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Uber das Wachstum der Ndherungsnenner
halbregelmaBiger Kettenbriiche

(Untersuchungen zur Theorie der halbregelmaBigen Kettenbruchentwickiungen lil)

Von Frirz BLumMER, Basel

Einleitung

Diese Arbeit ist der dritte und letzte Teil einer Untersuchung iiber
halbregelmiBige Kettenbriiche!). Solche halbregelmifige Kettenbriiche
haben die Gestalt

aqy +

1

a, +

Ay +-

agﬂ:

Den Kettenbruch, den wir erhalten, wenn wir einen Kettenbruch mit
P,
Q.

Im ersten Kapitel leiten wir das schon von Tietze und spater von Perron
auf anderem Wege bewiesene Resultat her, daBl in einem unendlichen
Kettenbruch die Naherungsnenner ¢, ins Unendliche wachsen. Unser
Beweis bezieht sich ebenso wie die Beweise von Tietze und von Perron
auf den allgemeinen Fall der sog. T'-Kettenbriiche, in denen die a, belie-
bige Zahlen = 1 sind.

Im zweiten Kapitel beschrinken wir uns wieder auf halbregelméafBige
Kettenbriiche und untersuchen die Art des Wachstums der @,. Die
Ergebnisse hingen von der Einteilung der Indizes in zwei Klassen ab,
ndmlich in die Klasse der reguldren und in die der singuldren. Wir nennen
solche Indizes n> 1 singuldr, fir die gleichzeitig a, < 2 und das Vor-

a, abbrechen, bezeichnet man als seinen n-ten Néherungsbruch

1) Der erste Teil dieser Untersuchungen wurde unter dem Titel ,,Uber die verschiedenen
Kettenbruchentwicklungen beliebiger reeller Zahlen und die periodischen Kettenbruch-
entwicklungen quadratischer Irrationalitédten‘‘ in den Acta Arithmetica, der zweite Teil
unter dem Titel ,,Uber die Giite der Approximation einer reellen Zahl durch die Naherungs-
briiche ihrer halbregelméaBigen Kettenbruchentwicklungen in einem frithern Heft der
Commentarii veréffentlicht. Doch kann die vorliegende Arbeit ohne Kenntnis der beiden
andern gelesen werden.,
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zeichen vor dem Teilbruch — 1 ist, alle andern regulir (n =1 gilt
immer alsreguldr). Wir bezeichnen die reguliren, resp. singuldren Indizes
der Grofle nach geordnet mit r,, resp. mit s,. Pipping hat dann bewiesen,
dal die Folge der @, , sofern s, — oo gilt, monoton ins Unendliche
wéchst. Dieser Satz ergibt sich auch aus unsern Untersuchungen, und
zwar sogar, was bisher nicht bekannt war, fiir den allgemeinen Fall der
T-Kettenbriiche. Ferner zeigen wir, daBl in einem unendlichen halb-

th

regelmifBigen Kettenbruc — oo gilt. Vor allem aber gelingt es uns,

die Frage nach dem genauesten allgemein giiltigen Wachstumgesetz fiir
die @,, und die @,, zu entscheiden. Wir beweisen, dal die beiden Rela-
tionen

Qrk

T

— oo und @ — oo

gelten und zeigen, dal} sie sich nicht mehr verscharfen lassen, d. h. wenn
@ (x) eine beliebig schwach monoton ins Unendliche wachsende Funktion

ist, so kann man solche Kettenbriiche angeben, fiir die

Qsk
@ ()

Ich mochte auch an dieser Stelle Herrn Ostrowski bestens danken, der
mich auf dieses Problem hingewiesen und mir auch bei der Durchfithrung

dieser Untersuchung hilfreich zur Seite gestanden hat.

, Tesp.
7@ (7%)
nicht ins Unendliche wéachst.
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I. Allgemeines uiber das
Wachstum der Naherungsnenner der 7-Kettenbriiche
§ 1. Definitionen

Unter einem 7'-Keitenbruch?®) versteht man einen Ausdruck von der
Form

der den folgenden Bedingungen geniigt:

A. a, ist eine reelle Zahl, ¢, = 4+ 1;
B. firn =zlista, Z1lunda, —¢,, = 1;
C. falls der Kettenbruch endlich ist und auller a, noch mindestens einen

Teilnenner a, hat, so ist der letzte Teilnenner groBler als 1; falls der
Kettenbruch unendlich ist, ist unendlich oft a, — ¢,., = 29).

Sind in einem solchen 7-Kettenbruch die a, sogar ganze Zahlen, so
bezeichnen wir ihn als einen halbregelmdiifigen Kettenbruch.
Einen solchen Kettenbruch werden wir etwas bequemer schreiben,

namlich
gl el &l
0
la,  la,  |a,
Bricht man den Kettenbruch mit dem Teilnenner a, ab, so erhilt man
den Ausdruck

Wir bezeichnen den Wert dieses Ausdruckes mit N, und nennen diesen
Wert den n-ten Niherungsbruch. Diese Werte N, lassen sich bekanntlich4)
aus

%) Tietze hat als erster die Konvergenz solcher unendlicher ,,T-Kettenbriiche‘‘ bewiesen
und hat dazu nachweisen miissen, da8 unser Satz IV, das Hauptresultat dieses Kapitels,
gilt. Da er aber seinen Beweis geometrisch fiihrt, so fehlen in seiner Arbeit die andern
Resultate dieses Kapitels, die wir z. T. in Kapitel II benotigen.

