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Zum Satz von Pohlke

Von E. StiEFEL, Ziirich

Es seien in einer Ebene drei Vektoren OX’', OY' OZ’ gegeben, die
nicht auf einer Geraden liegen. Dann existieren im Raum drei gleichlange
und zueinander senkrechte Vektoren OX, OY, OZ und eine Projektions-
richtung [, so daB bei der Parallelprojektion in der Richtung ! die Vektoren
0X,0Y,0Zin0X’,0Y’, OZ’ iibergehen. Dies ist der Satz von Pohlke?).

Wie alle Satze, die elementar formuliert, aber nicht ebenso elementar
bewiesen werden konnen, hat auch der Pohlke’sche Satz eine spannende
Geschichte und ist Gegenstand zahlreicher Untersuchungen geworden.
Es sei hier nur auf die Arbeiten von Gauf, Hurwitz und Klein hinge-
wiesen?), in denen Beziehungen zur analytischen und n-dimensionalen
Geometrie aufgedeckt werden und die damit die Richtung angeben, in der
die Verallgemeinerungen des Pohlke’schen Satzes zu suchen sind.

Wenn in der vorliegenden Arbeit die dullerst reichhaltige Literatur iiber
den Pohlke’schen Satz um einen weiteren Beitrag vermehrt wird, so ist
dies in der Uberzeugung geschehen, daB sich die Pohlke’sche Aufgabe auf
einfache und natiirliche Weise mit den Mitteln der analytischen Geometrie
und Matrizenrechnung l6sen lassen mul}. Es zeigt sich nun in der Tat, daf3
diese Aufgabe dquivalent ist mit der Hauptachsentransformation der
Gram’schen Matrix § 1, Nr. 3) der drei Bildvektoren OX’, 0Y’, OZ’ und
daB ihre Eigenwerte (§ 1, Satz 4) und Eigenvektoren (§ 1, Nr. 5) eine
einfache geometrische Bedeutung fiir die gegenseitige Lage von Original-
und Bildvektoren haben.

In § 1, Nr. 2 wird eine andere Formel fiir die Losung der Pohlke’schen
Aufgabe hergeleitet, deren anschaulicher Inhalt aber erst in § 2 nach
laingeren Vorbereitungen zutage tritt.

Um nicht ins Uferlose zu geraten, mullten alle Spezialfille, Verallge-

1) Ein elementarer Beweis findet sich in den meisten Lehrbiichern der darstellenden
Geometrie. Vergl. etwa :

Hessenberg-Salkowski, Vorlesungen iber darstellende Geometrie. (Leipzig,
Akad. Verlagsgesellschaft, 1929.) S. 181.

Kollros, Géométrie descriptive. (Zirich, Orell FuBli, 2. Auflage, 1934.) S. 37.

Muller-Kruppa, Lehrbuch der darstellenden Geometrie. (Leipzig, B.G. Teub-
ner, 4. Auflage, 1936.) S. 243. Dort finden sich auch Literaturangaben.

2) GauB, Werke. (Leipzig, B. G. Teubner.) Bd. VIII, S. 345.

Hurwitz, Mathematische Werke. (Basel, Birkhéauser, 1933.) Bd. 11, S. 732.

Klein, Elementarmathematik vom héheren Standpunkte aus. (Berlin,
Springer, 3. Auflage, 1925.) Bd. II, S. 89.
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meinerungen und Anwendungen (Normalprojektion, Affinitdt, quadra-
tische Formen) beiseite gesetzt werden; es ist jedoch meistens die Auf-
gabe im m-dimensionalen Raum behandelt worden. Dies ist mehr ge-
schehen, um die Ausnahmestellung des klassischen dreidimensionalen
Falles zu kliren, als wegen der n-dimensionalen Verallgemeinerungen,
die keine groBen Uberraschungen bringen. Der einfachste matrizen-
theoretische Beweis fiir den klassischen Pohlke’schen Satz steht in
§ 1, Nr. 4.

Unabhéngig vom iibrigen Teil der Arbeit sind lesbar § I, Nr. 5 und
§ 2, Nr.6; an beiden Stellen wird der dreidimensionale Spezialfall
behandelt.

§ 1. Die klassische Aufgabe von Pohlke

1. Normalform. Die Vektoren, von denen im folgenden die Rede ist,
sollen immer an einem festen Punkt O angreifen. Unter einem Pohlke’-
schen m-Bein verstehen wir nun m Vektoren g¢,, a,, ..., g,,, die in einer
n = (m — 1)-dimensionalen Ebene R" des m-dimensionalen Raumes R™
liegen und durch eine Parallelprojektion aus m orthogonalen Vektoren
ey, €5, ..., ¢, des B™ von der gemeinsamen Linge e > 0 auf den R" ent-
standen sind. Dabei wird m > 3 vorausgesetzt. Die Pohlke’sche Aufgabe
besteht darin, zu einem gegebenen m-Bein g4, 4,, ..., 4, die Original-
vektoren e,, ¢,, ..., ¢, und die Projektionsrichtung zu bestimmen.

