Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 10 (1937-1938)

Artikel: Les solutions élémentaires d'une classe d'équations aux dérivées
partielles linéaires d'ordre supérieur.

Autor: Théodoresco, N.

DOl: https://doi.org/10.5169/seals-10993

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 15.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-10993
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Les solutions élémentaires d’'une classe
d’équations aux dérivées partielles linéaires
d’ordre supérieur

Par N. Tafoporesco, Bucarest

§ 1. Introduetion. L’examen des méthodes utilisées pour la résolution
des problémes aux limites posés par la Physique Mathématique montre,
qu'en général, celles-ci reposent sur ’emploi d’'une formule de Green,
permettant le passage d’une intégrale étendue & une variété & m dimen-
sions & une intégrale étendue & ’hypersurface limitant la variété en
question. Cette formule fondamentale établie, il s’agit de trouver une
fonction auxiliaire, la solution élémentaire (dont le modéle le plus connu
est le potentiel élémentaire ou la fonction de Green de la théorie de
I’équation de Laplace), telle qu’il soit possible d’isoler la valeur de l'in-
connue en un point, en spéculant les avantages résultant de la présence
d’une singularité appropriée.

Cest ce qui a permis & M. Hadamard de résoudre le probléme de
Cauchy pour les équations du second ordre du type hyperbolique normal.
Ses méthodes ont mis en évidence a la fois le role du conoide carac-
téristique, espéce de variété conique a génératrices courbes, figurant la
marche d’une onde produite par un ébranlement localisé au moment
initial dans le voisinage d’un point, et la nécessité de I'introduction de la
solution élémentaire, dont la singularité est répandue sur tout le conoide
caractéristique de chaque point.

Ces remarques se retrouvent méme dans ’étude des équations d’ordre
supérieur & 2 et des systémes d’équations aux dérivées partielles, bien que
ce cas ait été relativement trés peu étudié jusqu’a présent et envisagé
plutot de bien des maniéres particuliéres, en raison des difficultés qu’il
présente.

Ainsi, Fredholm a considéré le cas des équations d’ordre quelconque n a

. ou ou OJu .
ceefficients constants de la forme f(;?—:ﬂ > 3y @) = 0 ol f(m,, 7y, 74) est
une forme algébrique homogéne de degré » en les variables 7, & coefficients
constants!) et a, particuliérement, construit pour ces équations des

solutions singuliéres en un point donné M comme 1|r, r étant la distance

1) 1. Fredholm, Sur les équations de 1’équilibre d’un corps solide élastique
(Acta Mathematica, T. 23, 1900, pp. 1—42).
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MP & un point P variable de I'espace, en généralisant la théorie du
potentiel aux équations d’équilibre d’un corps élastique. Ses recherches
ont été étendues par M. N. Zeilon'), qui envisage aussi le cas ou la forme
f(my, 7y, 5, 7,) n’est pas définie.

M. Q. Herglotz?) considére le cas ou m = pair et I’équation f = 0,
congue comme une relation entre des coordonnées cartésiennes x; = ;L’
représente une surface composée de n|2 ovales entourant I'origine et n;
se coupant pas entre elles.

Récemment, toutes ces recherches ont été reprises par M. FI. Bureaud),
qui les a étendues au cas d’une forme f(7,, 7, ... #,) = O de degré net & p
variables a coofficients réels et constants.

Le cas général des équations linéaires complétes d’ordre quelconque, a
plusieurs variables et & ceefficients variables n’a pas, a4 notre connaissance,
été envisagé jusqu’ici, exception faite des recherches de M. Holmgren?)
traitant du cas de I’équation d’ordre trois et des systémes du premier
ordre a 2 variables indépendantes, dont les résultats ont été retrouvés et
précisés par M. F'. Rellich®).

Dans un mémoire publié en 1936, nous avons considéré le cas des
systémes d’équations linéaires du premier ordre a coefficients variables
jouissant d’une particularité qu’on rencontre fréquemment dans les
applications physiques: la forme caractéristique 4 (=, ... x,) est décom-
posable en deux facteurs P et ¢ dont P quadratique en les variables

aG z Id = s » Id ’
T = G(xy, x5 ... x,) = 0 étant I’équation d’une variété caracté-
Ty
ristique.

Nous avons calculé des solutions élémentaires algébriques singuliéres
sur la nappe conoidale caractéristique provenue du facteur quadratique

1) N. Zeilon, Das Fundamentalintegral der allgemeinen part. lin. Diffe-
rentialgleichungen mit konst. Koeffizienten. (Archiv fir Math., Astr. och Fysik,
Bd. 6, No. 38, 1911 et Bd. 9, No. 18, 1913.)

2) @. Herglotzy, Uber die Integration linearer partieller Differential-
gleichungen mit konst. Koeffizienten. (Leipzig Ber. 78, Bd. 1926.)

3) Fl. Bureau, Essai sur l’intégration des équations linéaires aux dér.
part. (Mémoires de I’Ac. royale de Belgique 2¢ série, T. 15, 1936.)

Les solutions élémentaires des équations linéaires aux dérivées
partielles. (Idem, t. 15, 1936).

%) H. Holmgren, Sur 1’extension de la méthode d’intégration de Riemann.
(Archiv fiir Math., t. 1, 1904). Sur les systémes linéaires aux dér. part. (Idem
t. 6, 1911.)

5) F. Rellich, Verallgemeinerung der Riemannschen Integrationsmethode.
(Math. Annalen, Bd. 103, 1930.)
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P(n,, ... ®,) et réguliéres dans l'intérieur du conoide, y compris les
nappes fournies par ’autre facteur @ = 0?).

Dans un autre mémoire2), nous nous sommes occupé des équations
d’ordre supérieur a caractéristiques multiples, en montrant qu’il n’est pas
en général possible d’obtenir des solutions élémentaires & singularité
algébrique sur les nappes provenant du facteur quadratique multiple P
de la forme caractéristique et en donnant la forme des équations qui
admettent de telles solutions.

La présente recherche a pour but de conduire aux solutions élémen-
taires des équations d’ordre » a coefficients variables et telles que leur
forme caractéristique A, considérée comme une forme algébrique homo-
géne de degré n en les variables z;, soit décomposable en deux facteurs
Pet Q dont P = Xp,;;n,x; est quadratique en 7, .

Les recherches de M. Hadamard ont montré qu’a toute équation du
second ordre il convient de rattacher la géométrie d’un élément linéaire
riemannien, savoir de celui qui provient de la forme adjointe de la forme
caractéristique. En passant au cas des équations d’ordre supérieur, il
serait nécessaire d’adopter un autre langage géométrique. La particu-
larité que nous admettons ici est justifiée par cela qu’elle nous permet
de développer nos calculs dans un espace de Riemann.

En chaque point M, le conoide caractéristique se composera d’une

nappe I" fournie par I’équation Z'p,; g—G o
x; 0,
du facteur ¢ = 0.

Dans l'interprétation de M. Hadamard, une discontinuité produite au
point M au moment initial, se propagera suivant la variété I" -+ 2, mais
§’il y a compatibilité, la propagation aura lieu suivant une seule, par-
faitement déterminée, de ces nappes?).

Inversement, dans la supposition que I’équation régit un mouvement
dans l'espace-temps =, ...x,,f pour connaitre ce mouvement & un
instant ¢, il suffit de le connaitre a I'instant initial ¢ = ¢,, non pas dans
tout ’espace, mais sur la variété section du conoide par le plan ¢t = ¢, et
,,dans le cas ol ce conoide se compose de plusieurs nappes fermées, il faut
considérer la plus extérieure de ces nappes‘.%)

= 0 et des nappes £2 provenues

1) N. Théodoresco, Les solutions élémentaires d’une classe de systémes
d’équations aux dér. part. (Revue mathématique Interbalkanique, T. 1, 1936.)

2) N. Théodoresco, Sur les équations aux dérivées partielles linéaires a
caractéristiques multiples (Journal de Mathématiques, 1937. Volume jubilaire
de M. Hadamard).

%) Cf. Hadamard, Legons sur la propagation des ondes, No. 307, p. 289.

4) Cf. Hadamard, loc. cit. No. 306, p. 290 et remarque (1), p. 291.
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Notre solution élémentaire sera singuliére sur la nappe conoidale I’
provenue du facteur P = 0 de la forme caractéristique 4 = P. @ et
réguliére dans tout l'intérieur du conoide I', y compris les nappes pro-
venues de ¢ = 0.

Nos calculs feront intervenir les variétés caractéristiques qui, comme
on le sait, sont conservées dans toute transformation ponctuelle effectuée
sur les variables indépendantes x,. Il conviendra donc d’écrire les équa-
tions & étudier, que nous prendrons pour la simplicité de 1’écriture du
quatriéme ordre, sous forme invariante par rapport a toute transforma-
tion ponctuelle, & 'exemple de M. Th. de Donder') qui a montré comment
on peut mettre toute équation linéaire d’un ordre quelconque sous une
forme invariante a ’aide de dérivées variationnelles se rattachant a des
principes extrémants de la Physique Mathématique. Nous montrerons
que cet aspect invariantif des calculs s’impose dans cet ordre d’idées
d’une maniére naturelle, en raison de I’introduction de la forme métrique
2g;;dx;dx; et de la géométrie de 1’élément linéaire correspondant.

§ 2. Forme invariantive de I’équation. Nous partirons de I’équation

d'g e

e BBy T Ty
¥ O, O, 0, 0%, "% O, 0 ; 0y,

“ 9, 0x;

XA

0
+ 2D, L+ Bp =0
(1)

o Axs Biji» Cijy Di, B sont des fonctions analytiques des variables
%y, Zg, ... X,, dans la région ol ’on étudie 1’équation.
En désignant par G (z,, ... x,) = 0 une variété caractéristique de (1),

+ 2C

on sait que si ’on pose w; = —, G = 0 sera une intégrale de I’équation

ox;

i

A E ZA”M?I,-TEJ.’JI,CJZZ — O .

