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Fonctions entières et intégrales
de FoUPÎer multiples (Secondepartie)

Par M. Plancherel et G. Polya, Zurich

Résumé de la seconde partie

20. La première partie de ce mémoire a paru dans le même périodique21).
Seul le commencement de la seconde partie se rattache si étroitement à la
première qu'il en présuppose la connaissance. Toutefois, nous avons trouvé
avantageux de continuer la numérotation de la première partie pour les

formules, les paragraphes et les annotations.
Les premiers nos (nos 21—26) donnent quelques corollaires plus ou

moins immédiats des théorèmes I et II (nos 1—2) de la première partie et
préparent, soit par la méthode, soit par les résultats, notre objet principal.

Le but principal de cette seconde partie est de démontrer deux
théorèmes qui sont étroitement liés l'un à l'autre bien que leurs énoncés
soient assez différents. Ce sont les théorèmes III et IV dont on trouvera
l'énoncé complet aux nos 47 et 49. Les deux se rapportent aux fonctions
entières de type exponentiel de n variables; il sera plus commode de

n'expliquer ici que le cas n 1.

Le cas n 1 du théorème III contient en particulier le fait suivant :

Soit p un nombre positif et F(z) une fonction entière de type exponentiel,
assujettie à la condition que

îïm r-1 log | F(— ir)\ + \ F(ir) | < n (42)
r->oo

Alors, l'intégrale w] \F(x)\>dx (43)
— 00

étendue à toutes les valeurs réelles de x et la série

¦¦¦ + \F(— m)\*+ — +\F{—l)\'+\F(O)\'+\F(l)\'+—+\F{m)\'+

sont équiconvergentes, tfest-à-dire que la convergence de Vune entraîne celle

de Vautre.

21) Commentarn math, helv., vol. 9 (1937), p. 224—248. Le théorème II de la première
partie (n° 2) a ceitames relations avec un travail de W. T. Martin paru entre temps,
Spécial régions of regularity of functions of several complex variables
[Annals of Math., vol. 38 (1937), p. 602—625].
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Pour p 1, cet énoncé est essentiellement équivalent à un lemme

important de Wiener sur les séries de Fourier22). Pour p 2 l'intégrale
et la série ont la même valeur (voir n° 24) L'énoncé a une certaine
analogie avec le résultat suivant de Mlle Cartwright23) :

Si F(z) est une fonction entière de type exponentiel qui satisfait à la condition

(42) et reste bornée pour toutes les valeurs entières —2, —1,0,1,2,...
de z, elle reste aussi bornée pour toutes les valeurs réelles de z.

En effet, ce résultat peut être considéré comme le cas limite p -> oo de

notre énoncé un peu précisé (voir n° 40).
Nous démontrerons d'ailleurs plus que nous n'avons énoncé ici. La

convergence de l'intégrale (43) entraîne celle de la série (44), que la
condition (42) soit remplie ou non, elle entraîne même la convergence
d'une série plus générale, formée avec une suite assez arbitraire de

points à la place de la suite des entiers —2, —1, 0, 1, 2, (n° 31).
La condition (42) ne peut pas être complètement négligée quand il o'agit
de conclure de la convergence de la série celle de Fmtégiale, mais elle

peut être remplacée par une autre moins restrictive pourvu que p soit
supérieur à 1 (voir l'énoncé du n° 33). Précisément ce dernier point
demande des moyens de démonstration plus spéciaux que le reste et a

une importance particulière pour le théorème IV.
Le cas n 1 du théorème IV peut être énoncé ainsi :

IV7. Pour qu'une fonction entière F(z) soit de type exponentiel et possède
les deux propriétés suivantes :

(I) IÎEr-ilog(|J(—ir)\ + \F(ir)\) £ n
r->- oo

00

(II) J \F(x)\pdx existe pour un certain p> 1,
— oo

il faut et il suffit qu'elle puisse être représentée par la formule

F(z) } [(1-z) V{n)+zV(y)] e^dy, (45)

22) N. Wiener, The Fourier Intégral and certains of îts applications
(Cambridge 1933), lemme 6, p. 80.

23) M. L. Cartwright, On certain intégral functions of order one [Quarterly
Journal of Math., Oxford ser., vol. 7 (1936) p. 46—55)]. Une seconde démonstration du
théorème a été donnée par A. Pfluger, On analytic functions bounded at the
lattice points [ProceedmgsLondon Math. Soc. (2), vol. 42 (1936), p. 305—315]. Il
convient encore de citer ici une des solutions d'un problème posé par un de nous : L. Tschaka-

loff, Zweite Losung der Aufgabe 105 [Jahresbericht der deutsch. Math. Veremigung,
Bd. 43 (1933), p. 11—13]. L'énoncé donné dépasse un peu celui de Mlle Cartwright, voir
l'annotation34).
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oùW(y) désigne une fonction continue de période 2n dont la série de Fourier

(46)

possède la propriété particulière que

Z\ncn\» (47)

converge. n

Ce théorème est moins élégant, mais plus général, que le théorème de

Paley et de Wiener dont nous nous sommes occupés dans la première
partie. En effet, la condition que la série (47) converge pour p 2 est

équivalente, d'après des théorèmes fondamentaux connus, à la condition
que W(y) soit l'intégrale d'une fonction ^(y) de carré intégrable dans

(— Tt, n). Nous pouvons alors, en intégrant par parties, transformer la
formule (45) dans la suivante

formule qui, avec l'intégrabilité de ^'(y)!2, caractérise le cas où F(z) est
de carré intégrable.

Nous démontrerons d'abord les théorèmes III et IV pour n 1. Le

passage de l'intégrale (43) à la série (44) occupera les nos 27—32, le

passage inverse de la série à l'intégrale les n08 33—40. Après cela, nous
démontrerons le cas n 1 du théorème IV et nous construirons une
fonction entière de type exponentiel et de puissance p-ième intégrable
(p > 2) qui n'a pas de transformée de Fourier; puis, nous établirons des

relations dont le caractère nous parait nouveau entre les coefficients
de Fourier et la transformée de Fourier d'une fonction définie et
intégrable dans l'intervalle (—n, n) (nO841—44).

Nous passerons ensuite, par induction complète, au cas général n > 1

des théorèmes III et IV (n08 45—50) et nous terminerons le mémoire en
montrant que la relation que nous avons établie dans les théorèmes I et II
entre la fonction h(X), qui caractérise la croissance d'une fonction entière
F(z1} z2, zn) de type exponentiel et de carré intégrable, et la fonction
d'appui xW d'un certain domaine convexe n-dimensionnel $ subsiste
dans le cas où l'hypothèse que F est de carré intégrable est remplacée

par celle, plus générale, que F est, pour un certain p > 0, de puissance
2?-ième intégrable.
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Corollaires

21. Nous ajoutons quelques corollaires de nos théorèmes I et II à ceux
déjà donnés dans la première partie. En voici un dont l'énoncé est
particulièrement simple.

Soit F(z1,z2, ...,zn) une fonction entière. S'il existe quatre constantes
positives a, A, c, C telles que pour toutes les valeurs réelles xlt x2, xn

| F(x1, x2,...,xn)\<A e-fl<l*il+l*«H— -+W) (48)

et pour toutes les valeurs complexes zlf z2, zn

\F(z±, z2,...,zn)\<Cec^i\+^\+-"+\zn\) (49)

alors F(zl9 z2, ...,2j est identiquement nulle.

Autrement dit, la décroissance exponentielle dans le réel d'une fonction
entière non identiquement nulle doit être compensée par une croissance

plus forte qu'exponentielle dans le complexe.
Le théorème énoncé découle immédiatement du théorème I. En effet,

si la fonction F satisfait à la condition (48), la fonction 0, définie par (9),
est analytique pour toutes les valeurs réelles de ylt y2i yn\ elle est
même analytique dans le domaine complexe où la partie imaginaire de

chaque yv est inférieure à a. Si la fonction F satisfait à (48), elle est
certainement de carré intégrable; F étant, d'après (49), aussi de type
exponentiel, la fonction 0 est nulle en dehors d'un domaine borné, en
vertu du théorème I. Etant analytique, 0 s'annule identiquement. Par
conséquent, la formule (2) fait voir que F est aussi nulle.

22. Le théorème du n° précédent est bien connu si n 1 et il peut
alors être démontré par la théorie des fonctions analytiques, sans l'aide de

l'intégrale de Fourier23 bis). Il est donc désirable d'en donner, lorsque n>l,
une démonstration indépendante du théorème I, ceci d'autant plus que
son énoncé ne contient explicitement aucune propriété d'intégrabilité.
M. Behnke, à qui nous avions communiqué le théorème, a trouvé une
démonstration très simple qui ramène le cas général au cas n 1 par
induction complète. Nous la reproduisons ici avec sa permission. Il sera
d'ailleurs suffisant de décrire en détail le passage de n l k n 2.

23 bis) Voir par exemple loc. cit.16), Bd. I, Abschnitt III, Nr. 327, p. 148, 333. D'ailleurs
on peut démontrer davantage, avec ou sans considération de l'intégrale de Fourier; voir
A. E. Ingham, A note on Fourier transforma [Journal London Math. Soc, vol. 9

(1934), p. 29—32]; voir aussi N. Levinson, On a theorem of Ingham, même
périodique, vol. 11 (1936), p. 6—7.
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Soit x2 un nombre réel, arbitraire, fixe Considérons F(z, x2) comme
fonction d'une variable, de la variable complexe z D'après les
hypothèses (48) et (49) (cas n 2) nous avons

\F(x,x2)\ - Ae-*\x\9 \F(z,x2)\<Cec\x^ ec\*\

pour toute valeur îeelle x et toute valeur complexe z Donc, puisque nous
admettons le cas n 1 du théorème comme démontré, F(z, x2) s'annule
identiquement, c'est-à-dire que F(zl9 x2) s'annule pour chaque valeur
complexe zx et chaque valeur réelle x2 On en conclut que la fonction
F(zXiz), considérée comme fonction d'une variable, de la variable z,
s'annule identiquement, quelle que soit la valeur complexe zl9 car c'est
une fonction entière de z qui est nulle pour toutes les valeurs réelles de
cette variable En résumé, F(z1, z2) est nulle, quels que soient les deux
nombres complexes zx et z2 C q f d

Observons que ce procédé de démonstration ressemble au procède des
n°8 9 et 10 de la première partie en ceci que dans la démonstration du
cas n > 1 le cas n 1 est utilisé «en bloc», de manière que nous arrivons
bien à une démonstration du cas général à l'aide du cas particulier n 1,

mais que nous n'arrivons pas à une extension au cas général de la méthode
de démonstration qui nous a servi dans le cas particulier Ce procédé
paraît bien adapté à notre sujet, nous en ferons usage plusieurs fois aux
n08 45—48

23 Si Al5 A2, Aw, les n coordonnées d'une direction (A), sont des

nombres entiers, n — 1 parmi elles sont égales à zéro et une est égale à
1 ou à — 1, une telle direction sera appelée direction cardinale II y a donc
dans l'espace à n dimensions 2 n directions cardinales (Ainsi, pour n= 2,

le sens que nous donnons ici a l'adjectif «cardinal» ne s'éloigne pas trop
de l'usage courant

Soit F(z1, z2, zn) une fonction entière de type exponentiel La
fonction h (À), définie par (5), qui mesure la croissance de F, prend 2 n
valeurs pour les 2 n directions cardinales Soit c la plus grande de ces 2n
valeurs, nous appellerons c la croissance cardinale de F Si n 1, la
croissance cardinale c est simplement le plus grand des deux nombres h

et hr considérés au n° 5, et elle peut être aussi définie par la formule plus
condensée

c hmr-1log (\F(—ir)\ -l \F(ir)\) (50)
r->oo

Définissons une notion voisine Etant donné une fonction entière
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F(zx, z2, zn) de type exponentiel, non identiquement nulle et un
nombre réel a arbitraire, deux cas peuvent se présenter : le produit

reste ou ne reste pas borné quand chacune des variables zx, z2, zn

prend, indépendamment des autres, toutes les valeurs complexes. Nous
appellerons le nombre réel g, qui sépare les deux classes de valeurs a
correspondant aux deux cas, la croissance globale de la fonction F. Naturellement,

g ^ 0. On voit facilement, en comparant les définitions que nous
venons d'expliquer à la définition (5), que pour chacune des 2 n directions

cardinales, h (À) ^ g ; donc, en résumé, la croissance cardinale ne

peut pas être supérieure à la croissance globale. Les deux croissances
peuvent être effectivement différentes pour des fonctions entières de

type exponentiel qui ne sont liées par aucune condition supplémentaire.
Par contre, si une fonction entière, non nulle, de type exponentiel,
F(zx, z2, zn) est, pour un certain p > 0, de puissance p-ième intégrable,
c'est-à-dire si w

converge, sa croissance cardinale a la même valeur que sa croissance globale.
Cette proposition qui, dans le cas de p positif quelconque, sera démontrée

au n° 51, peut dans le cas p 2 se déduire comme suit: F peut être
représentée, d'après le théorème I, par l'intégrale (2), et d'après le théorème

II, la croissance cardinale de F est simplement la plus grande valeur
que le module d'une quelconque des coordonnées yx, y'%,..., yn peut
atteindre dans le domaine borné et fermé $. Ceci dit, le calcul que nous
avons fait au début du n° 3 (la première formule de la page 227) démontre
la proposition.

