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Les solutions élémentaires d'une classe

d'équations aux dérivées partielles linéaires
d'ordre supérieur

Par N. Théodoresco, Bucarest

§ 1. Introduction. L'examen des méthodes utilisées pour la résolution
des problèmes aux limites posés par la Physique Mathématique montre,
qu'en général, celles-ci reposent sur l'emploi d'une formule de Green,

permettant le passage d'une intégrale étendue à une variété à m dimensions

à une intégrale étendue à l'hypersurface limitant la variété en
question. Cette formule fondamentale établie, il s'agit de trouver une
fonction auxiliaire, la solution élémentaire (dont le modèle le plus connu
est le potentiel élémentaire ou la fonction de Green de la théorie de

l'équation de Laplace), telle qu'il soit possible d'isoler la valeur de

l'inconnue en un point, en spéculant les avantages résultant de la présence
d'une singularité appropriée.

C'est ce qui a permis à M. Hadamard de résoudre le problème de

Cauchy pour les équations du second ordre du type hyperbolique normal.
Ses méthodes ont mis en évidence à la fois le rôle du conoïde

caractéristique, espèce de variété conique à génératrices courbes, figurant la
marche d'une onde produite par un ébranlement localisé au moment
initial dans le voisinage d'un point, et la nécessité de l'introduction de la
solution élémentaire, dont la singularité est répandue sur tout le conoïde

caractéristique de chaque point.
Ces remarques se retrouvent même dans l'étude des équations d'ordre

supérieur à 2 et des systèmes d'équations aux dérivées partielles, bien que
ce cas ait été relativement très peu étudié jusqu'à présent et envisagé
plutôt de bien des manières particulières, en raison des difficultés qu'il
présente.

Ainsi, Fredholm a considéré le cas des équations d'ordre quelconque n à

coefficients constants de la forme /l^-> ^-> ^-) 0 où /(%, 7t2, tz3) est

une forme algébrique homogène de degré n en les variables n% à coefficients

constants1) et a, particulièrement, construit pour ces équations des

solutions singulières en un point donné M comme l\r,r étant la distance

x) /.Fredholm, Sur les équations de l'équilibre d'un corps solide élastique
(Acta Mathematiea, T. 23, 1900, pp. 1—42).
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MP à un point P variable de l'espace, en généralisant la théorie du
potentiel aux équations d'équilibre d'un corps élastique. Ses recherches
ont été étendues par M. N. Zeilon1), qui envisage aussi le cas où la forme
/(^i, tc2, jt3, né) n'est pas définie.

M. G. Herglotz2) considère le cas où n pair et l'équation / 0,

conçue comme une relation entre des coordonnées cartésiennes xt —

représente une surface composée de n\2 ovales entourant l'origine et ne
se coupant pas entre elles.

Récemment, toutes ces recherches ont été reprises par M. FI. Bureau*),
qui les a étendues au cas d'une forme / (nx, n2 tzp) 0 de degré n et à p
variables à coofficients réels et constants.

Le cas général des équations linéaires complètes d'ordre quelconque, à

plusieurs variables et à coefficients variables n'a pas, à notre connaissance,
été envisagé jusqu'ici, exception faite des recherches de M. Holmgren*)
traitant du cas de l'équation d'ordre trois et des systèmes du premier
ordre à 2 variables indépendantes, dont les résultats ont été retrouvés et
précisés par M. F. Bellich5).

Dans un mémoire publié en 1936, nous avons considéré le cas des

systèmes d'équations linéaires du premier ordre à coefficients variables
jouissant d'une particularité qu'on rencontre fréquemment dans les

applications physiques : la forme caractéristique A (tz1 nm) est décom-

posable en deux facteurs P et Q dont P quadratique en les variables

n% — ^— O(xlt x2... xm) 0 étant l'équation d'une variété caracté-

ristique.
Nous avons calculé des solutions élémentaires algébriques singulières

sur la nappe conoïdale caractéristique provenue du facteur quadratique

N.Zeilon, Das Fundamentalmtegral der allgememen part. lin. Diffe-
rentialgleichungen mit konst. Koeffizienten. (Archiv fur Math., Astr. och Fysik,
Bd 6, No 38, 1911 et Bd. 9, No. 18, 1913

2) G. Herglotz, Ùber die Intégration linearer partieller Differential-
gleichungen mit konst. Koeffizienten (Leipzig Ber. 78, Bd 1926.)

3) FI. Bureau, Essai sur l'intégration des équations linéaires aux dér.
part. (Mémoires de l'Ae. royale de Belgique 2e série, T 15, 1936.)

Les solutions élémentaires des équations linéaires aux dérivées
partielles. (Idem, t. 15, 1936).

4) E. Holmgren, Sur l'extension de la méthode d'intégration de Riemann.
(Archiv fur Math., t. 1, 1904). Sur les systèmes linéaires aux dér. part. (Idem
t 6, 1911.)

5) F. Melhch, Verallgemeinerung der Riemannschen Integrationsmethode.
(Math. Annalen, Bd. 103, 1930.)
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P(?r1, nm) et régulières dans l'intérieur du conoïde, y compris les

nappes fournies par l'autre facteur Q — 01).
Dans un autre mémoire2), nous nous sommes occupé des équations

d'ordre supérieur à caractéristiques multiples, en montrant qu'il n'est pas
en général possible d'obtenir des solutions élémentaires à singularité
algébrique sur les nappes provenant du facteur quadratique multiple P
de la forme caractéristique et en donnant la forme des équations qui
admettent de telles solutions.

La présente recherche a pour but de conduire aux solutions élémentaires

des équations d'ordre n à coefficients variables et telles que leur
forme caractéristique A, considérée comme une forme algébrique homogène

de degré n en les variables nt, soit décomposable en deux facteurs
P et Q dont P Upt37it7i, est quadratique en nt.

Les recherches de M. Hadamard ont montré qu'à toute équation du
second ordre il convient de rattacher la géométrie d'un élément linéaire
riemannien, savoir de celui qui provient de la forme adjointe de la forme
caractéristique. En passant au cas des équations d'ordre supérieur, il
serait nécessaire d'adopter un autre langage géométrique. La particularité

que nous admettons ici est justifiée par cela qu'elle nous permet
de développer nos calculs dans un espace de Riemann.

En chaque point M, le conoïde caractéristique se composera d'une

nappe /"fournie par l'équation £$„--— -~— 0 et des nappes Q provenues
0X% OXj

du facteur Q — 0.

Dans l'interprétation de M. Hadamard, une discontinuité produite au
point M au moment initial, se propagera suivant la variété F + Q, mais
s'il y a compatibilité, la propagation aura lieu suivant une seule,
parfaitement déterminée, de ces nappes3).

Inversement, dans la supposition que l'équation régit un mouvement
dans l'espace-temps xx xm, t, pour connaître ce mouvement à un
instant t, il suffit de le connaître à l'instant initial t — t0, non pas dans

tout l'espace, mais sur la variété section du conoïde par le plan t t0) et
,,dans le cas où ce conoïde se compose de plusieurs nappes fermées, il faut
considérer la plus extérieure de ces nappes".4)

*) JV. Théodoresco, Les solutions élémentaires d'une classe de systèmes
d'équations aux dér. part. (Revue mathématique Interbalkanique, T. 1, 1936.)

2) JV. Théodoreaco, Sur les équations aux dérivées partielles linéaires à

caractéristiques multiples (Journal de Mathématiques, 1937. Volume jubilaire
de M. Hadamard).

3) Cf. Hadamard, Leçons sur la propagation des ondes, No. 307, p. 289.

