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Zum Satz von Pohlke

Von E. Stiefel, Zurich

Es seien in einer Ebene drei Vektoren OX', OY\ OZ' gegeben, die
nicht auf einer Geraden liegen. Dann existieren im Raum drei gleichlange
und zueinander senkrechte Vektoren OX, OY, OZ und eine Projektions-
richtung l, so daB bei der Parallelprojektion in der Richtung l die Vektoren
OX, OY, OZ in OX', OY', OZ' ûbergehen. Dies ist der Satz von Pohlke1).

Wie aile Satze, die elementar formuliert, aber nicht ebenso elementar
bewiesen werden kônnen, hat auch der Pohlke'sche Satz eine spannende
Geschichte und ist Gegenstand zahlreicher Untersuchungen geworden.
Es sei hier nur auf die Arbeiten von Gaufi, Hurwitz und Klein hinge-
wiesen2), in denen Beziehungen zur analytischen und 7i-dimensionalen
Géométrie aufgedeckt werden und die damit die Richtung angeben, in der
die Verallgemeinerungen des Pohlke'sehen Satzes zu suchen sind.

Wenn in der vorliegenden Arbeit die auBerst reichhaltige Literatur ùber
den Pohlke'schen Satz um einen weiteren Beitrag vermehrt wird, so ist
dies in der Cberzeugung geschehen, daB sich die Pohlke'sche Aufgabe auf
einfache und naturliche Weise mit den Mitteln der analytischen Géométrie
und Matrizenrechnung lôsen lassen muB. Es zeigt sich nun in der Tat, daB
dièse Aufgabe àquivalent ist mit der Hauptachsentransformation der
#rara'schen Matrix § 1, Nr. 3) der drei Bildvektoren OX', 0Yr, OZ' und
daB ihre Eigenwerte (§ 1, Satz 4) und Eigenvektoren (§ 1, Nr. 5) eine
einfache geometrische Bedeutung fur die gegenseitige Lage von Original-
und Bildvektoren haben.

In § 1, Nr. 2 wird eine andere Formel fur die Lôsung der Pohlke'schen

Aufgabe hergeleitet, deren anschaulicher Inhalt aber erst in § 2 nach

lângeren Vorbereitungen zutage tritt.
Um nicht ins Uferlose zu geraten, muBten aile Spezialfalle, Verallge-

l) Em elementarer Beweis findet sich m den meisten Lehrbuchern der darstellenden
Géométrie. Vergl. etwa :

Hessenberg-Salkowski, Vorlesungen uber darstellende Géométrie. (Leipzig,
Akad. Verlagsgesellschaft, 1929.) S. 181.

Kollros, Géométrie descriptive. (Zurich, Orell Fufih, 2. AuHage, 1934.) S. 37.

Mulïer-Kruppa, Lehrbuch der darstellenden Géométrie. (Leipzig, B.G Teub-
ner, 4. Auflage, 1936J S. 243. Dort finden sich auch Literaturangaben.

2) Gaufi, Werke. (Leipzig, B. G. Teubner.) Bd. VIII, S. 345.

Hurwitz, Mathematische Werke. (Basel, Birkhauser, 1933 Bd. II, S. 732.

Klein, Elementarmathematik vom hoheren Standpunkte aus. (Berlin,
Spnngei, 3. Auflage, 1925.) Bd. II, S. 89.
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memeiungen und Anwendungen (Normalpiojektion, Affinitat, quadia-
tische Formen) beiseite gesetzt werden, es ist jedoch meistens die Auf
gabe îm n dimensionalen Raum behandelt worden Dies ist mehi ge
schehen, um die Ausnahmestellung des klassischen dreidimensionalen
Falles zu klaren, als wegen der n dimensionalen Verallgememeiungen,
die keme groBen Ûbenaschungen brmgen Der emfachste matrizen-
theoretisehe Beweis fur den klassischen Pohlke'schen Satz steht in
§ 1, Nr 4

Unabhangig vom ubrigen Teil der Arbeit smd lesbar § 1 Nr 5 und
§ 2, Nr 6, an beiden Stellen wird der dreidimensionale
behandelt

§ 1. Die klassische Aufgabe von Pohlke

1 Normalform. Die Vektoren, von denen îm folgenden die Rede ist,
sollen immer an emem festen Punkt 0 angreifen Unter emem Pohlke'
schen ra-Bem verstehen wn nun m Vektoren Cti, a2, <Xm, die m emer
n (m — 1 dimensionalen Ebene Rn des m dimensionalen Raumes Rm

hegen und durch eme Parallelprojektion aus m orthogonalen Vektoren
£i » ^2 tm des Rm von der gemeinsamen Lange e > 0 auf den Rn ent
standen smd Dabei wird m ^ 3 \ o] ausgesetzt Die Pohlke'sche Aufgabe
be&teht darm, zu emem gegebenen ra-Bem a1? <X2, &m die Original
vektoren d, C2 ^» unc^cue Projektion&richtung zu bestimmen

Smd ei, t2, ,tm andeie Oithogonahektoien îm Rm von der Lange e,

so gibt es eme Diehung S, die cx C2, Cw m t[, t2, tm uberfuhrt

m

K~~siiti (î=1 2, ,wî) (1)