24. La notion de la croissance cardinale joue un rôle essentiel dans le
théorème qui suit.

Si les fonctions entières F(zl9 z2, ...,zn) et G(z±, z2, ...,zn) sont de type
exponentiel et de carré intégrable et si la croissance cardinale de chacune
d'elles est inférieure ou égale à l, on a

00

$$---$F(x1,x2,...,xn)G(x1,x2,...,xn)dx1dx2...dxn

7im

(51)
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Si, pour les valeurs réelles des n variables G F (le trait horizontal
désignant comme d'habitude la valeur conjuguée complexe), on obtient
comme cas particulier de (51):

(52)
Dans le second membre la sommation est étendue à toutes les combinaisons

des nombres entiers m1,m2, mn, donc à tous les sommets d'un

réseau «cubique» à n dimensions, l'arête d'un cube étant - Si l croît,
c

le réseau se resserre. Si l est inférieur à la croissance cardinale c de F,
l'égalité (52) peut être inexacte, mais elle est certainement juste si

l ^ c, et elle devient en quelque sorte évidente pour l -> oo.
Pour démontrer (51), il suffit de démontrer le cas particulier (52). En

effet, on passe de (52) à (51) par un raisonnement familier qui peut être
concentré dans la formule

\a + b\2-~\a—-b\2 + i\a + ib\2—i\a—ib\2 iab

Pour démontrer (52), il faut remarquer que, d'après le théorème II de la

première partie, la transformée de Fourier 0 de F, satisfaisant à (2),
s'annule presque partout en dehors du domaine

— c ^ yx ^ c, — c -^ y2 < c, — c ^ yn ^ c. (53)

Développons 0 en série de Fourier multiple dans le domaine

— l^yx^h — J^y. ^J,..., ~l^yn<l (54)

qui, par hypothèse, contient (53) ; nous obtenons par les formules classiques,

en utilisant (2) et c ^ l,

Ecrivons la «formule de Parseval» deux fois, d'abord pour la série de

Fourier (55) puis pour l'intégrale de Fourier (9) :
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Les premiers membres sont égaux, puisque c ^ l On en déduit (52).
En particulier, nous avons démontré (cas l==oi) que, sous la condition
(42), l'intégrale (43) et la série (44) ont la même valeur lorsque p 2,
ce que nous avons déjà énoncé au n° 20.

25. Le théorème qui suit n'est pas un simple corollaire de la proposition
du n° précédent, mais il résulte de la combinaison de cette proposition
avec certains théorèmes que nous démontrerons plus loin.

Soient l, p, pr des nombres positifs, les deux derniers étant liés par la
condition

Soient F(z1, z2, zn) et G(z1,z2, zn) des fonctions entières de type
exponentiel, la première de puissance p-ième intêgrable, la seconde de

puissance p'-ième intêgrable. Soit c la croissance cardinale de F, c1 celle
de G et soit enfin 7

c i£l, c ^l
La formule (51) est encore valable sous ces hypothèses.

Les hypothèses relatives à c et à c' restant les mêmes, la formule (51) est

encore exacte lorsque p — 1 et p' oo, c'est-à-dire lorsque F est intêgrable
et G bornée dans Vespace réel à n dimensions.

Remarquons d'abord que les deux membres de la formule (51) ont des

valeurs finies (intégrale et série sont absolument convergentes) sous les

hypothèses ci-dessus. Pour le premier membre c'est une conséquence
immédiate de l'inégalité de Hôlder; pour le second membre cela résulte
de la première partie du théorème III (n° 47) et de l'inégalité analogue
de Hôlder pour les séries.

La démonstration étant la même quel que soit l'entier n nous ne la
donnerons que dans le cas n 1.

Supposons d'abord 1 < p ^ 2 et cr <l. Soit ô > 0 et cf+ô<l.
D'après un théorème que nous démontrerons au n° 30 (pour n > 1 voir
n° 46), \F\2 est intêgrable et G(z) est une fonction bornée pour les valeurs

réelles de z; donc G(z)—^— est de carré intêgrable et sa croissance

cardinale est inférieure ou égale à c' -\- à. Nous obtenons donc, en
appliquant la formule (51) aux fonctions (de carré intêgrable), F(z) et

G (z) 5^? (à la place de F(z) et de G (z)
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Faisons tendre ô vers zéro. On voit aisément que le premier membre a

la limite J FOdx et le second membre la limite -j J£ F (-y-l^n—j- I •

La proposition est donc démontrée.

Si 1 < p ^ 2 et c' Z, on applique le résultat qu i vient d'être démontré
à la fonction F(z) et à la fonction G (z(l — <5)), 0 < <5 < 1, qui, elle, a une
croissance cardinale égale à cr(l — ô), donc inférieure à l. Il vient, par
suite,

Le passage à la limite d->0 conduit encore à la formule (51). Il faut
00

s'appuyer, pour le voir, sur la remarque que J£ \O(ocm)\pf converge uni-
— oo

formêment en oc dans l'intervalle ot0 ^oc< oo si oco est un nombre positif;
voir la fin du n° 31.

Le cas p 1, p' oo se traiterait d'une manière analogue avec des

modifications insignifiantes dans les raisonnements.

26. a) En prenant l n dans la formule (52), nous obtenons
immédiatement le cas p 2 du théorème suivant :

Soit F{z1, z2, ...,zn) une fonction entière de type exponentiel et de

p-ième puissance intégrable (p> 0). Si sa croissance cardinale est inférieure
ou égale à n et si

F(mx, m2, raj 0

pour toutes les combinaisons des nombres entiers m1,m2, ...,mn,
F(zx ,z2, zn) est identiquement nulle.

C'est un théorème très précis. Il comporte quatre hypothèses relatives
au type, à l'intégrabilité, à la croissance cardinale et aux valeurs entières
des variables. Si une seule est en défaut, même très peu, la conclusion
tombe. Ainsi la fonction entière

sinjrz2 sin nzn
olll JLAi-i •••

n'est pas identiquement nulle, bien qu'elle remplisse toutes les hypothèses
sauf celle de l'intégrabilité. La fonction

sin 7tzl sin nz2 sin nzn
~~~Z~X ^ Z7~
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montre que l'hypothèse relative au réseau des points à coordonnées
entières ne peut pas être remplacée par l'hypothèse correspondante
relative à une partie au réseau.

Le cas n — 1 découle d'une proposition connue24). Le cas n ^ 1,

p > 0 est un corollaire de la partie 1 du théorème du n° 46 et de la
formule (132). Si c<n, la condition d'intégrabilité tombe ; voir (128).

b) Si l'on prend dans la formule (51)

„ _ sin Izj sin lz2
~~~ ~

sin lzn

et si l'on observe que la croissance cardinale de cette fonction est l, on
obtient (en faisant appel, si ^? ^ 2, aux nos 25 et 46) le théorème suivant.

Si l est supérieur ou égal à la croissance cardinale c delà fonction entière
F(z1, z2, zn) de type exponentiel et de p-ième puissance intêgrable
(p > 0), on a

n°° c -m .sinZ^ sin lx2 sinlxn 7 _/AA~'$F(xl,x2,...,xn)——i—_-?..._—*dxldxfi...dxn-n"F(0fi,...,0).
— oo Xi X2 Xn

(56)

Cette formule ressemble en ceci à la formule (52) qu'elle peut être
inexacte pour l < c, mais devient exacte pour l ^ c et en quelque sorte
triviale pour l -> oo, puisque l'on sait que, pour une classe assez étendue
de fonctions F, le premier membre tend vers le second pour l -> oo. La
formule rend évidentes les valeurs de quelques intégrales définies connues,
par exemple25)

f sma1x.. .smamx8inlx /e>oxJ ' -^T^ dx na1aa...am (58)
— 00

K>0, a2>0,... ,am>0, l ^ax + a2 ^ f- aj
24 Le théorème en question a été énoncé par un de nous à une séance de la Société

math, suisse (voir L'Enseignement math., vol. 22 (1922), p. 299, n° 4) et retrouvé plus
tard par Q. Vahron, Sur la formule d'interpolation de Lagrange [Bulletin des
sciences math. (2), vol. 49 (1925), p. 181—192 et p. 203—224]; voir son «théorème fonda-
mental», p. 204.

25) Comparer Watson, loc. cit. u), p. 401, formule (2) et p. 403, formule (2). Voir
pour (58) G. Pôlya, Berechnung eines bestimmten Intégrais (Math. Annalen,
Bd. 74 (1913), p. 204—212). La signification géométrique du premier membre de (58),
donnée loc. cit., montre qu'il est inférieur au second membre si l < ax -\- aa -f" -f- an
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Le passage de l'intégrale à la série dans le cas n 1

27. Le passage de la convergence de l'intégrale (43) à celle de la série

(44) dont nous avons parlé au n° 20 dépend du théorème suivant :

Si p est un nombre positif, y un nombre réel et F(z) une fonction entière
de type exponentiel et de croissance cardinale c, on a l'inégalité

J \F(x + iy)\vdx^ePcM $ \F(x)\**dx (59)
— C» — OO

Les deux intégrales sont étendues à toutes les valeurs réelles de x.
En démontrant ce théorème nous allons supposer que l'intégrale dans le
second membre de l'inégalité (59) converge; dans le cas contraire,
l'inégalité n'affirme rien et nous n'avons rien à démontrer.

Avant d'aborder le cas général, observons que le cas p 2, donc le cas
où F est de carré intégrable, n'est qu'un corollaire facile des théorèmes I
et II, ou, n étant égal à 1, du théorème de Paley et de Wiener (le
raisonnement est le même pour n 1 et pour n > 1). En vertu de ce

théorème (n'oublions pas la définition de la croissance cardinale donnée

au n° 23) on peut mettre F(z) sous la forme

F(z) ] <P(t)eiztdt
—c

Nous en tirons pour y réel et fixe

F(x + iy) ]0(t)erv*eixtdt.
—c

On a donc par la formule de Parseval

"$\F(x)\2dx 27€$\0(t)\*dt9
— oo —c

^Fix + iy^dx^ 2n§\0(t)\*er*v*dt
— 00 —C

^e*Mc-27i$ \&(t)\2dt
—c

et la comparaison des deux dernières formules démontre (59) dans le
cas p 2.

28. Pour démontrer l'énoncé du n° précédent dans le cas général où p
est un nombre positif quelconque, nous sommes obligés d'être plus longs
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et de nous servir de plusieurs lemmes26). Les trois lemmes du présent n°

ont certaines notations et hypothèses en commun; commençons par les
énumérer :

x et y désigneront des nombres réels et z x + iy. G(z) désignera une
fonction analytique, régulière dans le demi-plan supérieur fermé y > 0,
et qui ne se réduit pas à une constante. La fonction W(z) sera définie par

le chemin d'intégration est rectiligne, a et p sont des nombres positifs
fixes. Observons que ^(z) est définie et continue pour y ^ 0.

Lemme 1. Désignons par £) un domaine borné et fermé contenu dans le

demi-plan y ^ 0. Le maximum deW{z) dans JD n'est atteint qu'à la frontière
de £).

Nous utiliserons l'inégalité

due à Hardy; la fonction G(z) y est supposée régulière dans le cercle
\z — C| ^ r\ on sait que le cas d'égalité ne s'y présente que lorsque G(z)
est une constante27). Donc, G(z) étant supposée non constante, si r^y,

W(Z)= j | G(Z + 6)\>d8

\\s (61)

26) Nous citons ici, à titre de renseignement, quelques travaux que nous n'avons pas à
utiliser mais qui contiennent des théorèmes et des raisonnements voisins: G. H Hardy,
A. E. Ingham and G. Pôlya, Theorems concerning mean values of analytic
functions [Proceedmgs Royal Soc. A, vol. 113 (1927), p. 542—569] ; E.Hille and
J.D.Tamaikm, On the absolute mtegrability of Founer transforms [Funda-
menta math. vol. 25 (1935), p. 329—352]; F. Ganapathy Iyer, On the Lebesgue
class of intégral functions along straight lines issued from the ongm
[Quarterly Journal of Math. (Oxford séries), vol. 7 (1936), p. 294—299]; A Offord,
The Founer trans forms III [Trans. Amer. Math. Soc, vol. 38 (1935), p. 250—266];
Loo-KengH.ua and Shien-Sm-Shù, On Founer transforms m LP in the complex
domain [Journal of Math, and Phys., vol. 15 (1936), p. 321—347]

27') G. H. Hardy, The mean value of the modulus of an analytic function
[Proceedmgs London Math. Soc ser. 2, vol. 14 (1915), p. 269—277]. Voir aussi loc. cit.16),
Abschmtt III, Nr. 308, 310, p. 144, 329—330.
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Nous avons échangé l'ordre des intégrations pour passer de la deuxième à
la troisième ligne. En vertu de (61), la valeur de W au centre d'un cercle
est plus petite qu'une certaine valeur sur la périphérie du cercle; de là
découle aisément le lemme 1.