Si 'on considére les z; comme des coordonnées cartésiennes, 4 peut
étre envisagé comme une forme algébrique en z; homogéne et du qua-
triéme degré. Dans ce qui suit, nous supposerons 4 décomposable en deux
facteurs quadratiques

P =2p,mmn; et Q= Zq,mm; (2)

Les coefficients p,;, ¢;; ainsi que les B;;;, C;; sont symétriques ent, §, k.

1) Th.de Donder, Sur les équations linéaires aux dérivées partielles d’un
ordre quelconque. (Journal de Mathématiques, T. VII, 1928, p. 173.)
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Ceci posé, pour mettre (1) sous forme invariantive, M. de Donder part
d’une forme différentielle quadratique supposée invariante, dont les
coefficients fournissent les composantes du tenseur fondamental et les
dérivées covariantes, & 1’aide desquelles on forme des invariants qui
remplacent les groupes des dérivées partielles de différents ordres dans
I’équation proposée.

Le probléme que nous poursuivons nous impose, comme on le verra
plus loin, de choisir pour cette forme invariante I’expression X'g,;dx,dx;
ol g;; est le mineur de p,; dans le discriminant 4 de la forme P, divisé par
A # 0.

Nous adopterons désormais les notations du calcul tensoriel, en écri-
vant z* pour les z; et en supprimant, selon les régles classiques, les signes
sommatoires. Les indices co- et contrevariants seront désignés par des
lettres grecques, de sorte que nous écrirons g,g pour g,;.

Par conséquent, la forme P = g"‘BnanB étant donnée, nous formerons
la forme différentielle

do? = g,gdadaf avec A = |gf|#0 et D=|gpgl#0  (3)

supposée invariante dans toute transformation ponctuelle effectuée sur
les x*. Nous désignerons par @, @og, Pag,, etc. les dérivées covariantes
succesives de la fonction ¢ (2}, .. 2™) par rapport & la métrique (3).

Le groupe du quatriéme ordre dans 1’équation (1) sera remplacé par
g*Par¥p.g 5, 9°F seront les composantes contrevariantes du tenseur fon-
damental g et a7® les composantes du méme type d’un autre tenseur du
second ordre, qu’il faudra déterminer. Puisque d’aprés le lemme de

Ricei (9*f), = 0, on aura
g*Par®p,p,5 = a7 (g*Ppup),s -
Nous poserons

A9 = g*Ppyg (4)

en remarquant que l'invariant 4,¢p est le paramétre de Beltrami du
second ordre de la fonction ¢. En outre, ’expression

O,p = a’aﬂ(pozﬁ (5)
sera également un invariant, de sorte qu’on pourra écrire
g a7 %paps = Orlsp . (6)
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L’équation dont nous allons nous occuper sera donc

F(p) = 04,0+ 0798, + Py g+ d*p, +ep = 0 (7)

ou b*Br, c*B d* sont des tenseurs contrevariants qu’il faut exprimer &
I’aide des coefficients de 1’équation (1), e un invariant.

Le passage de la forme (1) & la forme (7) se fera par l'introduction de
termes convenables qu’on déduira ensuite, de maniére & pouvoir identifier
ces deux formes de la méme équation. On aura

boBy -+ QQYSQ%_aBygASS}‘a' — B

0x? 0x® oo o | af | B
o o2 (2B __pagy 9 (4B
d ar® axvax8[ AB' o s] bARY x| o
a7 aliB)
e=FK

ou les accolades sont les symboles connus de Christoffel de seconde
espece.

On se rend aisément compte que I’équation étant écrite sous 'une des
formes (1) ou (7), il est facile de la ramener a ’autre par un calcul pure-
ment algébrique.

§ 3. Solutions a singularité algébrique. Nous allons chercher pour
I’équation (7) une solution de la forme

g = uG? +v (8)

ou G = 0 est I’équation d’'une surface réguliére donnée, p un exposant
constant, » et v des fonctions réguliéres!) méme sur G.

A cette fin, nous aurons besoin de calculer certains symboles, ce que
nous ferons ci-aprés. Posons

1) Une fonction sera réguliére, si elle est continue avec ses dérivées partielles jusqu’a
un certain ordre qui sera précisé de cas a cas.
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Ayu = gPu,ug et Ou = aPu,ug (9)

ou u, est la dérivée covariante de » (qui coincide dans ce cas avec la
dérivée partielle ordinaire).
Posons encore

A(u, v) = g*Pu,vg et O(u,v) = aPu,vg. (10)

. . 0Q
Nous écrirons 5 = T Gop = o, Gopy = Top, ete.

En vertu de (9), on aura
4,0 = g“ﬁazanﬁ =P et 0,G= a“ﬁnanﬁ =@ . (11)

En introduisant ’expression (8) de ¢ dans 1’équation (7), le terme v don-
nera une contribution réguliére F(v), tandis que le premier exigera le
calcul des quantités suivantes:

Calcul de Oy, 4,uG?.

On aura d’abord

AuG® = p(p — 1) P2 Pu+ pG?1{ud,Gd+ 24(u,G) | +G*d,u
avec 4,07 = p(p —1)G*" 2P +pG* 14,4
et 0,0% = p(p — 1)G*2Q + pG*10,4.

En appliquant 'opération @, a chacun des termes de 4,uG?, on aura
successivement

O, [uPG*? = (p—2)(p—3)G*~*uPQ + (p—2)G**[uP- O,G
+260uP, G)]+G*20,(uP)
O, [G"u-4,G] = (p— 1) (p — 2) GP73uP - 4,0+ (p — 1) G** [ud,G
c 0,0+ 260 (udyd, Q)]+ G 10y (ud,G)
O, [ 1A (u,G) ] = (p— 1) (p — 2) "2Q-A(u, &)
(0 — 1) [Aw,6) 0,6+ 20 [A(w,6),8) ] + G0, (4 (u, 6)]
0, (G* 4yu) = p(p—1)G*2Q A u + pG*1 [A,u-0 ,G
+20(4,u, Q)] +G?-O,d,u

et, par conséquent,
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0, 4,uG” = p(p—1) (p—2) (p—3)G** PQu
+ p(p—1) (p—2)G*2[uP-0,G+20(uP,G)+
u@-4,G4+2Q4(u,d)]
+ p(p—1)G?2 [0y (uP) +udyG- 0,6 + 20 (ud,G,Q) +
24 (u,}) 0,6 + 40 [4(4,3),G] + Q- Ayu]
+ pGP1 [0y (ud,G) + 20, [4 (u,G) |+ Adyu- 0,6 + 26 (4,u,G)]
+ G*O,4,u.

Caleul de bB7 (uG?),g,

La dérivation covariante fera intervenir des formes algébriques en
qu’il sera commode de désigner par des symboles particuliers. Ainsi,
NOuS poserons

B == b“ﬁynaazﬂn;, . (13)

: . , oB
Ce sera un invariant. Par conséquent P 3boBy mg, sera un vecteur

o

contrevariant. Nous écrirons
0B 02B

2 — B — 6p*Byx, — BB, 14
07t © OmaOmg bFr (14)

B*# gsera un tenseur doublement contrevariant. Enfin, on posera
BBy = 6 b*Br ce qui nous permettra d’écrire
b*By (uG?)og, = p(p—1) (p—2) G*—* Bu+p(p—1)G»~*
[Baua 4~ %B"‘ﬂnaﬂu ]
+ pG*1[2 BBrm g u+ L BFru mg, + $B*Fu,g]+
%Gp B"‘B'YuaBy .
Calcul de c*B (uG?)yg.
En posant comme ci-dessus
C = c“ﬁnanﬂ, (15)

on aura O% = 2 c“ﬁyzp et puisque C est un invariant, C* sera un vecteur
contrevariant. On écrira de méme O* = 2 ¢*8, ce qui donnera

B (uG) g = p(p—1)G"2uC + pG*-1 [C*uy + §C*Fm,gu]+ 367 CBu,g.

Calcul de d*(u@),.

En posant
D = d*m, (16)
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on aura D* = d* et
d*(u@@), = pG*uD+G*D*u, .

Pour conserver 'uniformité de I’écriture, nous poserons en plus e = E.

Expression de F(uG?).
L’introduction des termes calculés précédemment dans ’équation (7)
donne

F(uG®) = p(p—1) (p—2) (p—-3)G"*P-Qu+p(p—1) (p—2)G*—?

[uP-O,G+20(uP,G)+u@Q- -A4,G

+ 2Q-4(u,G)+ Bu]l+p(p—1)G" 2 [0y (wP) +ud,G- 0,G +
20 (ud,G,q)

+ 24 (u,G)0,G 4404 (u,F),G 1+ Q Ayu + B¥u, + 1 BFr gu+
Cu]+pG@ 1[0, (wd,G)+20,[A(w,G) ]+ Ayu-O,G
+20[4,u.G ] —{—%Bo‘ﬁ?’naﬁyu - %—Baﬁyuanﬁy -+ %B"‘Buaﬂ +
1087, gu+ C*uy+ Du] + Q7 F () = — F(v).

Premier terme de la solution singuliére.Dans le voisinage de G = 0. on
voit que si les cas p = 0, 1, 2, 3 sont exclus (ce qui d’ailleurs conduirait a
des solutions réguliéres), le premier terme du développement est d’un
ordre de grandeur supérieur aux suivants et ’expression de F(uG®) ne
saurait étre identiquement nulle, ni méme étre une fonction réguliére,
comme il en est du second membre, tant que le coefficient de ce premier
terme n’est pas nul sur G = 0%), c’est-a-dire si 'on n’a pas 4 = P-Q = 0.
Il faudra donc que G = 0 soit une solution de l'une des équations
P =0 ou @ = 0, par conséquent, que celte variété soit choisie parms les
caractéristiques de Uéquation. Résultat bien en accord avec le théoréme
de Le Roux et Delassus?2).

Nous prendrons G parmi les intégrales de P = 0. L’équation

P(aG oG g):o

ol xR’

sera ou bien une identité en z!, 2, ... 2™, ou tout au moins une consé-
quence de G = 0. Nous dirons avec M. de Donder3) que dans le pr2mier
cas G(x1, 22, ... x™) définit une fonction d’onde absolue et que G(x1,... )= 0

1) Cf. Hadamard, Le probléme de Cauchy et les équations aux dérivées
partielles linéaires hyperboliques, p. 105.