Dabei bilden die sik eme orthogonale ra-reihige Matrix >S^ Da unsere
Parallelpiojektion eme lmeare Abbildung ist, bildet sie t[, e2 tm aui

m

K 28tJc<lk (2)

ab Es gilt also

Satz 1. Zwei zur selben Parallelprojektion gehonge Pohlke'sche m-Beme
gehen ausemander durch eme orthogonale Substitution (2) hervor Um
gekehrt entsteht aus einem Pohlke'schen m-Bem durch eme orthogonale
Substitution (2) uneder em solches
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Dièse Tatsache kann man zur Einfuhrung von Normaltypen Pohlke'
scher m-Beine verwenden. Wahlt man zum Beispiel t[ als Normalvektor n

zur Ebene Rn, so hat man:

ei ai, tz ai, im û'm ;

also sind dann die Vektoren ai, ai, û'm zueinander orthogonal und
haben aile die Lange e. Den Vektor a( bezeichnen wir in diesem Spezialfall
mit p und nennen ihn den charaklerislischen Vektor des Pohlke*schen
m-Beins dl,a2, <Xm Er bestimmt namlioh die Projektionsrichtung
(n-p).

Satz 2. Zu jedem Pohlke'schen m-Bein existiert eine orthogonale
Substitution (2), die n (m — 1) unter seinen Vektoren gleich lang macht. Die
gemeinsame Lange dieser Vektoren ist die Lange e der Originalvektoren und
aus dem m-ten Vektor wird der charakteristische Vektor p, der zusammen
mit dem Normalvektor n von der Lange e zum Rn die Projektionsrichtung
(tt — p) bestimmt3).

Bemerkung: Zur Losung der Pohlke'schen Aufgabe ist die explizite
Bestimmung dieser Substitution nicht notig. Es genugt e und p zu be-
reehnen ; dann kann man einfach auf der damit bekannten Projektionsrichtung

von den Spitzen der Vektoren al5 a25 •••> <nm aus auf eine Kugel
um 0 mit dem Radius e zuruckgehen um die Originalvektoren zu finden.

2. Haup(relation. Zur Durchfuhrung der in Satz 2 gegebenen Losungs-
methode verwenden wir ein kartesisches Koordinatensystem im Rn. Unter
A verstehen wir dann die m-zeilige und n-spaltige Matrix, die in der i-ten
Zeile die Komponenten von a, enthalt. Unsere Substitution (2) heifit
dann in der Sprache der Matrizenreehnung :

A' 8A. (3)

Dabei bedeutet naturlich A1 die Matrix mit den Zeilenvektoren
<*i, ai, <tm • Bringen wir das m-Bein gemàB Satz 2 auf die Normalform
und bezeichnen mit P die aus den Komponenten von p gebildete einzeilige
Matrix, so gilt noch :

a'={b)- w

3) In dem aus der darstellenden Géométrie bekannten Fall m 3, also n 2, nennt
man die m Satz 2 eingefuhrte Normalform ,,Kavaherperspektive".
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B ist die /i-reihige Matrix mit den Zeilenvektoren a'2, a'z, a^ und
daher orthogonal:

BB* B*B=:e*En (5)

(Der Stern bedeutet Transposition, 2£n ist die n-reihige Einheitsmatrix)
Aus (3) und (4) folgt:

(SA)* (SA) A*S*SA A*A ==- P*P + B*B

Und damit aus (5) die

Hauptrelation : P* P A* A — e*En

Beide Seiten dieser Relation sind symmetrische Matrizen, und die
Elemente von P*P sind die Produkte aus je zwei Komponenten von p.

Die Hauptrelation enthâlt also —^—-—- Gleichungen zur Berechnung

der (n -f-1 Unbekannten (e und Komponenten von p) aus den gegebenen

Vektoren &!, a2> •••> <*tn- Man wird also ~ Bedingungen

dafùr erwarten durfen, daB m willkùrlich vorgegebene Vektoren
<xY, <^2 • • • » &m lvCi Rn ein PoMke9Bches ra-Bein bilden. Nach unserer
Bemerkung am Ende von Nr. 1 ist die Pohlke'sche Aufgabe durch die
Hauptrelation also im wesentlichen gelôst. Man liest ferner aus ihr ab,
daB die Zahl e und der charakteristische Vektor p (abgesehen vom Vor-
zeichen) durch die Vektoren &19 a2, •-., &m eindeutig bestimmt sind.
Durch Spurenbildung folgt aus (6) noch :

Es soll nun aus der Hauptrelation eine notwendige Bedingung fur die
Lôsbarkeit der Pohlke'schen Aufgabe hergeleitet werden. Zu diesem
Zweck werden aus (6) die Eigenwerte der Matrix A*A berechnet. Sie ent-
stehen aus den Eigenwerten von P*P durch Addition4) von e2. Nun hat
aber P*P hôchstens den Rang 1 (aile zweireihigen Unterdeterminanten
verschwinden), also den (n— l)-fachen Eigenwert 0. Der letzte Eigen-

4) Denn es gilt fur jede quadratischo n-ieihigo Matrix M Die Eigenwoito von
.V — M ^-lEn entstehen aus den Eigenwert on von M duieh Addition von }. In der Tat
hat man fur das charakteristische Polynom von N.

fN{u) Déterminante von uE — N Déterminante von uE — M — 1E —

Déterminante von {u —X) E — M — Jm(u — ^)

211



wert ist dann gleich der Spur |p|2 Demnach ergibt sich fur die Eigen
werte (xl9a2, ocn von A* A

«i IPl2 + e2 Z2, «2 «3= =«n e2 (8)