Lemme 2. Désignons par M la borne supérieure deW(x) lorsque x
parcourt toutes les valeurs réelles et par N celle deW(i y) lorsque y parcourt toutes
les valeurs positives. Supposons que M et N soient finis et que G (z) soit de

type exponentiel dans le demi-plan y ^ 0. Alors, dans ce même demi-plan,
W(z) n'est nulle part supérieure au plus grand des deux nombres M et N.

L'hypothèse que G (z) est de type exponentiel dans le demi-plan y ^ 0

implique l'existence de deux nombres positifs B et b tels que

\G(z)\< Beblzl pour y ^ 0 (62)

Soit £ un nombre positif et

f .Tria
4J (63)

d8. (64)

L'exposant de e figurant dans (63) a deux déterminations possibles dans

le demi-plan y > 0 ; nous choisissons celle dont la partie réelle est

négative dans le quart de plan où

x > _ a> i/^O. (65)

On a dans (65), comme un calcul élémentaire partant de (62) et (63) le

montre,

| <?.(*) KitfW-""""1'' (y=cos^) (66)

\Q,(z)\<\G(z)\

et par conséquent,
W£ (z) < W(z), pour x ^ 0, y ^ 0,

donc, en particulier,

WB(x) < M pour x ^ 0 WE{iy) < N pour y^ 0. (67)

Soit z0 un point fixe situé dans le quart de plan où x > 0, y > 0.

Appliquons le lemme 1 à We (z) à la place de W (z), en prenant pour S) le
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quart de cercle où x ^ 0, y ^ 0, | z | <; R. Nous supposons que R est pris
assez grand pour que £) contienne z0 et que le maximum de Wê(z)
dans £) ne soit pas atteint sur la partie curviligne de la frontière [nous
pouvons le supposer en vertu de (66)]. Alors le maximum de *Fê(z) dans £)

est atteint, en vertu du lemme 1, sur un des deux axes. Donc, à cause de
(67) nous avons certainement

We(z0) < Max (M, N).

Ce raisonnement vaut pour chaque c > 0. En faisant tendre e vers zéro,
nous voyons que le lemme 2 est démontré pour le quart de plan où
# ^ 0, y ^ 0. La démonstration pour l'autre moitié du demi-plan y ^ 0
est la même.

Lemme 3. Ajoutons aux hypothèses du lemme 2 Vhypothèse que

\imG{x + iy) 0 (68)

uniformément en x dans — a ^ x ^ a. Alors N ^ M; donc, pour y ^ 0,

if. (69)

Puisque G(z) n'est pas identiquement nulle, W{z) > 0. Mais W(iy) ->0
pour ?/->oo, en vertu de (68) et ainsi W(iy), fonction continue de y, doit
atteindre sa borne supérieure N pour une valeur finie y0 de y. Soit donc

^(iyo) N. Si y0 0, alors

N W(iy0) =¥/(0) ^M.
Si y0 > 0, alors, en vertu du lemme 1, W(z) ne peut atteindre sa borne

supérieure dans le demi-plan y > 0 au point iy0 intérieur à ce demi-plan.
On a donc, d'après le lemme 2,

N

ce qui revient à dire que N < M.

29. Il suffira de démontrer le théorème énoncé au n° 27 en supposant
que y est positif et que la fonction F(z) n'est pas identiquement nulle.

Reprenons les notations /i et V du n° 5. La croissance cardinale c de

F(z) est égale au plus grand des deux nombres h et h'\ donc,

h1 ^ c (70)
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Soit ô un nombre positif donné. Nous appliquons les lemmes 2 et 3 à la
fonction

Q(z) F(z)&<e+®z. (71)

G(z) remplit, en effet, toutes les conditions exigées au début du n° 28 et
dans les lemmes 2 et 3. G(z) est régulière dans tout le plan et ne se réduit
pas à une constante $ 0 [sans cela l'intégrale (43) ne serait pas convergente]

; elle est de type exponentiel dans tout le plan et le nombre M,
défini au lemme 2, est fini :

M < ] \G(x) \pdx J\F(x) \pdx (72)
— oo — oo

En vertu de (71), (70), de la définition de h' [n° 5, (II)] et d'un théorème
général sur l'indicateur des fonctions de type exponentiel28), la condition
(68) du lemme 3 est remplie uniformément dans — a ^ x ^ a, quel que
soit a et ainsi le nombre N défini au lemme 2 est fini.

Etant donné y > 0, appliquons la conclusion (69) du lemme 3 à z iy;
nous obtenons en tenant compte de (71), de (72) et de la réalité de c que

<J \F(x)\»dx
— 00

En faisant tendre d'abord a vers l'infini puis ô vers zéro, nous obtenons
la proposition énoncée au n° 27.

30. Voici une première application du théorème du n° 27.

Si la fonction entière F(z) de type exponentiel est de p-ième puissance
intégrable (c'est-à-dire si Vintégrale (43) converge pour un certain p > 0),

F(x) tend vers zéro avec xr1 pour x réel; F(z) est donc aussi de q-ième
puissance intégrable lorsque q> p.

Les cas p 1 et p 2 de ce théorème ont été discutés dans la première
partie (nos 15—17). Le cas général fait usage du fait suivant.

Lemme 4. Si p > 0, ô > 0 et si la fonction analytique F(z) est régulière
dans le carré

28) Voir loc. cit.2), p. 585, Satz IV; il faut encore tenir compte de la continuité de h(cp),
voir Satz II à la même page.
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I— ô ^ x ^ Ç + ô, rj — ô

(nous posons z x -\- ly, f f -f %rj), on a

J 1 ^(f+ * + **) l^cfocft (73)
710 —8 -S

Cette inégalité est d'un type familier On tire de l'inégalité (60) de

Hardy que

|lP(C)|p(Vdr^—f Ç

Nous obtenons (73) en remplaçant le domaine d'intégration circulaire de
la dernière intégrale par un carre circonscrit (ce qui ne peut qu'augmenter
la valeur de l'intégrale)

Le lemme 4 démontre, reprenons l'inégalité (59) II en suit que
oo g

g oo

J J \F(x + %y)\»dxdy^2-—=- J \F(x)\Hx (74)
008 *
J

— 00—8 *

Donc, l'intégrale double du premier membre est convergente et par con
séquent, f étant réel,

| J
-8 -8

tend vers zéro pour |-> — oo et pour f->+ °° L'inégalité (73) montre
que F(i) tend vers zéro en même temps C q f d

Puisque q > p > 0, on a, lorsque le nombre réel f a un module suf
fisamment grand,

<
d'où l'on voit que la dernière affirmation énoncée est également vraie

Le théorème démontre a plusieurs applications, il peut, par exemple,
être combiné avec le résultat du n° 19 de la première partie Un point de

départ pour d'autres applications est la remarque suivante bien simple
Si la fonction entière F(z), de type exponentiel, est de p-ième puissance mte-
grable pour un certain p>0, il existe un entier positif m tel que la fonction
entière de type exponentiel F(z)m est de carre mtêgrable II suffit, en effet, de

prendre l'entier positif m tel que g 2m soit supérieur a p Cette

remarque permet souvent de ramener un théorème formulé pour un p positif
quelconque à une valeur spéciale de p, par exemple, à p 1 ou p 229)

29) Ainsi on ramène au cas p 2 déjà discute (voir n° 15 A et la fin du n° 17) la propo
sition suivante Si F(z) est une fonction entière dont la croissance ne dépasse pas le type
minimum de Vordre 1 et si Vintegrale (43) existe pour un certain p>0, F(z) est identiquement
nulle Cette proposition est due, pour p ;> 1, a V Qanapathy Iyer, voir loc citaa), Coroll 2
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31. Nous pouvons tirer davantage du raisonnement du n° précédent.

Soit F(z) une fonction entière, de type exponentiel, dont la p-ième
puissance est intêgrable (c'est-à-dire que (43) existe pour un certain p>0). Soit
x1, x", #(/*>, une suite infinie de nombres réels tels que

\xW — x<v>\ ^d (75)

lorsque /u^v, d étant un nombre positif donné. Alors la série

converge. /A==1

En effet, appliquons le lemme 4 à £ xW ; nous obtenons pour à —

/X l — oo -g

puisque tous les carrés de côté 2 ô auxquels l'application de (73) nous
conduit sont, en vertu de (75), extérieurs les uns aux autres et sont
contenus dans la bande infinie qui constitue le domaine d'intégration
dans le second membre.

La combinaison de cette inégalité avec (74) donne

pcd

v |J-(a*O)|»<; JL LLpi J \F{x)\*dx (76)
1 71U pu

|

1

Si la suite x',x",... considérée est constituée par l'ensemble des
nombres entiers — 2,— 1,0,1,2,... numérotés dans un certain
ordre, on peut prendre d 1 et il résulte de notre raisonnement qu'une
inégalité

S | F (m) \p £ A J | F(x)\»dx (77)
m= — oo — oo

est valable pour toute fonction entière de type exponentiel, la constante A qui
y figure ne dépendant que du nombre positif p et de la croissance cardinale c

de F (mais ne dépendant pas d'autres propriétés de F). L'inégalité (76)
donne comme une valeur admissible de la constante A la valeur

8 e2 —1
n pc
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Si nous supprimons dans le premier membre de l'inégalité (76) les

termes correspondant à |a:(^i)|< M et dans le second membre la partie de

l'intégrale correspondant au segment!— M + - M — -1, l'inégalité ainsi

modifiée subsiste. C'est ce qui légitime la remarque sur la convergence
oo

uniforme de J£ \G(ocm)\p/ faite à la fin du n° 25.
— 00

32. Une petite modification du raisonnement employé aux deux n08

précédents nous conduit au théorème suivant.

Si la fonction entière F(z) possède les propriétés d'être de type exponentiel
et de p-ième puissance intégrable (p donné, p > 0), sa dérivée F'(z) possède
les mêmes propriétés.

Nous faisons appel au lemme suivant.

Lemme 5. Avec les notations et les hypothèses du lemme 4 nous avons
Vinégalité g g

\F'(Ç)\»^P j J \F(Ç + 8 + it)\pdsdt (78)
-8 -8

où P 2p(p -f- 2)n~1à~v~2' ne dépend que de p et de ô.

Pour démontrer le lemme, appliquons l'inégalité (60) de Hardy à la
fonction

dans un cercle de centre z 0. Nous obtenons

_ # j I / >• l _ n /y. \ M à T / V» \ ~

reu/
dcp

¦j
la dernière ligne étant obtenue par une seconde application de (60). En
multipliant par rp+1dr, intégrant entre 0 et ô et passant, comme auparavant

au n° 30, du cercle au carré circonscrit, on obtient (78). De (78)
découle
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-oo -8 -8

2ÔP ] J \F(z + it)\*dxdt
-oo-8

Mais l'intégrale double dans le second membre est convergente d'après
(74) ; en l'éliminant nous obtenons l'inégalité

J | F'{z)\*dz < A J | F(z)\*dz
— 00 — OO

avec une constante A qui, après avoir fixé ô, ne dépend que de p et de c.
Cette inégalité contient même un peu plus que ce que nous nous étions
proposé de démontrer. Ajoutons deux remarques.

a) De l'inégalité que nous venons d'obtenir on peut déduire, en faisant
tendre p vers l'infini, le théorème suivant : Si F(z) est une fonction entière
de type exponentiel, de croissance cardinale c, qui satisfait pour toute valeur
réelle x à Vinégalité

| *-(*)| =S M
sa dérivée satisfait à Vinégalité

\Fr{x)\ £AcM
où A est une constante absolue. (La méthode est indiquée pour un cas

analogue au n° 40). En resserrant un peu nos estimations (la constante du
lemme 5 peut être abaissée par l'application de l'inégalité de Hôlder si

p > 1) nous pouvons obtenir la valeur A e. On sait — c'est un résultat
de S. Bernstein30) — que la valeur A 1 est aussi admissible et que cette
valeur est la meilleure, c'est-à-dire la plus petite valeur admissible.

b) Pour décrire la relation entre la croissance d'une fonction entière
quelconque F(z) de type exponentiel et celle de sa dérivée Fr{z), nous devons
définir ce que nous entendons par «valeur exceptionnelle» de F(z).
Considérons la fonction F(z)—w qui dépend du paramètre w et son diagramme
indicateur qui, a priori, en dépend également. On peut faire voir31),

30) S. Bematetn, Leçons sur les propriétés extrémales et la meilleure
approximation des fonctions analytiques d'une variable réelle (Paris 1926),

p. 77. Voir aussi loc. cjt16), Bd. II, Abschmtt IV, Nr. 201, p. 35 et p. 218—219.
31 Tout ce qui est affirmé peut être déduit très facilement du théorème III, p. 585, loc.

oit.2) et on obtient, en plus, qu'une valeur exceptionnelle ne peut se présenter que de la
manière suivante: w0 0 est une valeur exceptionnelle si l'origine est extérieure au
diagramme indicateur de F(z) et wQ 0 est une valeur exceptionnelle si l'origine est un
point extrême du diagramme indicateur de F(z) et un pôle simple de résidu w0 pour la
transformée de Borel de F(z).
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qu'il n'y a que deux cas possibles: Ou bien le diagramme indicateur

de F(z) — w est toujours le même quelle que soit la valeur w, ou
bien il existe une valeur w0 telle que le diagramme de F(z) — w0 est plus
petit que celui de F(z) — w pour w ^ w0, tandis que toutes les fonctions
F(z) — w, (w ^ w0), ont le même diagramme indicateur. Une telle valeur
w0 est appelée valeur exceptionnelle de F(z). On peut démontrer que Fr(z)
a le même diagramme indicateur que F(z), si F(z) ne possède pas de valeur
exceptionnelle et que Fr(z) a le même diagramme indicateur que F(z) — w0,
si w0 est la valeur exceptionnelle de F(z). Puis on peut démontrer que si
F(z) est de p-ième puissance intégrable pour un certain p, p > 0, F(z) ne peut
pas avoir de valeur exceptionnelle différente de zéro; donc F(z) a le même

diagramme indicateur que Ff(z). Sur cette dernière proposition voir
n° 53.