%) Cf. Hadamard, idem p. 102.

8) Th. de Donder, Théorie invariantive du Calcul des variations, p. 178.
(ITe Edition, Gauthier-Villars, Paris 1935.)
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est une onde absolue; dans le second cas G sera dite une fonction d’onde
relative et G = 0 définira une onde relative. IL’onde G = 0 étant donc
absolue ou relative, on aura en tout cas

P=P¢ (17)

P’ étant une fonction réguliére méme sur G = 0.
En tenant compte de (17), I’équation donnant F (uG?) devient

F(uG?) = p(p—1) (p—2)G"*[(p—3) P'Qu+2uO(P,G) +-uQ - 4,¢
+ 2Q4(w,G)+ Bul+ p(p—1)G" 2 [(p—2) P'u0,G
+ 2(p—2)P'O(u,G) + u Oy, P+-20(u, P) +ud,G- 0,G
+2uB(4,G,G) +24,G-0 (u,@)+ 24 (4,F) - O,G (18)
+ 40[4(u,3),G1+QA,u + B*u,+ $BBagu+ Cu]
+ pG* ¥ (p—1) P Oyu+ 20 (u,4,G) 4 4,G - Oyu + 260, [4 (u,q)]
+ O,G-Ayu -+ 260 (4,u,G)+ [F(G) — EG Ju + %B"‘Byuanﬁy
+ %Baﬂuaﬁ—ko"‘ua] +G*F(u) = — F(v).

Exprimons maintenant que sur G' = 0, le terme en G2 s’annule aussi
pour que le développement puisse étre au moins régulier dans le voisinage
de G = 0, comme le second membre.

On aura donc

2Q4 (u,G)+ [(p—3)P'Q+2uO(P,G) +Q-4,G + Blu =0

sur G = 0 et puisque

aP ou

A(u,G) = g*Pugmg =  Puy = 267z prees

et O(P,G)=P'Q+ G- O(P,G),

ce sera une équation aux dérivées partielles du premier ordre en u

oP ou
07y 0X™

[P’(p—l)—{—A G+Q]u=0 (19)

dont l'intégration exige lintroduction des courbes définies par les
équations

det  da? __c_livi"____dt
AR AR A
2 0m, o, % om,y,
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Les quantités %gg— sont les paramétres directeurs de la transversale
(s 4

a ¢ = 0, mais comme cette variété est une caractéristique, cette trans-
versale, qui est la direction de la génératrice de contact entre le plan
(721, 7y, ..., 7,,) €t le cone caractéristique du point 2%, qui lui-méme est
tangent & G, sera a son tour tangente a G. De sorte que toute courbe issue
d’un point de G = 0 est entiérement située sur cette surface. Ces courbes sont
en fait les caractéristiques de Uéquation P (m,, ..., 7w,) = 0 et on en peut
compléter les équations en écrivant

dx*  dng i
L 0P .__.lﬁliu (20)
2 9ny 2 0xB

¢t étant un paramétre. On peut donc les déterminer sans connaitre I’équa-
tion (' = 0 par l'intégration du systéme (20). On appelle ces courbes les
bicaractéristiques') de (7). La surface G = 0 étant donnée, on peut la con-
sidérer comme lieu de bicaractéristiques, par exemple des bicaracté-
ristiques issues des points d’une courbe non bicaractéristique (probléme
de Cauchy). Sur chacune des bicaractéristiques de @ = 0, qui dépendent
de m — 2 paramétres, ’équation aux dérivées partielles (19) se réduit a
une équation différentielle ordinaire et peut étre intégrée facilement. On
aura de la sorte la valeur de » sur G = 0.

Ces courbes s’introduisent donc naturellement dans ce genre de
recherches. Nous ne pousserons pas plus loin ces considérations et
passerons & I’objet principal de ce travail qui est la construction de la
solution singuliére algébrique de (7) non pas sur une variété réguliere, mazs
sur le conoide caractéristique, c’est-a-dire de la solution élémentaire dont
le role est bien connu dans le probléme de Cauchy, grice aux travaux de
M. Hadamard sur l’intégration des équations du second ordre hyper-
boliques.

§ 4. Le conoide caractéristique. Le lieu des bicaractéristiques
issues d’'un point M (!, ..., 2™) est une surface caractéristique de (7)
ayant en ce point une singularité conique et admettant, comme on le sait,
comme coéne tangent en M le cone caractéristique de ce point. Pour
déterminer cette surface, appelée conoide caractéristique du point M, nous
prendrons avec M. Hadamard?) un systéme de m quantités p,;,Poss s Pom
remplissant la condition

1) Cf. Hadamard, Probléme de Cauchy, pp. 105—106.
2) Hadamard, Probléme de Cauchy, pp. 116 et suiv.
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P(Pe1s Pozs -+« Pom) = 9P PoaPog = 0 (21)
et avec les conditions initiales

Po = Pon x* = a* pour 8§ =0,
nous formerons les courbes intégrales du systéme

da® 9P dps | OP
el ds T tan (22)

12
ds 2

Les rapports mutuels des p,, dépendant, sous la condition (21), de
m — 2 paramétres, le lieu de la courbe ainsi obtenue sera une hyper-
surface de 1’espace X, (x, x2, ..., ™).

Les géodésiques. Pour obtenir cette surface a point conique,
M. Hadamard construit d’abord toutes les courbes issues de M, inté-
grales du systéme (22), qu’elles vérifient ou non la condition (21), c’est-a-
dire sans en choisir celles qui sont des bicaractéristiques de (7). Ces
courbes peuvent étre interprétées comme les géodésiques de 1’élément
linéaire

II(xY, 22, ..., am; dat,dx?, ..., da™) = ga}gdx“dxﬂ. (23)

o
En effet, en posant x* = d® , 'intégrale

dt
L= .ﬁ/ﬂ ;xa)dt

ou ¢t est un paramétre quelconque, représente la longueur d’un arc de
courbe dans l’espace #,,. Les extrémales de cette intégrale seront les
géodésiques de 1’élément linéaire de 1’espace. Leurs équations différen-
tielles sont

ST AT

0x™ x>

qui peuvent étre transformées, comme on le sait, en

—0 (24)

d (oIl aﬂ
ds \ oz or™

avec IT = constante, comme intégrale premicre.
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Ces deux formes sont en général équivalentes, mais sur les bicarac-
téristiques le systéme primitif cesse d’avoir un sens, de sorte que c’est
par une certaine extension du sens du mot géodésique qu’on peut les con-
sidérer comme telles: ce sont les géodésiques de longueur nulle de I’espace
E,,. Par I'introduction des quantités

Pa=%‘a‘x-—& (25)

on peut éliminer les «* des équations (24). La forme I7(x*; x*) se trans-
forme en P(p,, ps, ..., Pn), adjointe de IT divisée par le discriminant D
de II et les m équations lagrangiennes (24) se transforment dans les
2 m équations hamiltoniennes (22), admettant de nouveau l'intégrale
P = const.

Ces considérations montrent la nécessité d’adopter dans I’étude de la
solution la métrique (23), par rapport & laquelle nous avons mis notre
équation sous forme invariantive. Elle nous indique la géométrie qui se
rattache naturellement & toute question relative a I’équation (7).

Considérons a partir de ce moment exclusivement les géodésiques

issues d’un point donné M (a*) pour lequel s sera pris nul. Une géodésique
est déterminée par les valeurs initiales p,, (pour s = 0) des p,. Les équa-

tions (22) se conservant en remplagant s par is et p, par %ﬁ (donc pg,
par %’3), posons
P,=3sp,; 9y = SDoy (x=1,2,...,m) (26)

et remarquons que les quantités p,, po,, s se présenteront seulement
dans les 2m combinaisons (26). Les formules d’intégration seront donc
de la forme

X% = (1, Qo c-er G AL, ..., O™ (27)
P,= P, (q:,qs; - 9p; L ..., a™).

Elles ne changent pas par permutation des z* avec a* et des P, avec
— q,, ce qui revient & changer s en — s dans les équations canoniques.
Aussi longtemps qu’il sera possible de joindre un point N (x1, 22, ..., 2™)
a M par une géodésique unique, c’est-a-dire tant qu’il sera possible de
tirer les ¢, en fonction des x* des équations (27), les considérations précé-
dentes restent valables et nous supposerons que, M étant donné, la
région R ol se trouvent M et N est telle que cette validité persiste.

176



Equation du conoide. Formons la quantité
I'=P(Py, Py, ..., P, ; 24, ....,2™m) = P(q,, 92, .-, @ ; Q% ..., a™) (28)

qui est une forme quadratique en ¢ a ccefficients constants et une fonction
holomorphe des x* dont le développement suivant les puissances des
x* — a* commence par des termes du second degré. On aura

I'=1I1I(x*—a*; a% + ...

car le développement de #* — a* commence par —%—% .

I est le carré de la distance géodésique du point N aw pornt M, mesurée
a l'aide de la métrique I7. On aura

or

5 = T = 2P, = 2sp, (29)

et la fonction I" sera une intégrale de 1’équation aux dérivées partielles

ol’ or’ or
e .l____ .]..-._____ e 1 m
I P(2ax1’28x2""'axm’ W v x)
donc
ar x —

L’équation du conoide sera, par conséquent, I' == 0.

Si I’on prend pour coordonnées cartésiennes les variables ¢, (ou les
variables normales de Riemann), on obtient un systéme de coordonnées
géodésiques au point M, dans lequel, on sait que les géodésiques issues
de M seront représentées par des lignes droites et le conoide caracté-
ristique par un cone quadratique ordinaire (réel si la forme P est
indéfinie). Quand 'indice d’inertie de la forme P est 1, ce cone se compose
de deux nappes et divise ’espace en trois régions, dont deux intérieures et
l'une extérieure. Nous écrirons les coefficients de P de maniére & avoir
toujours I'> 0 & l'intérieur du conoide, lorsqu’il est réel. De méme,
nous utiliserons la premiére série d’équations (22) sous la forme

oP dx™ Y A
57—6;——4:8% avec P = P(m,;x*) =4TI.
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Les conoides et le transport paralldle. On sait que dans le cas
particulier ol les coefficients g,g sont constants, les géodésiques sont des
droites et les conoides caractéristiques se réduisent a des cones ordinaires
égaux. Le passage d'un de ces cones de sommet M au cOne carac-
téristique d’un autre point P se fait par une translation définie & I’aide du
vecteur M P. Si ce vecteur est intérieur au cone caractéristique de M, le
cone de sommet P est lui-méme intérieur au come M et contient dans
son intérieur le support du vecteur M P.