Dabei sei l die Lange des Projektionsvektors (tl — p)

Satz 3. (Erste notwendige Losbarkeitsbedmgung Ordnet man die Eigev
werte oc1,a2, ocn der Matrix A*A nach abnehmender Grofie, so mufi
gelten

«i > oc2 oc3 <xn > 0

3 Die Grain'sche Matrix eines m-Beins. In dieser Nummer seien
<*i> <*2> » <*m beliebige Vektoren îm jKn, die also mcht notwendigerweise
ein Pohlke'sches m-Bein bilden mussen Wir wollen uns jetzt wieder vom
emgefuhrten Koordmatensystem befreien und bilden zu diesem Zweck
neben der w-reihigen Matrix A*A noch die m-reihige Matrix AA* Das
Elément mit der Nummer ik m dieser Matrix ist das skalare Produkt
(a,, ak) der beiden Vektoren a* und ak Die Matrix heiBe die Gram'sche
Matrix der Vektoren ax, <*2 •> ,(ïm) sie ist symmetrisch und unabhangig
von der Wahl emes Koordmatensystems Ihre Déterminante ist das

Quadrat des Volumens dei Vektoien also bei uns immer 0 Die Gram'sche

Matrix hat demnach immer den Eigenwert 0, wir zeigen, daB die ubugen
n Eigenwerte mit den Eigenwerten von A*A uberemstimmen Zu diesem
Zweck bemerken wii zunachst, daB ein r-reihiger Hauptmmor der
(rram'schen Matrix die (rrara'sche Déterminante emes aus r Vektoren
bestehenden Teilsystems \on ai cc2 aw ist Der r te Koeffizient des

charaktenstischen Polynoms dei (7mm'schen Matrix ist also (abgesehen

vom Vorzeichen) die Summe dei Quadrate aller r dimensionalen Volu
mina, die sich aus den Vektoren ai, a2, dm bilden lassen

Erster Beweis Wir betrachten etwa den Hauptmmor der Gram'schen

Matrix, der aus den Zeilen und Kolonnen mit den Nummern hl7 h2, hr

gebildet ist (r < n) Er ist nach der obigen Bemerkung die Gram'sche
Déterminante der Vektoren ahl, ahr, also nach der Lagrange'schen
Identitat auch die Summe der Quadrate aller r reihigen Déterminanten,
die m den Zeilen mit den Nummern lix, h2, hr der Matrix A stecken
Der r-te Koeffizient îm charaktenstischen Polynom der Gram'schen Ma

trix ist die Summe aller r reihigen Hauptmmoren, also die Summe der
Quadrate aller r-reihigen Unterdetermmanten von A Genau dieselbe
Tatsache gilt aber fur das charaktenstische Polynom der Matrix A*A,
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denn A*A ist die Gram sche Matrix der Kolonnenvektoren von A Die
charaktenstischen Polynôme von AA* und A*A stimmen also îm ersten
bis n ten Koeffizienten uberem Dies war zu beweisen

Zweiter Beweis Wir erganzen A durch eme ganz aus Nullen bestehende
Kolonne zu emer quadratischen m reihigen Matrix B Es genugt zu
beweisen, daB BB* und B*B dieselben Eigenwerte haben Wir beweisen

sogar Smd M und N zwei behebige m reihige quadratische Matrizen,
so haben MN und NM die&elben Eigenwerte

Dies kann man etwa folgendermatôen emsehen Man rechnet zunachst
leicht nach

Spur (MN) Spur (NM)

Ferner hat man (MN)2 (MNM)N und (NM)2 N(MNM), also nach
der eben bewiesenen Spurenrelation

Spur (MN)2 Spur (NM)2
Allgemem

Spur (MN)r Spui (NMf (r 1, 2,

Smd nun xl, x2, xm die Eigenwerte von MN und y^, y2, ym die

Eigenwerte von NM so hat (MN)r die Eigenwerte a^, xr2, xrm und
(NM)r die Eigenwerte yï, 2/2 » ^m Wir haben bewiesen

Daraus folgt aber (abgesehen von der Remenfolge)

Damit ist der Beweis beendigt5)

Da nun also die Gram'sche Matrix Jl^4* dieselben Eigenwerte wie die
Matrix A*A hat, folgt aus Satz 3

Satz 4. (Zweite notwendige Losbarkeitsbedingung fur die Pohlke'sche

Aufgabe Ordnet man die Eigenwerte yx, y2 ym der Gram'schen Matrix
der Vektoren a1} a2, <xm nach abnehmender Grofie, so mufî gelten

yi>r2 Ys= Ym-i > ° > ym =- °

6) Ist die Déterminante von M von 0 verschieden, so folgt die Behauptung aueh emfach
aus MN M (NM)M"1

213



Es ist dann nach (8) :

Yl =p, y2 e*. (9)

Man hàtte diesen Satz auch direkt aus den Formeln (4) — (6) folgender-
mafîen herleiten kônnen :

Durch direkte Rechnung bestâtigt man, daB die letzte Matrix in dieser
Gleichung und damit auch AA* die Eigenwerte von Satz 4 hat.