Le passage de la série à l'intégrale dans le cas ïl 1

33. Il s'agit de montrer que la convergence de la série (44) entraîne la

convergence de l'intégrale (43) si la croissance de la fonction entière F(z)
est assujettie à certaines hypothèses qui dépendent d'ailleurs de p, étant
plus restrictives lorsque 0 < p ^ 1 que lorsque p > 1. Nous allons
démontrer le théorème suivant.

Soit F(z) une fonction entière de type exponentiel.
1. Sip > Oetsi

c =- ïïm" r-1 log | F(— ir) \ + \F(ir) \)<tz, (79)
r->-oo

il existe une constante B} qui ne dépend que de pet de c, telle que

J \F(x)\»dx < BZ\F(m)\p (80)
— oo m

Lorsque p> l,on peut prendre B Cp, où C est une constante ne dépendant

que de c.

2. Sip>l et si lim F{z)e~:i i2> 0, (81)
2-> 00

Vinêgalité (80) reste valable avec une constante B qui ne dépend que de p.

Expliquons d'abord quelques abréviations que nous avons utilisées (et

que nous utiliserons dans ce qui suit). La sommation £ est étendue à
m

toutes les valeurs entières de m; la série dans le second membre de (80)
désigne donc (44). Nous utiliserons plus tard le signe X' où la somme est

m
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étendue à toutes les valeurs entières de m, excepté m 0. La limite (81)
est uniforme par rapport à arc z; c'est à dire que, étant donné e positif
arbitraire, on a en chaque point z extérieur à un certain cercle de centre
zéro

\F(z)\ < ee*W.

On observera que l'inégalité (80) affirmée par le théorème énoncé est
d'une autre nature que l'inégalité (77) démontrée au n° 31, en tant que
(80) suppose et que (77) ne suppose pas des conditions additionnelles
[(79), respectivement (81)] concernant la croissance de la fonction entière
F(z) de type exponentiel. Ce sont ces conditions que nous allons examiner
tout d'abord.

34. Les restrictions imposées à la croissance de F(z) sont essentielles et
très précises. Si l'on remplaçait la condition (79) par c ^ n, le théorème
serait faux comme le montrerait l'exemple simple F(z) sin nz. Le même
exemple montre qu'il ne suffît pas de supposer à la place de (81) que

l'expression sous le signe lim soit bornée. L'exemple F(z) fait
z

voir que la condition (81) est insuffisante lorsque 0 < p ^ 1.

Les conditions (79) et (81), prises en elles-mêmes, sont indépendantes
l'une de l'autre, c'est-à-dire que chacune peut être remplie sans que l'autre
le soit. Par contre, jointe à l'hypothèse additionnelle que la série (44)
converge, la condition (79) implique la condition (81).

On sait32) que sous la condition (79) on peut affirmer l'égalité

îîm r-1 log | F(r) \ îîm m"1 log | F(m) | (82)

où r parcourt toutes les valeurs positives et m seulement les valeurs
entières 1, 2, 3, Mais le second membre de (82) est ^ 0, si la série (44)

converge; on obtient donc, en raisonnant sur F(—z) comme sur F(z),

ïîm r-1 log | F(r) | ^ 0, îîm r"1 log | F(—r) | ^ 0. (83)

Mais (79) et (83) assurent que le diagramme indicateur de F «s'aplatit»,
c'est-à-dire se réduit à un segment de l'axe imaginaire contenu entre les

points —ic et ic. Donc, on a33), si e > 0, pour chaque z — re%tp en dehors
d'un certain cercle,

32) Voir loc. cit. 2), p. 606, formule (70).
33) Voir loc. cit. 2), p. 585, Satz II.
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\F(re%v) | <e<cl8in(H+r)r5 (84)

inégalité qui entraîne certainement (81) puisque, d'après (79), c < jr34).

35. Le théorème du n° 33 est un théorème d'interpolation; d'une
propriété de la fonction F(z) où n'interviennent que les valeurs entières
de z il conclut une autre où toutes les valeurs réelles de z interviennent.
Nous nous servirons d'une formule d'interpolation dont un cas particulier

(le cas q — 0) est connu depuis longtemps et dont la convergence a
été discutée par Valiron, à qui on doit le résultat suivant35) :

Lemme 6. Soit q un nombre entier non négatif et F(z) une fonction entière.
Supposons que

lim F(z)e~K\*\ |z|"fl= 0 (85)
Z ->-00

et que

converge. Alors on a

F(m)
mq+l

(86)

v '

où Pq (z) désigne le polynôme de degré non supérieur à q, somme des q-\-l
premiers termes de la série de Maclaurin

m
Nous nous sommes servis de la notation usuelle Er qui a été expliquée

m

au n° 33. La limite (85) est prise dans le même sens que (81). Notons les

cas particuliers les plus simples q 0 et q 1 de la formule (87)

w ^ z — m v '

F{z)= m
34) Ce raisonnement justifie l'énoncé que nous avons donné au début (n° 20) au théorème

de Mlle Cartwnght; nous y avons fait intervenir la condition (42) à la place de la
condition plus restrictive (2.1) du travail de Mlle Cartwnght, loc. cit. 23).

35) Voir G. Valiron, loc. cit.24).
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36. Dans tout ce qui suit, m désignera toujours un nombre entier et
fm le maximum de \F(x)\ dans l'intervalle

m~\^x^m + \. (91)
D'après ces définitions

J \F{x)\»dx^1>m (92)
m—J

Nous utiliserons la formule d'interpolation (87) pour évaluer fm en faisant
dépendre d'une manière appropriée la valeur de q de la valeur de p.

Considérons d'abord le cas le plus facile p 1. Dans ce cas nous
avons à utiliser l'hypothèse (79) qui entraîne (84) (comme nous l'avons
démontré), donc (85) pour q^O puisque c <ti. La convergence de (44)

pour p 1 entraîne celle de (86) pour q ^ 0. La formule (87) est donc
applicable à F(z) pour q ^ 0. Soit

71—C
««

La fonction
F(m + z) sin ôz (93)

est entière, de type exponentiel, satisfait à l'hypothèse (79) (avec
à la place de c)36) et prend pour z n une valeur non supérieure en
module à F(m-\-n). Donc la formule d'interpolation (87) est applicable à

(93) dans la même mesure qu'à F(z). Prenant q 1 et utilisant (90)

nous obtenons

F(m + z) —:—£— |(5i^(m) -f- J£7 -, r
1

tcsiuoz L n n\% — n) J

La fonction F(m + z) est régulière dans le carré Q de sommets

___ _ § _ ___. (95)

fm étant une valeur prise par \F(m + z)\ dans le carré Q n'est pas supérieure

au maximum de \F(m + z)\ sur la frontière de Q où

sinrcz
n sin ôz

36) F{z) et ^(m-l-z) ont le même diagramme indicateur; voir loc. cit. 2), p. 591.
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le nombre positif K ne dépend que de à, donc de c. Nous obtenons en
évaluant le second membre de (94) sur la frontière de Q

(96)

Jusqu'ici nous avons suivi, presque mot par mot, un raisonnement de

Pfluger37). Ecrivons maintenant

observons que bn > 0 et que
2bn B (97)

n

est une valeur finie. Avec ces notations (96) s'écrit

L^S bn\F(m + n)\ X &V_J*V) |

n v

Par suite, en utilisant (97),

SL < 2 I *V) I ^K-m be\ F(v) |

m v m v

donc, en utilisant (92) avec p 1,

C. q. f. d.

37. Pour traiter le cas 0 < p < 1 nous avons de nouveau à utiliser
l'hypothèse (79) et la convergence de (44) pour un certain p < 1. Il s'en
suit comme au n° 36 que la formule d'interpolation (87) est applicable
pour q ^ 0.

Choisissons un entier positif q tel que

£Tï<*> (98)

puis un nombre positif ô tel que

ô<7i. (99)

La formule d'interpolation (87) est applicable, avec la valeur q choisie, à
la fonction

F(m + z) (8inôzy+\ (100)

87) Voir A. Pfluger, loc. cit. 23), p. 312—313.
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où m désigne comme auparavant un entier arbitraire. En effet, à cause de

l'inégalité (99), la fonction (100) satisfait essentiellement aux mêmes

hypothèses que F(z). En observant que les g+ 1 premiers coefficients de
la série (88) sont des expressions linéaires et homogènes en F(0), Fr(0),
F{Q)(0) et que les q+l premiers coefficients de la série de Maclaurin de

(100) s'annulent, on obtient en appliquant (87) à la fonction (100) à la
place de F(z)

F{m | ^ _ sin nz V/
zQ (— l)nF(m + n) (sin on)**1F{m | ^ V

En évaluant le second membre sur la frontière du carré Q ayant les

sommets (95), on obtient
\F(m
\n\*(\n\-l) ' (102)

où K ne dépend que de q et de ô et par conséquent de p et de c, puisque q
et ô ont été choisis selon (98) et (99). Posons maintenant

ft 06ife0
observons que bn è 0 et que, en vertu de (98),

2% B (103)
n

est une valeur finie. (102) devient avec ces notations

F(m + n)\ I6M | F(v) \

Comme 0 < p < 1, nous en concluons en utilibant l'inégalité de Jensen38)

que

donc,

Zfi ^Z\F(*)\p ZK-m B Z\F(v)\p (104)

De (104) et de (92) résulte l'inégalité (80).

38) Voir par exemple O. H. Hardy, J. E. Littlewood and G. Polya, Inequalities
(Cambridge 1935), p. 28, théorème 19.
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38. Nous arrivons au cas p > 1. Nous devons démontrer l'inégalité (80)
sous deux hypothèses différentes. Nous considérerons d'abord l'hypothèse

plus restrictive (79) à laquelle nous devons faire correspondre la
forme plus précise B Cp. Nous nous appuyerons sur le fait suivant :

Lemme 7. Si
p> 1.

J£|#n|p converge,
n

bp > 0, B JS fyi converge,

n

on a Vinégalité

Z\vm\*^B*Z\xn\». (105)
m n

Ce lemme n'est qu'une combinaison facile de résultats connus39), mais
sa démonstration étant courte, nous la donnerons ici, en admettant, ce

qui ne restreint pas la généralité, que xn ^0
Désignons par pf le nombre positif déterminé par

et par y_l9 y0, yl9 une suite de nombres réels non négatifs
assujettis à la seule condition que

converge. On a alors, d'après l'inégalité de Holder

i. _l
7Ï% 7ÏI Ti 7H Tl 7H—fi 171—fh

1 1

<> (Y xp yb Y? v y?' y b \v>

n m m n

1 1

^#(I>n)^(^2/mF' • (106)
n m

Choisissons ym de la manière suivante :

ym 0 pour m < — M et pour m> M,

ym=\vm \p~\ donc y£ | vw l2' pour — if g m ^ Jf

«•) II résulte de la combinaison des théorèmes 275, p. 198 et 286, p. 205 loc. cit. 38)
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Il vient de (106)

II suffit de diviser cette inégalité par le dernier facteur du second membre
et de faire tendre M vers l'infini pour obtenir l'inégalité désirée (105).