Ces propriétés élémentaires convenablement modifiées, subsistent
méme dans le cas général d’'un espace courbe. En effet, considérons le
conoide du point M et soit P un point intérieur & 'une de ses deux
nappes (dans la supposition qu’il s’agit d’un conoide réel). Menons la
géodésique M P. Cette géodésique sera tout entiére intérieure au conoide
M, car si elle traversait la nappe en question en un point m, on pourrait
mener la bicaractéristique Mm et les points M et m seraient reliés par
deux géodésiques, ce qui est impossible dans la région R.

Décrivons le conoide de sommet P (que nous désignerons par P) et
considérons-en la nappe qui ne contient pas & l’intérieur le point M
(et qui coincide avec la nappe choisie du conoide M, lorsque P tend vers
M). La géodésique M P restera ausst intérieure & ce conoide pour des raisons
analogues. Prenons maintenant sur une géodésique quelconque issue de
M et intérieure un point P infiniment voisin de M et considérons le
conoide de ce point. On sait que si 'on transporte par parallélisme au
sens de M. Levi-Civita le long d’une génératrice Mm de M le vecteur M P,
le point P décrit une génératrice PP’ du conoide P, de sorte que les deux
conoides voisins coupent sur la direction M P ainsi transportée des segments
égaux, mesurés dans la métrique /7 (z*; da*) adoptée?). La figure M PM' P’
est donc un parallélogramme élémentaire et ’on sait que le vecteur PP’
coincide avec celui qui résulterait du transport paralléle de MM’ le long
de M P.2) Par conséquent, les génératrices des conoides M et P se correspon-
dent par parallélisme. On peut done dire que le conoide P résulte de M par
transport paralléle.

Montrons maintenant que le conoide P est intérieur au conoide M. Cela
résulte d’une évaluation de la valeur de la fonction I'(z*; a*) lorsque le
point x décrit le conoide P voisin de M. En désignant par ¢ un parameétre
positif définissant le point P sur la géodésique M P, par 4,, ..., 4,,—, des

1) M. Mathisson. Eine neue Losungsmethode fiir Differentialgleichungen
von normalem hyperbolischem Typus (Math. Annalen Bd. 107, p. 405, 1933).

2) Levi-Civita. Der absolute Differentialkalkil, p. 47.
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paramétres exprimant la direction de la bicaractéristique PN, par ¢ le
paramétre déterminant N sur cette génératrice, on a

I'(z*; a*) = tw(t, Ay, ..oy Aps, S)

w(t, A,, 8) étant régulier et différent de zéro tant que N n’est pas voisin
de P. Par conséquent I’ conserve le méme signe que ¢ et la géodésique de
longueur nulle PN ne peut traverser le conoide M.1)

Le méme résultat peut étre obtenu en supposant que la génératrice
P P’ traverserait le conoide M en un point p. Le vecteur mp déduit de M P
par transport paralléle conserverait sa longueur et, forcément le signe de
I'. 11 devra donc étre intérieur au conoide m de sommet m. Mais puisque
mp coupe le conoide M et que p est infiniment voisin de m, le vecteur mp
sera situé dans le plan tangent & ce conoide en m. Or, ce plan tangent
étant commun aux deux conoides M et m, tangents en m le long de Mm,
on est conduit & une absurdité, car mp doit étre intérieur au conoide m,
qui est, dans le voisinage de m situé entiérement d’'un c6té de ce plan
tangent, tout comme son cOne tangent, et n’a en commun avec ce plan
que la direction de la génératrice Mm en m.

Ces propriétés des conoides caractéristiques expliquent pourquoi dans
la résolution du probléme de Cauchy pour une équation hyperbolique du
second ordre, la connaissance des données de Cauchy non pas sur toute
une surface ouverte S mais seulement sur la portion 8, que découpe sur
elle le conoide d’'un point M, est suffisante pour la détermination de
I’intégrale requise au point M et en tout point intérieur au conoide. En
effet, les portions que les conoides des points intérieurs découpent sur S
sont intérieures & S, de sorte que la connaissance des données sur S, est
toujours suffisante.

§ 5. La solution élémentaire. Supposons maintenant qu’il s’agisse
de trouver une solution élémentaire de I’équation (7), c’est-a-dire une

solution de la forme
¢ = ul” (31)

ou I" est le premier membre de ’équation du conoide caractéristique du
point donné M (a%), le point N (2*) étant supposé variable.

Joignons N & M par une géodésique et écrivons ’équation (18) (en
prenant v = 0) le long de cette courbe. En faisant ensuite varier le point
N, nous déterminerons la solution (31) dans toute une portion de la
région R.

1) Hadamard. Probléme de Cauchy, pp. 172, 176.
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On aura, en tenant compte de ce que P’ = 4, en vertu de (30) et qu’il faut
remplacer partout P par 41

Ful”)=pp—1) (p—2)I"3[4(p—3)Qu+ 8uO([\[) +uQ 4TI’

+2QA4(u,I")+ Bu]

+ p(p— NI [4(p—2)u O, '+ 8(p—2) O (u,]') 4 4u O, I
+80 (u,T)+uldy IO, + 20O [A,T, ')+ 24,10 (w,T)
+ 24w, T)- O, + 4O [A(u,T), '+ Q- Ayu -+ Bu,
+ 3B ngu+ Cul (32)

+ pI" 1 [4(p—1)Ogu+ 20 (u,4,1) 4+ A, 1" Ogu + 20, (A (u,T') ]
+ 0, Ayu+20(4yu, )+ [F) — BT u+ 1B u g,
+ %Baﬁuaﬁ+0aua]

+ I”F(u) = 0.
Mais on a
O\ = abr,mg=Q (33)
24(u, ') = 2g*Bugng = Pruy = g—%% = 48—5—3&%——— 4s%~

Quant & A4,I", nous le développerons suivant les puissances de s,
somme suit:

oxxoxP | A
Or
oI I (x*— a*; a%)
0x* 0xP oz oxB T = 29up + ’
donc
A2F=2g°‘3ga,3——g°‘3‘“ﬁ;m+...=2m+... (34)

parce qu’a Porigine s = 0 et les m; sont donc nuls.

Dans I’équation (32), le premier terme est d’un ordre de grandeur
supérieur aux suivants dans le voisinage de s = 0; par conséquent, pour
que la somme soit identiquement nulle, il faut avoir sur I"' = 0

4(p—3)Qu+ 20O\ +uQ -4, I'+2QA(u,I")+ Bu = 0

et, compte tenu des relations (33)

du

48 r

+[s0—1) + 4,0+ Glu=o (35)

avec la supposition @ # 0.
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Remarquons que les quantités zz, = 2sp, étant de ’ordre d’infinitude
de s, B sera de ’ordre de s et ) de celui de s2. Par conséquent, le déve-

B . ;
loppement de = suivant les puissances de s commencera par des termes

Q
du premier ordre, au moins. Nous écrirons
B
Lp—1)+ AT+ 5 = 4(p—1)+2m+ 4sL(s) (36)

la fonction L (s) étant holomorphe en s et ’équation (35) se met sous la

forme

dlogu m .
ds +P—1+E+L(3)-‘-O-

Pour qu’elle admette une intégrale réguliére a l'origine, il faut que
p=—7g + 1 — p, ol p, est un entier positif ou nul. Dans ce cas, u sera

dans le voisinage de s = 0 de I’ordre de s?1. Nous prendrons p, = 0 et
par conséquent

p=—2+1. (37)

On aura
_ f L(s)ds
u=-ce ° (38)
en prenant w = 1 au point M.
Notre calcul nous a donc fourni les valeurs de u sur le conoide. Pour avoir
les valeurs de u dans I’espace, il nous faudra utiliser un procédé d’itération

0
en partant d’une fonction « définie dans I’espace et coincidant avec u sur
le conoide.

0
Le terme u. A cet effet, nous joindrons le point arbitraire N (z*) & M
par une géodésique. Les x* seront des fonctions holomorphes des g,. On

pourra également se donner la direction initiale de la géodésique par m—1
paramétres 4,, ..., 4,,,; le point N sera alors fixé par m paramétres

Avs ooy Ap—q et s sur la géodésique MN.
0

Ceci posé, nous supposerons I’équation (35) vérifiée par une fonction «
dans tout I’espace ou I est défini, avec ¢ = 0.

Nous admettons que dans Uintérieur du conoide I, la fonction
Q (7, 7y, ..., ®,) # 0 (sauf au sommet M). C’est donc dans 'intérieur du

0
conoide I" que » devra vérifier I'équation (35). On aura

8
0 — J(')L(s)ds
U ==e€
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La quantité L (s) peut étre écrite sous une forme remarquable. En effet,
on al)

A, =2 [1 + sﬂ%gﬁﬂ] (39)
S
oh p=-— A= discriminant de P.
V4
__ D(at, ... a™) , i
J_D(ll, A9 J sera de I’ordre de s™~1,

Par conséquent

oJ
m—1) °

_B .4
L(S)-—m-l“?%(logs

En désignant par (-—QLI—) la limite de 8%:{1 quand N tend vers M

Sm“‘ 1

sur la géodésique N.M, on pourra écrire?)