4. Hauptachsentransformation der Gram'schen Matrix. Die Gram'&che
Matrix AA* der Vektoren a!, a2, • •, <tm ist eine symmetrisehe Matrix, sie

kann daher durch orthogonaleTransformation auf Diagonalform gebracht
werden. Sei also etwa E eine orthogonale ra-reihige Matrix, so daB

0

R{AA*)& (RA) (RAf l n. \ (10)

Yr,

Bezeichnet man die Zeilenvektoren von RA mit Gj, <*2, •, &m, so ist also

obige Diagonalmatrix die ^ram'sche Matrix von <tu &2i ••.,<*„, und dar-
aus folgt:

a) Die Vektoren <t1,02) dm stehen senkrecht aufeinander.

b) |51|«=y1, Û2|2-y2, ,|âJ2----ym (11)

Aus der Existenz dieser Hauptachsentransformation ergibt sich nun
leicht :

Satz 6. Die beiden Losbarkeitsbedingungen von Satz 3 und Satz 4 sind
hinreichend.

Da die zweite Bedingung aus der ersten hergeleitet wurde, genugt es zu
zeigen, daB die Bedingung von Satz 4 hinreichend ist. Sei also dièse

Bedingung erfûllt, das heiBt wegen (11):

l«il >|Â2| - |5,| =-•-=! â^-x | > 0 ; âm-0. (12)

Wir wollen nun beweisen, daB dièse Vektoren 6i,62, ...,6m einPohlke'-
sches m-Bein bilden. Dazu mûssen die Originalvektoren i19ii9 •••J^m
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angegeben werden Wn wahlen e2 <X2, ^3 <*s> > *m-i <*m-i
Die gememsame Lange dieser Vektoren sei wieder mit e bezeichnet
Wegen \at | > e kann nun 111 der zu ë2, C-,, ëm_! orthogonalen 2-dimen-
sionalen Ebene (die ax enthalt) em Vektor É! von der Lange e und eine zu
îhm senkrechte Projektionsrichtung so gewahlt werden, da8 \Y bel dieser
Parallelprojektion m <xx ubeigeht tm hegt daim einfach m der Projektionsrichtung

Da nun also emerseits die Vektoien di,<*2 > &m em Pohlke'sches
m-Bem bilden und andererseits durch die orthogonale Substitution R
aus <Xi, a2, am hervoigegangen smd, war nach Satz 1 auch ax, a2, am

em jPo/fcZ&e'sches m Bein, was zu beweisen war
Im Fall m 3, n 2 folgt

Satz 6. (&a£z wo/i Pohlke Drei Vektoren vom Rang 2 konnen immer aïs

Parallelproyektionen von drei orthogonalen und gleichlangen Vektoren des

3-dimensionalen Raumes aufgefafit werden

Beweis Nach Voraussetzung haben die gegebenen Vektoren al5 a2, a3

den Rang 2 Dasselbe gilt fur d1, a2, d^^ da dièse Vektoren aus au a2, <t3

durch die orthogonale Substitution R entstehen Andererseits stehen
nach a) die Vektoren dly a2, d^ senkrecht aufemander und daher muB
einer unter îhnen der Nullvektor sein Wir konnen also etwa annehmen

\*i\>\*%\>0, 53 O (12a)

Die Bedmgung (12) ist also von selbst erfullt, von îhr ausgehend kann man
weiterschlieBen wie im allgememen Fall

Dei klassische Pohlke'sche Satz ist also im wesentlichen aquivalent mit
dem Hauptachsentheorem der symmetnschen 3 reihigen Matrix

5 Der dreidimensionale Spezialfall. Es soll jetzt fur den klassischen
Po^A;e'schen Satz 6 em anschaulicher Beweis gegeben werden, der unab-
hangig vom bishengen ist und die formale Matnzenrechnung vermeidet
Dabei werden wir den Schwarz'schen Beweisansatz7) verwenden, wahrend
die m Nr 1 an die Spitze gestellte Méthode der orthogonalen
Transformation eng verwandt ist mit dem Prmzip der Hilfskugel von J W von
Deschwanden

7) Die klassischen Beweise des Pohlke schen Satzes wuiden zusammengestellt von
E Wendhng Der Fundamentaîsatz der Axonometrie, Zurjeh, 1912
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Seien also in der Zeichenebene R2 drei Vektoren at, a2> <t3 vom
Rang 2 gegeben, die von einem Punkt 0 auslaufen. Wir bestimmen zu-
nachst die Entfernung r eines Punktes der Zeichenebene mit dem Orts-
vektor yx ^ + 2/2 «2 + 2/3 <*3 v°n 0 ¦

**=£ (a.,at)y,yfc. (13)

Dabei bedeutet (at, afc) das skalare Produkt der Vektoren at und ak. Die
zu dieser ,,metrischen Fundamentalform" (13) gehorige Matrix ist ubri-
gens die in Nr. 3 eingefuhrte Gram'sche Matrix der gegebenen Vektoren

Fur die charaktenstische Gleichung der quadratischen Form (13)
findet man:

0 (14)

worin die Koeffizienten oc und fi folgende geometrische Bedeutung haben :

P Summe der Quadrate der von je zwei Vektoren at, <xk auf- (15)
gespannten Parallelogrammflachen (vgl. Nr. 3).