Le lemme 7 démontré, reprenons les raisonnements du n° 36 et suivons
les presque sans changement (la convergence de (86) est à démontrer
par l'inégalité de Holder) jusqu'à la définition des nombres bn et du
nombre B, donc jusqu'à la formule (97) inclusivement. Posons encore

Avec ces notations, l'inégalité (96) devient la dernière hypothèse du
lemme 7 et la conclusion (105) de ce lemme donne

Mais c'est bien le résultat désiré, comme on le voit en se servant de (92)
et en se rappelant que B qui est, d'après (97), la somme des nombres bn

ne dépend que de c.

39. Il reste encore à étudier le même cas p > 1 qu'au n° précédent, mais
sous l'hypothèse (81) au lieu de (79). Ce changement d'hypothèse nous
oblige à nous servir non seulement du lemme 7 mais aussi du résultat
suivant beaucoup plus caché dû à M. Riesz et à Titchmarsh40).

Lemme 8. Si
P>h
£\xn\p converge,

n

m ~m— n + i '

il existe une constante positive P ne dépendant que de p, telle que

,r (io7)

40) E. C. Titchmarsh, Reciprocal formulas involving séries and intégrais
[Math. Zeitschnft, Bd. 25 (1926), p. 321—347]; An mequahty in the theory of
séries [Journal London Math. Soc vol. 3 (1928), p. 81—83]. M. Riesz, Sur les fonctions

conjuguées [Math. Zeitschnft, Bd. 27 (1927), p. 218—244]; Sur les maxima
des formes bilinéaires et sur les fonctionnelles linéaires [Acta Math.,
vol 49 (1927), p 465—497].
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L'hypothèse (81) n'est autre chose que le cas q 0 de (85) et nous nous
servirons du cas q 0 de la formule d'interpolation (87), donc de la
formule (89)41).

Le maximum de |i^(#)| dans l'intervalle (91) est atteint pour une
certaine valeur x m + f, où

Nous avons donc, d'après (89),

ou encore

en posant

n ra + f—\

2 m-n+ i "^

/m ^ I um I 4~

V -

m — n-\- \ '

(m—7i

(m-n + i

(108)

(109)

(110)

II s'en suit
sin

en notant

En notant encore

pour /â ±1, ±2t

(111)

(112)

nous voyons que toutes les hypothèses des lemmes 7 et 8 sont remplies.
Nous concluons donc de (108), (105), (107), (112) que

d'où, en vertu de (92), l'inégalité désirée (80).

41 La condition (79) permet, la condition (81) ne permet pas d'introduire un facteur à
la manière des formules (93) et (100). Ne pouvant pas introduire un tel facteur, nous ne
pouvons éliminer l'influence des dérivées de F(z) qu'en choisissant le cas q 0.
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40. Montrons encore que le théorème de Mlle Cartwright énoncé au
n° 20 est un cas limite du théorème énoncé au n° 33 dont nous venons
d'achever la démonstration.

Soit F(z) une fonction entière de type exponentiel et de croissance
cardinale c dont le module pour les valeurs entières de z ne dépasse pas M.
Choisissons ô de manière que

c < c + ô < n

et soit C la constante qui correspond à c + à comme C à c, au sens du
théorème du n° 33 (voir dans sa première partie la remarque concernant
le cas p > 1). Appliquons ce théorème à

sinô(z-x)
ô(z — x0)

F(z) c, G

x0 étant un nombre réel arbitraire mais fixe. L'inégalité (80) devient

à la place de

S F(x)
sin ô (x— x0)

ô(x — x0)
F(m]

sin à (m — x0)

ô(m— x0)

On en tire, en considérant l'intégrale entre x0 — e et x0 + e et en utilisant
l'hypothèse \F(m)\ <

| F{Xo)

p > 2, s positif, e' positif et infiniment petit avec e. Extrayant la p-ième
racine et faisant tendre d'abord p vers l'infini puis e vers zéro, on obtient

C'est le résultat de Mlle Cartwright et nous voyons qu'il est en effet un
cas limite de notre théorème. (La démonstration que nous venons d'en
donner ne donne effectivement rien de nouveau pour le théorème
considéré en soi-même si on l'analyse attentivement ; elle n'est qu'un détour
en comparaison de la démonstration de Pfluger dont elle utilise les

raisonnements au n° 38, en les empruntant au n° 36).
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Théorèmes sur les coefficients de la série de Fourier

41. Maintenant que nous savons comment passer de l'intégrale (43)
à la série (44) et de la série à l'intégrale, il nous est facile de démontrer,
en réunissant les deux lignes de raisonnements, le théorème suivant.

Pour qu'une fonction entière F(z) soit de type exponentiel et possède les

deux propriétés suivantes :

(I) La croissance cardinale de F(z) ne surpasse pas n,
00

(II) J \F(x)\pdx existe, pour un certain p > 1,
— 00

il faut et il suffit qu'il existe une suite infinie de nombres

ayant la propriété que

S\am\» (113)
m

converge et que F(z) puisse être représentée par la formule

W=™fîIJ2_ (114)
n mz — m

a) II faut passer de la fonction F(z) à la suite a_l5 a0, al9
Admettons donc que F(z) est entière, de type exponentiel et qu'elle
possède les propriétés (I) et (II).

Nous ferons usage de l'artifice simple expliqué à la fin du n° 30. Soit
donc m un entier et 2 m > p. La fonction F(z)m est, en vertu de (II), de
carré intégrable et, en vertu de (I), de croissance cardinale ^mn. Nous
avons donc, d'après le théorème de Paley et de Wiener dont nous nous
sommes occupés dans la première partie

0m(y) étant de carré intégrable. L'inégalité de Schwarz donne

\F(re*<?)\*™ ^ J \&m(y)\2dy J e~2yr*

G2m
2r sin q>

9
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C étant une constante positive indépendante de 2 ret(p. Nous en
tirons 1

1 1 />—4w rr sin gp -| 2^7
l^re^Jle-^^Ce-^^1-8111^) i (115)1 v ' ' ~ |_ 2r sin (p J v '

Le premier facteur du second membre de (115) tend uniformément vers

zéro et le second facteur est borné dans 0 ^ 9? ^ - 5 ^e second facteur tend

uniformément vers zéro et le premier est borné dans - ^ 9? ^ - Les trois

autres quadrants se ramènent au quadrant 0 ^ 99 ^ - par symétrie.

Nous obtenons ainsi

^e-*'= 0

uniformément en <p, c'est-à-dire que F(z) satisfait à la condition (81).

Puis, nous concluons, même sans faire intervenir (I), que la série

Z\F(m)\»
m

converge (voir n° 31). L'inégalité de Hôlder montre ensuite la convergence

de la série J£ ' —-—- En résumé, nous avons vérifié les hypothèses
un I

du lemme 6 pour q 0. Donc, F(z) peut être représentée par la formule
(89). Si nous posons

dans la formule (89) nous obtenons la relation (114) qui était à démontrer
et nous voyons que la série (113) converge.

b) II faut passer de la suite a_1} a0, a1} à la fonction F(z).
Admettons donc que (113) converge. On en tire, en s'appuyant sur
l'inégalité deHolder, que la fonctionF(z) définie par (114) est entière, de type
exponentiel et qu'elle satisfait, vu l'inégalité découlant de (114)

m |/m2 + r2 '

à la condition (I) de l'énoncé. Le point principal, à savoir que la fonction
F(z) définie par (114) satisfait à la condition (II), a déjà été démontré
avec des notations un peu différentes au n° 39.
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42. Le théorème démontré au n° précédent va nous permettre de
construire pour tout p > 2 des fonctions entières F(z) de type exponentiel et

de puissance p-ième intêgrable qui ne possèdent pas de transformée de

Fourieri2). Précisons d'abord ce que nous entendons ici par transformée
de Fourier. Nous disons qu'une fonction mesurable F(x) possède une
transformée de Fourier lorsque

±2^)==i^ (116)

est une fonction absolument continue de y dans — oo < y< oo et nous
appelons transformée de Fourier de F(x) une fonction équivalente à la
dérivée de cette fonction absolument continue43).

Faisons d'abord une remarque. Si les constantes am sont telles que
J£ | am \v converge, p > 1, le théorème du n° 41 dit que la série

F(z) - einjiz V a"

est une fonction entière de type exponentiel de puissance p-ième
intêgrable et on a une inégalité (voir le théorème du n° 33 et la démonstration
du n° 39)

S\F(x)\»dx<B2\am\*.
— oo

Par suite, si on pose

Fk(z) in m--k z — m
on a encore M] \F(x)-Fk(x)\»dx<B v |aj*

-oo |w|>*
42 A. Zygmund a donné un exemple d'une fonction F(x) (non analytique), de puissance

p-ième mtégrable (p > 2) pour laquelle la fonction (116) ne possède pas de dérivée presque
partout (voir: Trigonometncal séries, Warszawa-Lwow, 1935, p. 319, n° 3).
E. C. Titchmarsh avait donné auparavant (voir loc. cit 16), p. 286) l'exemple d'une fonction

entière de type exponentiel et de puissance p-ième mtégrable (p>2) pour laquelle
(116) possède partout, sauf au point y — 0, une dérivée fP(y) continue et qui cependant

n'est pas absolument continue parce que / | <£ (y) | dy n'existe pas. Dans le cas, qui seul nous
-1

intéresse ici, où .F(z) est une fonction entière de type exponentiel et de p-ième puissance
mtégrable, la fonction (116) possède toujours une dérivée nulle en dehors de l'intervalle
(—h\ h) — voir théorème IIb du n° 52. Notre exemple montre donc qu'il existe des
fonctions entières de type exponentiel pour lesquelles (116) n'a pas de dérivée presque
partout dans (— h', h).

43) Voir au sujet de cette définition de la transformée de Fourier la discussion donnée

par Hille et Tamarkm dans la note: E. Hille, A. C. Offord and J. D. Tamarkm, Some
observations on the theory of Fourier transforms [Bulletin of the Amer. Math.
Soc. (1935), p. 427—436].
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La suite des fonctions Fk(x), Je — 1, 2, 3, converge donc en moyenne
d'ordre p vers F(x).

Soit maintenant p > 2 Prenons une suite de constantes
Am, m ± 1, ± 2 telle que

JS | ^4TOI* converge et X Mwl2 diverge
et posons

m

am 0, si m=£±2, ±2\ ±23, ...,± 2',...

a-tf aar j4, r 1, 2, 3,

La fonction

4-

est une fonction entière de type exponentiel et de ^>-ième puissance
intégrable. Or,

p—xxy ]

i dx

La dernière intégrale tend vers zéro avec 1er1 comme le montre l'emploi
de l'inégalité de Holder et la remarque faite au début de ce n°. Par
conséquent, en remplaçant Fk(x) par sa définition dans la première intégrale
du second membre et en passant à la limite Je -> oo

il
X^r ^feos 2rf e du

l5 J W

Cette expression est donc égale à

g|j^ 2ry
lorsque — n

^=0, lorsque
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Elle possède une dérivée nulle lorsque | y \ > n Par contre, la série
00 sin 2r2/
J£ Ar ——— ne peut avoir, dans l'intervalle —tt< y ^.jc, de dérivée que
r=l *
sur un ensemble de mesure nulle C'est une conséquence des deux propositions

suivantes de la théorie des sénés de Founer44)

a) Soit f(x) une fonction mtégrable dans (— n, n) et

sa série de Founer En tout point où fr(x) existe, la série dérivée terme à

terme __J£ — incne~mx
n

est sommable par les moyennes de Cesàro d'ordre supéneur à un et sa

somme par ces moyennes est égale à f (x)

b) Pour que la série lacunaire

+ bk smfc x) —— ^ 1 > 1

converge par une moyenne de Cesàro sur un ensemble de mesure positive,
oo

il est nécessaire que J£ (I ak 12 + I bk |2) converge

°° e-ixy iII est ainsi démontre que j F(x) dx n'est pas une fonction
— oo *•£

absolument continue, puisqu'elle n'a pas de dérivée, presque partout
dans l'intervalle (—n, n) F(x) n'a donc pas de transformée de Fourier

43 II est facile de passer du théorème démontré au n° 41 au théorème

IV' énoncé au n° 20 En exprimant le terme général du second
membre de (114), lorsque m ^0, à l'aide de

sin nz z

z—m 2 ±^ l m m

et en permutant la sommation et l'intégration (la série converge
uniformément en vertu de (113)), nous obtenons

44) Voir, par exemple, A Zygmund, loc cit 42), p 55 et p 119—122

143



~ m_Jr

2 ^
c'est-à-dire K

F{z) J [W(ji) + 2(^(0 —¥(7z))]elztdt, (118)

en posant

Remarquons que

Pour assurer la concordance des notations (46) et (119) de la série de

Fourier de W(t), il faut avoir

La convergence de la série (47) revient donc à celle de (113). La transformation

facile qui, moyennant la définition (119), mène de (114) à (118)
étant réversible, nous avons ramené le théorème IV ' énoncé au n° 20, cas

particulier n 1 du théorème IV dont il sera question au n° 49, à la
proposition démontrée au n° 41.