LyEE R @

0
La fonction 1™ ne sera pas, en général, la solution élémentaire cherchée.
Elle ne vérifiera pas 1’équation (32) et ’on aura

&k]r-

0

F(ul”) = p(p—1)I" 2 Ag(u)+ pI*Bo(w)+ I"F(u)  (41)
en posant
0 0 0 0
Av(@) = [(4p—D+ A Jut 24 D]OL+Q
+ 260 [2A('L0L,F)—|— [4(p —1)+A21’]u, I’]—}—B"‘ « 1B°‘/3u B—I—Cu
0 0
By(w) = [F(I)— Bl Ju+ [4(p—1)+ 4,10y + Ayu-0,T'+20 (4,0, T)
+ 20, 4,0) +260,[4 (1) 1+ }BB7um, + 3 BPung + O,

0
En vertu de ’équation (35) vérifiée par u, ’expression de A, devient

0 0 0 0
AO_—:Q-Azu——gu-@zP 2@[QuF]+B°‘u -+ B“Bunaﬂ—l—Cu.

1) Cf. Hadamard, Probléme de Cauchy, p. 127.
2) Cf. Hadamard, idem p. 373.
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En méme temps, dans ’expression de B,

0, [24(u,I)] = O, [24(u,T)+ [ (p—1)+AyT Tu]— Ou[[4 (p— 1)+ 4,1 ]

——0,[gu|— o1t~ +4.rn]

Or,
0 0 0 0
O, [4(p—1)+A4, T u] = [4(p—1)+ A, 1O u+20[u, 4, |+ u@,4,I"
et
F(I')—EI = 0,4,1'+4 B*Frmy 5, + 3 CBm 5+ D,

ce qui permet d’écrire

0 0 0 0
Bo=4,u-0,I'+ 20 (4,u,I'—0, [gu] (1B gy + 4 CBryg + D] u

0 0 0
+ BB uy 3, + 4 B*Pu g+ Cu, .
. 0 1 j .
Soient u, u, ..., % ... des fonctions de z1, .., 2™; al,..., a™, réguliéres
dans R (sauf peut-étre au point M). Nous poserons en général

,. - |
Asw) = [[4(p+j—1)+ AT Tu+ 24(w, )] 0,7+ Q- Ayu
+ 20 [24 (w, 1) +[4 (p-+j-1]+ Ay T, '] + Bruo+ 3 BBum gt Cu
et
B,(w) = [F () — BT u+[4@+j—1)+ 4,710, u+ Agu- 0,1+ 20(Ayu, I)
+ 20, 4,T) + 20, [A (u,) 1+ } BB uy s, + § Bbuyg + Cou.
0

1
Le terme w. Puisque » ne fournit pas la solution désirée, il faut

o 1
évidemment que % soit de la forme v = u -+ uI', de sorte que nous essaie-

rons une solution du type
0 1
@ = ul?+ul™+,

En introduisant cette expression dans I'équation (32) et en tenant
compte de (41), il vient
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1

0 1
F(ul?+ul?)=(p+1)p(p-1)I"?—2Q [4sgg+ [4p+A 21’+g];&+(17+!1—)—QA0(1:)]
+ @+ )P [ Ay ()4 Bo(w)]
+p+1I? By F(@)] + P72 F (@) =

Sur I' = 0, il faudra avoir, comme précédemment

1 0
prngH@=0 @

équation différentielle du premier ordre, qui nous fournira sur chaque

du Byt

1
bicaractéristique issue de M les valeurs de u. Nous déterminerons une

1
fonction u & I’aide de cette équation supposée vérifiée dans tout I'intérieur
du conoide I".

A cette fin, écrivons, en vertu de (35)

1

0 14 0
48[ug—g—-ud—§]+4uu+( —gl)QA"(u):O
et en divisant par (';)2
1
d 1 ‘
4;;15( if,f) =— Ao(w)
U (p+1)Qu

Pour intégrer cette équation, il sera nécessaire de faire une estimation
de 'ordre infinitésimal du second membre dans le voisinage de l’origine.

0
Ordre infinitésimal de wu,.

A, I'— 2m B

Dans I’expression de L(s) = s -+ 1450 le terme

4, '—2m aﬁﬂfxﬂ,m\

48 | 4 4s

étant une fonction holomorphe des ¢, et, par conséquent, des x> — a%,
8

B 4Qs
nous nous occuperons surtout du développement de 50 etde e ©
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On aura
B = bPrm,mgn = 8 830°Frp, pgp,
Q = a*Bm g = 4 s2a*Bp, pg.

Les fonctions b*87, a*8 étant holomorphes en x* — a* et, par conséquent,
en ¢a, on pourra développer b*f7, a*8 suivant les puissances des g, .

beBy = b2 4 p2Brs |
a*® = a4 a¥fs + .

les b2B?, a%f étant des polynomes homogénes en p,, du degré i. Par
conséquent

B =8s3(b3P7 + 0375 + .. ) pyppp, + 883(By+ Bys+ ...)
avec

B, = b3 p,pgp,
et

Q=14s2(alf +afPs + .. )pypg = 482Qy + Qs+ ...)

avec @, = a2f PaPpg € en supposant @y 70 .

Il viendra donc

B B, +B;s+ ... B B,Q,— @B
P15 1 — 1|0 1% 170
45Q 2 Qy+ @15+ . 2[Q0+ Q2 T ]

ce qui entraine

f—-—~ds—— [——— s+ 2 IQO&QlBosz—}—...].
0

By _ b papgp, L 08P g,

Mais

Q ﬂpa Pg o2 a’gﬁ o TT8
De méme

B1Qy— B, ,_ bpapsp,- ay psp. — b3P"p, pep,- A¥Psp,
Qz (a’oﬁpa ﬂ)z

b‘l"ﬁ"azayzﬁn;,- a3 gz, — b e ¥ TTRTT, al*my 7, '

(agf 7 7g)®
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0
En dérivant «» par rapport & x* on aura

Hh[r-t

0
ox*

e O =

‘B ¢ B
.“E—éds - %f_@ 0'8777: g
0 o' S
ax“ I ﬂ.’ftaatﬁ

ce qui nous permet d’établir que ’ordre de cette fonction a I’origine sera
au moins zéro, car la dérivée par rapport & z* du premier terme, dont
I’ordre infinitésimal est le plus réduit, est une fonction dont le dévelop-
pement commence par des termes du degré zéro en x*—a®. Il en sera
de méme

0
de 'ordre de u, ce qui apparait clairement en dérivant ’expression
b

) j'A P—2m js%
yu=ce 9 0

car le premier facteur, holomorphe en z* — a%, est égal & I'unité a 1’origine,
tandis que la dérivée du second commence par un terme indépendant de s.

0
Ordre de A,(u). On aura successivement

BO
0 u-O,I" de 'ordre de s

O [3 u F] = P [3 Ln,g de I’ordre de s

et puisque l'ordre de zgaﬂ sera — 1,
Q-Az'l(;, sera de 1’ordre 1 également.
L’ordre de B“zooa et de C - 2. Celui de B*f f:maﬂ sera 1.
Par conséquent, ’ordre minimum de Ao(&) a Porigine sera 1.

1
Expression et ordre de . En revenant maintenant & 1’équation qui

1 0
donne u, observons que l'ordre infinitésimal de —1—0A0(u) sera
, (p+1)Qu

— 1, de sorte qu’on pourra écrire

d 1 1 .

a
%(s%)z— 0Ao(u)=e—§—!~H1(s)
u 4(p +1)Qu
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a étant une fonction ne dépendant que des p,,, H,(s) étant une fonction
holomorphe de s. Il vient, par conséquent

1
j—;[s%——alog s]z Hy(s)
u

et, par une quadrature
1

s%—-—a log s = [ H,(8)ds
% (1]
d’olr
1 0

1 8
1Y = u[glogs + g‘!Hl(s)ds] :

1
En méme temps, on constate que ’ordre infinitésimal de « & l’origine
sera celui de s log s, donc supérieur & — 2, ce qui nous assure que pour

1
8§ = 0, le terme ul" est nul quelle que soit la géodésique sur laquelle on
s’approche de l’origine.
i
Le terme général «. Il est évident que I’expression précédente de ¢
ne peut constituer une solution de I’équation (7), vu qu’elle n’annule
0 1
pas tous les termes de F(ul"” + ul'?+!). Essayons donc une solution de la
forme
0 1 7
@ = ul?F+ulPHl | ... P+, (43)

o 1 -1
On aura, compte tenu des équations vérifiées par u, u, ..., % ,

0 1

. 7 .
Ful®sul P+l . +ulPH) = (p+7')(p3;j-—l)(p+j—2)Fp+7“3Q§4sg—Z+fZL[4(p+7'—1)+A2F+g]

1 1 1 -3
+ e A Bt T || (44)

X ) , 1 1 i-2
)P )T2 | AptBy e Fu) |

. . 1 71 N
+ (p+g) P71 [B,.+§)—:L—?.F(u)] +I'P+iF(u) = 0

ou les quantités A; et B, sont celles que nous avons définies plus haut.

]
Nous omettrons d’en écrire ’'argument «, chaque fois qu’une confusion ne
sera pas possible.
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Sur I' = 0, il faudra comme précédemment avoir:
(45)

i
du | . B¢ 1 1 1 -3
4 86?;—%- [4(}97’?_1) +A2F+@-] u+(—m [Aj_l-}-m:iBj_z_*-(pﬂ‘-].—l)(p'f'j—z)F( U )]

=0

équation que nous allons écrire, en vertu de (35),

i 0 0
2 1 1

du v | L
sl | i gl At gt ()] =0

j—1
et, en multipliant par 870
4 (u)? (46)
i
d [ u:I 87.-—1 [ 7-3
74 L] L . S F(h] = 0.
ds|” 0 , - 1Bt 2
y 4(p+i)Qu P+j- (p+j-1)(p+j-2)

Ceci obtenu, nous allons considérer I’équation (46) dans tout I’'intérieur
de I' = 0 afin de construire le terme d’ordre j du développement de
dans l'espace.