(Die charakteristische Gleichung hat kein absolûtes Glied, da die
Déterminante der Form, d. h. das Quadrat des Volumens von aly a2> a3 Null
ist.) Es ist oc > 0, p > 0 und daraus folgt, daÔ (14) auBer der trivialen
Nullosung noch zwei positive Losungen hat. Wir bezeichnen dièse Losun-

gen, d. h. die Eigenwerte der Form (13) mit

Yi > ?2 > 0, y3 0 (16)

Ferner merken wir uns noch die Gleiehung des Einheitskreises um O;
sie lautet :

Nach diesen Vorbereitungen wahlen wir nun in einem dreidimensio-
nalen Raum i?3 (der die Ebene R2 nicht enthalten muB) ein kartesisches

Koordinatensystem a?ls x2, x3 und bilden R3 linear auf R2 ab, indem wir
dem Punkt mit den Koordinaten (xli x2, x3) den Punkt x1a1+x2<t2+x3a3
zuordnen. Die Grundvektoren (1, 0, 0), (0, 1, 0), (0, 0, 1) des Koordinaten-
Systems gehen dabei in ax, a2, a3 uber. Wegen der Linearitat der Abbil-
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dung erfullen aile Punkte des R3, die denselben Bildpunkt haben eme
Gerade, die gememsame Richtung dieser Geraden werde mit l bezeichnet
Dem Emheitskieis (17) entspncht îm R3 die Flache zweiten Grades

£(ût,ak)xtzk=: i (18)
i,k=i

Es ist dies wegen (16) em elliptischer Zylmder, dessen Mantellinien not-
wendigerweise die Richtung l haben Semé Halbachsen betragen

1 1

Jetzt wud m den R3 eine Ebene R1 gelegt, die aus dem Zylmder emen
Kreis K schneidet Vermoge unserer Abbildung ist R2 affin auf R2 be

zogen, da bei dieser Affinitat der Kreis K m den Kreis (17) ubergeht, ist
dièse Affimtat eme Ahnhchkeit Innerhalb R2 ist somit unsere Abbildung
von R3 auf R2 eme Ahnhchkeit

Seien nun <t1,&2>&3 die Parallelprojektionen der Grundvektoren
(1,0, 0), (0, 1, 0) (0, 0, 1) auf ~R2 m der Richtung l Dièse Vektoren haben
m R2 dieselben Bilder wie die Giundvektoren, gehen also m alt a2, a3

uber und smd mfolgedessen ahnlich zu a1; a25 <*3 Damit ist der Pohlkë
sche Satz bewiesen denn wir haben gezeigt, da8 es zu ax, a2, ^3 ahnliche
Vektoren &l9 a2, Ci3 gibt, die durch Parallelprojektion aus drei orthogo-
nalen und gleichlangen Vektoren entstehen Dièse hmzutretende
Ahnhchkeit ist aber unwesenthch

Die Stellung der Ebene R2 îm R3 Ia6t sich etwa folgendermaBen
beschreiben Wir konstruieren îm Nullpunkt M des kartesischen Koordi-
natensystems die Zylmderhalbachsen a und b und nennen îhre End-
punkte A und B Dann lauft R2 duroh MA und bildet mit MB den
Winkel cp mit

co b_VK (20)

Der Schnittkreis K hat demnach den Radius a und das Ahnhchkeits-
verhaltms bei der Abbildung von i?2 auf R2 betragt Ija j/y2 Werden
also a1? a2, a3 direkt als Parallelprojektionen \on drei orthogonalen
Vektoren tx, e2, e3 dargestellt, so ergibt sich fur die gememsame Lange e

dieser Vektoren
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Ferner hat man fur den Neigungswmkel y> der Projektionsrichtung l zur
Ebene B2 den Wert y 90° — cp, das heiBt

(22)

Endlich fuhren wir noch die Koordmaten (alt a2, a,) von A m unserem
kartesischen System ein Es ist also (ax, a2 «3) em zum Eigenwert y2

gehonger Eigenvektoi der quadratisehen Form (13) oder auch der
Gram'schen Matrix Er ist senkrecht zu ly liegt m R2 und geht bei der
Ahnlichkeit m ax ax + a2 a2 -f «3 a3 uber

Damit konnen wn nun die Pohlke'sche Aufgabe losen, das heiBt die
gegebenen Vektoren ax, a2 &% direkt als Parallelprojektion eines
kartesischen Dreibeins tx, e2 e3 darstellen Zu diesem Zweck werden zunachst
die Eigenwerte yx, y2 dei Gram'schen Matrix von ax, a2, <*3 und em zu y2

gehonger Eigenvektor (a1, a2, a3) ermittelt Dann steht die Projektionsrichtung

senkiecht auf aY ax + a2 a2 + «3 a3 und bildet mit der Zeichen-
ebene den durch (22) gegebenen Wmkel y) Die damit bekannten Projek-
tionsstrahlen durch die Endpunkte von al5 a2, a3 werden nun mit der

Kugel um 0 vom Radius e |/y2 durchstoBen und ergeben die
Endpunkte der von 0 auslaufenden Ongmalvektoren cl5 C2, C3

§ 2. Reine Dehnungen von der Spur Null

1 Normalzerlegung der symmetrischen Matrix. Wir betrachten lineare
Abbildungen m einem n dimensionalen Raum Rr Smd xl9 x2, xn
kartesische Koordmaten m îhm so hatte man etwa fui eme derartige
Abbildung

Xp Sd^x,, (a«=1,2, ,%), (23)

oder wenn man die Abbildung&matnx mit D (d^) und die Zcile

xr, x2, xn mit X bezeichnet

X - XD* (24)

Im folgenden sei nun D immer eme symmetrische Matrix, wir nennen
dann die zugehonge Abbildung eme reine Dehnung des Raumes Dies

aus folgendem Grunde Da D eine symmetrische Matrix ist, existiert eme
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orthogonale Koordinatentransformation, die D auf Diagonalform bringt.
Im neuen Koordinatensystem lauten die Abbildungsgleichungen :

^ ^, (25)

wo d1,d2, ..,c£n die Eigenwerte von D sind. Die neuen Koordinaten-
achsen bezeichnen wir auch als Achsen der Dehnung ; sie sind gegeniïber
der Dehnung invariant. Die Eigenwerte d1,d2, • •-,dn kônnte man auch
als Dehnungsverhâltnisse bezeichnen. Eine reine Dehnung ist also eine
lineare Abbildung des Rn, die n zueinander senkrechte Achsen ungeândert
lâfit.

