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Riemann’sche Flachen
vom hyperbolischen Typus

Von A. SPEISER, Ziirich

§ 1. Der reine und gemischte hyperbolische Typus.

Im folgenden mochte ich Riemannsche Flichen behandeln, die ein-
fach zusammenhéangend sind, bei oo in allen Blattern logarithmisch ver-
zweigt sind und sonst nur iiber den Stellen + 1 und —1 logarithmische
Verzweigungsstellen aufweisen. Falls die Stellen -1 in allen Bldttern
verzweigt sind, so erhdlt man die sogenannte modulare Fliche, welche
sich auf die obere Halbebene abbilden laBt, also zum hyperbolischen
Typus gehort. Sie besitzt Abbildungen auf sich selbst, indem man irgend
ein Blatt auf ein beliebiges anderes kongruent abbildet und diese Zuord-
nung gemifl dem Prinzip der gleichen Umgebung — jedes Blatt liegt
gegen die Flache gleich — auf die ganze Riemannsche Fliche iibertragt.
Diese Automorphismen iibertragen sich auf die obere Halbebene und
geben in bekannter Weise die linearen gebrochenen ganzzahligen Sub-
stitutionen, welche (mod. 2) der Identitdt kongruent sind und die Deter-
minante 1 haben.

Nun sei eine Fliche F vorgelegt, welche nicht an allen Stellen 41
verzweigt ist. Man bringe in jedem Blatt, das bei + 1 unverzweigt ist,
den Schnitt von + 1 nach + oo ldngs der reellen Axe an, entsprechend
in den bei —1 unverzweigten Blidttern den Schnitt von —1 bis — oo.
Von dieser aufgeschnittenen Fliche denke man sich unendlich viele
Exemplare und hefte an jedes freie Ufer ein neues Exemplar mit dem
entsprechend gegeniiberliegenden Ufer an. So erhidlt man von neuem die
modulare Fliche. Die einzelnen aufgeschnittenen Exemplare von F
liegen innerhalb der modularen Fliche gleich und man kann sie daher
wieder kongruent auf einander abbilden. Auf diese Weise entsteht eine
Untergruppe & der modularen Gruppe, welche fiir #' charakteristisch
ist, und als die zu F gehorige Untergruppe bezeichnet werden soll. Aus
ihrer Kenntnis 148t sich entscheiden, ob /' zum parabolischen oder zum
hyperbolischen Typus gehért, denn es gilt der Satz, dal die Summe

1
E 2 2 2 2
e a® - b2+4+c?+d

im parabolischen Fall divergiert, im hyperbolischen dagegen konvergiert.
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Hierbei ist die allgemeine Substitutionsmatrix der Gruppe & mit (Z' 2)

bezeichnet.

Gehort F' zum hyperbolischen Typus, so 143t sich eine neue Fallunter-
scheidung machen. Man denke sich namlich F in zwei Hilften zerschnitten,
indem man zwei verschiedene Verzweigungspunkte desselben Blattes
geradlinig verbindet, z. B. den Schnitt von —1 nach -+ 1 anbringt, falls
4 1 verzweigt sind. Die beiden Hilften seien mit 4 und B bezeichnet.
Sie kénnen an der Schnittlinie gespiegelt werden; auf diese Weise moge
A und B entstehen. Nun kann man 4 und 4 lings dieser Linie zusammen-
setzen und man erhélt wieder eine einfach zusammenhédngende Fliche,
welche mit A - 4 bezeichnet werde. Entsprechend bildet man B - B.
Dann gilt der Satz, daf3 die urspriingliche Fliche A + B sicher hyper-
bolisch ist, falls A + 4 oder B + B hyperbolisch ist. Dagegen bleibt
der Fall noch unentschieden, welchem Typus A -+ B angehort, falls
A + A4 und B + B beide parabolisch sind. Gerade dieser Fall ist offen-
bar besonders interessant. Es 1a6t sich zeigen, daBl bei der Abbildung
von A + B auf den Einheitskreis die Trennungslinie von 4 und B auf
eine Kurve abgebildet wird, welche jeden Punkt der Kreisperipherie
anndhert.

Nur der letztere gemischte Fall soll im folgenden behandelt werden.
Ob es solche Flachen gibt, ist noch nicht entschieden. Wir werden ein
Kriterium angeben, das dem obigen iiber den Unterschied der Typen
dhnlich ist, indem es von der Gruppe allein handelt, und das sicherstellt,
daB unter einer gewissen Bedingung sicher der rein hyperbolische Fall
vorliegt.