Sind ¢, ¢,, ..., ¢,, andere Orthogonalvektoren im R™ von der Liinge e,
so gibt es eine Drehung 8, die ¢,, ¢,, ..., ¢,, in ¢;, e;, e, e;n uberfiihrt :

m
6, = NSt (1=1,2,...,m). (1)
k=1

Dabei bilden die s,, eine orthogonale m-reihige Matrix S. Da unsere

Parallelprojektion eine lineare Abbildung ist, bildet sie ¢, e,, ..., ¢,, auf
, m

a; = 2 8;0; (2)
k=1

ab. Es gilt also:

Satz 1. Zwei zur selben Parallelprojektion gehorige Pohlke’sche m- Beine
gehen auseinander durch eine orthogonale Substitulion (2) hervor. Um-
gekehrt entsteht aus einem Pohlke’schen m-Bein durch eine orthogonale
Substitution (2) wieder ein solches. '
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Diese Tatsache kann man zur Einfithrung von Normaltypen Pohlke’
scher m-Beine verwenden. Wiihlt man zum Beispiel ¢, als Normalvektor g
zur Ebene R", so hat man:

€2=02, €3=a3,...,€m—‘—=am;

also sind dann die Vektoren 4a,, ;, ..., a,, zueinander orthogonal und
haben alle die Liinge e. Den Vektor a, bezeichnen wir in diesem Spezialfall
mit p und nennen ihn den charakieristischen Vektor des Pohlke’schen
m-Beins a,, a,, ..., a,,. Er bestimmt ndmlich die Projektionsrichtung

(n—p).

Satz 2. Zu jedem Pohlke’schen m-Bein existiert eine orthogonale Sub-
stitutton (2), die n = (m — 1) unter seinen Vektoren gleich lang macht. Die
gemeinsame Linge dieser Vektoren ist die Lange e der Originalvektoren und
aus dem m-ten Vektor wird der charakteristische Vektor p, der zusammen
mit dem Normalvektor n von der Linge e zum R" die Projektionsrichtung
(n — p) bestimmt®).

Bemerkung: Zur Losung der Pohlke’schen Aufgabe ist die explizite
Bestimmung dieser Substitution nicht nétig. Es geniigt e und p zu be-
rechnen; dann kann man einfach auf der damit bekannten Projektions-
richtung von den Spitzen der Vektoren q,, 4,, ..., g,, aus auf eine Kugel
um O mit dem Radius e zuriickgehen um die Originalvektoren zu finden.

2. Hauptrelation. Zur Durchfiihrung der in Satz 2 gegebenen Losungs-
methode verwenden wir ein kartesisches Koordinatensystem im R". Unter
A verstehen wir dann die m-zeilige und n-spaltige Matrix, die in der ¢-ten
Zeile die Komponenten von g, enthédlt. Unsere Substitution (2) heif3t
dann in der Sprache der Matrizenrechnung:

A= S4A. (3)
Dabei bedeutet natiirlich A’ die Matrix mit den Zeilenvektoren
a;, 8, -.., &,,. Bringen wir das m-Bein gemiB Satz 2 auf die Normalform
und bezeichnen mit P die aus den Komponenten von p gebildete einzeilige
Matrix, so gilt noch:

P
/ —
y ( . ) . @)

3) In dem aus der darstellenden Geometrie bekannten Fall m = 3, also » = 2, nennt
man die in Satz 2 eingefiihrte Normalform ,,Kavalierperspektive*'.
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B ist die n-reihige Matrix mit den Zeilenvektoren a,, a;. ..., a,, und

daher orthogonal:
BB = B*'B = ¢*E, . (5)

(Der Stern bedeutet Transposition, E, ist die n-reihige Einheitsmatrix).
Aus (3) und (4) folgt:

(SA)' (SA) = A"8°SA = A"A = P'P + B'B .
Und damit aus (5) die

Hauptrelation: P*P = A"A — 2K, . (6)

Beide Seiten dieser Relation sind symmetrische Matrizen, und die
Elemente von P'P sind die Produkte aus je zwei Komponenten von .
Die Hauptrelation enthilt also Z?J_Q_t_z—_l—_l_)
der (n + 1) Unbekannten (e und Komponenten von p) aus den gegebenen
(n+1) (n—2)
2
dafiir erwarten diirfen, dall m willkiirlich vorgegebene Vektoren
Ay, Gy, -.., 4, 1M R" ein Pohlke’sches m-Bein bilden. Nach unserer
Bemerkung am Ende von Nr. 1 ist die Pohlke’sche Aufgabe durch die
Hauptrelation also im wesentlichen gelost. Man liest ferner aus ihr ab,
daf} die Zahl e und der charakteristische Vektor p (abgesehen vom Vor-
zeichen) durch die Vektoren 4q,, a,,...,a, eindeutig bestimmt sind.

Durch Spurenbildung folgt aus (6) noch:

Gleichungen zur Berechnung

Bedingungen

Vektoren q,, a,, ..., 4,,. Man wird also

m

IpIP= X 6> —mne . (7)

y

=1

Es soll nun aus der Hauptrelation eine notwendige Bedingung fiir die
Losbarkeit der Pohlke’'schen Aufgabe hergeleitet werden. Zu diesem
Zweck werden aus (6) die Eigenwerte der Matrix 4" A berechnet. Sie ent-
stehen aus den Eigenwerten von P*P durch Addition*) von e2. Nun hat
aber PP hochstens den Rang 1 (alle zweireihigen Unterdeterminanten
verschwinden), also den (n — 1)-fachen Eigenwert 0. Der letzte Kigen-

%) Denn es gilt fiir jede quadratische mn-reihige Matrix M : Die Eigenwerte von
N = M +AE, entstehen aus den Eigenwerten von M durch Addition von 4. In der Tat
hat man fiir das charakteristische Polynom von N :

fy (u) = Determinante von uE — N = Determinante von ul — M — )LE = Deter-
minante von (4 —A) E — M = far(u—21).
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wert ist dann gleich der Spur |p|2%. Demnach ergibt sich fiir die Eigen-
werte «,, &y, ..., &, von A° A :

L R ®)
Dabei sei ! die Léange des Projektionsvektors (i — p).