44. Nous n'avons utilisé qu'une partie des relations que nous avons
trouvées entre la série (44) et l'intégrale (43) pour démontrer le théorème

IV'. Ces relations peuvent encore être utilisées pour relier certaines
propriétés de la série de Fourier45)

Zcme-™*~f(x) (121)
m

d'une fonction intégrable f(x), définie dans —n ^ x ^ n, à la
transformée de Fourier

F(z) J f{t)elztdt (122)
— 7T

de la même fonction.

45) Les cn de ce n° n'ont rien à faire avec les cn du n° précédent.
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On observe d'abord que

Puis on constate facilement que F(z), définie par (122), est une fonction
entière de type exponentiel satisfaisant à (81). Enfin, en appliquant les
résultats formulés aux nos 31 et 33 à la fonction (122) et aux constantes
(123), on obtient des inégalités entre les coefficients de Fourler cw et la
transformée de Fourler F(z) de la même fonction f(x):

Si p> 0, on a œ

2\cJ*<A]\F(x)\*dx (124)
m — oo

et si p> 1, on a

]\F(x)\>dx<B2\cm\> (125)
— oo m

A et B étant des constantes qui ne dépendent que de p. L'inégalité (125) cesse

d'être généralement valable pour 0 < p g 1. Par contre, elle subsiste encore

pour ces valeurs de p pour les fonctions particulières f (x) qui sont nulles dans
les deux Intervalles

— n^x^ — n + r], n — rj^x^n,
la constante B dépend alors non seulement de p mais encore de rj.

L'exemple simple f(x) l,F(z) fait voir que l'inégalité

(125) n'est pas, en général, vraie lorsque 0 < p ^ 1.

Le cas particulier p 1 de ce théorème a été donné essentiellement

par Wiener46). Dans le cas particulier p 2 l'inégalité peut être
remplacée par une égalité, comme nous l'avons vu au n° 24.

Extension des résultats aux fonctions de plusieurs variables

45. Comme nous l'avons observé au n° 22, l'extension au cas des fonctions

de n variables des résultats obtenus pour les fonctions d'une variable
ne se fera pas en étendant au cas n > 1 les méthodes de démonstration
employées dans le cas n 1, mais en utilisant «en bloc» les résultats
obtenus dans ce cas particulier et en les généralisant par induction
complète de n à n + 1.

46) Voir loc. cit. 22).
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Un examen attentif des procédés employés aux nos 27—32 pour
conclure de l'intégrale a la série montre qu^ les résultats reposent essentiellement

d'une part sur l'inégalité (59) et d'autre part sur les lemmes 4

(n° 30) et 5 (n° 32) Or, l'inégalité de Hardy qui est a la base de ces
lemmes s'étend immédiatement au cas n > 1 pai application répétée du
cas n 1 Les énoncés et les démonstrations des lemmes 4 et 5 se

transposent, par suite, sans difficulté au cas n > 1 et nous ne nous y arrêterons

pas II suffit donc, pour obtenir les généralisations des théorèmes des
nos 27—32, de démontrer la proposition suivante dont (59) est le cas

particulier
Si p est un nombre positif et F(zl9 z2, zn) une fonction entière de type

exponentiel, on a pour toutes les valeurs réelles de yl9 y2i yn Vinégalité

oo

n Jl-^i + ^i* ^2 + ^2> ,xl-j-iyn)\pdx1dx2 dxn

^epc(\yl\ï\yi\+ +l»nl)JJ f\F(zl9X2, Xn\Ux±dx2 dxn
— 00

où c désigne la croissance cardinale de F

II ne nous paraît pas facile d'étendre au cas n > 1 les lemmes 1—3 du
n° 28 et la méthode employée pour démontrer (59) La démonstration
peut se faire, par contre, par induction complète si on y remplace les
mots «croissance cardinale» par les mots «croissance globale» Nous
ne démontrerons l'énoncé ci-dessus qu'avec ce changement Mais comme
ce changement n'apporte aucune modification dans la démonstiation des
théorèmes du n° 46 et par conséquent aucune modification non plus dans
la démonstration que nous donnons au n° 51 de l'égalité des croissances
cardinale et globale (car cette dernière démonstration repose uniquement
sur les théorèmes du n° 46 et sur les théorèmes I et II de la première
partie), il sera légitime d'introduire après coup la croissance cardinale
dans l'énoncé ci-dessus C'est ce que nous avons fait par anticipation

La démonstration de (126) où c désigne donc provisoirement la crois
sance globale de F peut se faire, comme nous l'avons dit, par induction
complète Le principe da raisonnement sera suffisamment mis en lumieie
si nous nous bornons, pour plus de simplicité, a le donner pour n 2

Nous considérons donc une fonction entière de deux variables F(zx, z2)

de type exponentiel et nous nous bornons naturellement au cas où

l'intégrale double ^
S S\F(xl9xt)\'dx1dxt
— oo

converge Le théorème de Fubim nous dit alors que l'ensemble E% des
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valeurs réelles x2 pour lesquelles l'intégrale J \F(xl3 x2) \pdx1 converge a
— oo

pour complémentaire un ensemble linéaire de mesure nulle et que

f$ | F(xl9 x2) \*dxxdxt ] dx2 J | F(xlt x2) pdxj
— 00 — OO — OO

Prenons pour x2 une valeur arbitraire fixe appartenant à E2. La fonction
F(z, x2) est alors une fonction entière de type exponentiel; sa croissance
globale est évidemment inférieure ou égale à la croissance globale c de

F(z1,z2). F(z, x2) est, de plus, à cause du choix de x2, de puissance
p-ième intégrable. Cette fonction satisfait donc à toutes les conditions
requises pour la validité de (59). Donc, quelle que soit la valeur réelle ylt

J \F(x1 + iy1, xt) \'dx1 g tf'^ J | F(Xi> Xt) \vdXi

en tout point x2 de E2, c'est-à-dire presque partout. Les deux membres de

l'inégalité étant des fonctions positives mesurables de x2, le second
membre étant, de plus, une fonction intégrable de x2, il en est de même du
premier et par intégration

]dx2 J \F(Xl + iyi, x^\'dxl £ é"""" J dx2 ]\F(Xl, x^\'dx1

Une nouvelle application du théorème de Fubini permet de permuter
l'ordre des intégrations dans le premier membre, de remplacer l'intégrale
itérée du second membre par une intégrale double, d'où

jJ + iyt, xjpdx, g e*"1"'1 f$ | F(xlt xjpdxjx,,
— 00 — OO

puis de conclure que l'ensemble des valeurs réelles xx pour lesquelles
pour yx arbitraire, mais fixe,

OO

J \F{xl + iy1,x2)\Ux2
— 00

converge, a un complémentaire de mesure nulle. Désignons par E1(yl)
cet ensemble qui, en général, peut dépendre de la valeur choisie pour yx.
Si xx est une valeur arbitraire appartenant à El(y1), mais fixe, la fonction
F(x1-\-iy1, z) de la variable z est de nouveau une fonction entière de z,
de type exponentiel et de p-ième puissance intégrable. Sa croissance
globale ne dépassant pas c, une nouvelle application de (59) conduit à

l'inégalité

J \F(x1 + iy1,x2 + iy2)\Ux2 ^ è*"""! J \F(x1 + iyl9x^dx%9
— OO — OO
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valable pour toute valeur réelle y2 et toute valeur x± appartenant à
l'ensemble E1(y1). Le second membre de l'inégalité est, lorsque yx et y2
sont des valeurs arbitraires fixes, une fonction positive de xl9 intégrable
dans (—oo, oo). Par suite, en répétant un raisonnement déjà fait, on
conclut, puisque le complémentaire de E^y^ est de mesure nulle, que

tJ dxx J \F(xx+iyi, x2+iy2) \Hx2 £#'\'*\ ] dxx J | F(Xl+iyi, x2) \*dx
— OO —OO — 00 — 00

F(xx-\-iy1, x2-\-iy2) est par suite de puissance p-ième intégrable et

00 OO

J ^\F(x1+iy1, x2+iy2)\pdx1dx2<epc{lv^+l^)^\F(x1, x2)\vdxxdx2)v dxxdx

46. L'inégalité (126) maintenant démontrée, l'extension au cas n> 1

des résultats des n08 27—32 ne présente aucune difficulté et, abandonnant
ce soin au lecteur, nous nous bornerons à formuler les théorèmes généraux
que l'on obtient.

Soit F(zx, z2, zn) une fonction entière de type exponentiel et de p-ième
puissance intégrable (c'est-à-dire que pour un certain p > 0 Vintêgrale

00

J J • • • J I F(xi, *2, sn) \pdx1dx2 ...dxn
— 00

converge). Alors,

1. F(xly x2, xn) tend vers zéro avec (x\ + x\ + (- x2n)~x pour
xXi x2, xn réels F est donc aussi de puissance q-ième intégrable si q>p.

2. d désignant un nombre positif arbitraire et (x{^, x{^\ x^)9
H 1, 2, 3, une suite illimitée de points de Vespace réel à n dimensions,
telle que

(x<Ç> — x^Y + (a<ï> — x^Y + ' • ' + (xW — x^)2 ^ d2

pour ii =^v, la série

converge. /i~1

/5 W
3. Les dérivées^- (v 1, 2, n) sont aussi des fonctions entières

dzv
de type exponentiel et de p-ième puissance intégrable47).

47) Nous verrons au no 53 que sous les hypothèses faites sur F(zx, z2, ....,zn) les
dérivées partielles de F ont la môme fonction h(k) que F et, par conséquent, la même
croissance cardinale que F.
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47 m1,m2, ,mn désigneront toujours, dans la suite, des nombres
entiers et

v £ E
mi mz %

une abréviation pour
00 OO 00

E E E •

mi= — oo m2= — °° w>n— — oo

Lorsque nous dirons d'une constante A, B, qui figure dans une
inégalité relative à une fonction entière F (zx, z2, zn) de type exponentiel,

de croissance cardinale c et de p îème puissance mtegrable, qu'elle
ne dépend que de p et de c (ou de c), cela voudra dire que dans

l'inégalité en question la même valeur A, B, conviendra pour toutes
les fonctions F qui ont la même valeur de p et de c (ou pour toutes les
fonctions qui ont la même valeur de c)

Les résultats généraux analogues à ceux des n08 27—39 se résument
dans le théorème

Théorème III: Soit p un nombre positif etF(z1,z2, zn) une jonc
tion entière de type exponentiel Soit c la croissance cardinale de F

1 II existe une constante A, qui ne dépend que de p et de c, telle que

fat ,)|JJ f\(l,xt, .zJl'^dx, dxn
m\ m% mn — oo (127)

2 Si c < n, il existe une constante B, qui ne dépend que de p et de c, telle que

JJ jLFfo,*,, ,xn)\^dx1dx% dxn<B»EE ElFim^m,, mn) |»

Lorsque p> 1, on peut prendre B Cp où C est une constante ne dépendant

que de c

3 Si p > 1 et si F(z1 ,z2, zn) satisfait aux n conditions

hmF(xu x2, xv 19 z, xv+1, xn)e~r^ 0 (129)
|z|->oo (v=l,2 ,n)

où x1, x2, Xy-i, xv+1, xn sont des valeurs réelles arbitraires, Vinégalité

(128) reste valable avec une constante B qui ne dépend que de pAS)

48) De la convergence de l'intégrale n uple

/; • /1 F(xx, x2, txn)\fdxxdx% dxn (a)
— 00

le théorème de Fubini permet seulement de conclure que 1 intégrale k uple (1 < k < n)
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Précisons encore le sens de (129). Cette condition veut dire qu'étant
donné des valeurs réelles arbitraires xx, xv^x, xv+1, xn, il
correspond à tout nombre positif s arbitrairement petit un nombre positif
M M(e',x1, xv_1,xvJrl, xn) tel que

\F(x1,x2, ...,^,3,3^, o;w)|e-Tl2l < s

pour toute valeur de la variable complexe z de module \z\ > M.
La première partie du théorème III est une conséquence de la

généralisation donnée au n° précédent des résultats des n08 27—32, plus
particulièrement de l'inégalité (77) qui en est le cas n 1. Sa démonstration
peut se faire directement par induction complète à partir de (77). C'est
d'ailleurs une spécialisation du point 2 du théorème du n° 46 et si nous
l'avons formulée dans le théorème III, c'est pour mieux mettre en relief
l'inégalité inverse (128).