§ 2. Kettenbriiche mit geraden Teilnennern beliebigen Vorzeichens.

Die Substitutionsgruppe der modularen Fliache 148t sich bekanntlich
durch die beiden Substitutionen mit der Matrix

1 2 I 0
S == (0 1) und T - (2 1)

erzeugen in dem Sinne, daf} jede Substitution sich auf eine und nur eine
Weise in der Gestalt 8% 7?1 8% 7% 8% T darstellen lift, ein Satz,
der ebenso leicht geometrisch an der Modulfigur wie rechnerisch bewiesen
wird, letzteres, indem man zeigt, dal mit zunehmender Linge des Aus-
druckes die Betrige der Koeffizienten zunehmen.

1
Ist ferner ein echter Kettenbruch von der Gestalt ﬂ—m mit den
g e @ -
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Teilnennern a,, a,, . . ., a, gegeben, so erhilt man die Naherungsbriiche,
indem man die Matrizen

0 1
M@=} o]
bildet und ihr Produkt nimmt M (a,) M (a,) . . . M (a,).
Setzt man dieses Produkt = (P"‘l P") ,
Qn*l Qn P
so ist Q”“l der letzte Naherungsbruch, wéhrend -Q-’l den Wert des Ket-
n—1 n

tenbruches selbst darstellt. Diese Sitze stehen im wesentlichen schon
bei Euler. Vgl. die Vorrede zum Band 16, sectio altera, der ersten Serie
der opera omnia, pg. XCVII.

Diese Matrizen M (a) lassen sich mit S und 7' in Verbindung setzen.

Es ist, wenn R die Matrix ((1) él)) bedeutet:

S*=R-M(@2n) und T" = M(2n)- R .
Jetzt hat man vier Falle zu unterscheiden:
I T 8e: ., Ton1 8o — M(b,) M(a,)...M(b,_,) M(a,) -

Diese Matrizen, bei denen @, = 0 und b, = 0, ergeben also stets Nahe-
rungswerte von Kettenbriichen.

IT. SexT% ... Tens8m— RM(a) M(b,)... M(b, ) M(a,) .

Dies sind Matrizen, welche erst nach Vertauschung der beiden Zeilen
zu Kettenbriichen gehoéren.

TIT. T80 ... SonTon—= M(b,) Mia) ... M(a,) M®,).R.

Hier sind die beiden Spalten zu vertauschen.

IV. SaTv: ... SenTon— R.M(a) M(by)...M(a,) M®b,).R .

Hierin hat man sowoh! die Zeilen als die Spalten zu vertauschen, um
zum Kettenbruch zu kommen.

Der Grund, warum diese Vertauschungen notwendig sind, ist leicht
einzusehen. Weil der Wert der echten Kettenbriiche stets zwischen —1
und -+ 1 liegt, so miissen die Zahlen der ersten Zeile kleiner als die ent-
sprechenden der zweiten Zeile sein. Weil ferner die linke Spalte den
letzten Néherungsbruch, die zweite aber den Wert des Kettenbruches
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selber darstellt, der groflerer Zahlen bedarf, so ist offenbar die Zahl links
oben, P,_,, die kleinste der vier Zahlen. Steht die kleinste Zahl nicht an
jener Stelle, so kann man sie durch Verwendung von R rechts oder
links oder beidseitig dorthin bringen.

Hieraus ergibt sich nun leicht der

Satz 1: Ist ein echter positiver oder negativer Bruch gegeben, der in
gekiirzter Gestalt entweder einen geraden Zihler oder einen geraden
Nenner besitzt, so 14t er sich in einen endlichen echten Kettenbruch
mit geraden positiven oder negativen Teilnennern entwickeln.

Beweis: Es seien a und b zwei ganze positive oder negative Zahlen,
die zu einander prim sind, dann gibt es in der arithmetischen Progression
axr +b, wo x=0,+1, 4+ 2, ... ist, stets zwei aufeinanderfolgende
Zahlen, fiir welche |ax + b | <|a| ist. Wir verstehen im folgenden
unter einer Losung dieser Ungleichung stets die eindeutig bestimmte
Losung mit geradem x.