Satz 3. (Erste notwendige Liosbarkeitsbedingung.) Ordnet man die Eigen-
werle &y, &y, ..., o, der Matrix A" A nach abnehmender Gréfe, so mup

gelten :
Ky Z By =g ="+ =, >0.

3. Die Gram’sche Matrix eines m-Beins. In dieser Nummer seien
a,, A, ..., G, beliebige Vektoren im R”, die also nicht notwendigerweise
ein Pohlke’sches m-Bein bilden miissen. Wir wollen uns jetzt wieder vom
eingefithrten Koordinatensystem befreien und bilden zu diesem Zweck
neben der n-reihigen Matrix A*A noch die m-reihige Matrix AA4". Das
Element mit der Nummer ¢k in dieser Matrix ist das skalare Produkt
(a;, ;) der beiden Vektoren a, und ¢,. Die Matrix heifle die Gram’sche
Matrix der Vektoren ga,, a,, ..., 4,, ; sie ist symmetrisch und unabhéngig
von der ‘Wahl eines Koordinatensystems. IThre Determinante ist das
Quadrat des Volumens der Vektoren, also bei uns immer 0. Die Gram’sche
Matrix hat demnach immer den Eigenwert 0; wir zeigen, daf3 die iibrigen
n Eigenwerte mit den Eigenwerten von A4 iibereinstimmen. Zu diesem
Zweck bemerken wir zunachst, dafl ein r-reihiger Hauptminor der
Gram’schen Matrix die Gram’sche Determinante eines aus r Vektoren
bestehenden Teilsystems von g,, ¢,, ..., 4,, ist. Der r-te Koeffizient des
charakteristischen Polynoms der (/ram’schen Matrix ist also (abgesehen
vom Vorzeichen) die Summe der Quadrate aller r-dimensionalen Volu-
mina, die sich aus den Vektoren a,, 4., ..., a,, bilden lassen.

Erster Beweis. Wir hetrachten etwa den Hauptminor der G'ram’schen
Matrix, der aus den Zeilen und Kolonnen mit den Nummern 4,, &,, ..., &,
gebildet ist (r << »). Er ist nach der obigen Bemerkung die Gram’sche
Determinante der Vektoren a,,, ..., 4,,, also nach der Lagrange’schen
Identitdt auch die Summe der Quadrate aller r-reihigen Determinanten,
die in den Zeilen mit den Nummern #4,, &,, ..., h, der Matrix 4 stecken.
Der r-te Koeffizient im charakteristischen Polynom der Gram’schen Ma-
trix ist die Summe aller »-reihigen Hauptminoren, also die Summe der
Quadrate aller r-reihigen Unterdeterminanten von 4. Genau dieselbe
Tatsache gilt aber fiir das charakteristische Polynom der Matrix A"4,
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denn A'A ist die Gram’sche Matrix der Kolonnenvektoren von 4. Die
charakteristischen Polynome von 44" und A*A4 stimmen also im ersten
bis n-ten Koeffizienten iiberein. Dies war zu beweisen.

Zweiter Beweis. Wir ergidnzen A durch eine ganz aus Nullen bestehende
Kolonne zu einer quadratischen m-reihigen Matrix B. Es geniigt zu
beweisen, dal BB* und B°B dieselben Eigenwerte haben. Wir beweisen
sogar: Sind M und N zwei beliebige m-reihige quadratische Matrizen,
so haben M N und NM dieselben Eigenwerte.

Dies kann man etwa folgendermafien einsehen. Man rechnet zunéchst
leicht nach:
Spur (MN) = Spur (NM) .

Ferner hat man (MN)? = (MNM)N und (NM)* = N(MNM), also nach
der eben bewiesenen Spurenrelation:

Spur (MN)? = Spur (NM)?

Allgemein :
Spur (MN) = Spur (NM)y, (r=1,2,...).
Sind nun z,, z,, ..., z,, die Eigenwerte von M N und y,, v,, ..., y,, die
Eigenwerte von NM, so hat (MN)" die Eigenwerte z7, z}, ..., 27, und

(VM) die Eigenwerte y7, v5, ..., y5,. Wir haben bewiesen:
ity + - Fa =i+t + Y
Daraus folgt aber (abgesehen von der Reihenfolge):
Xy == Y1, Lo = Yay ovvs Lpy = Yp, -

Damit ist der Beweis beendigt®).

Da nun also die Gram’sche Matrix 44" dieselben Eigenwerte wie die
Matrix A°A hat, folgt aus Satz 3:

Satz 4. (Zweite motwendige Ldsbarkeitsbedingung fiir die Pohlke’sche
Aufgabe.) Ordnet man die Eigenwerte yy, ys, ..., ¥,, der Gram’schen Matrix
der Vektoren a,, @y, ..., a,, nach abnehmender Gréfe, so muf3 gelten :

712’}’2:—“73="‘=ym_1>0;ym:O.

§) Ist die Determinante von M von 0 verschieden, so folgt die Behauptung auch einfach
aus MN = M(NM)M™,
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Es ist dann nach (8):
n==0 v,=e. (9)

Man hétte diesen Satz auch direkt aus den Formeln (4) — (6) folgender-
mafen herleiten kénnen:

SAA" S = (S4)(SA) = (PP' PB')

BP' ek,

Durch direkte Rechnung bestitigt man, dafl die letzte Matrix in dieser
Gleichung und damit auch 44" die Eigenwerte von Satz 4 hat.