8) Die Forderung O benétigen weder Tietze zu seinem Konvergenzbeweis noch wir zu
unsern allgemeinen Resultaten iiber T-Kettenbriiche.

4) Siehe z. B. Perron oder den ersten Teil unserer Untersuchungen.
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P,=1 Py=ay,Q_,=0,Q,=1 (1,2)
nach den Rekursionsformeln

P :anpn-—l_—snpn—2

n

(1,3)
Qn =a, Qn‘“l — &y Qn—z

. P
berechnen, indem man N, = —" setzt. P, nennt man den n-ten Ndhe-

n

rungszihler und @, den n-ten Ndherungsnenner. Fiir diese P, und @, gilt
bekanntlich?)

PnQn-I - Pn—lQn = 6n’ (1:4)

WO 0, = & & ... &, = 4 1 ist.

Uber die @, haben wir in § 2 des ersten Teiles folgende einfache Aus-
sage bewiesen, die wir auch in diesem Teil bald gebrauchen werden:

a) In einem 7-Kettenbruch gilt firn =0 @, = 1°).

Weiter wollen wir folgende Begriffe definieren: n = 2 heille regulir®),
wenn a, — ¢, = 1 ist; n = 1 sei immer regulir. n = 2 heille singulir®),
wenn a, — ¢, < 1 ist, und zwar eigentlich singulir, wenn dazu noch
Q, = @, gilt, und uneigentlich singulir, wenn dazu noch @, > @, gilt.
Ordnet man die reguldren, resp. die singuldren Indizes n der Grofie nach,
so werde der k-te regulire Index mit r,, resp. der k-te singuldre Index
mit s, bezeichnet. Ferner bilden wir die Folge der reguliren und der
uneigentlich singuldren Indizes, wiederum der Grofe nach geordnet, und
bezeichnen den k-ten Index dieser gemischten Folge mit u,. Wenn alle
Indizes » von n, = 1 bis n, (n, und n, eingeschlossen) reguldr sind, so
sprechen wir von einer reguldren Sequenz RS (my, m,). Die Differenz
Q, — Q,—, werde mit 4, (n = 0) bezeichnet.

§ 2. Die GroSe der 4,

Aus den Relationen a, —¢,,;, =1 und a,_, — ¢, = 1, die nach der
Definition der 7'-Kettenbriiche fiir alle » = 1 gelten miissen, ergeben
sich sofort die folgenden beiden Tatsachen:

5) Wir haben zwar in § 2 des ersten Teiles diesen Satz nur fiir halbregelméaBige Ketten-
briiche formuliert, aber wir haben in einer FuBnote darauf hingewiesen, daB wir beim
Beweis des Satzes von der Ganzzahligkeit der a, keinen Gebrauch gemacht haben, so daB
der Satz auch fiir T-Kettenbriiche gilt.

8) Die beiden Bezeichnungen regulére und singuldre Indizes stammen von T'ietze.
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a) Ist fir n =1 a,< 2, so ist ¢,.; = —1, also ist n -+ 1 regulir.
b) Ist fir n = 2 ¢, = 41, so ist a,_, = 2, also ist n — 1 regulir.
Aus a) und b) folgt:
c) 8 &= 1 sind reguldr und daher r, , —r, < 2.
Nun wollen wir folgenden Satz iiber die GroBe der A, beweisen:
Satz I : Far die T-Kettenbriiche gilt:
«) fur alle requliren n = 2 ist A, = 1 und fir n=1 A,=a, — 1;

B) wenn firn=2 a,—e¢,=0,d. h.a,=1und ¢, = -1 ist, so
18t dieses m immer eigentlich singulir und es gilt Q, = A,_, und
4, < —1.

Beweis: Wir weisen zunéchst die Richtigkeit der folgenden Tatsache
nach:

d) Wenn n = 2 regulir ist, so gilt fiir ¢, = —1 4, =@,_, und fiir
en = +]- An gAn—l'

Denn es ist nach (1,3)
An = (a’n - ])Qn—l - 8nQn~2 (n = 1) (2’1)

Ist nun ¢, = —1, so ist 4, = Q,_,; ist aber ¢, = +1, so ist, weil n
nach Annahme regulir ist, @, = 2 und damit 4, =2 Q,—, —@,—. = 4,_,.

Nunmehr kénnen wir mit dem eigentlichen Beweis des Satzes I be-
ginnen. Nach (1,2) und (1,3) gilt fir n=0und n=1 @_,=0,Q,= 1 und

Q=a,00—¢&Q ,=a, =1. (2,2)

Daraus folgt sofort 4, = a, — 1, womit «) fiir n = 1 bewiesen ist.