2. Essei |b| < |a|. Dann ist stets | 2za 4+ b | > | a | fiir jedes von 0
verschiedene ganzzahlige .

Nun sei P/@) ein echter positiver oder negativer Bruch und es sei
etwa P gerade, ¢ ungerade. Die Gleichung Px — Qy = -+ 1 besitzt zwei
Losungen, fiir welche |x | < | @ | ist. Sie unterscheiden sich um 4 @
und daher ist in einer derselben = gerade. Wir setzen = @, und y = P;.

. . P, P
Die Matri ( 1 ) M
' * Q @
hat die Determinante — 1. Nun bestimmen wir « nach 1. so, daf

|P—2x P,| <| P,| ist. Wir multiplizieren in der obigen Matrix die erste
Spalte mit 22 und subtrahieren sie von der zweiten Spalte, hierauf ver-
tauschen wir die beiden Spalten. Dies kommt darauf hinaus, da3 wir die
Matrix M rechts mit M—1(2x) zusammensetzen. Mit der so entstehenden
Matrix fahren wir fort und gelangen schlieBlich zur Identitdt. Es ergibt
sich, dafl M zu einem Kettenbruch von der angegebenen Art gehort.

Bilden wir umgekehrt ein Produkt M (2a,) M (2a,) ... M (2a,), so er-
halten wir Matrizen mit zunehmenden Koeffizienten wegen 2., daher
kann ein solches Produkt nie die Einheitsmatrix werden.

§ 3. Kriterium fiir den reinen hyperbolischen Fall.

Wir kehren zu der Riemannschen Fliache zuriick, welche wir mit
A + B bezeichnet haben, und setzen voraus, daBl sie zum hyperbolischen
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Typus gehért und daher auf den Einheitskreis abgebildet werden kann,
wahrend die symmetrischen Flichen 4 + 4 und B -+ B parabolisch
sind. Die Trennungslinie 7' von 4 und B wird dann auf eine Kurve abge-
bildet, welche die Peripherie des Einheitskreises iberall anndhert. 7' moge
in einem Blatt von —1 nach + 1 verlaufen. Indem wir nach §1 4 + B
einschneiden und aus unendlich vielen Exemplaren dieser Fliche die
modulare zusammensetzen, moége bei der Abbildung dieser modularen
Flache auf die obere Halbebene 7T in die imagindre Halbachse von 0
nach ico iibergehen. Die Gruppe unserer Fliche enthilt dann die Sub-
stitutionen § und 7' nicht, denn die beiden Windungspunkte bei —1
und -+ 1 liegen in der urspriinglichen Fliache. Daher sind auch die para-
bolischen Umgebungen der Punkte 0 und 7 co Bilder eines Stiickes von
A + BY).

Mit Hilfe der eingeschnittenen Fliche 4 + B kénnen wir nun aber die
modulare Fliche auch auf die unendlich oft iiberdeckte Fliche des Ein-
heitskreises abbilden. Wir bilden ndmlich zunichst A 4+ B auf den Ein-
heitskreis ab und bringen dann im Einheitskreis die Schnitte an, welche
wir in A 4+ B angebracht hatten. Genau wie wir mit unendlich vielen
Exemplaren von eingeschnittenen 4 + B die modulare Fliache zusammen-
setzten, so koénnen wir mit unendlich vielen Exemplaren des einge-
schnittenen Kinheitskreises, die wir in entsprechender Weise aneinander
heften, ein Bild der modularen Fliche herstellen, welches ganz iiber dem
Einheitskreis liegt.

Auf diesem Wege erhalten wir eine Abbildung der oberen Halbebene
auf die unendlich oft iiberdeckte Fliache des Einheitskreises, d. h. wir
erhalten eine Funktion, welche in der oberen Halbebene definiert ist
und dort beschrinkt ist. Fiir solche Funktionen gilt nun der Satz von
Fatou, wonach die Wege, welche von der oberen Halbebene aus nach
einem Punkt der reellen Axe fithren, mit Ausnahme einer Nullmenge,
iibergehen in Wege, welche einem bestimmten Wert im Einheitskreis
zustreben.

