—0,00017".

Es mag noch interessieren, in welcher Weise die Gréfle des relativen
Fehlers bei festem k von der Zahl » abhingig ist. Setzt man % = » und

nimmt nur das Glied niederster Ordnung in ¢, wobei ((—Z) "durch pd ersetzt

(»r—1) (2v-—-1) (2—v)

werden kann, so ist der Ausdruck ¢ = 135 p5 als
Funktion von » zu untersuchen. Er besitzt die vier Nullstellen » =—1,
%, 1 und 2, und drei Extreme, namlich bei

y, = — 0,611727 ..., w»,=0,743071... und », = 1,643656...,

mit den Werten
8, = 0,0277887 ... p5, 8,=-—0,0020271 ... p° und &,=0,0102735 ... y°.

Die oben gegebene Bedingung fiir k£ liefert das Intervall
0,405 ... <» £0,81 --- . Durch passende Wahl von &k kann also fiir
jedes n > 1 erreicht werden, daBB » in dieses Intervall fallt und so der
Fehler moglichst gering wird.

Man erkennt, dafi in bezug auf die Grofle des relativen Fehlers die
Verhéltnisse bei n = 3, also fiir die Dreiteilung, nahezu am ungiinstigsten
liegen. Mit » = 3, k = 2 erhalt man » = 0,75 und é = — 0,0020255... 5,
was sich von dem Extremwert 8, kaum unterscheidet. Auch bei n = 3,
k=1 kommt man mit v = 1,5 und é = 0,00926 ... »* dem Extrem-
wert §, ziemlich nahe.

Durch eine einfache Hilfskonstruktion kann die theoretische Genauig-
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keit noch rasch gesteigert werden. Da der Fehler in (9.3) von der GroBen-
ordnung ¢5 ist, so braucht man die Konstruktion nur auf den halben
Winkel anzuwenden und dann das Resultat wieder zu verdoppeln, um den
Fehler auf etwa den 16. Teil zu reduzieren. Wird analog zuerst ¢-mal
halbiert und zum Schlufl wieder g-mal verdoppelt, so sinkt der Fehler
rund auf den 16%ten Teil. Man erhilt so die Werte:

(n (n+2%) — (n-2k)V9n2 + 4 (n+ 2K) (2n—2) tg? g;_’g)zk—l g =l

g o = - %+
249 n2 (2"“—%) _ (n+2k) (n— 2k)2 tg? ,qu(
2 (9.4)
_ (n?-22k) (2p—2k) (2k+1_p) (@5
°= 135 . 24(k+9) n +, g=1,2,3, -

Dabei kann q als ganze Zahl beliebig gro genommen werden.

Es ist einleuchtend, daf die angegebenen hohen Genauigkeiten (auBler
etwa bei sehr groflen Winkeln) beim praktischen Zeichnen nicht voll aus-
geniitzt werden konnen. Insbesondere ist hier die zuletzt genannte Hilfs-
konstruktion nicht zu empfehlen, da bei dem schliellichen Vervielfachen
des Winkels auch die unvermeidlichen Zeichenfehler vervielfacht werden.
Bei numerischer Berechnung mit hinreichend vielen Stellen lassen sich
aber die Fehler nachpriifen, und rein theoretisch erhilt man in (9 .4) bei
passendem k£ und wachsendem ¢ eine Approximation der ,,nicht kon-
struierbaren‘ Winkel durch , konstruierbare‘‘, bei welcher der Betrag des

1 . . 1 ®\°
Fehlers wegen 4, <390 mindestens in der Ordnung m(%—) gegen
Null geht.

Anhang. Ellipse. \
E, ! i ,S” — %
T Ty
2 P
Ta T,
E, S2\ y 13 1N

Fig. 5

Beim Zeichnen einer Ellipse, deren Achsen 4,4, = 2a und A, 4, =
2b mit a > b gegeben sind, verwendet man gerne die Kriimmungskreise
in den Scheiteln. Die zugehorigen Krimmungsmittelpunkte ergeben sich
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bekanntlich, wenn man von den Ecken des umbeschriebenen, achsen-
parallelen Rechtecks B K, E,E, Lote auf die gegeniiberliegenden Diago-
nalen fillt und sie mit den Achsen zum Schnitt bringt.

Die zwischen den Kriimmungskreisen verlaufenden Ellipsenbogen er-
hialt man schirfer, wenn noch je eine passende Tangente samt Beriih-
rungspunkt bekannt ist. Es werden hierfiir die Tangenten empfohlen,
deren Beriihrungspunkte auf den Diagonalen des umbeschriebenen
Rechtecks gelegen sind. Diese Tangenten sind leicht zu konstruieren; sie
liegen jedoch etwas zu nahe den grofieren Kriitmmungskreisen und niitzen
deshalb nicht sehr viel. Eine giinstigere Lage haben die Tangenten, deren
Beriihrungspunkte auf den Diagonalen der kleineren Rechtecke B4, 4K,
und A,E,E,A,; liegen. Man findet sie leicht, indem man die Schnitt-
punkte dieser Diagonalen unter sich parallel der kleinen und ihre Schnitt-
punkte mit den zuerst genannten Diagonalen parallel der groBen Achse
auf die duBeren Rechteckseiten projiziert und die erhaltenen Punkte

8,7, verbindet. Als Probe ergeben sich die Achsenabschnitte a—}—% und

b+ %I-) , wihrend z. B. 4,8, =8,E, = g und 4,7 ,= 3T E, = —gwird.

Von den Kriimmungskreisen abgesehen ist die Konstruktion affiner
Natur, d. h. sie kann auch angewendet werden, wenn statt der Achsen
nur ein Paar konjugierter Durchmesser gegeben sind und die Rechtecke
entsprechend durch Parallelogramme ersetzt werden. In Parallelkoordi-
naten kann die Gleichung der Ellipse in der Form 22+ y* = 1, die der
Tangenten in der Form +4x4-3y = 5 geschrieben werden, womit sich
die gemachten Angaben leicht bestitigen.

(Eingegangen den 2. Marz 1938.)
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