4) Cf. Hadamard, loc. cit. No. 306, p. 290 et remarque (1), p. 291
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Notre solution élémentaire sera singulière sur la nappe conoïdale F
provenue du facteur P 0 de la forme caractéristique A P. Q et
régulière dans tout l'intérieur du conoïde F, y compris les nappes
provenues de Q 0.

Nos calculs feront intervenir les variétés caractéristiques qui, comme
on le sait, sont conservées dans toute transformation ponctuelle effectuée

sur les variables indépendantes x%. Il conviendra donc d'écrire les équations

à étudier, que nous prendrons pour la simplicité de l'écriture du
quatrième ordre, sous forme invariante par rapport à toute transformation

ponctuelle, à l'exemple de M. Th. deDonder1) qui a montré comment
on peut mettre toute équation linéaire d'un ordre quelconque sous une
forme invariante à Faide de dérivées variationnelles se rattachant à des

principes extrémants de la Physique Mathématique. Nous montrerons
que cet aspect invariantif des calculs s'impose dans cet ordre d'idées
d'une manière naturelle, en raison de l'introduction de la forme métrique
Egl3dxtdx3 et de la géométrie de l'élément linéaire correspondant.

§ 2. Forme invariantive de l'équation. Nous partirons de l'équation

TA d4(? d*q> y d\ d<p

EA^dxtdx3 dxkdxt + EB^dx~^dx-k + E0« dx-dx-, + ED*
dx~t + E<P °

(1)
où At9kl9 Bt9k>Ct9,DtJ E sont des fonctions analytiques des variables

xx, x2, xm dans la région où l'on étudie l'équation.
En désignant par G(xx, xm) 0 une variété caractéristique de (1),

on sait que si l'on pose n% =—, G 0 sera une intégrale de l'équation
oxt

A EAtJklnt7ionknl 0

Si l'on considère les n% comme des coordonnées cartésiennes, A peut
être envisagé comme une forme algébrique en n% homogène et du
quatrième degré. Dans ce qui suit, nous supposerons A décomposable en deux
facteurs quadratiques

P=Zpt97ii7tj et Q Zqt37it7i3 (2)

de sorte que A — EVuQ.ki^i^s^k^i'
Les coefficients pljf qxi ainsi que les Bt3k, Cxi sont symétriques en*, /, k.

*) Th. de Donder, Sur les équations linéaires aux dérivées partielles d'un
ordre quelconque. (Journal de Mathématiques, T. VII, 1928, p. 173.)
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Ceci posé, pour mettre (1) sous forme invariantive, M. de Donder part
d'une forme différentielle quadratique supposée invariante, dont les

coefficients fournissent les composantes du tenseur fondamental et les

dérivées covariantes, à l'aide desquelles on forme des invariants qui
remplacent les groupes des dérivées partielles de différents ordres dans

l'équation proposée.
Le problème que nous poursuivons nous impose, comme on le verra

plus loin, de choisir pour cette forme invariante l'expression ZgtJdxzdx}
où gtJ est le mineur de ptJ dans le discriminant A de la forme P, divisé par
A #0.

Nous adopterons désormais les notations du calcul tensoriel, en
écrivant x01- pour les x% et en supprimant, selon les règles classiques, les signes
sommatoires. Les indices co- et contrevariants seront désignés par des

lettres grecques, de sorte que nous écrirons g^p pour gl3.
Par conséquent, la forme P çf^n^n^ étant donnée, nous formerons

la forme différentielle

<M* 9a$d**dxf> avec A \qf$\ ^0 et D=\g^\ ^0 (3)

supposée invariante dans toute transformation ponctuelle effectuée sur
les xa. Nous désignerons par ç>a, 9^3,9?^, etc. les dérivées covariantes
succesives de la fonction (p{x\, xm) par rapport à la métrique (3).

Le groupe du quatrième ordre dans l'équation (1) sera remplacé par
g^cfl^cPaPyS, g01^ seront les composantes contrevariantes du tenseur
fondamental g et aY^ les composantes du même type d'un autre tenseur du
second ordre, qu'il faudra déterminer. Puisque d'après le lemme de

Ricci (g°^)y 0, on aura

Nous poserons
A2<p ffitpri (4)

en remarquant que l'invariant A2<p est le paramètre de Beltrami du
second ordre de la fonction (p. En outre, l'expression

(5)

sera également un invariant, de sorte qu'on pourra écrire

gf#aY*<pafyi O2A2<p. (6)
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L'équation dont nous allons nous occuper sera donc

a + e<p 0 (7)

où b^Pv, caP, da sont des tenseurs contrevariants qu'il faut exprimer à

l'aide des coefficients de l'équation (1), e un invariant.
Le passage de la forme (1) à la forme (7) se fera par l'introduction de

termes convenables qu'on déduira ensuite, de manière à pouvoir identifier
ces deux formes de la même équation. On aura

U )J \ oc) \ P)

où les accolades sont les symboles connus de Christofïel de seconde

espèce.
On se rend aisément compte que l'équation étant écrite sous l'une des

formes (1) ou (7), il est facile de la ramener à l'autre par un calcul purement

algébrique.

§ 3. Solutions à singularité algébrique. Nous allons chercher pour
l'équation (7) une solution de la forme

(p uGp + v (8)

où G 0 est l'équation d'une surface régulière donnée, p un exposant
constant, u et v des fonctions régulières1) même sur G.

A cette fin, nous aurons besoin de calculer certains symboles, ce que
nous ferons ci-après. Posons

1) Une fonction sera régulière, si elle est continue avec ses dérivées partielles jusqu'à
un certain ordre qui sera précise de cas à cas
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Axu — (fPuaUp et 0xu arfu^up (9)

où ua est la dérivée covariante de u (qui coïncide dans ce cas avec la
dérivée partielle ordinaire).

Posons encore

A (u, v) çpPu^vp et 0(u, v) aaPuaVp (10)

Nous écrirons ^ n^ Gafi Waj8, ^y wa^y etc.

En vertu de (9), on aura

AXQ g"P7taap P et eiG a^nan^ Q (11)

En introduisant l'expression (8) de cp dans l'équation (7), le terme v donnera

une contribution régulière F(v), tandis que le premier exigera le
calcul des quantités suivantes:

Calcul de 02A2uGv.

On aura d'abord

avec A2Q» p{p — l) Gp~2 P + pG»-1 A2G

et &2Gp p(p — l)Gv~2

En appliquant l'opération G% à chacun des termes de A2uGp, on aura
successivement

+ 20(uP,G)]+Gp~2O2(uP)
02[Gp-Ht'A2G] (p—l)(p

p~* 02 [A (u, G) ]
02(GpA2u) p(p—VGP-iQAtU + pGP-ilAtU-etG

+ 20(A2u,G)]+Gp.02A2u

et, par conséquent,
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l) (p—2) (p

—l) (p—2)Gp~3[uP
uQ A2G + 2QA(u,G)]

A2u]

+ 2O(A2u,G)]

+ GpO2A2u

Calcul de b«Pr(uGp)a{iy

La dérivation covanante fera intervenir des formes algébriques en 7za

qu'il sera commode de désigner par des symboles particuliers Ainsi,
nous poserons

B b*yn*npty (13)

ri 7?