Abgesehen von einer Nullmenge kénnen die Endpunkte jener Wege
nur auf der Peripherie des Einheitskreises liegen. Nun bedenken wir aber,

1) Der Begriff der parabolischen Umgebung stammt von Klein und findet sich aus-
fithrlich dargestellt in Klein-Fricke, Vorlesungen iiber die Theorie der elliptischen Modul-
funktionen, Bd. I, S. 234ff. Dort findet sich auch der Hinweis auf die Kreisfiguren. Der
von Zillig behandelte Fall, wo sich die Kreise berithren und nur Kreisbogendreiecke mit
verschwindenden Winkeln frei lassen, ist Klein und seinen Nachfolgern, z. B. Humbert,
entgangen, offenbar weil die Figur auf S. 236 prinzipiell falsch ist. Die Kreisbogen, welche
den dortigen Fundamentalbereich begrenzen, miiliten nach oben und nicht nach innen
konvex sein.
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daf3 die Trennungslinie 7' auf eine Kurve abgebildet wird, welche die
ganze Peripherie des Einheitskreises verbarrikadiert, mit Ausnahme von
h6chstens zwei Punkten. Weil ndmlich 7' an seinen beiden Enden in
singuldre Punkte miindet, so kénnte jedes der beiden Enden fiir sich ein
Bild liefern, das nur je eine Hélfte der Peripherie annédhert; die beiden
Trennungspunkte koénnten dann vom Innern des Einheitskreises aus
zugénglich sein auf Wegen, welche das Bild von 7' gar nicht oder nur
endlich oft schneiden. Diese beiden Werte konnen aber nach einem Satz
von Riesz (vgl. Bieberbach, Funktionentheorie II, S.155) nur fiir eine
Nullmenge von Punkten der reellen Axe angenommen werden.

So ergibt sich der Satz,

Satz 2: Geht man in der oberen Halbebene auf einer senkrechten
Geraden nach Punkten der reellen Axe, so erhdlt man Bildkurven im
Einheitskreis, die mit Ausnahme einer Nullmenge nach einem bestimmten
Punkt der Peripherie gehen und die Bilder von 7' unendlich oft treffen.

Es versteht sich von selbst, dal die eben erwahnten Bildkurven im
Einheitskreis nicht in demselben Blatt verlaufen, sondern daf3 sie im
allgemeinen durch unendlich viele Exemplare der Kreisscheiben gehen.

Wir betrachten in der oberen Halbebene der Modulfunktion die ima-
ginidre Halbachse von 0 bis 7 co. Unter der linearen Substitution

az + b
cz +d

geht sie iiber in den Halbkreis, der senkrecht zur reellen Axe steht und
durch die beiden Punkte b/d und a/c geht, ersterer entspricht 0, letzterer
t oo. Er iiberdeckt nach oben zu von der reellen Axe ein Stiick der Linge
1/|cd | . Gehen wir nun senkrecht von oben auf einer geradlinigen Strecke
in den reellen Punkt «, der nicht zu der frither erwiahnten Nullmenge
gehort, so mull nach Satz 2 diese Strecke unendlich viele dieser Halb-
kreise, soweit sie aus der Gruppe unserer Riemannschen Flidche ent-
stehen, kreuzen. Falls nun die Summe 2'1/|cd| erstreckt iiber alle Sub-
stitutionen der Gruppe, konvergiert, so gibt es nur eine Nullmenge von
Punkten der reellen Axe, fiir welche unendlich viele Kreisbogen getroffen
werden. Unsere Fliche kann daher nicht zum gemischten Typus gehéren.
Man braucht hierbei nicht die ganze reelle Axe zu beriicksichtigen, son-
dern kann sich beschrianken, z. B. auf das Stiick zwischen 0 und 1. Man
wird daher die Summe nur iiber diejenigen Matrizen zu erstrecken brau-
chen, fiir die 0 < a/c < 1 ist und erhilt den
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Satz 3: Die Riemannsche Fliche gehdért zum rein hyperbolischen
Typus, wenn 2'1/|cd| erstreckt iiber diejenigen Matrizen, fiir welche
a/c in einem beliebigen endlichen Intervall liegt, konvergiert.

In der Folge wollen wir dieses Kriterium, das hinreichend aber nicht
notwendig fiir den reinen Fall ist, ndher beleuchten. Als Intervall nehmen
wir stets das Intervall von 0 bis 1. Die zugehorigen Matrizen gehéren
alle zu Kettenbriichen mit geraden Teilnennern, falls man durch even-
tuelle Vertauschung der Spalten erreicht, daB |a | < | b | ist.