Nun tragen wir auf jeder Achse einen Einheitsvektor b^ auf8) und
nennen ihn den fi-ten Eigenvektor von D.

Werden seine Komponenten im alten Koordinatensystem zu einer
Zeile Dp zusammengefaBt, so gilt:

D d.DlD^d.DlD, + ••• + dnD*HDn (26)

mit: D^Dp 1, D^ 0 fur /n ^ v (27)

Beweis: Wir bezeichnen fur einen Moment die rechte Seite von (26) mit
S. Dann ergibt sich :

Der Vergleich mit der Abbildungsformel (24) zeigt, daB die zu 8 gehôrige
Abbildung jeden Eigenvektor und damit jeden Vektor auf einer Deh-
nungsachse mit dem zugehôrigen Dehnungsverhâltnis multipliziert.
8 stimmt also mit D iiberein.

Wegen (27) nennen wir (26) die Normalzerlegung der symmetrischen
Matrix D und kônnen formai den folgenden Satz aussprechen :

Satz 7. (Normalzerlegung der n-reihigen symmetrischen Matrix D.)
Es lâfit sich D nach (26) und (27) zerlegen, wobei die D^ einzeilige Matrizen
sind. In jeder derartigen Zerlegung sind die d^ die Eigenwerte und die D^
die Eigenvektoren von D.

8) DaB t)(ji in der einen oder andoren Richtung auf der betrefïenden Achse gewâhlt
werden kann ist fur uns gleichgùltig. Auch fur die Lôsung der Pohlke'schen Aufgabe ist die
Umkehrung eines Vektors in den entgegengesetzten Vektor unwesentlich.
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2. Dehnungen mit der Spur Null. Dièse durch dx + d%-\ -\-dn 0

ausgezeichneten Dehnungen werden im folgenden eine besondere Rolle
spielen. Wir halten zunâchst fest, daB sie eine Abel'sche Grappe beziiglich
der Summation bilden. Dabei verstehen wir unter der Summe der beiden
Abbildungen

Xx XD\ und X2 XD\

diejenige Abbildung, die dem Vektor X den Bildvektor X1 + X2 zuordnet.
Zu ihr gehôrt die Matrix D1 + D2. Die Summe ist wieder symmetrisch und
hat die Spur 0, falls D1 und D2 dièse Eigenschaften hatten.

Die einfaehsten Dehnungen von der Spur Null sind die, bei denen

môglichst viele Eigenwerte zusammenfallen. Es sei etwa:

d1 —{n—l)r2\ d2 d3 • • • dn r2. (28)

Die Normalzerlegung lautet dann :

Nun ist andererseits D*D1 + D2D2+ •*• -\-D*nDn eine Matrix mit lauter
Eigenwerten Eins, also die Einheitsmatrix. Dies ergibt zusammen:

D r*E _ nr*D\D1 (29)

Wir setzen noch: t rî>x und analog R rDx und erhalten:

D |t|2^ — nJB#i2 ; i?i?* |r|2 (30)

Die Dehnung D ist also durch den Vektor t eindeutig bestimmt. An-
schaulich besteht sie (abgesehen von einer Âhnlichkeit im Verhâltnis |r|2)
aus einer Affinitât an der zu t senkrechten (n — l)-dimensionalen Ebene
im Verhâltnis [— (n— 1)]. Wir nennen dièse Dehnung daher die zum
Vektor t gehôrige Streckaffinitât.

3. Zerlegung in Streckaffinitâten. Sei nun D wieder eine beliebige
reine Dehnung von der Spur 0. Die Normalzerlegung:

mit
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imd wie wn schon oben bemerkt haben

D'1D1+DlD2+ +D'nDn E

Wegen dieser diei Gleichxmgen konnen \ur auch schreiben

A-

X ist ein y, ahlbarer Parametei Wn bezeiclmen noch mit e die Zahl _[__ l
je nach dem Vorzeichen \ on A — d^jn - k^ und setzen noch r^ |/|JfcJ ^
AlibO

Damit ist D m Streckaffimtaten zerlegt, die zu Vektoren gehoren die auf
den Achsen von D liegen

Durch Wahl von X hat man es nun in der Hand, eine der Streck-
affinitaten m (31) zu Null zu machen und uber die Vorzeichen der ubrigen
8^ zu verfugen

Satz 8. Zu emer temen Dehnung D von der Spur 0 %m n dimensionalen
Raum gibt es {n — 1) oithogonale Vektoren ^ r2, tr l5 die auf Achsen
det Dehnung liegen, so da/3 die zugehongen Si? eckaffinitaten qx, q2, gn^x
die Beziehung