Ce sera un invariant Par conséquent ^— Zb^nan. sera un vecteur
OTZoc H i

contrevanant Nous écrirons ^^» (H)

sera un tenseur doublement contrevanant Enfin, on posera
6 b^Pv ce qui nous permettra d'écrire

Calcul de

En posant comme ci-dessus

C cf#nanp9 (15)

on aura Oa 2 cP$np et puisque C est un invariant, Ca sera un vecteur
contrevanant. On écrira de même CaP 2 ca^, ce qui donnera

Calcul de da(w

En posant
D rf^a (16)
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on aura Da da et

Pour conserver l'uniformité de l'écriture, nous poserons en plus e E.

Expression de F(uGp).

L'introduction des ternies calculés précédemment dans l'équation (7)
donne

F(uG*) p(p—l) (p—2) (p—3)Q»-*p.Q

2O(uA2G,G)

— F(v).

Premier terme de la solution singulière.Dans le voisinage de G 0, on
voit que si les cas p 0,1, 2, 3 sont exclus (ce qui d'ailleurs conduirait à

des solutions régulières), le premier terme du développement est d'un
ordre de grandeur supérieur aux suivants et l'expression de F(uGp) ne
saurait être identiquement nulle, ni même être une fonction régulière,
comme il en est du second membre, tant que le coefficient de ce premier
terme n'est pas nul sur G — 01), c'est-à-dire si l'on n'a pas A P-Q =- 0.

Il faudra donc que G 0 soit une solution de l'une des équations
P o ou Q — 0, par conséquent, que cette variété soit choisie parmi les

caractéristiques de Véquation. Résultat bien en accord avec le théorème
de Le Roux et Delassus2).

Nous prendrons G parmi les intégrales de P 0. L'équation

dx1 ' Bx2 ' * * ' * dx

sera ou bien une identité en x1, x%, xm, ou tout au moins une
conséquence de G — 0. Nous dirons avec M. de Donder3) que dans le premier
cas G(x1, x2,... xm) définit une fonction d'onde absolue et que G(x1,... Jn) 0

*) Cf Hadamard, Le problème de Cauchy et les équations aux dérivées
partielles linéaires hyperboliques, p. 105.

2) Cf. Hadamard, idem p. 102.

8) Th. de Donder, Théorie invariantive du Calcul des variations, p. 178.

(II* Edition, Gauthier-Villars, Paris 1935.)
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est une onde absolue) dans le second cas G sera dite une fonction (Tonde

relative et G 0 définira une onde relative. L'onde G 0 étant donc
absolue ou relative, on aura en tout cas

P P'G (17)

Pr étant une fonction régulière même sur G 0.

En tenant compte de (17), l'équation donnant F(uGp) devient

+ 2QA(u,G) + Bu]+ p(p—l)G*>~2[(p—2)Pru&2G

+ 2(p—2)P'O(u,G) + uO2P+2O(u,P) + uA2G-O2G

+ 2uO(A2G,G) + 2A2G-9(u,G) + 2A (u,G) ¦ 92G (18)

Exprimons maintenant que sur (r 0, le terme en Gp~3 s'annule aussi

pour que le développement puisse être au moins régulier dans le voisinage
de G 0, comme le second membre.

On aura donc

2QA (u,G) + [(p—3)P'Q + 2uO{P,G)+QA

sur G 0 et puisque

ce sera une équation aux dérivées partielles du premier ordre en u

dont l'intégration exige l'introduction des courbes définies par les

équations
dx1 dx2 dx™

dt
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Les quantités i^— sont les paramètres directeurs de la transversale
OTtoc

à G 0, mais comme cette variété est une caractéristique, cette
transversale, qui est la direction de la génératrice de contact entre le plan
(%, ji2 •.., nm) et le cône caractéristique du point xoc, qui lui-même est

tangent à G, sera à son tour tangente à G. De sorte que toute courbe issue
d'un point de G 0 est entièrement située sur cette surface. Ces courbes sont
en fait les caractéristiques de Véquation P (%, n^ 0 et on en peut
compléter les équations en écrivant

dx« _ dap _
1 dP_

~
1

ap ~ (20)

t étant un paramètre. On peut donc les déterminer sans connaître l'équation

G 0 par l'intégration du système (20). On appelle ces courbes les

bicaractéristiques1) de (7). La surface G 0 étant donnée, on peut la
considérer comme lieu de bicaractéristiques, par exemple des bicaractéristiques

issues des points d'une courbe non bicaractéristique (problème
de Cauchy). Sur chacune des bicaractéristiques de G 0, qui dépendent
de m — 2 paramètres, l'équation aux dérivées partielles (19) se réduit à

une équation différentielle ordinaire et peut être intégrée facilement. On

aura de la sorte la valeur de u sur G 0.

Ces courbes s'introduisent donc naturellement dans ce genre de
recherches. Nous ne pousserons pas plus loin ces considérations et
passerons à l'objet principal de ce travail qui est la construction de la
solution singulière algébrique de (7) non pas sur une variété régulière, mais

sur le conoïde caractéristique, c'est-à-dire de la solution élémentaire dont
le rôle est bien connu dans le problème de Cauchy, grâce aux travaux de
M. Hadamard sur l'intégration des équations du second ordre
hyperboliques.

§ 4. Le conoïde caractéristique. Le lieu des bicaractéristiques
issues d'un point M(x\ xm) est une surface caractéristique de (7)

ayant en ce point une singularité conique et admettant, comme on le sait,
comme cône tangent en M le cône caractéristique de ce point. Pour
déterminer cette surface, appelée conoïde caractéristique du point M, nous
prendrons avec M. Hadamard2) un système de m quantités 2?Oi>:Po2î -~>Pom

remplissant la condition
*) Cf. Hadamard, Problème de Cauchy, pp. 105—106.
2) Hadamard, Problème de Cauchy, pp. 116 et suiv.
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Pop 0 (21)

et avec les conditions initiales

Poe Pô* x* a0C Pour s 0,

nous formerons les courbes intégrales du système

Les rapports mutuels des p0oc dépendant, sous la condition (21), de

m — 2 paramètres, le lieu de la courbe ainsi obtenue sera une hyper-
surface de l'espace Em{xx, x2, xm).

Les géodésiques. Pour obtenir cette surface à point conique,
M. Hadamard construit d'abord toutes les courbes issues de M,
intégrales du système (22), qu'elles vérifient ou non la condition (21), c'est-à-
dire sans en choisir celles qui sont des bicaractéristiques de (7). Ces

courbes peuvent être interprétées comme les géodésiques de l'élément
linéaire

n(x\ x2, xm; dx\dx\ dxm) g^d&dvfi (23)

dxa
En effet, en posant xa —j- l'intégrale

ctt

où t est un paramètre quelconque, représente la longueur d'un arc de

courbe dans l'espace Em. Les extrémales de cette intégrale seront les

géodésiques de l'élément linéaire de l'espace. Leurs équations différentielles

sont

qui peuvent être transformées, comme on le sait, en

o

avec II constante, comme intégrale première.
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Ces deux formes sont en général équivalentes, mais sur les bicarac-
téristiques le système primitif cesse d'avoir un sens, de sorte que c'est

par une certaine extension du sens du mot géodésique qu'on peut les
considérer comme telles : ce sont les géodésiques de longueur nulle de l'espace
Em. Par l'introduction des quantités

""=*!? <25>

on peut éliminer les xa des équations (24). La forme 77(#a; Xe*) se transforme

en P(Pn p%, pm), adjointe de JJ divisée par le discriminant D
de 77 et les m équations lagrangiennes (24) se transforment dans les
2 m équations hamiltoniennes (22), admettant de nouveau l'intégrale
P const.

Ces considérations montrent la nécessité d'adopter dans l'étude de la
solution la métrique (23), par rapport à laquelle nous avons mis notre
équation sous forme invariantive. Elle nous indique la géométrie qui se

rattache naturellement à toute question relative à l'équation (7).