Zunichst erinnern wir uns an das Kriterium, daB 2'1/(a%+4b2+c¢2--d?)
konvergiert, wenn die Fliche zum hyperbolischen Typus gehort. Daraus
folgt, daB auch die Summe 2'1/(c® + d?) konvergiert, wenn sie bloB
iber diejenigen Matrizen erstreckt wird, welche die imaginire Halbaxe
in einen Halbkreis iiber einer Strecke zwischen 0 und 1 tiberfiihrt. Denn
alsdann ist |e | <|c| und |b|<|d]|, so dal man im obigen Nenner
a? + b? weglassen kann; der Wert des Bruches wird dadurch noch nicht
verdoppelt.

Aus der Konvergenz von 2'1/(c? 4 d?) folgt keineswegs die Konver-
genz von 2'1/|cd|, denn es kann der Quotient ¢/d beliebig groll werden.
Dagegen konvergiert die Summe 2'1/|cd| stets, wenn man sich auf
diejenigen Matrizen beschrankt, fiir welche 1/M < ¢/d < M ist, wo M
eine endliche positive Zahl ist. Die allfillige Divergenz der Reihe 1/|cd|
kann also nur von denjenigen Matrizen herriihren, in denen c/d weit
verschieden von 1 ist.

Ist in der Matrix der Wert von ¢ vorgegeben, so kommen fiir @ nur
noch ¢(c) Zahlen in Betracht, da a/c zwischen 0 und 1 liegen soll und
a prim zu ¢ ist. Durch @ und ¢ ist aber die Matrix eindeutig bestimmt.
Denn zwei verschiedene Losungen der Gleichung axz — cy = 1 wiirden
zwei Matrizen liefern, welche sich um den Faktor S unterscheiden. Wenn
daher die beiden Matrizen in der Gruppe vorkiamen, so miilte auch S
darin auftreten, was wir ausgeschlossen haben. Also gibt es in unserer
Summe hochstens ¢(c) Terme mit gegebenem c. Dasselbe gilt fiir d.
Nun ist ¢(c¢) von der Gréenordnung c selber, also 148t sich daraus nichts
auf die Konvergenz von 1/|cd| schlieen, als dal jedenfalls die Reihe
nicht stark divergiert. Um die Abweichung der beiden Kriterien zu unter-
suchen, kénnen wir uns im folgenden darauf beschrianken, dafl ¢/d > M
ist oder, parallel damit, dal d/c > M ist. Wir nehmen den letzteren Fall
an und summieren bloB iiber derartige Matrizen. Es mu8 also 21/ (c*+d?)
konvergieren, wihrend 2'1/|cd| divergiert. Wir ordnen nach den ¢ und
setzen bei festem ¢ die zugehérigen Werte von d gleich cd, (k = 1,2, ..., u),
wobei v < ¢(c) ist und alle §, groBer als M sind. Wir setzen
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(2

I
2 5 = 4(c)

k=1

1
— — Bo)
L 0

a
I b=

dann muf} also 2'A(c)/c* konvergieren, wihrend 2 B(c)/c? divergiert.
Man ersieht hieraus, dafl d, nicht zu stark zunehmen darf, damit die
letztere Summe divergiert, andrerseits darf , auch nicht zu wenig zu-
nehmen, damit die erstere Summe konvergiert. Setzt man ¢, = log £,
so ergibt sich ungefihr A4 (¢) = ¢/(logc)?, dagegen B(c) = ¢/(logc), hieraus
werden unsere beiden Reihen zu 2'1/c(loge)? und X'1/cloge, von denen
die erste konvergiert, die zweite aber divergiert. Dieses Beispiel illustriert
gut die Nahe der beiden Kriterien.

§ 4. Kriterium fiir konvergierende Wege.