4. Hauptachsentransformation der Gram’schen Matrix. Die Gram’sche
Matrix AA4" der Vektoren g,, @,, ..., 4,, ist eine symmetrische Matrix, sie
kann daher durch orthogonale Transformation auf Diagonalform gebracht
werden. Sei also etwa R eine orthogonale m-reihige Matrix, so dafl

71 0

R(AA')R = (RA) (RA) = N : (10)

0
Vm

Bezeichnet man die Zeilenvektoren von R4 mit a,, 4,, ..., 4,,, so ist also

m>
obige Diagonalmatrix die Gram’sche Matrix von 4y, 4,, ..., a,, und dar-
aus folgt:

a) Die Vektoren El, Agsenns Em stehen senkrecht aufeinander.

b) 'al|2:713 'Ez’zzyza-“»lamlzz'}’m- (11)

Aus der Existenz dieser Hauptachsentransformation ergibt sich nun
leicht:

Satz 5. Die beiden Lisbarkeitsbedingungen von Satz 3 und Satz 4 sind
hinreichend.

Da die zweite Bedingung aus der ersten hergeleitet wurde, geniigt es zu
zeigen, dafl die Bedingung von Satz 4 hinreichend ist. Sei also diese
Bedingung erfiillt, das hei3t wegen (11):

|61|,>/’-&2]=l53|z"'x’&m—1l>0; a,=0. (12)
Wir wollen nun beweisen, dal diese Vektoren a,, 4, ..., a,, ein Pohlke’-
sches m-Bein bilden. Dazu miissen die Originalvektoren ¢,, e,, ..., ¢,
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angegeben werden. Wir wihlen: ¢, = @,, ¢, = a3, ..., €, = &, .
Die gemeinsame Lénge dieser Vektoren sei wieder mit e bezeichnet.
Wegen |a;| > e kann nun in der zu ¢,, ¢, ..., ¢,,_, orthogonalen 2-dimen-
sionalen Ebene (die @, enthiilt) cin Vektor ¢, von der Linge e und eine zu
ihm senkrechte Projektionsrichtung so gewihlt werden, daB ¢, bei dieser
Parallelprojektion in @, iibergeht. ¢,, liegt dann einfach in der Projektions-

richtung.

Da nun also cinerseits die Vektoren a,, @, ..., a,, ein Pohlke’sches
m-Bein bilden und andererseits durch die orthogonale Substitution R
aus &, 4y, --., 4,, hervorgegangen sind, war nach Satz 1 auch q,, 4,, ...,q,,
ein Pohlke’sches m-Bein, was zu beweisen war.

Im Fall m = 3, n = 2 folgt:

Satz 6. (Satz von Pohlke.) Drei Vektoren vom Rang 2 kinnen immer als
Parallelprojektionen von drei orthogonalen und gleichlangen Vektoren des
3-dvmensionalen Rawmes aufgefafit werden.

Beweis: Nach Voraussetzung haben die gegebenen Vektoren a,, a,, a,
den Rang 2. Dasselbe gilt fiir a,, a,, a,, da diese Vektoren aus a,, a5, 4,
durch die orthogonale Substitution R entstehen. Andererseits stehen
nach a) die Vektoren a,, a,, a, senkrecht aufeinander und daher muB
einer unter ihnen der Nullvektor sein. Wir konnen also etwa annehmen:

la;|>]6,]>0, @a;=0. (12a)

Die Bedingung (12) ist also von selbst erfiillt ; von ibr ausgehend kann man
weiterschlieBen wie im allgemeinen Fall.

Der klassische Pohlke’sche Satz ist also im wesentlichen aquivalent mit
dem Hauptachsentheorem der symmetrischen 3-reihigen Matrix.

5. Der dreidimensionale Spezialfall. Es soll jetzt fiir den klassischen
Pohlke’schen Satz 6 ein anschaulicher Beweis gegeben werden, der unab-
hingig vom bisherigen ist und die formale Matrizenrechnung vermeidet.
Dabei werden wir den Schwarz’schen Beweisansatz?) verwenden, wihrend
die in Nr. 1 an die Spitze gestellte Methode der orthogonalen Trans-
formation eng verwandt ist mit dem Prinzip der Hilfskugel von J. W.von
Deschwanden.

7) Die klassischen Beweise des Pohlke’schen Satzes wurden zusammengestellt von
E. Wendling, Der Fundamentalsatz der Axonometrie, Zirich, 1912.
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Seien also in der Zeichenebene R? drei Vektoren a,, 4,, a; vom
Rang 2 gegeben, die von einem Punkt O auslaufen. Wir bestimmen zu-
nichst die Entfernung » eines Punktes der Zeichenebene mit dem Orts-
vektor y, a,+ ¥, a:+ ¥y3; a; von O:

3
2= 2 (6, 0x) Y; Y - (13)
G k=1
Dabei bedeutet (a,, a,) das skalare Produkt der Vektoren a, und 4,. Die
zu dieser ,,metrischen Fundamentalform (13) gehérige Matrix ist iibri-
gens die in Nr. 3 eingefiihrte Gram’sche Matrix der gegebenen Vektoren.

Fir die charakteristische Gleichung der quadratischen Form (13)
findet man:

23 —oaxi+fx =0, (14)
worin die Koeffizienten « und g folgende geometrische Bedeutung haben:

o= |a.|*+]az| 2+ a7,
p = Summe der Quadrate der von je zwei Vektoren g,, ¢, auf- (15)
gespannten Parallelogrammflichen (vgl. Nr. 3).