Considérons à partir de ce moment exclusivement les géodésiques
issues d'un point donné M (aa) pour lequel s sera pris nul. Une géodésique
est déterminée par les valeurs initiales p0oc (pour s 0) des pa. Les équations

(22) se conservant en remplaçant s par 1 s et pa par —¦ (donc p0oc
A

par ^p), posons

pa =¦ SV* ; ?« sPooc (« 1, 2, m) (26)

et remarquons que les quantités pa,^0a'5 se présenteront seulement
dans les 2m combinaisons (26). Les formules d'intégration seront donc
de la forme

£*= x«(q1,q2,...,qm;a1, ...,am)
Poc Poc(q1,q2,...,qm;a\...,a™).

K ]

Elles ne changent pas par permutation des x* avec aa et des Pa avec

— ga, ce qui revient à changer s en —s dans les équations canoniques.
Aussi longtemps qu'il sera possible de joindre un point N(x*, x2, xm)

à M par une géodésique unique, c'est-à-dire tant qu'il sera possible de

tirer les qa en fonction des xa des équations (27), les considérations
précédentes restent valables et nous supposerons que, M étant donné, la
région R où se trouvent M et N est telle que cette validité persiste.
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Equation du conoïde. Formons la quantité

r=P(P1,P2,...,Pm; xL,...,tf") P(qi,qt,...,qm; a*,..., a») (28)

qui est une forme quadratique en q à coefficients constants et une fonction
holomorphe des x* dont le développement suivant les puissances des

x* — aa commence par des termes du second degré. On aura

car le développement de x* — a06 commence par ^^~â '

F est le carré de la distance géodésique du point N au point M, mesurée
à l'aide de la métrique 77. On aura

—_ a^ 2JPa %sVol (2^)

et la fonction 7^ sera une intégrale de l'équation aux dérivées partielles

r» /1 ^7^ i uF oF

donc

L'équation du conoïde sera, par conséquent, F =-= 0.

Si l'on prend pour coordonnées cartésiennes les variables q^ (ou les

variables normales de Riemann), on obtient un système de coordonnées

géodésiques au point M, dans lequel, on sait que les géodésiques issues
de M seront représentées par des lignes droites et le conoïde caractéristique

par un cône quadratique ordinaire (réel si la forme P est

indéfinie). Quand l'indice d'inertie de la forme P est 1, ce cône se compose
de deux nappes et divise l'espace en trois régions, dont deux intérieures et
l'une extérieure. Nous écrirons les coefficients de P de manière à avoir
toujours F > 0 à l'intérieur du conoïde, lorsqu'il est réel. De même,
nous utiliserons la première série d'équations (22) sous la forme

ïfL^ls™ avec P P(tzoc;x<x) iF.
oTïa, as

12 Commentarii Mathematici Helvetici 1^7



Les conoïdes et le transport parallèle. On sait que dans le cas

particulier où les coefficients gap sont constants, les géodésiques sont des

droites et les conoïdes caractéristiques se réduisent à des cônes ordinaires
égaux Le passage d'un de ces cônes de sommet M au cône

caractéristique d'un autre point P se fait par une translation définie a l'aide du
vecteur MP Si ce vecteur est intérieur au cône caractéristique de M, le
cône de sommet P est lui-même intérieur au cône M et contient dans
son intérieur le support du vecteur MP

Ces propriétés élémentaires convenablement modifiées, subsistent
même dans le cas général d'un espace courbe En effet, considérons le
conoide du point M et soit P un point intérieur a l'une de ses deux

nappes (dans la supposition qu'il s'agit d'un conoide réel) Menons la
géodésique MP Cette géodésique sera tout entière intérieure au conoide

M, car si elle traversait la nappe en question en un point m, on pourrait
mener la bicaractéristique Mm et les points M et m seraient reliés par
deux géodésiques, ce qui est impossible dans la région R

Décrivons le conoide de sommet P (que nous désignerons par P) et
considérons-en la nappe qui ne contient pas à l'intérieur le point M
(et qui coïncide avec la nappe choisie du conoide M, lorsque P tend vers
M) La géodésique MP restera aussi intérieure à ce conoide pour des raisons
analogues Prenons maintenant sur une géodésique quelconque issue de

M et intérieure un point P infiniment voisin de M et considérons le
conoide de ce point On sait que si l'on transporte par parallélisme au
sens de M Levi-Civita le long d'une génératrice Mm de M le vecteur MP,
le point P décrit une génératrice PP ' du conoide P, de sorte que les deux
conoïdes voisms coupent sur la direction MP ainsi transportée des segments
égaux, mesurés dans la métrique Tl(x0L, dxa) adoptée1) La figure MPM'P1
est donc un parallélogramme élémentaire et l'on sait que le vecteur PP'
coïncide avec celui qui résulterait du transport parallèle de MM' le long
de MP 2) Par conséquent, les génératrices des conoïdes M et P se correspondent

par parallélisme On peut donc dire que le conoide P résulte de M par
transport parallèle

Montrons maintenant que le conoide P est intérieur au conoide M Cela
résulte d'une évaluation de la valeur de la fonction r(x0L, aa) lorsque le

point x décrit le conoide P voisin de M En désignant par t un paramètre
positif définissant le point P sur la géodésique MP, par Xx, Am_2 des

*) M Mathisson Eine neue Losungsmethode fur Differentialgleichungen
von normalem hyperbohschem Typus (Math Annalen Bd 107, p 405, 1933)

2) Lew Ciwta Der absolute Differentialkalkul, p 47
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paramètres exprimant la direction de la bicaractéristique PN, par t le
paramètre déterminant N sur cette génératrice, on a

w (t, Aa, s) étant régulier et différent de zéro tant que N n'est pas voisin
de P. Par conséquent F conserve le même signe que t et la géodésique de

longueur nulle PN ne peut traverser le conoïde M.1)
Le même résultat peut être obtenu en supposant que la génératrice

PP' traverserait le conoïde M en un point p. Le vecteur mp déduit de MP
par transport parallèle conserverait sa longueur et, forcément le signe de

F. Il devra donc être intérieur au conoïde m de sommet m. Mais puisque
mp coupe le conoïde M et que p est infiniment voisin de m, le vecteur mp
sera situé dans le plan tangent à ce conoïde en m. Or, ce plan tangent
étant commun aux deux conoïdes M et m, tangents en m le long de Mm,
on est conduit à une absurdité, car mp doit être intérieur au conoïde m,
qui est, dans le voisinage de m situé entièrement d'un côté de ce plan
tangent, tout comme son cône tangent, et n'a en commun avec ce plan
que la direction de la génératrice Mm en m.

Ces propriétés des conoïdes caractéristiques expliquent pourquoi dans
la résolution du problème de Cauchy pour une équation hyperbolique du
second ordre, la connaissance des données de Cauchy non pas sur toute
une surface ouverte S mais seulement sur la portion 80 que découpe sur
elle le conoïde d'un point M, est suffisante pour la détermination de

l'intégrale requise au point M et en tout point intérieur au conoïde. En
effet, les portions que les conoïdes des points intérieurs découpent sur 8
sont intérieures à So, de sorte que la connaissance des données sur So est

toujours suffisante.

§ 5. La solution élémentaire. Supposons maintenant qu'il s'agisse
de trouver une solution élémentaire de l'équation (7), c'est-à-dire une
solution de la forme

<p uFp (31)

où F est le premier membre de l'équation du conoïde caractéristique du
point donné M(aa), le point N(xa) étant supposé variable.