Das in § 1 erwdhnte Kriterium zur Unterscheidung des parabolischen
und hyperbolischen Falles erscheint zunichst in der Form der linearen
Substitutionen. Durch die Uberlegungen des §2 lift sich aber der
Zusammenhang mit der urspriinglichen Riemannschen Fliche herstellen.
Wir denken uns nédmlich die allgemeine Substitution durch den zugeho-
rigen Kettenbruch dargestellt mit den Teilnennern 2a,, 2a,, ..., 2a,.
Dann entspricht jene Substitution einem Weg auf der Riemannschen
Flache, welcher zuerst a,-mal den Punkt -1, dann a,-mal den Punkt
—1 usf. umlduft. Da die Gruppe durch parabolische Substitutionen
erzeugt wird, so lauten die zugehorigen Kettenbriiche besonders einfach :
ihre Teilnenner sind von ungerader Anzahl 2m -+ 1, die letzten m durch-
laufen die ersten m in umgekehrter Reihenfolge und mit umgekehrtem
Vorzeichen. Der mittlere Koeffizient kann als 2 angenommen werden in
unserem Fall. Durch solche Kettenbriiche lassen sich alle zusammen-
setzen. Diejenigen Substitutionen, fiir welche c¢/d oder d/c gro3 sind,
liefern Kettenbriiche, deren letzter Teilnenner grof} ist, denn diese Briiche
liefern ja den letzten Teilnenner.

Im gemischten Fall miissen die Matrizen Kettenbriiche liefern, deren
anfiangliche Teilnenner eine beliebige endliche Folge von geraden ganzen
Zahlen bilden. Denn wiirde auch nur eine solche Folge fehlen, so wire
gleich ein endliches Intervall unbedeckt und es lige nach Satz 2 der
reine Fall vor. Die Sachlage bei den Kettenbriichen ist durchaus analog
wie bei den Dezimalbriichen: Wenn eine Folge von n Zahlen rechts vom
Komma ausgelassen wird, so wird gleichzeitig ein ganzes Intervall von
der Grofle 1/10" ausfallen. Man iibersieht leicht, dal jener Fall, wo eine
Anfangsfolge ausfillt, mit einem ,,modularen Ende‘ der Riemannschen
Flache verkniipft ist, der also stets zum reinen Typus gehort.
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Schlieflich kann man direkt durch Betrachtung der Produkte, die ich
in den Commentarii 4, S. 180, aufgestellt habe, die Bedingung dafiir
aufstellen, daf3 das Bild der imagindren Axe auf dem Kinheitskreis beid-
seitig in festen Punkten endet. Die einzelnen Faktoren des unendlichen
Produktes haben folgende Gestalt:

ait+b.ci+d
cit -d ai+ b

Wir wollen die Amplitude dieser Faktoren berechnen und haben als-
dann iiber sie zu summieren. Fiir die Amplituden kann man ihre Tangens-
funktionen einsetzen, weil sie klein sind. Man findet nach kurzer Rechnung

—act? + (ac + bd)t —bd
(act® + bd) (ac + bd) +¢

Fiir t = 0 und fiir { = oo findet man den Wert —1/(ac + bd). Man wird
zundchst verlangen, daf3 die Summe iiber diese Briiche konvergiert.
Hierauf subtrahiere man diesen Bruch von dem obigen Wert der Ampli-
tude fiir beliebiges ¢. Man findet als Differenz

((ac +bd)* + 1)t
(@ac + bd) (act® £ bd) (ac + bd) -t

Man beachte, daBB ac und bd dasselbe Vorzeichen haben, daf3 ferner
(@c 4 bd)? + (ad — bc)? = (ac + bd)2 + 1 = (a® + %) (¢ + d?) und
also groBe Werte hat. Die Differenz hat daher ungefihr den Wert
t/(@ct® + bd) und sie geht nach Null, wenn ¢ nach 0 oder nach oo liuft,
sobald X'1/|ac| und 2'1/|bd| konvergieren. Damit gewinnen wir den

Satz 4: Das Bild der Trennungslinie von A und B im Kinheitskreis
endigt in bestimmten Peripheriepunkten, wenn die beiden Summen
2'1/|ac] und 2'1/|bd| erstreckt iiber die Matrizen der Gruppe (exkl. der
Identitit) konvergieren ; notwendig ist die Konvergenz von 2'1/(ac+bd).

In diesem Satz ist wesentlich vorausgesetzt, dal3 die beiden Substitu-
tionen S und 7' nicht in der Gruppe enthalten sind.

Das obige notwendige Kriterium kann auch in der Gestalt ausge-
sprochen werden, daB die Reihe 2'1/(}a? 4 b2 - Jc? + d?) konvergiert.
Es steht zu dem Kriterium des hyperbolischen Falles, dal ndmlich
21/ (a?+ b2+ c? 4+ d?) konvergiert in demselben Verhiltnis, wie die
beiden friiheren Kriterien iiber die Konvergenz von 2'1/|cd| und

Z1/](e* + a2 .
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§ 6. Bemerkungen iiber die quasikonformen Abbildungen.