(Die charakteristische Gleichung hat kein absolutes Glied, da die Deter-
minante der Form, d. h. das Quadrat des Volumens von 4, a,, a; Null
ist.) Es ist « > 0, 8 > 0 und daraus folgt, dal (14) auBer der trivialen
Nullésung noch zwei positive Losungen hat. Wir bezeichnen diese Losun-
gen, d. h. die Eigenwerte der Form (13) mit

Yy =92 >0, p;=0. (16)

Ferner merken wir uns noch die Gleichung des Einheitskreises um O;
sie lautet:

3

2 (0,6 ¥ Y= 1. (17)

i, k=1

Nach diesen Vorbereitungen wahlen wir nun in einem dreidimensio-
nalen Raum R3 (der die Ebene R? nicht enthalten muf}) ein kartesisches
Koordinatensystem #,, ,, ; und bilden R3 linear auf R? ab, indem wir
dem Punkt mit den Koordinaten (x,, x,, z,) den Punkt x,a,+ x, 4,425 a5
zuordnen. Die Grundvektoren (1, 0, 0), (0, 1, 0), (0, 0, 1) des Koordinaten-
systems gehen dabei in ga,, 65, 4, tiber. Wegen der Linearitdt der Abbil-
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dung erfiillen alle Punkte des R3, die denselben Bildpunkt haben, eine
Gerade; die gemeinsame Richtung dieser Geraden werde mit ! bezeichnet.
Dem Einheitskreis (17) entspricht im B2 die Fliche zweiten Grades

2 (a;,a,) %, 2, = 1. (18)

i k=1

Es ist dies wegen (16) ein elliptischer Zylinder, dessen Mantellinien not-
wendigerweise die Richtung / haben. Seine Halbachsen betragen:

¥ = ——, b

1
: (19)
1$

o— l .
V?’l
Jetzt wird in den R3 eine Ebene R? gelegt, die aus dem Zylinder einen
Kreis K schueidet. Vermége unserer Abbildung ist R? affin auf R? be-
zogen; da bei dieser Affinitdt der Kreis K in den Kreis (17) iibergeht, ist
diese Affinitit eine Ahnlichkeit. Innerhalb R? ist somit unsere Abbildung

von K3 auf R? eine Ahnlichkeit.

Seien nun @, a,, a, die Parallelprojektionen der Grundvektoren
(1, 0, 0), (0, 1, 0), (0, 0, 1) auf R?in der Richtung . Diese Vektoren haben
in R? dieselben Bilder wie die Grundvektoren, gehen also in a,, a,,
tiber und sind infolgedessen dhnlich zu a,, a5, a;. Damit ist der Pohlke’
sche Satz bewiesen, denn wir haben gezeigt, dall es zu 4,, a,, a, dhnliche
Vektoren qa,, a,, 4, gibt, die durch Parallelprojektion aus drei orthogo-
nalen und gleichlangen Vektoren entstehen. Diese hinzutretende Ahn-
lichkeit ist aber unwesentlich.

Die Stellung der Ebene R? im R? liBt sich etwa folgendermaBen
beschreiben : Wir konstruieren im Nullpunkt M des kartesischen Koordi-
natensystems die Zylinderhalbachsen ¢ und & und nennen ihre End-
punkte 4 und B. Dann liuft R? durch M A und bildet mit M B den
Winkel ¢ mit

cos =2 — |7z . (20)
a 71

Der Schnittkreis X hat demnach den Radius ¢ und das Ahnlichkeits-
verhéltnis bei der Abbildung von R? auf R? betriigt 1/a = )y, . Werden
also a,, a,, a; direkt als Parallelprojektionen von drei orthogonalen
Vektoren ¢,, ¢,, ¢, dargestellt, so ergibt sich fiir die gemeinsame Lange e
dieser Vektoren :

e=1Vy, - (21)
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Ferner hat man fiir den Neigungswinkel y der Projektionsrichtung ! zur
Ebene R? den Wert ¢ = 90° — ¢, das heiBt

giny = |/ 2 - (22)
¥ Y1

Endlich fithren wir noch die Koordinaten (a,, a,, @,) von 4 in unserem
kartesischen System ein. Es ist also (a,, @,, @;) ein zum Eigenwert v,
gehoriger Kigenvektor der quadratischen Form (13) oder auch der
Gram’schen Matrix. Er ist senkrecht zu [, liegt in R? und geht bei der
Ahnlichkeit in a, 4, + a, a,+ a, a, iiber.

Damit kénnen wir nun die Pohlke’sche Aufgabe 16sen, das heilit die
gegebenen Vektoren a,, a,, ¢, direkt als Parallelprojektion eines karte-
sischen Dreibeins e,, ¢,, ¢, darstellen. Zu diesem Zweck werden zunéchst
die Eigenwerte y,, v, der Gram’schen Matrix von a,, 6,, ¢, und ein zu y,
gehoriger Eigenvektor (a,, a,, a;) ermittelt. Dann steht die Projektions-
richtung senkrecht auf a, ¢, + a, 6,4+ a, ¢; und bildet mit der Zeichen-
ebene den durch (22) gegebenen Winkel y. Die damit bekannten Projek-
tionsstrahlen durch die Endpunkte von a,, 4,, 4, werden nun mit der
Kugel um O vom Radius e = ]/}7; durchstoflen und ergeben die End-
punkte der von O auslaufenden Originalvektoren ¢, ¢,, ¢;.

§ 2. Reine Dehnungen von der Spur Null

1. Normalzerlegung der symmetrischen Matrix. Wir betrachten lineare
Abbildungen in einem n-dimensionalen Raum R". Sind =z, 2,, ..., z,
kartesische Koordinaten in ihm, so hitte man etwa fiir eine derartige
Abbildung:

n

z,=Xd,x,, (p=1,2,...,m), (23)
v=1

oder wenn man die Abbildungsmatrix mit D = (d,,) und die Zcile
x,, Xy, ..., &, mit X bezeichnet:

X =XD". (24)

Im folgenden sei nun D immer eine symmetrische Matrix; wir nennen
dann die zugehorige Abbildung eine reine Dehnung des Raumes. Dies
aus folgendem Grunde: Da D eine symmetrische Matrix ist, existiert eine
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orthogonale Koordinatentransformation, die D auf Diagonalform bringt.
Im neuen Koordinatensystem lauten die Abbildungsgleichungen:

x, =d,x, (25)
wo d;,d,, ..., d, die Eigenwerte von D sind. Die neuen Koordinaten-
achsen bezeichnen wir auch als Achsen der Dehnung; sie sind gegeniiber
der Dehnung invariant. Die Eigenwerte d,, d,, ..., d, konnte man auch
als Dehnungsverhéltnisse bezeichnen. Eine reine Dehnung ist also eine
lineare Abbildung des R", die n zueinander senkrechte Achsen ungedndert
1aBt.

