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Ûber die Absolutabweichung einer differentiier-
baren Funktion von ihrem Integralmittelwert

Von Alexander Ostrowski, Basel

Ist die Funktion h(x) im Intervall < a, b > stetig, so kann ihre Ab-
1 b

weichung von ihrem Integralmittelwert -r J h (x)dx dennoch beliebig

nah an die Differenz zwischen ihrem Maximum und Minimum heran-
reichen.

Dies wird nun anders, wenn man die beschrânkte Difïerentiierbarkeit
von h(x) voraussetzt. Ist etwa in unserm Intervall ^'(œ)! ^ m, so kann
die Differenz zwischen dem Maximum und dem Minimum von h(x) den
Wert (b — a) m nicht ubersteigen, kann aber diesen Wert sehr wohl
erreichen.

Die Absolutabweichung von h (x) von ihrem Integralmittelwert ùber-
schreitet aber in diesem Falle ^(b — a) m nicht, ja, im Mittelpunkt des

Intervalls gilt sogar fur die Absolutabweichung die Schranke J(6 — a) m.

Genauer gilt folgendes :

Es sei h(x) im Intervall J : a< x<b stetig und differentiierbar, und es

sei in J durchweg
\hr{x)\ ^m, m>0 (1)

Dann gilt fur jedes x ans J :

Offenbar nimmt hier der erste Faktor rechts in der Mitte von J den Wert
Jan und steigt sodann monoton gegen den Wert J, den er in den beiden

Endpunkten von J annimmt.
Beim Beweis der obigen Behauptung darf offenbar angenommen wer-

den, daB der Integralmittelwert von h (x) verschwindet, da man sonst nur
h(x) um diesen Mittelwert zu verkleinern braucht. Ferner darf m 1

angenommen werden, da man sonst h(x) durch -~^—- ersetzen kann,

und endlich darf das Intervall J als das Intervall (0, 1) vorausgesetzt

werden, da man sonst h (x) durch—-—=- — ersetzen kann.
o —— a
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Wir durfen daher unsere Annahmen uber h(x) durch
1

$h(z)dx=:O, \hf(x)\^l, (0<x<\) (3)
o

ersetzen, und die zu beweisende Behauptung reduziert sich auf

Um nun eine Schranke fur | h(x) | in einem Punkte x0 von J herzuleiten,
darf man offenbar unbeschadet der Allgemeinheit h(x0) ^ 0 voraussetzen,
da man sonst —h(x) anstatt h(x) betrachten kann. Dann gilt aber

W6gen(3) h(x)^h(xo)-\x-x0\.
Integriert man dies zwischen 0 und 1, so ergibt sich wegen (3)

i i
0 J h (x) dx ^ h (x()) — J | a; — xQ\ dx

o o
i

h(x0) <$\x — xo\dx l + (xQ-~l)2
o

womit (4) bewiesen ist.
Zugleich sieht man, dafi das Gleichheitszeichen in (4) nur gilt, wenn

±h{y)= 1+ {x—\f—\y—x\ ist.
Analoge Betrachtungen fuhren naturlich auch bei endlichen Summen

zu solchen Ungleichungen. Gilt z. B. fur réelle av
n

Zav^0, K+1 — av\ ^d, (v 1, ...,n—-1) (5)

so gilt fur jedes feste h 1, 2, n, wenn ak > 0 ist,

% ^ ak — d\v — k\ v 1, 72-

und daher, wenn man uber v summiert,

(•_»)]nak :

oder

Ist aber ak negativ, so kann man die gleichen Betrachtungen auf die
Zahlenfolge — av anwenden, so daB in jedem Falle die Ungleichung (6)
fur jedes h 1, n aus den Annahmen (5) folgt.

(Eingegangen den 18. Januar 1938.)
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