Calcul de A; et de B;. Les expressions de A; et de B, se simplifient
sensiblement en tenant compte de 1’équation (45). On a, en effet

7-3
A,= F(u )] o,

1

(P-H)Q (p+j-1)(p+j-2)
1 1 1 -8

- @[W[(p ”)BMA"“ p+j- 1B +(p+7’—1)(p+f—2)F(u)]’F]

+ Q-4 u —}—B"ua + ;B“ﬁunag + C’u

[(P‘H)B@H—Arﬁ‘ 7 B—+

et si on pose

-3
L= @—ﬁn@[‘p“’ At + 15 +(p+7-—1)1(p+7—— )F(ju )]
il vient
A= Q-Agzi-—— L;-0,'—20[L,, ']+ B%ia+ %—B"‘ﬁ’;ﬂaﬁ+ O;/,. (48)
En remarquant que dans ’expression de B;

0,[24(0,1) ] = — Oy[[4(p-+j—1) + AT 1] — O, [L,] ;

que
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O, [[4(p+i—1)+ AT Tu] =[4(p+j—1)+ 4,10 u+20[ 4,1 1]+ 10, A, T

et que
FI')—EI = 0,4,"'+} Baﬂynaﬁy - %Oaﬂnaﬁ + D*w,,,

on peut écrire

B, — A,u-0,7—6,[L, ]+9@[42u I+ Baﬁmaﬁ + Y0Ba gt Démy]u
(49)

e 1B°‘B?’unﬂ/+ 1B B 54—0"‘1&
Expression et ordre de u. On aura, en particulier

1 1 1 1
A, =Q-Adyu—L,-0,I'—20[L,,I'|+ B*u, + }Bumg+ Cu

1

m[(P-I—l)Bu-f—Ao] .

L1:

L’ordre minimum de L, sera donc celui de s—! et A, sera infini a ’origine
1
comme @ - 4,u, soit comme s~ log s.

Puisque
0 0
By = dyu- O I'— Oy (Lo 1420 [Ayu,I" ]+ - -
et
B
L=

Pordre de L, sera 1 et B, se comportera & 1’origine comme s—1, Par con-
séquent, dans I’équation

d| ,u 8
2 —_—_———
ds[s 0]“ lA1+p+lB]

u 4(p+2)Qu
Pordre infinitésimal minimum du second membre sera celui de s—2log s.

On écrira
- l

4 (p+ 2)Qu

p+1 ] Ja(8) 4 sHy(s)

ou 'on a noté J,(s) = C—%Kz (s), la fonction K,(s) étant & l’origine infinie

comme s~ ! log s tout au plus. H,(s) étant holomorphe en s, on aura donc
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%[82 %L — Kz(s)] = sH,(s)
u

et
2 8
25 —Ky(9) =6[8H1(s)ds
U

en prenant la valeur du premier membre & P'origine égale & zéro, d’ou1
2 0 18
U= u [s*ng(s) — 8—26sz2(s)ds] .
2
L’ordre infinitésimal minimum de u sera celui de s—2 log s. Il est facile

de montrer, de proche en proche, que dans le voisinage de s = 0 on a les
comportements suivants:

L, comme s—2log s, A, comme s—2log s, B, comme s~3 log ¢
L; comme s~%log s, A; comme s-5log s, B, comme s~%log s
3 4
et w comme s%log s, % comme §~7log s.

En général, A,_, sera infini comme s~%+3 Jog s, B,_, comme s~%+3 Jog s,
1
u comme §~%+3 Jog s, ce qui nous permettra d’écrire ’équation (46) sous

la forme

j
Zlo s — K] = sh0
U

ou la fonction K;(s), obtenue en calculant la primitive (sans addition de
constante arbitraire) des termes singuliers du second membre, est infinie
a Porigine comme s~7+! log s. Par conséquent, on aura

'Z.a = '2[8“7' K;(8) —{—s—?'jsf*lHj(s)ds] (50)
0

i
et ’on voit que ’ordre infinitésimal de u & 1’origine est celui de s—%+1 log s.

§ 6. Restrictions nécessaires et remarques sur la position des nappes
du conoide caractéristique. La présence des facteurs p+1, p+2, .., p+9J

aux dénominateurs exige qu’on n’ait jamais p-j =0, donc ——-%—!— j+1=0

ce qui montre qu’il faudra restreindre tous les résultats qui précédent au
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cas ou le nombre des variables indépendantes est impair. Nous supposerons
donc dans tous les raisonnements faits jusqu’ici

m=2n-41. (81)
or' oI ol’

oxl’ ox2’ """ ox™
conoide peut trouver une interprétation géométrique. L’équation aux
dérivées partielles P(x,, ..., w,,; @1, ..., ™) = 0 définit en chaque point
M (at, a?, ..., a™) un conoide caractéristique. Si 'on envisage, au méme

D’autre part, la condition Q( ) # 0 & lintérieur du

. z . \ Q . .
titre, I’équation @ (wy; %) = 0 ol w, = %& , on obtient un second conoide

de méme sommet M. L’ensemble des nappes I'4 2 forme le conoide
complet du point M.

Or, pour chaque systéme de valeurs al,... @™ de 21,... , 2™, ’équation
P(7m,; a*) = 0 fournit une relation entre les paramétres directeurs des
plans tangents aux différentes variétés caractéristiques passant par M,
en tant qu’intégrales de l’équation P (m,; %) = 0. Cette relation repré-
sente en coordonnées tangentielles s, un coéne du second degré, auquel
doit étre tangente toute caractéristique passant par M. En particulier, le
conoide I" admettra ce cone comme cone tangent en M.

De méme, I'équation @ (w,; a*) = 0 définira en coordonnées tangen-
tielles w, un second cone auquel sont tangentes les multiplicités caracté-
ristiques définies par I’équation aux dérivées partielles @ = 0 et passant
par M. Le conoide admettra ce cone comme cone tangent en M.

Supposons d’abord les coefficients constants. Dans ce cas, les conoides
I' et 2 coincident avec leurs cones tangents, qui sont deux cénes quadra-
tiques ordinaires. (Notre raisonnement n’exige d’ailleurs pas que le cone Q
soit lui-méme quadratique.) Si dans 1’équation en coordonnées tangen-

tielles de £ on remplace les w, par , on obtient, en coordonnées

ox
cartésiennes, la polaire réciproque de £2 par rapport a I, soit

ofE)-»

ox™

Par conséquent, dire que ¢ (g—i;-) # 0 a l'intérieur de I', c’est dire que

la, polaire réciproque de £ se trouve & l’extérieur de I et, par suite, que 2
est antériewr a I'. On voit done, que dans le cas des coefficients constants,
la condition imposée & @ de ne jamais s’annuler & I'intérieur de I" = 0
exprime le fait que de foutes les nappes coniques caractéristiques définies
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par Uéquation A = 0 en chaque pont M, il faut que I soit la plus extérieure,
résultat bien en accord avec la remarque de M. Hadamard relative & la
propagation des phénoménes ondulatoires sur la nappe la plus extérieure?).

Dans le cas des coefficients variables, le phénoméne se passe de la méme
maniére dans le voisinage du sommet, mais il est facile de montrer que
st le conoide 2 est, au voisinage du sommet M intérieur au conoide I" de
méme sommet, il le restera, tout au moins tant que le point courant N (x%) se
trouvera dans la région R. En effet, supposons qu’en un point N la bicarac-
téristique MN de £, intérieure a I' dans la portion MN, traverse le
conoide I'. On sait que la tangente & M N en N est la génératrice du cone
caractéristique du type 2 attaché au point N, cone qui est, comme on I’a
vu, intérieur au cone correspondant du type I'. Mais ce dernier cone,
tangent au conoide I' en N, reste tout entier dans 'intérieur de I', con-
formément aux résultats du § 4. Par conséquent, il sera impossible de
trouver la tangente & M N dirigée vers ’extérieur de I

§ 6. Remarque sur un cas particulier. Supposons qu’il s’agisse de
I'équation particuliére

@2A2u _— O .
On aura
d oJ
L(s) = %EE log =
et
0 J J
0 . @
U= l/(sm—1)0' gm—1
Ensuite

Par conséquent,
d{ u 1 0
433(83 ) =—p 1

et comme 4,u est holomorphe en s

0 s 0

. u 1 Adyu
v== s o b

0

1) Cf. Hadamard, Propagation des ondes, p. 291.
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De méme

0 0 1 0
By = 4d,u-0,I"' + 26 (4,u), L, = P Ayu
et
0 1
ce qui entraine
d 2 ’ 5 0 8 y 0
d(.vy_ 8 1 _ u sdyu
G e K e T A
U 0 u
Enfin
1 1
B, = — + l@ A2u+ 2@[A2u r +A2u 6, L, = ot 2A2u

1 1 1 y
A2=-——m[dzu-@2f’+ 2@(A2u;P)] +Q‘A2u
et
0
F(u) O,4,u

3
donnent d (83 w\ & | ;
ds ° T 4(p+38) 7

On constate donc que dans ce cas particulier notre solution élémentaire
coincide avec celle de M. Hadamard pour I’équation du second ordre

Azu:O.

L’influence de 'opérateur @, y est nulle et 1'intégration de 1’équation
devra se faire en deux étapes distinctes. C’est d’ailleurs un résultat facile
4 prévoir, car I’existence d’une solution singuliére sur I" pour ’équation
0,4, = 0 entrainerait celle d’'une solution élémentaire pour I’équation
@,v = 0. En effet, il suffirait de prendre v = 4,u. La fonction v est
singuliére sur I" = 0 ou se réduit & une fonction réguliére f(z1, .., 2™).
Mais si elle est singuliére sur I' = 0, on arrive & une contradiction avec le
théoréme de Le Roux et Delassus, qui exige que toute surface singuliére
pour une solution d’une équation aux dérivées partielles soit une carac-
téristique, ce qui n’est pas possible pour I' = 0, conoide caractéristique
de A,u = 0 et non pas de @,» = 0. Si, par contre, v est régulier sur
I' = 0, c’est que u est une solution singuliére de I’équation 4,4 = f et, par
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conséquent, se compose d’un terme régulier sur I'= 0, solution de
I’équation avec second membre et d’un terme singulier sur I, solution de
I’équation homogéne 4,u = 0. 1l est donc devenu évident qu’il n’est pas
possible d’obtenir de solution singuliére sur /" = 0 pour @,4,u = 0, qui
ne soit pas, en méme temps, solution de 4,4 = 0.

