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Uber die Absolutabweichung einer differentiier-
baren Funktion von ihrem Integralmittelwert

Von ALEXANDER OSTROWSKI, Basel

Ist die Funktion % (z) im Intervall < a, b > stetig, so kann ihre Ab-
b
‘fk(x)dx dennoch beliebig

weichung von ihrem Integralmittelwert —

nah an die Differenz zwischen ihrem Maximum und Minimum heran-
reichen.

Dies wird nun anders, wenn man die beschriankte Differentiierbarkeit
von A (x) voraussetzt. Ist etwa in unserm Intervall |A'(z)| < m, so kann
die Differenz zwischen dem Maximum und dem Minimum von % (z) den
Wert (b — a) m nicht iibersteigen, kann aber diesen Wert sehr wohl
erreichen.

Die Absolutabweichung von % (x) von ihrem Integralmittelwert iiber-
schreitet aber in diesem Falle (b — a) m nicht, ja, im Mittelpunkt des
Intervalls gilt sogar fiir die Absolutabweichung die Schranke +(b — a) m.

Genauer gilt folgendes:
Es sei h(x) im Intervall J : a < x < b stetig und differentiierbar, und es

ser 1n J durchweg
|/ (z)] Em, m>0. (1)

Dann gilt fir jedes x aus J :

b a -} b\2
1 1 (x“'z)

S P

b—aym . (2)

Offenbar nimmt hier der erste Faktor rechts in der Mitte von J den Wert
1an und steigt sodann monoton gegen den Wert 1, den er in den beiden
Endpunkten von J annimmt.

Beim Beweis der obigen Behauptung darf offenbar angenommen wer-
den, daf} der Integralmittelwert von A (x) verschwindet, da man sonst nur
h(x) um diesen Mittelwert zu verkleinern braucht. Ferner darf m = 1

angenommen werden, da man sonst A(x) durch }—L——g) ersetzen kann,
und endlich darf das Intervall J als das Intervall (0, 1) vorausgesetzt
h(a+x(b—a))

ersetzen kann.
b—a

werden, da man sonst h(x) durch
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Wir diirfen daher unsere Annahmen iiber A (x) durch

1
fh(zyde =0, |h'(x)] <1, (O<z<]1) (3)
0
ersetzen, und die zu beweisende Behauptung reduziert sich auf
h@)| =+ (z—2)° "
I(x)l__z—l-x 3) - (4)

Um nun eine Schranke fiir |2 ()| in einem Punkte z, von J herzuleiten,
darf man offenbar unbeschadet der Allgemeinheit & (z,) = 0 voraussetzen,
da man sonst — A(x) anstatt h(x) betrachten kann. Dann gilt aber

wegen (3) hi@) = h(wy) — |o— 2,

Integriert man dies zwischen 0 und 1, so ergibt sich wegen (3)
1
j x)dx = h(z,) j‘]x‘“xoldxr
0

1
beo) = 1oy dz =} + @ —3)
0

womit (4) bewiesen ist.

Zugleich sieht man, dal das Gleichheitszeichen in (4) nur gilt, wenn
L h(y) =+ (@ — P — |y — =] ist.

Analoge Betrachtungen fiihren natiirlich auch bei endlichen Summen
zu solchen Ungleichungen. Gilt z. B. fiir reelle a,

n
2a =0, J|a,—a|=d, (r=1..,n—1), (5)
v=1
so gilt fiir jedes feste k = 1, 2, ..., n, wenn a;, > 0 ist,
a, =a,—dlv—k|, v=1,...,n

und daher, wenn man iiber » summiert,

n —_— 2 2
v sdBir—k| = [E=FEE 4 ()]

L2 P L S T L .
nd :(n 2 2n +41 n?] (6)
Ist aber a, negativ, so kann man die gleichen Betrachtungen auf die

Zahlenfolge — a, anwenden, so daB in jedem Falle die Ungleichung (6)
fir jedes £k = 1, ..., n aus den Annahmen (5) folgt.

oder

(Eingegangen den 18. Januar 1938.)
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