Joignons N à M par une géodésique et écrivons l'équation (18) (en
prenant v 0) le long de cette courbe. En faisant ensuite varier le point
N, nous déterminerons la solution (31) dans toute une portion de la
région R.

Hadamard. Problème de Cauchy, pp. 172, 176.
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On aura, en tenant compte de ce que P! 4, en vertu de (30) et qu'il faut
remplacer partout P par étF:

(32)

{) 0.

Mais on a

Pfi Q (33)
x»^ dP du

A
du dx* du

Quant à ^2^ nous le développerons suivant les puissances de s,

somme suit :

- «¦>-> -«-[«S.-IVH
Or

a2r _ dmjx^ — a0", a")
__â^â^ ~ aa;aa^ + • • • — 2^ +

donc

Z!2r= 2flr«%aj8 —^j Yj^x + 2m + (34)

parce qu'à l'origine s 0 et les 7tx sont donc nuls.
Dans l'équation (32), le premier terme est d'un ordre de grandeur

supérieur aux suivants dans le voisinage de s 0 ; par conséquent, pour
que la somme soit identiquement nulle, il faut avoir sur F 0

Q2+Q(,) + u 0

et, compte tenu des relations (33)

4(p-l) + /l2r+|]M=0 (35)

avec la supposition Q ^ 0.
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Remarquons que les quantités n^ 2s#>a étant de l'ordre d'infinitude
de s, B sera de l'ordre de s3 et Q de celui de s2. Par conséquent, le déve-

loppement de -~- suivant les puissances de s commencera par des termes

du premier ordre, au moins. Nous écrirons

i(p— 1) + J2r+| ±(p— l) + 2m + UL(s) (36)

la fonction L(s) étant holomorphe en s et l'équation (35) se met sous 3a

forme

Pour qu'elle admette une intégrale régulière à l'origine, il faut que

p +1 — px où px est un entier positif ou nul. Dans ce cas, u sera

dans le voisinage de s 0 de l'ordre de sp*. Nous prendrons px 0 et
par conséquent

P -f + l. (37)

On aura

_/L(«)<te
w e

° (38)
en prenant u 1 au point M.

Notre calcul nous a donc fourni les valeurs de u sur le conoide. Pour avoir
les valeurs de u dans l'espace, il nous faudra utiliser un procédé d'itération

o

en partant d'une fonction u définie dans l'espace et coïncidant avec u sur
le conoïde.

o

Le terme u. A cet effet, nous joindrons le point arbitraire Nice*) à M
par une géodésique. Les xa seront des fonctions holomorphes des ga. On

pourra également se donner la direction initiale de la géodésique par m— 1

paramètres kl9 Am_x; le point N sera alors fixé par m paramètres
kx, Xm-1 et s sur la géodésique MN.

o

Ceci posé, nous supposerons l'équation (35) vérifiée par une fonction u
dans tout l'espace où F est défini, avec Q =£¦ 0.

Nous admettons que dans Vintérieur du conoïde F, la fonction
Q(ttj, n2, 7im) ^ 0 (sauf au sommet M). C'est donc dans l'intérieur du

o

conoïde F que u devra vérifier l'équation (35). On aura

0 - SL(s)ds

u e
°
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La quantité L(s) peut être écrite sous une forme remarquable. En effet,
on a1)

[ dJ^] (39)

où q -j= A discriminant de P.

J Di*1, ---«s™)— j sem de 1,ordre de sm-!
D{Xlt Aw_!,5)

Par conséquent
B 1

En désignant par \-~^À la limite de -^r quand N tend vers M

sur la géodésique NM, on pourra écrire2)

(40)

0

La fonction it,rpne sera pas, en général, la solution élémentaire cherchée.

Elle ne vérifiera pas l'équation (32) et l'on aura

o ooo
en posant

0 0 0 0

A0(u) [[4:(p—l)-\-A2F]

+ 20[2A(u,r)+[4(p—
o o

0

En vertu de l'équation (35) vérifiée par u, l'expression de Ao devient

x) Cf. Hadamard, Problème de Cauchy, p. 127.

2) Cf. Hadamard, idem p. 373.
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En même temps, dans l'expression de Bo

Or,

et

ce qui permet d'écrire

VB°

o î j
Soient u, u, ...,u... des fonctions de x1, xm ; a1, am, régulières
dans R (sauf peut-être au point M). Nous poserons en général

et

,A2r) + 2O2[A (u,

i o

Le terme u. Puisque u ne fournit pas la solution désirée, il faut
o i

évidemment que u soit de la forme u u + uF, de sorte que nous essaierons

une solution du type

<p urp + urp+1.

En introduisant cette expression dans l'équation (32) et en tenant
compte de (41), il vient
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1

du

«) 0.

Sur 71 0, il faudra avoir, comme précédemment

î
°

ëAo(M)=O (42)

équation différentielle du premier ordre, qui nous fournira sur chaque
î

bicaractéristique issue de M les valeurs de u. Nous déterminerons une
î

fonction u à l'aide de cette équation supposée vérifiée dans tout l'intérieur
du conoïde F.

A cette fin, écrivons, en vertu de (35)

°du 1 du] A° 1 u A ,°x A

o

et en divisant par (u)2

d u\

Pour intégrer cette équation, il sera nécessaire de faire une estimation
de Tordre infinitésimal du second membre dans le voisinage de l'origine.

o

Ordre infinitésimal de ua.

Dans lexpression de L(s) —-— h ——^ le terme

étant une fonction holomorphe des ga et, par conséquent, des x* — aa,

B
nous nous occuperons surtout du développement de —- et de e
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On aura
B ap
Q a0^^ 4 p

Les fonctions &a0y, aa# étant holomorphes en af*—aa et, par conséquent,
en ga, on pourra développer 6°^, a^P suivant les puissances des qa

b«Py btfr + bf> s +

les fej^, a*P étant des polynômes homogènes en pOoc du degré * Par
conséquent

B
avec

et

avec Çt a"Ppapp et em supposant Q0^0
II viendra donc

ce qui entraîne

Mais

Q tfpp*
De même

Ql
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0

En dérivant u par rapport à x*, on aura

d^e
° ~~e ° 9^[* V* " ""+•¦•

ce qui nous permet d'établir que l'ordre de cette fonction à l'origine sera
au moins zéro, car la dérivée par rapport à x* du premier terme, dont
l'ordre infinitésimal est le plus réduit, est une fonction dont le développement

commence par des termes du degré zéro en xa—aa. Il en sera
de même

o
de l'ordre de u, ce qui apparaît clairement en dérivant l'expression

1—2— as — Ai-TidsJ 4s 4J*Q
e o

car le premier facteur, holomorphe en xa — aa, est égal à l'unité à l'origine,
tandis que la dérivée du second commence par un terme indépendant de s.

o

Ordre de Ao(^)- On aura successivement

B °

jrU-02r de l'ordre de s

[jb
° i rb °i

-?ju,r\= a^p\-7)U jtj3 de l'ordre de «5

o

et puisque l'ordre de uap sera — 1

o

QA2u sera de l'ordre 1 également.
0 0 0

L'ordre de B^u^ et de Gu sera 2. Celui de B^utz^ sera 1.
o

Par conséquent, l'ordre minimum de Ao(^) & l'origine sera 1.

i
Expression et ordre de u. En revenant maintenant à l'équation qui

i i o

donne u, observons que l'ordre infinitésimal de ôA0(^) sera

(p+l)Qu
— 1, de sorte qu'on pourra écrire
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a étant une fonction ne dépendant que des pOoc, Hi(s) étant une fonction
holomorphe de s. Il vient, par conséquent

lu J

et, par une quadrature

u u\-\ogs + - I Hi(s)as

d'où

En même temps, on constate que l'ordre infinitésimal de u à l'origine
sera celui de s-1 log s, donc supérieur à — 2, ce qui nous assure que pour

i
s 0, le terme uF est nul quelle que soit la géodésique sur laquelle on
s'approche de l'origine.