+fi»lgnl (32)

erfullen Dabei ist (e^,) — 1, die Vorzeichen der e smd wahlbar

Beispiel Im dreidimensionalen Raum soll eme Dehnung als ç± — ^2

dargestellt werden Dann liegt tr auf der Achse mit dem klemsten und t2
auf der Achse mit dem groBten Dehnungsverhaltms, bezeichnet man
dièse Verhaltnisse mit v und u und das dutte Dehnungsverhaltms mit
w — (u + v), so gilt

\u\="J-w

Die m Satz 8 ausgesprochêne Zerlegung îst nun durchaus nicht die

emzige Es kann D auch in Streckaffimtaten zerlegt werden, deren zu-
gehorige Vektoren nicht senkiecht aufemander stehen Wir sprechen
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das diesbezugliche Résultat nui îm Spezialfall des dreidimensionalen
Raumes aus

Wir hatten in obigem Beispiel D =- qx — q2 wobei qx und q2 zu den

genau beschnebenen Vektoren t1 und t2 gehoren Nun sei D q^ — g2

eine allgememe Zerlegung und t[ und t2 die zugehorigen Vektoien Man
konstruiere noch m der Ebene (t1? t2) das Paar konjugierter Hyperbeln
mit den Halbachsen tx und t2 Dann gilt Der Endpunkt von ti durch-
lauft eine Hyperbel und der von r2 die andere, und dabei liegen beide
Vektoren immer auf konjugierten Durchmessem

Zur Herleitung bemerken wir noch folgendes Es ist von vornherein
klar, da6 qx — q2 die zu tj und t2 senkrechte Gerade invariant laBt Dièse
muB also eine Aehse von D sein Daher kommen nur solche Vektoien tx
und ta in Frage, die m einer durch zwei Achsen von D aufgespannten
Ebene liegen Es genugt nun vollstandig, da6 die Abbildung qx — q2 auf
die Punkte dieser Ebene dieselbe Wirkung habe wie D, denn weil die

Spuren Null smd, kommt dann îm Raum von selbst ailes m Ordnung Es

ergibt feich also em ebenes Problem, das leicht zu losen ist

4 Anwendung auf die Aufgabe von Pohlke. Seien nun wiedei
<ïi» <Ï25 ,ûm die m § 1 betrachteten Vektoren îm Raum Rn Wir bilden
die Summe der zugehorigen Streckaffimtaten (A^ Zeile aus den Kom-
ponenten von aM)

Beachtet man dafi A\AX+ + A*mAm die Matrix A*A von § 1 Nr 2

ist, so folgt aus der Hauptrelation (6) und aus (7)

(\al\*E-nA\Al)+ +(\am\*E-~nA*mAJ - \v\*E — nFP (33)

In Woiten

Satz 9. Ist &i, &i9 &m em Pohlke'sches m-Bem, so ergibt die Summe
der zugehorigen Streckaffimtaten <xl9oc2, ocm die Streckaffimtat n am
charaktenshschen Vektor p

Damit ist die Hauptrelation geometnsch îllustriert Wir schlieBen

weiter
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Satz 10. Ist der Rang von m Vektoren im n= (m — l)-dimensionalen
Raum grofier dis 1 und ergibt die Summe der zugehorigen Streckaffinitâten
wieder eine Streckaffinitât, so bilden die Vektoren ein Pohlke'sches m-Bein.

Beweis: Aus dem Bestehen von (33) folgt:

A*A=e*E + P*P wo e2 ~C£|<Vl2-— |p|2)

Daraus liest man leicht die Eigenwerte von A*A und damit auch die

Eigenwerte der Gram'schen Matrix AA* ab:

Die Lôsbarkeitsbedingung von Satz 4 ist erfiïllt, sobald e > 0. Wàre aber
e — 0, so hâtte die Gram'sche Matrix und damit auch die Vektoren den

Rang 1 oder 0, was verboten ist.

Satz 11. Sind im n-dimensionalen Raum drei Vektoren gegeben, deren

Rang > 1 ist, so kônnen dièse Vektoren zu einem Pohlke'schen m (n + 1 )-
Bein ergdnzt tverden.

Beweis: Seien ^c1,^2,a3 die Streckaffinitâten, die zu den gegebenen
Vektoren al5 a2, <*3 gehôren. Dann existiert nach Satz 8 eine Zerlegung
in Streckaffinitâten:

^1+^2 + ^3 tt— ^4 — 0C7i — ••• ~0im (34)

Satz 10 beendigt den Beweis, indem aus ocl-\~a2-\- • • • +ocm n folgt,
daû die zugehorigen Vektoren ct1; <*2> &*> • • •> &m e^n Pohlke'sches m-Bein
bilden.

Weiter sehen wir noch, dafi im Fall m 4, n 3 nach Wahl von
<*i> &2, <*3 die Vektoren a4 und p auf zwei konjugierten Hyperbeln beweg-
lich sind, indem sie konjugierte Durchmesser bilden. Zur Bestimmung der
Hyperbeln musseii die Achsen der Dehnung ax + oc2 + ocz bestimmt werden.
Dies erfordert die Auflôsung einer reduzierten kubischen Gleichung.