Nun tragen wir auf jeder Achse einen Kinheitsvektor p, auf®) und
nennen ihn den p-ten Eigenvektor von D.

Werden seine Komponenten im alten Koordinatensystem zu einer
Zeile D, zusammengefalit, so gilt:

D =4d,D,D,+d,D,D, + -+ +d,D,D, (26)
mit: D“D:L = ], DMD: =0 fir u#v». (27)

Beweis: Wir bezeichnen fiir einen Moment die rechte Seite von (26) mit
S. Dann ergibt sich:

D8 =D,8=d,D,.

Der Vergleich mit der Abbildungsformel (24) zeigt, daf} die zu § gehorige
Abbildung jeden Eigenvektor und damit jeden Vektor auf einer Deh-
nungsachse mit dem zugehorigen Dehnungsverhédltnis multipliziert.
S stimmt also mit D iiberein.

Wegen (27) nennen wir (26) die Normalzerlegung der symmetrischen
Matrix D und kénnen formal den folgenden Satz aussprechen:

Satz 7. (Normalzerlegung der n-reshigen symmetrischen Matrixz D.)
Es lapt sich D nach (26) und (27) zerlegen, wobei die D,, einzeilige Matrizen
sind. In jeder derartigen Zerlegung sind die d, die Eigenwerte und die D,
die Evgenvektoren von D.

8) DaB dp in der einen oder andoren Richtung auf der betreffenden Achse gewihlt
werden kann ist fiir uns gleichgiiltig. Auch fiir die Losung der Pohlke’schen Aufgabe ist die
Umbkehrung eines Vektors in den entgegengesetzten Vektor unwesentlich.
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2. Dehnungen mit der Spur Null. Diese durch d, +d,+ --- +d, = 0
ausgezeichneten Dehnungen werden im folgenden eine besondere Rolle
spielen. Wir halten zunédchst fest, daf3 sie eine Abel’sche Gruppe beziiglich

der Summation bilden. Dabei verstehen wir unter der Summe der beiden
Abbildungen

diejenige Abbildung, die dem Vektor X den Bildvektor X, + X, zuordnet.
Zu ihr gehort die Matrix D, 4 D, . Die Summe ist wieder symmetrisch und
hat die Spur 0, falls D, und D, diese Eigenschaften hatten.

Die einfachsten Dehnungen von der Spur Null sind die, bei denen
moglichst viele Eigenwerte zusammenfallen. Es sei etwa:

di=—n—1)7r; dy=d;=-=d,=r% (28)
Die Normalzerlegung lautet dann:
D =— (n—1)r2D; D, +r*(D,Dy+ - + D, D,) .

Nun ist andererseits D} D, + D, D, -+ -+ + D; D, eine Matrix mit lauter
Eigenwerten Eins, also die Einheitsmatrix. Dies ergibt zusammen:

D =7rE —nrD{D, . (29)
Wir setzen noch: t = rd; und analog R = rD, und erhalten:
D = |t|*E —naR'R ; RR" = |r|2. (30)

Die Dehnung D ist also durch den Vektor t eindeutig bestimmt. An-
schaulich besteht sie (abgesehen von einer Ahnlichkeit im Verhéltnis [t|2)
aus einer Affinitdat an der zu t senkrechten (n — 1)-dimensionalen Ebene
im Verhéaltnis [— (n — 1)]. Wir nennen diese Dehnung daher die zum
Vektor v gehorige Streckaffinitit.

3. Zerlegung in Streckaffinititen. Sei nun D wieder eine beliebige
reine Dehnung von der Spur 0. Die Normalzerlegung:

D:dlD;D1+ vt +an;Dn ’
mit

dy+dy+ - +d, =0,
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und wie wir schon oben bemerkt haben:
* w *
DD, + D,D, +---+D,D,=E .
Wegen dieser drei Gleichungen kénnen wir auch schreiben:

D— l(z —-‘-ii) E——(n/l—-dl)D;DI] oot [(Am%@) Em(nlwdn)D;Dn].

A ist ein wahlbarer Parameter. Wir bezeichnen noch mit g, die Zahl -+ 1
je nach dem Vorzeichen von 4—d,/n ==k, und setzen noch t, =V/|k,|d,.
Also:

D = &, (|t)]2E — nRIR,)+ -+ +¢&,(|t .2 E —nR,R,) . (31)

Damit ist D in Streckaffinititen zerlegt, die zu Vektoren gehoren, die auf
den Achsen von D liegen.

Durch Wahl von A hat man es nun in der Hand, eine der Streck-
affinitdten in (31) zu Null zu machen und iiber die Vorzeichen der iibrigen

g, zu verfiigen.

Satz 8. Zu einer rexnen Dehnung D von der Spur 0 vm n-dimensionalen
Rawm gibt es (n — 1) orthogonale Vektoren t,,t,, ..., t,—1, die auf Achsen
der Dehnung liegen, so daf} die zugehorigen Streckaffinatiten o,, 0y, ..., Op—t
die Beziehung

D= &0, + &0+ " + €100 (32)

erfilllen. Dabei ist |¢,| = 1; die Vorzeichen der ¢, sind wahlbar.