Le terme général u. Il est évident que l'expression précédente de <p

ne peut constituer une solution de l'équation (7), vu qu'elle n'annule
o i

pas tous les termes de F (uFp + uFp+1). Essayons donc une solution de la
forme

(p uFp + uF^1 H h ur»+i (43)

o i ?-i
On aura, compte tenu des équations vérifiées par u, u, ...,u

M)F( u >J |

+

0

où les quantités A, et B, sont celles que nous avons définies plus haut.

Nous omettrons d'en écrire l'argument u, chaque fois qu'une confusion ne
sera pas possible.
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Sur F 0, il faudra comme précédemment avoir :

(45)

Q

équation que nous allons écrire, en vertu de (35),

o o

.\°du du\ i..'0, u [A 1
R

1 p/~Y|__n
| 6^5 C?5 J (î)+?)GL 3~1 P+j—l 3~2 (P+j-l)(P+j~2) J

et, en multipliant par —q~~
4(u)2 (46)

ds

Ceci obtenu, nous allons considérer l'équation (46) dans tout l'intérieur
de F 0 afin de construire le terme d'ordre j du développement de u
dans l'espace.

Calcul de A^ et de B,. Les expressions de A, et de B, se simplifient
sensiblement en tenant compte de l'équation (45). On a, en effet

1 7-3 -, H

^7 ^xt F( M ,P

QA2u +B0Cu0l + iB^ 0

et si on pose

(47)
il vient

A, Çzl2^—L,-6>2r— 2O[L3ir] + B^0L+\B^Jun^ + Cu. (48)

En remarquant que dans l'expression de B3

e2[2Ar e[^(ji)Ar]]
que
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et que
ET

on peut écrire

1

Expression et ordre de u. On aura, en particulier

A1=QA2u—L1'02r--2O[L1,r]-\-B«uOi-
où

L'ordre minimum de Lr sera donc celui de s-1 et Ai sera infini à l'origine
î

comme Q • A2u, soit comme s~x log s.

Puisque

et
o

Bu

l'ordre de Lo sera 1 et Bo se comportera à l'origine comme s-1. Par
conséquent, dans l'équation

4'ïJ—
l'ordre infinitésimal minimum du second membre sera celui de s~2 log s.
On écrira

+

où l'on a noté J2($) -j-K2(s), la fonction K2(«) étant à l'origine infinie

comme s*1 log 5 tout au plus. H2($) étant holomorphe en 5, on aura donc
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et

en prenant la valeur du premier membre à l'origine égale à zéro, d'où

2 or

2

L'ordre infinitésimal minimum de u sera celui de s~3 log s. Il est facile
de montrer, de proche en proche, que dans le voisinage de s 0 on a les

comportements suivants :

L2 comme s~2 log s, A2 comme s~s log s, Bx comme s~3 log s

L3 comme s~5 log s, A3 comme s~d log s, B2 comme s~5 log s
3 4

et u comme s~5 log s, u comme s~7 log s.

En général, A^-x sera infini comme s~2j+3 log s, B3-2 comme s~2i+3 log s,
£-1

u comme s~2^+3 log s, ce qui nous permettra d'écrire l'équation (46) sous
la forme

j

où la fonction K3-(s), obtenue en calculant la primitive (sans addition de

constante arbitraire) des termes singuliers du second membre, est infinie
à l'origine comme s~î+1 log s. Par conséquent, on aura

u u [W K3- (s) +8-*$8*-1H,(8)d8] (50)
0

et l'on voit que Tordre infinitésimal de u à l'origine est celui de s~2^+1 log s.

§ 6. Restrictions nécessaires et remarques sur la position des nappes
du conoïde caractéristique. La présence des facteurs p+1, p+2, p+j
aux dénominateurs exige qu'on n'ait jamais p-\-j 0, donc — -5-+/+1=02
ce qui montre qu'il faudra restreindre tous les résultats qui précèdent au
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cas ou le nombre des variables indépendantes est impair. Nous supposerons
donc dans tous les raisonnements faits jusqu'ici

m 2n+l. (51)

â~I > â~2 ' • * • > ~â~rn) ^ ® * Intérieur du

conoïde peut trouver une interprétation géométrique. L'équation aux
dérivées partielles P (%, nm ; x1, xm) 0 définit en chaque point
M (a1, a2, am) un conoïde caractéristique. Si l'on envisage, au même

titre, l'équation Q(coa; xa) — 0 où coa ^-^, on obtient un second conoïde

de même sommet M. L'ensemble des nappes F+Q forme le conoïde
complet du point M.

Or, pour chaque système de valeurs a1,... ,am de x1,... xm, l'équation
P(jra; aa) 0 fournit une relation entre les paramètres directeurs des

plans tangents aux différentes variétés caractéristiques passant par M,
en tant qu'intégrales de l'équation P(jra; xa) 0. Cette relation représente

en coordonnées tangentielles rca un cône du second degré, auquel
doit être tangente toute caractéristique passant par M. En particulier, le
conoïde F admettra ce cône comme cône tangent en M.

De même, l'équation Q((joa\ aa) 0 définira en coordonnées tangentielles

coa un second cône auquel sont tangentes les multiplicités
caractéristiques définies par l'équation aux dérivées partielles Q 0 et passant
par M. Le conoïde admettra ce cône comme cône tangent en M.

Supposons d'abord les coefficients constants. Dans ce cas, les conoïdes
F et Q coïncident avec leurs cônes tangents, qui sont deux cônes quadratiques

ordinaires. (Notre raisonnement n'exige d'ailleurs pas que le cône Q
soit lui-même quadratique.) Si dans l'équation en coordonnées tangen-

p\rt
tielles de Q on remplace les o>a par ^-^, on obtient, en coordonnées

ox
cartésiennes, la polaire réciproque de Q par rapport à F, soit

Q (£)-¦
^-^l T^Oà l'intérieur de F, c'est dire que

la polaire réciproque de Q se trouve à l'extérieur de F et, par suite, que Q
est intérieur à F. On voit donc, que dans le cas des coefficients constants,
la condition imposée à Q de ne jamais s'annuler à l'intérieur de F 0

exprime le fait que de toutes les nappes coniques caractéristiques définies
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par Véquation A 0 en chaque pont M, il faut que F soit la plus extérieure,
résultat bien en accord avec la remarque de M Hadamard relative à la
propagation des phénomènes ondulatoires sur la nappe la plus extérieure1)

Dans le cas des coefficients variables, le phénomène se passe de la même
manière dans le voisinage du sommet, mais il est facile de montrer que
si le conoide Q est, au voisinage du sommet M intérieur au conoide F de

même sommet, il le restera, tout au moins tant que le point courant N(xa) se

trouvera dans la région R En effet, supposons qu'en un point N la bicarac-
ténstique MN de Q, intérieure à F dans la portion MN, traverse le
conoide F On sait que la tangente à MN en N est la génératrice du cône

caractéristique du type Q attaché au point iV", cône qui est, comme on Fa

vu, intérieur au cône correspondant du type F Mais ce dernier cône,

tangent au conoide F en N, reste tout entier dans l'intérieur de F,
conformément aux résultats du § 4 Par conséquent, il sera impossible de

trouver la tangente à MN dirigée vers l'extérieur de F

§ 6. Remarque sur un cas particulier. Supposons qu'il s'agisse de

l'équation particulière
O2A2u 0

On aura
-i d oJ

et

\)o sm-l
Ensuite

0 0

L0(u) 0 et A0 QA2u
Par conséquent,

u

et comme A2u est holomorphe en s

d u\___ 1
A

°

ds\ / p + 1 2

o * o

u Ç 1 A2u
u / ——-— —f- ds¦—Ui

l) Cf Hadamard, Propagation des ondes, p 291

i no (La an de cet article paraîtra dans le prochain fascicule



De même

Bo Atu-0%r + 20(àji), Lx

et

ce qui entraîne

2

d(2u\ s A
i 2 u fsA2u[S)^U et uJfJ

Enfin

^ ^ ^,r] + zi2i.e2r, l2

et
o

donnent
a

ds

On constate donc que dans ce cas particulier notre solution élémentaire
coïncide avec celle de M. Hadamard pour l'équation du second ordre

A2u 0.