§ 7. Convergence du développement de «. En continuant de calculer
des termes par les formules (50), on obtiendra un développement de la

forme

w=utult . tulig... (52)

représentant la solution cherchée, & condition qu’il soit convergent. Pour
démontrer la convergence de la série (52), nous utiliserons un procédé de
majoration que nous avons donné pour le cas des systémes et qui s’ap-
plique aussi a ce cas.?)

En partant, non pas de I’équation (7), mais de

0
Fi(u) = -lo—F(uu) =0
u

le premier terme de la solution élémentaire de F,(u) = 0 sera égal &
Punité. Ceci posé, prenons pour les z* les variables normales ¢,. En dési-
gnant par ¢ la somme des valeurs absolues de ces variables sur chaque
géodésique issue de M, o sera proportionnel & s. Dans ces conditions, on
démontre que » admet une majorante de la forme

C
uy({—
3 02"(1-—“9)47
r

C; étant une constante convenablement choisie et que le rapport C,4,/C;
tend, pour j = oo, vers une limite finie «.
Dans ces conditions, la série (52) convergera pour

(=)
<=-{1—=} -
& r

Lorsque M varie dans une région strictement intérieure &4 R, la con-
vergence de la série est méme uniforme.

‘P(T)a;xa)

1) N. Théodoresco, Les solutions élémentaires, etc. (Revue mathématique Inter-
balkanique, T. 1, 1936.)
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§ 8. Le cas d’un nombre pair de variables. Ce cas conduit, comme
nous I'avons montré, & une impossibilité, du moins si 'on se borne &
une solution & singularité algébrique. Il n’en est plus de méme si 'on
compléte la solution d’un terme logarithmique, en posant

p=ul?+Ulogl. (53)
En substituant ces valeurs dans (7), on aura
Flp) = F(ul?)+F(Ulogl).
Calculons d’abord F(U log I'). 11 vient:

A, Ulog I' = UAdylog I'+24(U, log I') + A, U -log I

Appliquons maintenant 1'opération @, & chacun des termes du second
membre :

0,(UAdylogI') = UB,A,log I'+-20(U,d,log I')+ A, log I'- 0, U .
Mais

1
Aglog I’ = —I—,(Azl’———fi)
et puisque
O,(UV) = UG,V +20(U,V)+V6,U
on aura
G, 4,I 1 D)
Oy log I'= 2L L1004, 1\ T) 4 (4,7 — 1)0,I] + F—?(A2F—-4).
De méme
1 1

0 (U, 4, log F):@[U,%(A2P~4)]=T@(U, AT — (4, T—4O(U,T)

ce qui permet d’écrire

04U, log I)— 11-1@2 [(4,7-4)T]- 7,1-2-[2@ [U(4,7-4), T+ U(d,T~4) ,T]

2 (54)
+ 7l — HUQ.

Passons au second terme:
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1

@2[A(U,logr)]=@2[11-,41(0,1*)]= @A(UI’)+2@[ AU, P)]

r
1

+A4(U, I’)@gr.
Mais puisque

O, 17 = p(p— 1)I"2Q + pI* 10,1 (55)
pour p = —1, on a

1 20 1
O =13 — 20l

et, finalement, nous écrirons

L 0,4(T, I’)——I%[2@[A(U,I’),I’] 40,0 AU,

r
56
+PQ3A(U,I’). (56)

20,[4(U,logI')] = 2

Le troisiéme terme:
(87)

0,[4,U log I' = 0,4,U -log r+—;[2@(420,r)+420-@2r] Lo.av.
Quant aux termes provenant de dérivées d’ordres inférieurs, on aura:

U
bRy (U log I')ep,=bB7 (U, log I' +=5 7, )5

= }logl- B*BvU oc?l;’+’1' [$B°BU g+ § B*FrU 7y + | B*BY U,

= L [B*U,+ } BB Unyg) + ——B U.

De méme (59)

(U log I)yg = Llog I'-CBU 5+ 7_1,-[0a Uyt §0* U] — 5 CU
et
(U log T'), = log I'- DU, + T{DU. (60)

En additionnant membre & membre les relations (54), (56), (57), (58),
(59), (60), et en tenant compte aussi du terme logl™ £ U, on arrive &
Pexpression
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F(Ulog D) = F(U)log I'+ %[U[F(I‘)—ET}—}—Z@(U,AJ) (61)
4 (4,7 — 4)0,U +20,4(U,T) + 20(4,U,T)+ A,U- @,
1
+3B¥ U g+ 4 BB U, s+ C* U, ] — ﬁ[w [U(d,]'— 4),I"]
(A, —4) U@, + 4@[A(U,T),T'] + 24(U,T)O,T
+Q4, U+ B*U,+ 4B Um,g+ CU]

2Q B
+ e (el — 4)U+ZA(U,F)—}—-QU].

D’autre part, si on prend pour » un développement de la forme (52),

]
F (» 1) se met sous la forme (44) et les » sont déterminés pour j =0,1,...,

—p—1. Pour j=—9p,—p-+1,—p+2 nous ne disposons plus

’ . . —p —p+1 —p+2 . . ’
d’équations du type (45) et les quantités w, w, wu restent indéterminées,

tout au moins jusqu’a nouvel ordre.

i
Par conséquent, en déterminant les u par les équations (45) pour
j=0,1,...,—p—1, on aura

—-p—

FOE arr) = 7 (A (W) — 2B, () + F(u))

=’ (62)

-p-2 1 _ 7t
+f2[_‘B—p*l(u)+F(u)]+TF(u)'

Le développement de F () comportera donc un terme en logl’ et trois
termes en I, I'-%, I'-3, Il faudra que chacun s’annule séparément.

En particulier, pour que le terme F(U) log I" = 0, ¢l faut que U soit lui-
méme une solution de I'équation (7).

Calcul de U.
Nous tacherons de déterminer U par un développement suivant les
puissances de I” de la forme

UsUt Ul 4+ Ul - . (63)

En introduisant cette expression dans F(U), on trouvera des termes
k

comme dans la formule (44) avec, cette fois, p = 0 et les U successifs
seront déterminés par des équations telles que

av BlE 1 1 ! =
48?{;—*—[ (k—l)—l"A2F+'@]U+E[Ak~1+mBk—2+mF(U)] =0



A

ou

k k k k
A,=Q-4,U—L,-0;,—20[L,,I' |4 B*U, + }BEUnp+CU
k k
By =4,U-0,—6,[L,] + 20[4,U, T4+ [} B no5,+ 308 m,g+ Do, U

k k
+ 3 BBy Ung, + 3B U, g+ C* &x (65)
1 k 1 1 k-3

Mentionnons, en particulier, que

BU 0
L0=—Q—U- . Ay=Q-A,U—Ly O, + 26[ Ly, '] + .. ..

1 1 1 2
Li=5BU + 4], Ly=55(2BU +4;+By] .

0 1 2
Remarquons, toutefois, que les trois premiéres fonctions U, U et U

resteront indéterminées, car les équations (64) exigent que &k # 0, 1, 2.

Notre méthode donne donc une solution de la forme (63), & condition de
0 1 3
connaitre trois fonctions analytiques U, U, U prenant les mémes valeurs

que U et ses deux premiéres dérivées transversales sur le conoide.
Nous allons voir que, dans le cas qui nous intéresse, nous disposons de

0 1 2
moyens pour déterminer U, U et U.
0 1 2
En supposant connus U, U et U, les équations (64) donnent
(66)
k
d [ v U gh-p-1 1 1 o
. r 8—p”6'}:“'~_'6—[Ak—1+~:'—Bk—2+ — F(U)]
ds . kQu k—1 (k—1)(k— 2)
avec p = —n+ 1.

Calcul de F(UlogI'). La fonction U mise sous la forme (63), le déve-
loppement de F(UlogI") doit étre calculé de nouveau, en modifiant con-
venablement l’expression (61). A cette fin, il faudra établir quelques
formules résultant de la modification des termes successifs de cette
expression. On les aura, en remplagant dans les invariants dont elle est

k
formée U par ZUI'* et en ordonnant suivant les puissances de I'. Cal-

k
culons d’abord F(UI'*log I).
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k k k

OUT*,A,I) = k¥ U O (A, I'T)+*O[U,4,T]
k k k k

0,(UT* = k(k—1)T*-2QU + kI'*-1[20(U,I") + UO,I'|+I*0, U
k k

AUT* Ty = P*[A(U, 1)+ 45U ]

O, [A(UT% I") = ke(b— 1) *-2Q[A (U,T) + 4k U |
4 kT* —1[(4(("],r)+4kzk])-@21’+2@[A(§,1‘),r 14-8k6 'f],r)]
L T*O,[A(U.T)+ 4k U ]

A(UT*I) = k[*-14(0, 1)
A, T* — k% 1[4, + 4 (h—1) ]
2y(UT*) = kTEA[U [AT + 4(k—1) ]+ 24 (U, )]+ %4, U
O[4,UT* I'] = k(k— 1)T*-2Q[[As] + 4(k—1) U +24(U, 1]
+ k%[O U AT, I + 4 (k—1)O(U, I') + 20 (AU, I, T']
+QA,U]+T*0[4,U,T]
O[U (A, —4)T*, '] = kI* (4, —4)UQ+ I"*O[U (4, —4),T']
O[AUT% ), = k¥ [A(U, 1)+ 4k U 1Q+ T*O[A(U, )+ 4k U,T']
BB (U %) g = 6 (k—1)T%-2 BU+ kT[4 B Uyt U BB 5] + P* BT g
Boby (UT¥) 5, = k-1 BB Umpg+ I BBy U, ng,
Be(liI™), — 3k BU + I*Bsl,
Cx(UT%), = 2k*-1C U + I*CoU, |
Il s’ensuit

k
F(UT*log I') = F (U log I'+ I'*3P (U) + T**Q(U) 4+ "R, (T)

ou ’on a posé
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P(U) = k(kb—1) (4,T—4)Q U + 2k (k— 1)Q [A (U, I) + 4k T ]
-+ 2k(k——1)Q[[A21‘+4(lc—-1)](k]+2zl(lkf,l’)] +3Ic(lc—1)Blkl
k(AT —4)QU — 4k [A(U,T) + 4k T 1Q
— k[[AoT+ 4(k—1) 1T + 24(U,1)]@—3k BU
+2Q[ul — T +2[AT.1)+ 4k U1+ 5]

Q.(U) = 2kUO(A,I,I) + (A, — 4)[20(U, 1)+ U-0,I'] (67)
+ 2k[0,0-A(U,I') + 4k U- 0,7 +20[4(U,I),I'| +@Q-4,U]
+ R[2A(U, 1)+ AT+ 4(k-1) U] @ + 2% BT+ k BB Urm g 2kCT
20 [(A,— 4)U, T |— (A, — 4)U - Oy 4O [A(U, ') +-4 kU, T']
— 2[A(U. 1)+ 4k U 10,7 — QA U— BxU,—}BbUnpg—CU

k k k k
R,(U) = [F(I') — El'U 4+ 20(U, 4, + (4, — 4) ©0,U
k k k k
k
+ %Baﬁ 5(13-}- %B"“BY Uaﬂpy + O~ f]a .