5. Der Fall von drei Vektoren in der Ebene. Der Fall m — 3, n 2 ist
zunâchst einmal dadurch ausgezeichnet, daB jede Dehnung von der Spur
Null von selbst eine Streckaffinitât ist. Da die Dehmmgen von der Spur
Null bei der Summation eine Gruppe bilden, ergibt Satz 10 den klassi-
schen Satz von Pohlke.
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Andererseits aber smd die Dehnungen mit der Spur Null abgesehen von
einer hmzutretenden Ahnhchkeit îdentisch mit den euklidischen Spiege-
lungen an emer Geraden Es ist daher zweekmatôig, m diesem Spezialfall
den folgenden Begrifï emzufuhren Sei t em Vektoi in der Ebene und q'
die Abbildung der Ebene, die entsteht, mdem man jeden Vektor an t
spiegelt und îm Verhaltrus |r|2 verlangert (St^eckspiegelung an t).
Ist dann q wie oben die zu t gehonge Streckafhnitat, so gilt q' — q
Schreiben wir demnach die durch Satz 9 gegebene Zeilegimg m der
Form — n — oi± — oc2 — <x3, so folgt

Satz 12. Ist m der Ebene em Pohlke'sches Dreibem durch drei beliebige
Vektoren ax, a2, <*3 vom Rang 2 gegeben, so ergibt die Summe der Streck
spiegehmgen an ^, a2, <*3 die Streckspiegehcng am charaktenstischen
Vektor p

Damit ist zusammen mit der aus (7) folgenden Formel 2 e2 — | <tx 12 +
I <*212 + I &3\2 — I PI2 die emfache Losung dci Pohlke sclien Aufgabe gefun-
den, die schon seit langerer Zeit bekannt ist9) Es sei uns eilaubt, dafui
noch einen einfachen und vom bisherigen unabhangigen Beweis zu geben

6 Die einfachste Losung der Pohlke'schen Aufgabe fur drei Vektoren
in der Ebene. Wir verwenden nur § 1, Nr 1 speziell Satz 2 Zunacbst
werden die in der Ebene gegebenen Vektoren a1? a2, a3 als komplexe
Zahlen zlfz2i z3 gedeutet Dieser Weg ist zuerst von Oaufi gezeigt und
nach îhm von manchen Autoren beschntten worden Bei der Transfoima-
tion auf die Normalform gemaB Satz 2 erleiden die Zahlen zitzz, z3 die

orthogonale Substitution (§ 1, Ni 1 Formel 2)

Dabei ist bekannthch z\ + z\ + z\ eme Invariante also

z[*+z'*+z* z\ + zl + zt (36)

In der Normalform ist aber z'x2 + z22 0, da a[, a2 senkrecht zuemander
und gleich lang smd, fernei ist zz z, falls z die komplexe Zahl bedeutet,
die zum charaktenstischen Vektoi p gehort Also folgt

z* zt + zï~ï z\ (37)

•) Vgl etwa E Waelach Jahresbei icht der deutschen Mathematikerveremigung
Band 21 (1912), S 21
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In analoger Weise ist zxzx + z2z2 + zzzz eme Invariante und eme analoge
Ûberlegung ergibt

2e*+|z|« |z1|« + |z1|» + |z,|« (38)

Wie wir m § 1, Nr 1 bemerkt haben, ist durch (37) und (38) die Aufgabe
gelost Es sei noch auf die schon von Gaufi îm Spezialfall der Normal
projektion gestellte und geloste zahlentheoietische Aufgabe hmgewiesen
Es smd in (37) zt, z2 z3 als Gaufi'sche ganze Zahlen so zu wahlen daB
aueh z als Gaufi'sche ganze Zahl herauskommt

Die Formeln (37) und (38) konnen auch mit den Mitteln der Elementar-
mathematik auf emfache Weise hergeleitet werden Wir zeigen dies fur
(37) Zunachst wurde man folgenden Hilfssatz beweisen

In der komplexen Zahlenebene liège eme Ellipse mit dem Mittelpunkt im
Nullpunkt Es seien Ci und Ç2 Endpunkte kowjugierter Durchmesser und e

em Brennpunkt Dann gilt10)

Cï + Cï - s2 (39)

Sodann hatte man die Parallelpiojektionen zl5 z2, z3 von drei ortho
gonalen und gleichlangen Vektoren c1? C2, C3 (die im Nullpunkt der
Zahlenebene angreifen) auf die komplexe Zahlenebene zu betrachten.
Dreht man e1? e2, £3 um die Achse e3 bis d m die Bildebene fallt, so

wandein zt und z2 als Endpunkte konjugierter Durchmesser auf einer
Ellipse Wegen des Hilfssatzes andert sich z\ + z\ + z\ bei dieser Drehung
nicht Dann wird um den neuen Vektor tx gedreht, bis auch e2 m die
Bildebene zu liegen kommt Auch dabei bleibt zl + zl + zl ungeandert Im
Endzustand ist nun z\ + z\ + ^3 z2, wobei z die Projektion des

Normalvektors zur Bildebene bedeutet

Analog wird (38) bewiesen

Wir erwahnen noch, dafî der Hilfssatz auch dazu verwendet werden
kann, um aus (37) die GroBe z geometrisch zu konstruieren und damit die
Po^Z&e'sche Aufgabe konstruktiv zu losen In der Tat laBt sich (37) auf
mehrere Arten in zwei Gleichungen von der Form (39) zerlegen und damit
auf Elhpsenkonstruktionen zuruckfuhren So ergeben sich mehrere

Losungen der Pohlke 'schen Aufgabe unter denen sich auch die von
Scheffers angegebene befindet

10) Die Bestimmung von c aus ^ und £2 m (39) (Pythagoras im Komplexen) ist also
identisch mit der Rytz schen Achsenkonstruktion der Ellipse

(Emgegangen den 10 November 1937
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