Ici encore, la démonstration de la seconde et de la troisième partie du
théorème III procédera par induction complète et nous nous bornerons à

établir le passage de n l à n 2. Nous admettons donc que les propositions

III 2 et III 3 sont vraies dans le cas n 1 et nous considérons une
fonction entière de type exponentiel F(z1,z2), de croissance cardinale
c < n dans le cas III 2 ou vérifiant (129) dans le cas III 3. On aura donc,

par hypothèse, dans le cas III 2

Max limr"1 log |F{(xY ±ir,oc2)\<n, Max lim r-1 log |F^, a2 ±ir)\ <n -

(a) r-^oa (a) r-^oo

et dans le cas III 3

lim F(xl9z)e-*W Q, lim F(z, x2) e~^z^ 0
J2|->oo |z|->co

— 00
-f\F(xlfx2, ixn)Pdxx...dxk (b)

converge presque 'partout dans l'espace (n — k) - dimensionnel réel des points
(#1:4- > ^1:4- » • • • » xn) • H convient donc de noter la conséquence suivante du théorème

III : L'intégrale (b) converge partout, c'est-à-dire quelles que soient les valeurs réelles ou

complexes de x%+1, xk+i, xn
Le cas des xK complexes se ramène au cas des xK réels en vertu de l'inégalité (126).

Ce dernier cas se ramène immédiatement en considérant la fonction de zx, z2, zn

xn)\
' 2c ' '"' 2c ' 2c '*"' 2c

où xb+ j, #£+ 2, xn sont des valeurs arbitraires fixes, au cas plus particulier où

Xjc^_l= • • • =xn= 0 et où la croissance cardinale de F est inférieure à 7t. Mais, dans ce

cas particulier, la convergence de (a) entraîne la convergence de la série n-uple
S 2 • • 2 | ^(wi! m2 y mn) |*>, en vertu de la première partie du théorème III et par

conséquent celle de la série &-uple S S • • • S | F(m1> m2, mk, 0, 0, 0) \*. Et

d'autre part, en vertu de la deuxième partie du théorème III appliquée à la fonction de

k variables F(zlt z8, zk, 0, 0, 0), on conclut l'existence de l'intégrale (6).
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Nous admettons encore que pour un certain p > 0 ou, selon le cas, pour
un certain p > 1, la série

J£ £ | F(ml, m2) \p converge.

mx désignant un entier arbitraire fixe, F(m1, z) est une fonction entière
de type exponentiel de la variable z. Sa croissance cardinale est au plus
égale à c, donc inférieure à n dans le cas III 2. Dans le cas III 3 on a

lim F(7ïi1, z) e-7r'z| 0. La convergence de la série double ci-dessus
\z\ -> oo

entraîne celle de la série E\F(m1, m2)\v. Toutes les conditions requises
m2

pour appliquer à la fonction F(m1, z) l'inégalité (80) étant remplies, i]
existe une constante B telle que

J \F(m1,x2)\pdx2< B£ \F{m1, m2) \p. (130)
— OO 7»2

Dans le cas III2 B ne dépend que de p et de c et si p> 1 est de la forme
B — Cv où. C ne dépend que de c [nous utilisons ici la propriété évidente
qu'une valeur de B qui dans (80) convient à toutes les fonctions F de
croissance cardinale c convient encore, pour la même valeur de p, aux
fonctions de croissance cardinale inférieure à c]. Dans le cas III3 B ne
dépend que de p.

De l'inégalité (130) découle, en faisant parcourir à m1 toutes les valeurs
entières,

S J \F(ml9 x2)\pdx2 < BE J£|jFT(m1,m2)|3\ (131)
t»i — oo mi m2

Un théorème bien connu de Lebesgue et de B. Levi sur l'intégration des

séries à termes positifs permet de conclure, puisque le premier membre
de (131) est une série convergente, que la série U\F(m1, aj2)|pest presque
partout convergente et que mi

J S \F{mi ,**) \vdx2 Z J | F{mx, x2) \*dx2.
— oo r»i »»i — oo

Appelons E2 l'ensemble des points de convergence de la série E\F(m1, x2)\p.

La fonction de z, F(z, x2), vérifie encore, lorsque x2 appartient à E2,
toutes les conditions requises pour l'emploi de l'inégalité (80). Par suite,

J \F(xti x2)\»dx±< B£ \F(m1} x2)\p
— 00 «11

en tout point x2 de E2, donc presque partout, et avec la même constante
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B que plus haut. Le second membre de cette inégalité entre fonctions
positives de x2 est intégrable dans (— oo, oo) ; il en est donc de même du
premier membre et l'intégration par rapport à x2 donne

] dx2]\ F(x1, x2) \*dxt < B J v | F(m1, x2) \»dx2
OO — OO

F(zi> zî) es^ par suite de ^-ième puissance intégrable et l'inégalité (128)
est démontrée dans le cas n 2.

Une induction complète qui procède comme celle que nous venons de

donner, mais qui est encore plus simple, conduit à la généralisation au cas

n > 1 du théorème de Mlle Cartwright cité au n° 20 et dont nous avons
donné une démonstration au n° 40.

SoitF(z1, z2, zn) une fonction entière de type exponentiel, de croissance

cardinale inférieure à n. Si F est bornée sur Vensemble des points
(m1, m2, mn) à coordonnées entières elle est bornée dans tout Vespace

réel (x1} x2, xn).

48. Le théorème dont la proposition du n° 41 est le cas particulier peut
s'énoncer comme suit:

Pour qu'une fonction entière F(zx ,z2, zn) soit de type exponentiel et

possède les propriétés suivantes :

(I) La croissance cardinale de F est ^ n

(II) Four un certain p > 1

00

$$•'-$ | F(xx, x2, xn)\pdx1dx2... dxn converge,
— 00

il faut et il suffit qu'il existe une suite n-uple de nombres

amim2...mn rnv 0, ± 1, ±2,

ayant la propriété que

S £ • • • E I anum*...mn \p converge,

et que F(zx ,z2i zn) puisse être représentée par la série

F(zz _sintiz1 sinnz2 u
(zn-mny (132)
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Notre démonstration par induction complète se bornera ici encore à

l'étude du cas n 2.

a) Pour démontrer que les conditions (I) et (II) sont suffisantes nous
noterons, en premier lieu, qu'il en découle d'après le théorème III 1 la

convergence de la série double 27 E\F(m1, m2)\p. On montre en effet comme

au n° 41, sous a), en faisant usage de la conclusion 1 du théorème du
n° 46, que les conditions (I) et (II) entraînent les relations (129). Le
second membre de (132), où nous prenons n 2, est par suite une série
absolument et uniformément convergente de zx, z2 dans tout domaine
borné de l'espace complexe (zlt z2), comme on le voit en se servant de

l'inégalité de Hôlder ; il représente donc une fonction entière de zx, z2.
oo

Appelons E2 l'ensemble des valeurs de x2 pour lesquelles J \F(xx, x2) \pdx1
— 00

converge. Son complémentaire est de mesure nulle en vertu de (II).
Lorsque x2 est une valeur arbitraire fixe de l'ensemble E2, la fonction de

z, F(z, x2), est une fonction entière de type exponentiel qui satisfait aux
conditions (I) et (II) du cas n — 1. Elle est, par conséquent, représentable
dans tout le plan de la variable complexe z par la formule

(133)

De plus, en vertu du théorème III 1, il existe une constante A
(indépendante de x2) telle que, en tout point x2 de E2,

S W{mlt se,) |» < A ] | F(xlf «,) \"dx1.
m\ — oo

Le complémentaire de E2 étant de mesure nulle et le second membre de

l'intégrale ci-dessus étant intégrable en x2 dans (—oo, oo), on conclut
encore que

J Z \F(m>i, x2) \Hx2 <Af$\ F(x19 x2) \*>dxx dx2
— oo m,\ — oo

00

Par suite, J \F(m1, x2)\pdx2 converge pour toute valeur entière de mx. La
— oo

fonction F(m1, z) satisfait donc, elle aussi, à toutes les conditions du
théorème du n° 41 et par conséquent
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On peut déduire des développements (133) et (134) obtenus pour
F(z, x2) et pour F(m1, z), en tenant compte de la convergence absolue des
séries considérées,

(Z X19 * (zi—m1)(x2

Cette formule n'est, pour l'instant, établie que pour zx complexe arbitraire
et pour x2 réel appartenant à l'ensemble E2. Mais E2 est partout dense

puisque son complémentaire est de mesure nulle. Or, F(zx, z2) est une
fonction entière de z2 ainsi que

sin n zx sin nz2 (— 1 )mi + ™2 F(m1, m2)

rc ^ mi m2 (^1 — ^1)^2 — ^2)

(à cause de la convergence de la série E E \ F(m1, ra2) 1^). L'égalité

de ces fonctions sur un ensemble partout dense de valeurs réelles de z2

entraîne leur égalité pour toutes les valeurs complexes de z2. Il suffit
maintenant de prendre ami rng (— l)mi + m2 F(m1, m2) pour achever la
démonstration de la suffisance.

b) Démontrons maintenant que les conditions (I) et (II) sont nécessaires.

Nous supposons donc que la série E E |amiW2 \p, (p> 1), converge

et que F(zlt z2) est définie par la série (132) pour n 2. On en tire, par
l'inégalité de Hôlder, que F est une fonction entière de type exponentiel,
de croissance cardinale inférieure ou égale à n et que

F(ml9 m2) (— l)mi + m*amim2

00

II reste à montrer que l'intégrale J J | F(x1} x2) \pdxxdx2 converge.
— 00

On considère à cet effet la fonction de ziF(mli z). Comme c'est une
fonction entière de type exponentiel qui vérifie les conditions du théorème

III 3 pour n 1, il existe une constante B telle que

J | F{m1, x2) \pdx2 < B £ | F(m1, m2) \p.

Donc, oo

7m — 00 mx m2

De la convergence de la série premier membre résulte que -271 JPT(m1,a;8)|1>

est une fonction intégrable de x2 et que
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j" E \F(mi, xt) \'dxt S J I f(mlt x2) \»dx2

La série S | F(ml, x2)\p converge par conséquent sur un ensemble E2 dont

le complémentaire est de mesure nulle. Si x2 appartient à E2 la fonction
de z, F(z, x2), satisfait encore aux conditions du cas n 1 du théorème

III 3. Donc, pour toute valeur de x2 appartenant à Ez, c'est-à-dire

presque partout,

°) | F{xy, xt) \"dxx <B£\ F(mi ,x,)\>.
— oo »!

Le second membre étant, comme nous l'avons vu, une fonction intégrable
de x2, une nouvelle intégration donne

j 2

C. q. f. d.

49. Il suffit maintenant de se servir de la formule (117) et de procéder
comme au n° 43 pour exprimer F(zlt z2, zn) par une intégrale définie
et obtenir le théorème.

Théorème IV: Pour qu'une fonction entière F(z1,z2, ...,zn) soit de

type exponentiel et possède les deux propriétés suivantes :

(I) La croissance cardinale de F est ^ n
oo

(II) L'intégrale J J*-* j\F(x1} x2, xn)\I)dx1dx2 dxn converge pour
— 00

un certain p > 1

il faut et il suffit qu'elle puisse être représentée par la formule

(135)

V(t1,t2,...,tn)z1z2...zn}dt1dt2...dtn

où W(tx,t2i ...,tn) est une fonction continue de (tx, t2, tn), de période 2n
relativement à chacune des variables tt, t2, tn, dont la série de Fourier
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possède la propriété particulière que

E £--Z\™<1m2...mncmim^^mn\*> converge
mi m2 mn

(avec la convention que, lorsqu'un ou plusieurs des indices m1}m2, ...,mn
sont nuls, il faut remplacer dans le terme correspondant |m1m2 mn

cmxm2 "-mn\P de *a dernière série le facteur nul |m1ra2...mn|p par le

produit des valeurs absolues des termes non nuls de la suite
m?, m|\ ...,<).

Le symbole £ placé devant les expressions qui figurent dans la formule
(135) signifie qu'il faut faire la somme de tous les termes que l'on obtient
en permutant dans ces expressions les indices de toutes les manières
possibles. Par exemple, la seconde ligne de la formule (135) s'écrit, si on
la développe

+ - + W(7Z,7l,...,7Z,tn)(l~Z1)(l~-Z2)...(l-Zn_1)zn

et a 1 I termes; la troisième ligne ail termes, la quatrième l Itermes,

l'avant-dernière I I termes.

Ce théorème établit une correspondance biunivoque entre la classe
des fonctions entières de type exponentiel possédant les propriétés (I)
et (II) du théorème IV et celle des séries de Fourier absolument
convergentes dont les coefficients cmi m%... mn sont tels que

converge (avec la convention faite ci-dessus au sujet des indices nuls).