Beispiel : Im dreidimensionalen Raum soll eine Dehnung als ¢, — g,
dargestellt werden. Dann liegt ¢, auf der Achse mit dem kleinsten und ¢,
auf der Achse mit dem groBten Dehnungsverhéltnis; bezeichnet man
diese Verhiltnisse mit » und » und das dritte Dehnungsverhiltnis mit
w = — (u+v), so gilt:

w—2° %l:—~—'w
=) mi= A

Die in Satz 8 ausgesprochene Zerlegung ist nun durchaus nicht die
einzige. Es kann D auch in Streckaffinititen zerlegt werden, deren zu-
gehorige Vektoren nicht senkrecht aufeinander stehen. Wir sprechen
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das diesbeziigliche Resultat nur im Spezialfall des dreidimensionalen
Raumes aus.

Wir hatten in obigem Beispiel D = g, — p,, wobei p; und g, zu den
genau beschriebenen Vektoren t, und t, gehéren. Nun sei D = g, — g,
eine allgemeine Zerlegung und t; und t, die zugehérigen Vektoren. Man
konstruiere noch in der Ebene (t,, t,) das Paar konjugierter Hyperbeln
mit den Halbachsen t; und t,. Dann gilt: Der Endpunkt von t; durch-
liuft eine Hyperbel und der von t, die andere, und dabei liegen beide
Vektoren immer auf konjugierten Durchmessern.

Zur Herleitung bemerken wir noch folgendes. Es ist von vornherein
klar, daB o, — g, die zu t; und t, senkrechte Gerade invariant liBt. Diese
muB also eine Achse von D sein. Daher kommen nur solche Vektoren t,
und t, in Frage, die in einer durch zwei Achsen von D aufgespannten
Ebene liegen. Es geniigt nun vollstindig, daB die Abbildung g, — g, auf
die Punkte dieser Ebene dieselbe Wirkung habe wie D ; denn weil die
Spuren Null sind, kommt dann im Raum von selbst alles in Ordnung. Es
ergibt sich also ein ebenes Problem, das leicht zu losen ist.

4. Anwendung auf die Aufgabe von Pohlke. Seien nun wieder
4, Ga, ..., 4, die in § 1 betrachteten Vektoren im Raum R". Wir bilden
die Summe der zugehérigen Streckaffinititen (4, = Zeile aus den Kom-
ponenten von 4,):

(|6, —ndi4,)+ - +(a,|*E —nd,4,) .
Beachtet man, da A;4, + -+ + 4, A, die Matrix 4°4 von § 1, Nr. 2

ist, so folgt aus der Hauptrelation (6) und aus (7):

(ja, 2B —ndjA) + - + (0|2 E —nd,A,) = |p|?E—nP'P. (33)

In Worten:
Satz 9. Ista,,a,, ..., a,, ein Pohlke’sches m-Bein, so ergibt die Sumine
der zugehorigen Streckaffimititen «,, «,, ..., «, die Streckaffinitit = am

charakteristischen Vektor p.

Damit ist die Hauptrelation geometrisch illustriert. Wir schlieen
weiter:
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Satz 10. Ist der Rang von m Vektoren im m = (m — 1)-dimensionalen
Raum gréfler als 1 und ergibt die Summe der zugehorigen Streckaffinititen
wieder exne Streckaffinitit, so bilden die Vektoren ein Pohlke’sches m-Bein.

Beweis: Aus dem Bestehen von (33) folgt:
A'A=E+ PP . wo e2::—:; Slault—pl?) .

Daraus liest man leicht die Eigenwerte von 44 und damit auch die
Eigenwerte der Gram’schen Matrix 44" ab:

2

Y1 =4|p3 ve=yy ==y, =€ y,=0.

Die Losbarkeitsbedingung von Satz 4 ist erfiillt, sobald e > 0. Wére aber
e = 0, so hatte die Gram’sche Matrix und damit auch die Vektoren den
Rang 1 oder 0, was verboten ist.

Satz 11. Sind im n-dimensionalen Raum drei Vektoren gegeben, deren
Rang > 1 ist, so konnen diese Vektoren zu einem Pohlke’schen m = (n -+ 1)-
Bewn erginzt werden.

Beweis: Seien «,, «,, &, die Streckaffinititen, die zu den gegebenen
Vektoren qa,, a,, 4; gehoren. Dann existiert nach Satz 8 eine Zerlegung
in Streckaffinititen:

Xyt Xgt Xy = T — 0y — &5 — " Gy (34)

Satz 10 beendigt den Beweis, indem aus «; +a,+ -+ 4, = & folgt,
daf} die zugehorigen Vektoren q,, a,, 4;, ..., a,, ein Pohlke’sches m-Bein
bilden.

Weiter sehen wir noch, daf3 im Fall m = 4, » = 3 nach Wahl von
41, 4z, 6, die Vektoren g, und p auf zwei konjugierten Hyperbeln beweg-
lich sind, indem sie konjugierte Durchmesser bilden. Zur Bestimmung der
Hyperbeln miissen die Achsen der Dehnung «; + &, + «, bestimmt werden.
Dies erfordert die Auflosung einer reduzierten kubischen Gleichung.