On aura donc

p+k+3
Pl o du
F(p) = F(_ZO’“F””) +k_0(k + 3)(k+ 2)(k+ 1) I"*Q 48-(1-;
] ~ —p+k+3

+a@+ 2 +a,r+5] 7

1 1
tET90 |Acpsss + g Bepn + EEIES)

o k ) k k k
+ FI(CEOUF")logI’ +k§op"”3[Pk(U) + Qx(U) +Re(U)]=0

!

en convenant que Q_, = R_, = R_; = 0.

-p+k k
Calcul des fonctions %. En tenant compte de ce que les U pour

i
k=3,4,.... sont donnés par les équations (66) et que les u pour
j=0,1,...,—p—1 sont déterminés également par les équations (45)

-» —»+1 -p+2

et en remarquant que l'on a pris ¥« = 0, v = 0, v = 0 dans le déve-
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loppement de u!), on disposera pour la détermination des autres incon-
nues des équations suivantes, obtenues, en annulant successivement les

coefficients de I'-3, I"'-2, I'-1

-1 —p-2

Po[U] +2A_,, () — 28_,,_2(u)+ F(%) =0
1
PLU]—B, (%) + F(%)+ Qo[U]=0 (68)

2 1 0 -1
PlUT+ Qi[Ul+ Re[U]l+ F(u)=
et les coefficients de 10, [, ..., I'*-3

du B|#ek
48—
sds+[4( 1) +4, F+Q (89)
1 -p+k-3
- B ] [A-,,+k_1 s mp—— B—p+k 2 T (k—1)(k—2) F( )]

1
T nE—gPr T Qe Rl = 0

k=3, 4, ....

0 1 2
Caleul de U, U, U. L’expression de P, devient, a la suite de calculs

élémentaires

E B
P, — (3k*— 6k + 2)@[2A(U,r) + [4(k——1) $A,T+2

i Q
dk(k—1)(k—2)] X -
3k2—6k 4+ 2 ]U]

+

En y faisant k = 0, 1, 2, les équations (69) deviennent

(70)
aU -3
48 —C—l~+[ 4+A F+Q] @[A~p—- B~p~2+%F(u)]=O
v B! -2
45T+ (4D +31U—5[Q — Bopy + F(u)]=0

1
-p-1

43——+[4+AF+Q]U+ Q[Ql + Ry + F(u)]=0.

1) La considération de ces fonctions, qui restent arbitraires dans notre solution, modi.
fierait les termes en I, I'', I'?, en compliquant inutilement les seconds membres des

. ~p+3 -p+4 -p+5
équations donnant wu, u, U,
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Nous poserons

Ly=GIBU + A, —B,y +3F(%)]
* 1 1 ~p-2
Li=3[BU — Q + B,y — F(u)] (1)

-1

* 1 2 —1’
L2=E[2BU + Q + Ry + F(u)]

afin d’utiliser une notation uniforme [pour k > 2, les expressions des L,
sont celles données par les formules (65) ].

Les expressions de P,, Q;, R,. En tenant compte des équations
k
(64) vérifiées par les U pour k > 3 et des équations précédemment

0o 1 2
écrites (70) vérifiées par U, U, U, ’expression de P, se réduit a

P, — Q[4k(k——1)(k-2)[k] + (3Kt — 6k + 2) (-g- [kJ——Lk)] . (72)

En ce qui concerne Q,, on peut, aprés quelques calculs, le mettre
successivement sous les formes

. k ko 4k(k—1) k
Qi=(2k—1[24(U, ") + 4T+ 4(k—1)1U + oh—1 vle,r
. L ko 4k(k—1) k
+ 22— 1)@ [24(U, 1) + (4, + 4(k— 1)U + ~g - —="U,I]
b @k—1)[Q- 4,0+ BeUy 4 §BBUng+ 0T ]
et, en tenant compte des équations (64) et (70)
. \[4k(k—1) k& dk(k—1) *
Q,— (2/0——1)'[——-—-—%___1 U Lk]@2r+ 2@[”—210—1 i Lk,F]
k L | (73)
+Q-4,U + B U.xnap—}—CUs.

Enfin, on peut, en imitant les calculs ayant mené & ’expression (49) de
B, mettre R, sous la forme

k k k
k k k k
+ [4 B 7, + 3CFmog + Doy U + $BBYU 15, + $B*BU 15+ O*U, .
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Rappelons que dans ces trois derniéres formules il faut prendre pour

k=0,1,2, a la place des L, correspondants, les quantités L;, L], L;
definies plus haut.

k
Expression et ordre de U. Pour calculer I'ordre infinitésimal de

0 1 2
U, U, U mettons les équations (70) sous la forme

0

d[f_ U ~»-1 -
ds P ] =" 7 [A—p1— B +4F(u)]
- U 4Qu
1
dr U P A
eS| = —51Q — By + F(u)] (75)
- U 4Qu
2
dr U —p+1 -p-1
a:; 3“17‘*'2—-0— :——S O[Ql + Ro + F(u)]
- U 8Qu

-3
Comme A_,;,B_,_;, F(_fo ) sont tous de I'ordre de s#*+3logs, 1'ordre

0
de L, sera celui de s?*+'logs et U sera infini a I’origine comme $?*+logs.
—p-2
Q, sera de l'ordre de s*+llogs, comme B_,_, et F( u ), de sorte que

1
L; et U seront de l'ordre de s2*-1logs.

-p-1
On constate aussi que Q,, R, et F( %) ont le méme ordre, celui de

2
8%-llogs et que ’ordre de L; et de U sera celui de s?*-3logs.
Passons maintenant aux formules (65) et aux équations (66). Par

7
Papplication du procédé utilisé dans le calcul de 'ordre de %, on trouve
qu’a l'origine on a les comportements suivants:

L, comme s2*+2]ogs, A, comme s*+]ogs, B, comme 8**-1]ogs
L, comme s?*-tlogs, A, comme s?*-1logs, B, comme s*-3logs
L, comme s?*-3logs, A, comme $**-3]ogs, B, comme 8*-%]logs

0 3
et puisque F(U) sera de Pordre de s?*-3logs, 'ordre de U sera celui de

8% -5]ogs.
k-2
De proche en proche, on trouve que 4,, B, et F(U) sont de l’ordre

k
de 8%7-%+1]ogs et que 'ordre de U sera également celui de s2*-%+1]ogsg.
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-+k
Expression et ordre de ». Les équations (69) se mettent sous la forme

-p+k
21 = aa | 1 1 —p+ k-3
— | s—P+k = — —|A_ii-1 + 57—Bpri—2t+ 75— F( » )
@ l w ] kQ:L l k—1""7 (k-1)(k—2)
A (76)
+ (k — 1) (k ___—2_) ka + QIG“‘]. + Rsz]‘] .

L’ordre de P, et de L, étant celui de s2*-%+3logs, Q, sera du méme

ordre et R, sera de l'ordre de s?*-2,-llogs. Puisque A_, ;—1, B_pi5—s,

-p+k-1
F( % ) sont infinis comme §%*-2k+3]ogs, il s’ensuit que le second membre

de I’équation est de ’ordre de s?-¥logs. Par I’application de la méthode

] ~-p+k
déja utilisée pour la recherche de u, on arrive a exprimer w» par un

développement qui & 1’origine est infini comme §%”-2k+1]ogs.

§ 9. Synthése des résultats obtenus. Les équations du quatriéme
ordre, dont la forme caractéristique se décompose en deux facteurs
P et Q admettent une solution élémentaire algébrique singuliére sur les
nappes du conoide caractéristique provenu de la forme P, & condition que
ces nappes soient les plus extérieures des nappes du conoide complet.

Cas d’un nombre impair de variables indépendantes: m = 2n+ 1.
La solution est de la forme

U ©j
= = avec w=2Xul",
I'n—z i=0

4

i
Les fonctions # sont données par les équations différentielles (46). Ces
fonctions sont holomorphes dans I'intérieur du conoide et sur le conoide,
sauf au sommet, o elles admettent des singularités. Il faut toutefois

J
remarquer que les termes /" du développement de u tendent vers zéro,
lorsque le point N tend vers le sommet M du conoide sur une géodésique

quelconque, de sorte que dans le voisinage de l’origine la solution u se
0
réduit sensiblement & son premier terme %, comme dans le cas des

équations du second ordre étudié par M. Hadamard.

Cas d’un nombre pair de variables indépendantes: m = 2n .
La solution est de la forme
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¢ = fas + Ulog L

®j o k
aveec %= Xul et U=3XUI*,
j=0 =0

i
Les fonctions u sont données pour j = 0, 1, ..., —p—1 par les équa-
tions (46) et pour j = — p+ 3, ... par les équations (76). Les fonctions
0 1 2 k

U, U et U sont données par les équations (75) et les U pour k = 3, 4, ...

-» -p+-1-p+2
par les équations (66). Les fonctions u, w, u restent indéterminées,

ce qui n’était pas le cas pour un nombre impair de variables. L’ordre

infinitésimal des fonctions calculées & I’origine est tel que, dans le voisinage

0
de ce point, « se comporte comme % et, en donnant au terme logarithmique

le dénominateur 1™ -1, la fonction U™ -logl" est nulle pour s = 0.

(Regu le 17 aotut 1937.)
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