Herr O. Teichmiiller hat kiirzlich gezeigt (Deutsche Mathematik, Bd. 2,
S. 321), daf3 bei quasikonformer Abbildung, wo infinitesimale Kreise auf
Ellipsen mit beschriankter Exzentrizitdt abgebildet werden, der Typus
erhalten bleibt. Hierdurch ist es moglich, die Verzweigungspunkte unserer
Riemannschen Fliche zu verschieben, ohne den Typus zu dndern. Aber
man kann nun auch Knoten in den topologischen Biumen einfiigen.
Denn die Fliche mit einem Verzweigungspunkt (n—1)-ter Ordnung a8t
sich durch die Substitution ' = r, ¢’ = @[n auf die einfache Ebene ab-
bilden mit dem Dilatationsverhéltnis n und man kann daher die Knoten
auf einen einzigen zwischen zwei Abzweigungen reduzieren mit einer
quasikonformen Abbildung. So ergibt sich insbesondere, dafl die modu-
lare Flache aufgelockert werden kann durch Hinzufiigung von Blittern
mit einem einzigen Einschnitt, nur muBl die Anzahl der Blétter, die man
zwischen zwei Blidtter mit je zwei Einschnitten schaltet, beschrankt sein.
Wie Herr Ullrich auf Grund der Nevanlinnaschen Defektlehre gezeigt hat
(diese Commentarii, Bd. 7, S. 63ff.) kann man durch starke Auflockerung
des Baumes, bei der die Anzahl der Bliatter, welche zwischen zwei Blatter
der modularen Flidche eingeschaltet werden, ins Unendliche zunimmt, den
parabolischen Fall erreichen.

Im folgenden mochte ich noch einen Satz beweisen, der die Lehre von
den quasikonformen Abbildungen mit der Unterscheidung des reinen und
gemischten hyperbolischen Typus in Verbindung zu bringen scheint.

Es sei w = f(z) eine Funktion, welche das Innere des Einheitskreises
der z-Ebene quasikonform auf das Innere des Einheitskreises der w-Ebene
abbildet. Ferner seien die Dilatationsquotienten << K. Wir betrachten im
Einheitskreis der z-Ebene einen konzentrischen Kreis vom Radius
R =1-—¢. Das Bild des Radius, der unter dem Winkel ¢ ausgeht, von
r = % an gerechnet, habe die Linge L(¢), so daB gilt

R
j‘ %% dr — L(p) , z=r.e"Y , dz in der Radiusrichtung.
3

Offenbar hat das Bild des Kreisringes 4 < |z| < R einen Flidchen-
inhalt < 2x. Also haben wir die Ungleichung

R 2z
J= | || Det.(w,z2)| rdrdp < 2x, wo Det. die Funktionaldeterminante
0

3
bedeutet. Nun ist

| Det. (w,2) | > i%‘z ?%5 fiir jede Richtung dz in z, also
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B2 dwle 1 1 1 2T dw 1 2% Eldwle
J>‘1"6“ T -«K—E-—Q—-drdw:QKz{!—— drdgv:ﬁ‘!dcp‘f?i— dr
2 2 %
R
Man setze %‘—R—l—z L(p) =g(2) . Dann ist j g (2) dr=0 fiir jeden
— 3 1

Radius. Also wird

.! dz dr :‘i(g(Z) TR 1 L(p))*dr :1’ g2(z)dr 4 ‘R:—%Lz(cp) - R_(jj; :
& 2 2

27T
Es ergibt sich 4K*za(R—4%) = | L?(p)dp. Also,da R<1,
)]

2T

2K2x = [ L*(p)dy .

0

Hieraus folgt unmittelbar, dafl nur eine Nullmenge von Radien unend-
lich lange Bilder liefern darf, dal3 daher diese Bilder bis auf eine Null-
menge in bestimmten Punkten der Kreisperipherie enden. Ahnlich kann
auch der Typensatz2?) von Herrn Teichmiiller bewiesen werden.

2) Vgl. zum Typensatz auch 8. Kakutani, Jap. J. of Math., XIIT, 1937, pg. 383.

(Eingegangen den 16. Februar 1938.)
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