5. Der Fall von drei Vektoren in der Ebene. Der Fall m = 3, n = 2 ist
zundchst einmal dadurch ausgezeichnet, daf} jede Dehnung von der Spur
Null von selbst eine Streckaffinitét ist. Da die Dehnungen von der Spur
Null bei der Summation eine Gruppe bilden, ergibt Satz 10 den klassi-
schen Satz von Pohlke.
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Andererseits aber sind die Dehnungen mit der Spur Null abgesehen von
einer hinzutretenden Ahnlichkeit identisch mit den euklidischen Spiege-
lungen an einer Geraden. Es ist daher zweckméBig, in diesem Spezialfall
den folgenden Begriff einzufiihren: Sei t ein Vektor in der Ebene und o’
die Abbildung der Ebene, die entsteht, indem man jeden Vektor an t
spiegelt und im Verhiltnis [¢[> verlingert. (Streckspiegelung an t).

Ist dann ¢ wie oben die zu v gehorige Streckaffinitiit, so gilt o’ = — p.
Schreiben wir demnach die durch Satz 9 gegebene Zerlegung in der
Form — 7z = — &, — 3 — o3, s0 folgt:

Satz 12. Ist wn der Ebene ein Pohlke’sches Drerbein durch drei beliebige
Vektoren a,, a5, a; vom Rang 2 gegeben, so ergibt die Summe der Streck-
spiegelungen an a,, a,, a; die Streckspiegelung am charakteristischen

Vektor p.

Damit ist zusammen mit der aus (7) folgenden Formel 2e2==|q,|? +
|az]2+a;]2*—|p|? die einfache Losung der Pohlke’schen Aufgabe gefun-
den, die schon seit langerer Zeit bekannt ist®). Es sei uns erlaubt, dafiir
noch einen einfachen und vom bisherigen unabhéngigen Beweis zu geben.

6. Die einfachste Losung der Pohlke’schen Aufgabe fiir drei Vektoren
in der Ebene. Wir verwenden nur § 1, Nr. 1 speziell Satz 2. Zunichst
werden die in der Ebene gegebenen Vektoren g,, a,, 6, als komplexe
Zahlen z,, z,, 2, gedeutet. Dieser Weg ist zuerst von Gauf gezeigt und
nach ihm von manchen Autoren beschritten worden. Bei der Transforma-
tion auf die Normalform gemif Satz 2 erleiden die Zahlen z,, z,, z, die
orthogonale Substitution (§ 1, Nr. 1, Formel 2):

3

2, = > 8;p%r - (35)
k=1

Dabei ist bekanntlich 2% - 22+ 22 eine Invariante, also:
2+t R=4t4+75 . (36)

In der Normalform ist aber 2,2+ 2,2=0, da a;, 6, senkrecht zueinander
und gleich lang sind ; ferner ist z; = 2, falls z die komplexe Zahl bedeutet,
die zum charakteristischen Vektor p gehort. Also folgt:

%) Vgl. etwa: E. Waelsch, Jahresbericht der deutschen Mathematikervereinigung,
Band 21 (1912), S. 21.
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In analoger Weise ist 2,2, + 2,2, + 252, eine Invariante und eine analoge
Uberlegung ergibt
2e*+|2|* = |z |*+ |25+ |25 |* . (38)

Wie wir in § 1, Nr. 1 bemerkt haben, ist durch (37) und (38) die Aufgabe
gelost. Es sei noch auf die schon von Gaufs im Spezialfall der Normal-
projektion gestellte und geldste zahlentheoretische Aufgabe hingewiesen:
Es sind in (37) 2,, 2,, 2, als Gauf’sche ganze Zahlen so zu wihlen, daf3
auch z als Gauf’sche ganze Zahl herauskommt.

Die Formeln (37) und (38) kénnen auch mit den Mitteln der Elementar-
mathematik auf einfache Weise hergeleitet werden. Wir zeigen dies fiir
(37). Zunichst wiirde man folgenden Hilfssatz beweisen:

In der komplexen Zahlenebene liege eine Ellipse mat dem Morttelpunkt im
Nullpunkt. Es seien , und C, Endpunkte konjugierter Durchmesser und ¢
ein Brenmpunkt. Dann gilt1°):

34 {i=e? . (39)

Sodann héitte man die Parallelprojektionen z,, z,, z; von drei ortho-
gonalen und gleichlangen Vektoren ¢, ¢,, ¢; (die im Nullpunkt der
Zahlenebene angreifen) auf die komplexe Zahlenebene zu betrachten.
Dreht man ¢,, ¢,, ¢; um die Achse ¢, bis ¢, in die Bildebene fillt, so
wandern z; und 2, als Endpunkte konjugierter Durchmesser auf einer
Ellipse. Wegen des Hilfssatzes dndert sich 22 422 4 22 bei dieser Drehung
nicht. Dann wird um den neuen Vektor ¢, gedreht, bis auch ¢, in die Bild-
ebene zu liegen kommt. Auch dabei bleibt 2} -+ 22 + 22 ungedndert. Im
Endzustand ist nun 2 4 22 4 22=22, wobei z die Projektion des
Normalvektors zur Bildebene bedeutet.

Analog wird (38) bewiesen.

Wir erwahnen noch, daf3 der Hilfssatz auch dazu verwendet werden
kann, um aus (37) die GroBe z geometrisch zu konstruieren und damit die
Pohlke’sche Aufgabe konstruktiv zu 16sen. In der Tat 1463t sich (37) auf
mehrere Arten in zwei Gleichungen von der Form (39) zerlegen und damit
auf Ellipsenkonstruktionen zuriickfilhren. So ergeben sich mehrere
Losungen der Pohlke’schen Aufgabe unter denen sich auch die von
Scheffers angegebene befindet.

19) Die Bestimmung von & aus &, und &, in (39) (Pythagoras im Komplexen) ist also
identisch mit der Ry¢z’schen Achsenkonstruktion der Ellipse.

(Eingegangen den 10. November 1937.)
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