50. Du théorème ci-dessus découle encore la proposition suivante qui
relie les coefficients de Fourier d'une fonction f(x1, x2, xn) intégrable
dans le domaine —7t ^ xv ^ 7t, v l, 2, n à la transformée de

Fourier de la fonction égale à / dans ce domaine et égale à zéro en dehors.
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Soit f(x1,x2, xn) une fonction définie et mtégrable dans le domaine
— n ^ %v ^ n, v 1, 2, ,n Soit

EE Ecmim2 mne-^i*i+™***+ +m»*»)~f(x1,x2,...,xn)

sa série de Founer et F(z1, z2, zn) la fonction entière de type exponentiel
définie par

II exibte, si p > 0, une constante A ne dépendant que de p telle que

EE E\cmimt mn\p<An$$ $\F(xl9x2, ixn)\^dx1dx2 dxx
nii m 2 m>n — °°

et, si p > 1, une constante B ne dépendant que de p telle que

00

§$ §\F(xi9x2, ,xn)\vdxxdx2 dxn<B*Z v ^|cmima mn\p

La dernière inégalité cesse en général d'êtie valable si 0 < p ^ 1, mais
elle subsiste encore dans ce cas pour les fonctions particulières / qui sont
nulles en dehors d'un domaine

— (n—rj) ^ xv < n—rj, 0 < r\ < - v 1, 2, n

Dans ce cas la constante B dépend non seulement de p, mais encore de rj

La croissance de F(zx, z%, zn) dans le cas général p > 0

51 Les théorèmes I et II de la première partie relient la fonction A (A)

qui caractérise la croissance de la fonction entière F(zx, z2, zn) de type
exponentiel et de carre mtégrable à la fonction d'appui %(X) d'un domaine
convexe n dimensionnel $ déterminé par la transformée de Founer de F
II se pose naturellement la question de savoir dans quelle mesure ces

théorèmes se laissent généraliser au cas où F est de puissance p-ième
mtégrable Nous avons vu au n° 42 que si p > 2, F n'a pas nécessairement
une transformée de Fourier II n'est donc pas possible d'étendre au cas

général p > 0 l'énoncé que nous avons donné des théorèmes I et II On

peut cependant, par l'artifice simple du n° 30, ramener l'étude de la
croissance dans le cas p > 0 au cas p 2
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En effet, soit F{zx ,z2, zn) une fonction entière de type exponentiel
et de p-ième puissance intégrable (p > 0). Déterminons l'entier m par
2 m > p. Alors, d'après un résultat obtenu précédemment (n° 46,

conclusion 1)

G(zx,z2, ...,zn) F{z1,z2,...,zn)m

est une fonction entière, de type exponentiel et de carré intégrable.
A la fonction G appartient, d'après le théorème II, un domaine convexe
w-dimensionnel $m qui est le plus petit domaine convexe à l'extérieur
duquel la transformée de Fourier <Pm de G est équivalente à zéro. La
fonction

hm{X) Max lim r~~x loglG*^ — i Xxr, a2 — ih2r, ocn — ihnr)\
(a) r->oo

est égale à la fonction d'appui %m{X) de $m et

®m
(136)

Mais comme, en vertu de leurs définitions

on voit que h(K) est la fonction d'appui du domaine obtenu en réduisant
les dimensions linéaires de $m dans le rapport m : 1.

Le théorème II comporte donc la généralisation suivante.

Théorème II a. Si F(zx, z2, zn) est une fonction entière, non
identiquement nulle, de type exponentiel et de p-ième puissance intégrable
(p > 0), la fonction h (À) définie par (5) est la fonction d'appui d'un domaine

convexe n-dimensionnel.

L'égalité des croissances cardinale et globale de la fonction G, de carré

intégrable, entraîne la même chose pour F, d'où le théorème, énoncé

déjà au n° 23 : La croissance cardinale et la croissance globale d'une fonction
entière non nulle, de type exponentiel, sont égales lorsque cette fonction est,

pour un certain p> 0,de puissance p-ième intégrable.
La formule (136) — voir la formule (7) et les remarques du n° 14 —

montre encore que, sous les hypothèses du théorème lia, il existe une
constante K telle que

\F((x1 — *V,«2 — il2r, ...,«B — %Xnr)\ < Keh^r (137)
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52. Les raisonnements du n°51 reposent d'une part sur les théorèmes

I et II, donc sur la théorie de la transformée de Fourier des fonctions
de carré intégrable, et d'autre part sur la propriété que si F est une
fonction entière de type exponentiel et de p-ième puissance intégrable,
elle est aussi de g-ième puissance intégrable lorsque q>p. On peut établir
le théorème lia directement en introduisant au lieu de la transformée
de Fourier une fonction d'intervalle, qui, dans le cas où la transformée
de Fourier existe, a cette transformée pour dérivée.

Cette fonction d'intervalle se définit comme suit. Soit J= (a1,a2, ...,«„;
bx, 62 bn) un intervalle 7i-dimensionnel, c'est-à-dire l'ensemble des

points (ylt y2, yn) de l'espace réel à n dimensions, tels que

av ^ yv ^ bv, v 1, 2, n.

Si F est une fonction mesurable de (xx, x2, xn) et si

J f~-$\F\*dx1dxt...dxn
— oo

converge pour un certain p ^ 1, la fonction d'intervalle

<p(J;F)=<p(J)=<p(a1,a2, an ; bl9 62, ...,6B) (138)

\47Z) _oo ax an

est une fonction additive de l'intervalle J. C'est, de plus, une fonction
continue de J au sens suivant: <p(J) tend vers zéro avec le volume
(&! — ax) (b2 — a2) (6W — an) de J.

Appelons point de constance de y (J) un point (ct, c2, cn) tel que
cp(J) — 0 pour tout intervalle J situé dans un certain voisinage de ce

point. Appelons encore points de variance de(p(J) les points {clic2i cn)

qui ne sont pas des points de constance de cette fonction d'intervalle. On

peut alors montrer:

Théorème IIb. Si F(zly z2i zn) est une fonction entière, de type
exponentiel et de p-ième puissance intégrable (p> 0), les points de variance
de (p(J) forment un ensemble borné $ft. De plus, si la fonction F n'est pas
identiquement nulle, §ft n'est pas vide, le plus petit domaine convexe $
enfermant $$l est n-dimensionnel et
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étant la fonction d'appui de $ et h(K) la fonction caractérisant la
croissance de F49).

Nous ne donnerons pas ici la démonstration afin de ne pas allonger
outre mesure ce mémoire. Nous remarquerons simplement qu'elle procède
d'une manière parallèle à celle des théorèmes I et II. Bien que plus
longue, elle est plus «élémentaire» en ce sens qu'elle n'a pas à faire usage
de la théorie de la transformée de Fourier et de la notion de convergence

en moyenne parce que les intégrales qu'elle introduit sont toutes
absolument convergentes.

53. Le théorème suivant relie la croissance des dérivées partielles de

F à celle de F.

Les dérivées-^—, v 1, 2, n, d'une fonction entière F(z1, z2, zn)
dZp

de type exponentiel et de puissance p-ième intégrable (p > 0) ont la même

fonction de croissance h(X) que F.

Nous donnerons deux démonstrations très différentes de cette
proposition.

a) La première est une application du théorème II b. Comparons la
fonction d'intervalle <p (J) q>(J ;F) de F avec la fonction d'intervalle

49) Lorsque cp(J) est une fonction d'intervalle absolument continue (c'est toujours le
cas si 0 < p <; 2), F possède une transformée de Fourier î> et peut s'exprimer par la
formule

F(zlfz2,. ,zn)=J/...
Dans ce cas l'intégrale

(++ + )x2 dxn

calculée comme valeur principale, c'est-à-dire comme la limite

hm S1 S*--SnF(x1,x2,. ^je-* ^1*1+^2+ +v^x^>dxxdx2 dxn
Jfli-^oo, ,jRw^oo -Rx -R2 -Rn

existe et est nulle en tout point (yx, y2, yn) extérieur à $. C'est une conséquence de
(a) et du théorème de Riemann-Lebesgue de la théorie des séries trigonométriques. Nous
avons obtenu au no 19 une proposition plus générale dans le cas n 1 puisque nous n'y
supposons pas F(z) de puissance p-ième mtégrable mais seulement que lim-F(a;) 0.

$->-4-oo

Corrigeons à ce propos une phrase incorrecte du no 19. La dernière phrase de la page 246

doit être remplacée par la suivante: L'égalité (37) ayant lieu sans exception en dehors
de l'intervalle (— h', h), nous savons que non seulement l'intégrale figurant dans la
conclusion du théorème du no 5 est nulle en dehors de l'intervalle (— h', h) quand on
la calcule comme limite en moyenne, mais encore que sa valeur principale existe à
l'extérieur de cet intervalle et y est nulle.
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ç»i(«/) (p(J ,^— de sa dérivée ^— qui, comme nous l'avons vu, est
(jz^ uZ-l

aussi de p îeme puissance mtégrable Un calcul élémentaire donne, en

partant des définitions de cp(J) et de <px(J)

cpx{ax,a2 ,an bx b29 ,bn) —ib1<p(al9a29 al9bl9b29 bn)

bi (139)
+ i)<p(al9a2, ,an9yl9b29 9bn)dy1

Si (cl5 c2, cn) est un point de constance de <p(J),(p(J) 0 pour
tout intervalle J (a1,a2, ,&«,&i,&2> >bn) du voisinage de ce

point et la relation ci dessus montre que cpx (J) 0 Tout point de cons
tance de cp (J) est donc un point de constance de cpx (J)

Si (cx, c2, cn) est un point de constance de cpx (J), le premier membre
de la relation (139) est nul pour tout intervalle du voisinage de ce point
et par conséquent on a dans ce voisinage

b&ia^a*, ,an,bx,b2, bn) ]q>(alt a2, ,an9yltb2, bn)dyl

cp{a1,a2k, ,an, bltb2, ,bn) est donc une fonction absolument
continue de bx et la dérivation par rapport a b± donne

«a, an, fei, b2,... 6W) _
dbx

Par suite (p (J) est indépendante de bx lorsque l'intervalle J est situé dans
le voisinage du point (cl5 c2, cn) Comme d'autre part (p est une fonction

continue de ax, a2, ,bl9b29 bn et est nulle lorsque b± ax il
résulte que cp (J) 0 Tout point de constance de q>± (J) est donc un point
de constance de (p J)

II suffit maintenant de se rappelei la signification conférée par le

théorème II b aux points de constance de (p (J) pour conclure la propo
sition énoncée

b) La seconde démonstration part du cas particulier p 2 Dans ce cas

les théorèmes I et II de la première partie donnent la formule

F(zl3z2, ,zn) $$ J0(3fi,y«, ,y»)e«™+*"+ +z^dyidy2 dyn

qu'il suffit de derrver par rapport a zx pour voir que iy±0 est la trans-

formée de Fourier de ^— Par suite, $ est encore le plus petit domaine

convexe a l'extérieur duquel la transformée de Fourier de — est équi-
azx
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valente à zéro. Donc, d'après le théorème II, -=— et F ont la même fonc-

tion h(X). La proposition est donc démontrée lorsque p 2.

Si p 7^ 2, déterminons un entier m tel que m > 2 p. F(zx, z2, zJ™

étant de carré intégrable, Fm et ^— .Fm ont, d'après ce qui précède, la
OZ\

même fonction de croissance:

h(X; ~

d'où

'dz1

et par conséquent

Pour démontrer l'inégalité inverse et achever ainsi la démonstration,
remarquons que la fonction

ai» » - \ - sin Zl sin ga sin^
Zl Z2 Zn

a la propriété

Max lim r"1 log \Q(<x1 — i Axr, oc2 — i A2r, an — * Anr) |

(a) /->• oo

lim r"1 log | ^(«i — iAjr, a2 — iA2r, aw — *Anr) |

r->-oo

sauf pour certaines directions «exceptionnelles» (celles pour lesquelles

une des composantes Xv est nulle). Par conséquent, si F est une fonction
de type exponentiel, on a

h(X;FG) Maxîîm r"1 [log |Ffa — iXxr9 ...,otn — iXnr) |

(a) r-^oo

Max lim r"1 log |^(«j — iAxr, aw — *^nr) I

(a) r->oo

+ limr-1 log | 0(ocx — i^r, ...,ocn — iXnr) \

c'est-à-dire r^°°

h(l;FG) h(X; F)
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pour toute direction (A) non exceptionnelle. Les termes de cette formule
étant des fonctions continues de la direction (A), l'égalité a encore lieu
pour les directions exceptionnelles. On a donc aussi

On établirait de même que

Mais les fonctions FG, -=— sont de carré intégrable. Par suite,
oz

;~\ h(X;G)

Donc, puisque

; ~\+ h{X;G) gMax[A(A; F)+h(X;O),

c'est-à-dire

Les méthodes de ce mémoire s'appliquent aussi à l'étude des fonctions
entières de type exponentiel F(zx,z2, ...,2B) qui, dans le domaine réel,
sont telles que F(xlt x2, xn) (xl + x%+ ••• + x2n)~k reste bornée pour
une certaine valeur de k positive ou nulle lorsque (x\ + x\-\
tend vers zéro.

(Reçu le 1er septembre 1937.)
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