L'influence de l'opérateur O2 y est nulle et l'intégration de l'équation
devra se faire en deux étapes distinctes. C'est d'ailleurs un résultat facile
à prévoir, car l'existence d'une solution singulière sur F pour l'équation
02A2u 0 entraînerait celle d'une solution élémentaire pour l'équation
(92v 0. En effet, il suffirait de prendre v A2u. La fonction v est

singulière sur F= 0 ou se réduit à une fonction régulière /(ce1, xm).
Mais si elle est singulière sur F 0, on arrive à une contradiction avec le
théorème de Le Roux et Delassus, qui exige que toute surface singulière
pour une solution d'une équation aux dérivées partielles soit une
caractéristique, ce qui n'est pas possible pour F — 0, conoïde caractéristique
de A2u 0 et non pas de O2v 0. Si, par contre, v est régulier sur

f=0, c'est que u est une solution singulière de l'équation A2u f et, par
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conséquent, se compose d'un terme régulier sur F 0, solution de

l'équation avec second membre et d'un terme singulier sur F, solution de

l'équation homogène A2u 0. Il est donc devenu évident qu'il n'est pas
possible d'obtenir de solution singulière sur F 0 pour &2A2u — 0, qui
ne soit pas, en même temps, solution de A2u 0.

§ 7. Convergence du développement de w. En continuant de calculer
des termes par les formules (50), on obtiendra un développement de la
forme

0 t f
u u + uF-i t-uF*-\ (52)

représentant la solution cherchée, à condition qu'il soit convergent. Pour
démontrer la convergence de la série (52), nous utiliserons un procédé de

majoration que nous avons donné pour le cas des systèmes et qui
s'applique aussi à ce cas.1)

En partant, non pas de l'équation (7), mais de

le premier terme de la solution élémentaire de Fi(te) 0 sera égal à

l'unité. Ceci posé, prenons pour les x* les variables normales qa. En
désignant par a la somme des valeurs absolues de ces variables sur chaque
géodésique issue de M, a sera proportionnel à s. Dans ces conditions, on
démontre que u admet une majorante de la forme

¦(-r
C3 étant une constante convenablement choisie et que le rapport Cj+1/C3

tend, pour j oo, vers une limite finie oc.

Dans ces conditions, la série (52) convergera pour

r)

Lorsque M varie dans une région strictement intérieure à R, la
convergence de la série est même uniforme

1) N. Théodore8co,lie8 solutions élémentaires, etc. (Revue mathématique
Interbalkanique, T. 1, 1936.)
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§ 8. Le cas d'un nombre pair de variables. Ce cas conduit, comme
nous l'avons montré, à une impossibilité, du moins si l'on se borne à

une solution à singularité algébrique. Il n'en est plus de même si l'on
complète la solution d'un terme logarithmique, en posant

\Qgr. (53)

En substituant ces valeurs dans (7), on aura

Calculons d'abord F(U log F). Il vient:

A2U log F UA2 logr+ 2A(U, logT) + A2Ulogr.

Appliquons maintenant l'opération 02 & chacun des termes du second
membre :

Mais

A2\og r^±(A2r-i)
et puisque

02(UV) U02V + 29(U,V)+V82U
on aura

De même

ce qui permet d'écrire

<92( UA% log D=p6t [(â2r-i)V]-^ [20 [V{Atr-i), r]+ U{âtr-4:)9tr\

(54)

Passons au second terme:
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Mais puisque

ejy p(p — i)r*-*Q+pr*-i<92r (55)

pour p — 1, on a

et, finalement, nous écrirons

Le troisième terme:

1 1
(57)

±[20(AîU,r)+AtU-0ir]-~Q.AîU.

Quant aux termes provenant de dérivées d'ordres inférieurs, on aura :

De même (59)

et

^(UlogT). logr-D-U. + i,Z)£7. (60)

En additionnant membre à membre les relations (54), (56), (57), (58),
(59), (60), et en tenant compte aussi du terme logFEU, on arrive à

l'expression
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^ + CU]

D'autre part, si on prend pour u un développement de la forme (52),

F(uFp) se met sous la forme (44) et les u sont déterminés pour / 0,1,...,
— p — 1. Pour j — — p, — p+1, — P + 2 nous ne disposons plus

-p -p+1 -p+2
d'équations du type (45) et les quantités u, u, u restent indéterminées,
tout au moins jusqu'à nouvel ordre.

Par conséquent, en déterminant les u par les équations (45) pour
/ 0, 1, —p— 1, on aura

-p-l j ] -p-l -p-2 -p-3
F(v «/*«)= [A,,.^ u )-2B-,_,( u + F( u )]

?=o -i (62)
1 -P-1 -P-2 1 P-l[B() F()] F()

Le développement de F (y) comportera donc un terme en log.T et trois
termes en F*1, F~2, F~3. Il faudra que chacun s'annule séparément.

En particulier, pour que le terme F(U) log F — 0, il faut que U soit lui-
même une solution de Véquation (7).

Calcul de U.
Nous tâcherons de déterminer U par un développement suivant les

puissances de F de la forme

U =U+ UF+ • • • + UFk+ • • • (63)

En introduisant cette expression dans F(U), on trouvera des termes

comme dans la formule (44) avec, cette fois, p 0 et les U successifs

seront déterminés par des équations telles que
* (64)
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où

+ \B°$r Un» + \B<$ Ua? + C« Ua (65)

Mentionnons, en particulier, que

o

0 1 2

Remarquons, toutefois, que les trois premières fonctions U, U et U
resteront indéterminées, car les équations (64) exigent que h ^0, 1,2.
Notre méthode donne donc une solution de la forme (63), à condition de

0 12
connaître trois fonctions analytiques U, U, U prenant les mêmes valeurs

que U et ses deux premières dérivées transversales sur le conoïde.

Nous allons voir que, dans le cas qui nous intéresse, nous disposons de
0 1 2

moyens pour déterminer U, U et U.
0 1 2

En supposant connus U, U et U, les équations (64) donnent

(66)

d

avec p — n +1.
Calcul de JF(Ulogr). La fonction U mise sous la forme (63), le

développement de F(£71ogjT) doit être calculé de nouveau, en modifiant
convenablement l'expression (61). A cette fin, il faudra établir quelques
formules résultant de la modification des termes successifs de cette
expression. On les aura, en remplaçant dans les invariants dont elle est

h
formée U par EUFk et en ordonnant suivant les puissances de F.

Calculons d'abord F UTk log JT).
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u9r) + ikU]
u,r)+àkU)-

A2rk

A2(urk) [

]j7+2j(Dr,r)]

+ QA2U]+rk0[A2Uir]

—^r^r] krk-i{A2r—i)UQ+rke[U{A2r—i),r]

B*(iïrk)a

c«(urk)a 2krk-icku+rkc«uoc.

Il s'ensuit

¥(ùrkiogr) Ft^iogr+r^
où l'on a posé
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Pk(U) k(k—

+ 2k(k

Qk(iï)

2k[02r

On aura donc

—p—1

(2;«

(t

2A(U,r)]+3k(k — l)BU

—l)]U + 2A(U,r)]Q—3kBU

U] + U]

+ u e2r] (67)

]+Q a2u]

^kB^^

F(

f
Jfc-0

2)(ifc

Qt(U)+ R»

Calcul des fonctions u En tenant compte de ce que les U pour
j

k 3, 4, sont donnés par les équations (66) et que les u pour
7=0, 1, —p—1 son^ déterminés également par les équations (45)

en convenant que Q_j R_2 R-x 0

-p -p+l -P+2
et en remarquant que Ton a pris u 0, u 0, ^ 0 dans le déve-
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et les coefficients de r°, F1,

loppement de u1), on disposera pour la détermination des autres inconnues

des équations suivantes, obtenues, en annulant successivement les
coefficients de T"3, f-2, F-1

P0[U] + 2 A-^fT) - 2 B-p-2(u2) + F(T) 0
1 -p-l -p-2 0

P] B-^,(«)+F(«) + Oo[^] 0 (68)

+ Qdh + R0[Û] + F(V) 0

(69)

¦(jfc_l)(4_2)rt

ifc 3, 4,

0 12Calcul de £7, C7, Z7. L'expression de Pfc devient, à la suite de calculs
élémentaires

"*" 3k2 — 6k+ 2

En y faisant k 0, 1, 2, les équations (69) deviennent

(70)
B ° 1 -P-3

ç] ^ + q[A-,-i-B_,_2 + JF( « )] 0

2£+ [4 +d,r+ç]tf + 2ç[Q1 + Ro

r) La considération de ces fonctions, qui restent arbitraires dans notre solution, modi.
fierait les termes en F0, F1, F2, en compliquant inutilement les seconds membres des

-p + 3 -p + 4 -p+ 5

équations donnant uy u, u.
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Nous poserons

l i [BU + A.,-x— B-,-2

±[BU — Qo + B-,-! - F(t)] (71)

^ + Qx + Ro + F(Tn

afin d'utiliser une notation uniforme [pour & > 2, les expressions des Lk
sont celles données par les formules (65) ].

Les expressions de Pfe, Qfc, Rk. En tenant compte des équations
k

(64) vérifiées par les U pour & > 3 et des équations précédemment
0 12écrites (70) vérifiées par U, U, U, l'expression de Pk se réduit à

P* Q [U(k~l)(k -2)U + (M*- 6k + 2) (| U -L^ ] (72)

En ce qui concerne Qk) on peut, après quelques calculs, le mettre
successivement sous les formes

k ±h(h 1\

et, en tenant compte des équations (64) et (70)

Enfin, on peut, en imitant les calculs ayant mené à l'expression (49) de

B, mettre Rj. sous la forme

U,n (74)

202



Rappelons que dans ces trois dernières formules il faut prendre pour
k 0, 1, 2, à la place des Lk correspondants, les quantités L*o, L\, L\
définies plus haut.

k
Expression et ordre de U. Pour calculer l'ordre infinitésimal de

o î 2

U, U, U mettons les équations (70) sous la forme

o

U

1

d Y 771 g~p ~^"2

Ts \S'P+1 t- -^-5"LOo - B-,-i + F( « )] (75)

-p-3
Comme A-j,-!, B-p_25 F( w sont tous de l'ordre de s2p+3logs, l'ordre

o

de L*o sera celui de 52î)+1log5 et U sera infini à l'origine comme $2P+Ilog#.
-p-2

O0 sera de l'ordre de s2p+1logs, comme B-j,-! et F( u de sorte que
î

L\ et C7 seront de l'ordre de 52p-1logs.
-p-i

On constate aussi que Ql5 Ro et F( u ont le même ordre, celui de
2

523)-1log^ et que l'ordre de L\ et de U sera celui de s2p-3logs.
Passons maintenant aux formules (65) et aux équations (66). Par

l'application du procédé utilisé dans le calcul de l'ordre de u, on trouve
qu'à l'origine on a les comportements suivants :

LQ comme s2p+2logs, Ao comme s2p+1logs, Bo comme 52

Lx comme 52p-1log5, Ax comme s^^log^, Bx comme s2p-3logs

L2 comme 52p~3log5, A2 comme s2p-3logs, B2 comme s2T~b\og8

0 3

et puisque F(£7) sera de l'ordre de s2v-Hog8, l'ordre de U sera celui de

h-2
De proche en proche, on trouve que Ak, Bk^1 et F(U) sont de l'ordre

k
de s2p-2fc+1logs et que l'ordre de U sera également celui de s2p-2k+1logs.
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-p+k
Expression et ordre de u. Les équations (69) se mettent sous la forme

-p+k

jA + B+ ^(
kQu

(76)

L'ordre de Pk et de Lk étant celui de s2ï)~2fc+3logs, Qk sera du même
ordre et R7c sera de l'ordre de s^-^-^logs. Puisque A-^^-i, B-^*^»

-p+k-i
F( u sont infinis comme s2p~2k+Hogs, il s'ensuit que le second membre
de l'équation est de Tordre de s^-^logs. Par l'application de la méthode

déjà utilisée pour la recherche de u, on arrive à exprimer u par un
développement qui à l'origine est infini comme s2p-2k+1\ogs.

§ 9. Synthèse des résultats obtenus. Les équations du quatrième
ordre, dont la forme caractéristique se décompose en deux facteurs
P et Q admettent une solution élémentaire algébrique singulière sur les

nappes du conoïde caractéristique provenu de la forme P, à condition que
ces nappes soient les plus extérieures des nappes du conoïde complet.

Cas d'un nombre impair de variables indépendantes: m 2 n+ 1.

La solution est de la forme

u —(p avec u

3

Les fonctions u sont données par les équations différentielles (46). Ces

fonctions sont holomorphes dans l'intérieur du conoïde et sur le conoïde,
sauf au sommet, où elles admettent des singularités. Il faut toutefois

j
remarquer que les termes uF1 du développement de u tendent vers zéro,

lorsque le point N tend vers le sommet M du conoïde sur une géodésique
quelconque, de sorte que dans le voisinage de l'origine la solution u se

0

réduit sensiblement à son premier terme u, comme dans le cas des

équations du second ordre étudié par M. Hadamard.

Cas d'un nombre pair de variables indépendantes : m 2n
La solution est de la forme
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avec u Zur> et U rC/
0 7-0

Les fonctions ^ sont données poui 7 0, 1, —p—1 par les équations

(46) et pour ] — — p + 3, par les équations (76) Les fonctions

012 a-

U, U et U sont données par les équations (75) et les U pour k — 3, 4,

-p -pH-p+2
par les équations (66) Les fonctions u u u restent indéterminées,

ce qui n'était pas le cas pour un nombre impair de variables L'ordre
infinitésimal des fonctions calculées a l'origine est tel que, dans le voisinage

0

de ce point, u se comporte comme u et, en donnant au terme logarithmique
le dénominateur F*-1, la fonction U^-HogF est nulle pour «5 — 0

(Reçu le 17 août 1937
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