Nun zeigen wir die Richtigkeit von «) und g) fiir n = 2. Nach d) ist
fiir reguldres n = 2 und &, = —1 4, 2Q,=1 und fiir regulires n = 2
und ¢, = +1 A,=24, = a, — 1. Ist aber ¢, = + 1, soist nach b) a, = 2,
also ist auch in diesem Fall 4, = 1. Damit ist «) fiir » = 2 bewiesen.
Im Fall @, == 1, e, = +1ist nach (2,1) 4, = (@, — 1) @, — &,Q, = — @,
= —1, also ist auch B) fiir n = 2 richtig.

Wir nehmen nun an, der Satz sei fiir alle » < n — 1 richtig, won = 3
ist, und zeigen, daB dann der Satz auch fiir » gilt. Fiir reguldres n und
&, = —1 folgt aus d) sofort 4, =@Q,—, =1 und fiir regulares » und
&, = +1 folgt 4, = 4,_,. Da aber im letztern Fall ¢, = 1 ist, so gilt
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nach b), daBl » — 1 reguldr ist. Da wir angenommen haben, daf} der Satz
fiir » — 1 richtig sei, so ist 4,;, = 1. Also gilt in diesem Fall 4, = 1.
Damit ist «) bewiesen. Um f) zu beweisen, miissen wir den Fall a, = 1,
¢, = + 1 untersuchen. Es ist nach (2,1) 4, = —@,—, < —1, weil nach
§ la) @, = 1 ist fiir » = 0. Damit ist also der Satz bewiesen.

Wir wollen den Satz I noch speziell fiir halbregelméfiige Kettenbriiche
formulieren. Wir miissen dabei beriicksichtigen, da in einem halbregel-
méBigen Kettenbruch » in einem einzigen Fall singulér ist, ndmlich wenn
a,— ¢, =10,d.h. wenn ¢, = 1 und ¢, = 41 ist.

Satz Ia: In einem halbregelmifigen Kettenbruch gilt
«) fur alle reguliren n =22 A, =1, firn=1 A, =a,—1;
B) fur alle singuldren n 4, < —1.

Bei den halbregelmifigen Kettenbriichen gibt es also keine uneigent-
lich singuldren Indizes.

§ 3. Aligemeines iiber das Wachstum der @,
Zunichst zeigen wir, daf}
a) Qg1 — @y = Lirk = 1,2, ... gilt.
Denn nach §2a) ist ¢, , = —1, also

st+1 - ask+1 st + st—l 2 st + st~1 —2— st——l + 1. (33])

Damit kénnen wir nun die Monotonie der ¢,, beweisen.

Satz 11 : In einem T-Kettenbruch gilt
Qupyr > Quyr @y = Q. + 1und @,, t oo mit k— co7) .

Beweis : Die Folge der Indizes u, enthilt nach Definition die reguliren
Indizes r, und die uneigentlich singuldren Indizes. Da nach § 2c¢) 7, —
7, = 2 ist, so ist erst recht w,,;, —wu; < 2. Ist nun %, , —u, = 1, so
folgt Q“k+ , > Q,, fir den Fall, daf} u,,, regulér ist, aus Satz I und fiir
den Fall, daB w,, , uneigentlich singulir ist, aus der Definition der un-

eigentlich singuldren Indizes. Ist dagegen u,,, — u; = 2, so ergibt sich
Q.;., > Q. 2us a). Da nun in einem unendlichen T-Kettenbruch unend-

7) Diesen Satz fiir halbregelmiBige Kettenbriiche ausgesprochen findet man schon bei
Lagrange. Die Zeichen 4, bezw. ¥ bedeuten die mit monotonem Wachsen, bezw.
mounotonem Fallen verbundene Konvergenz.
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lich viele regulire Indizes vorkommen — sind doch nach §2¢) s, 41
regulir — und da nach Satz I und nach a) @,,, — Qr, = 1 ist, so gilt
wirklich @, } oo mit k- oo.

Auf Grund des monotonen Wachstums der @,, 1aBt sich eine untere
Schranke der ¢,, angeben, und zwar sowohl in Abhingigkeit von dem
,relativen Index‘* k£ wie auch in Abhangigkeit von dem ,,absoluten
Index® r,. Es gilt

b) @, =k

c) QrkZ—[%+ 1]. 8)

Beweis: Die Behauptung b) folgt sofort aus Satz II. Um c) zu be-
weisen, miissen wir iiberlegen, welches der kleinste relative Index k ist,
der einem bestimmten reguldren n entspricht. Wenn n = 2v 4 1 ist,
dann konnen maximal » singuldre Indizes eingeschoben werden, so daf
k=v+ 1 gilt; wenn n = 2y ist, so sind hochstens v — 1 singulére
Indizes vor n moglich, d.h. in diesem Fall gilt £ = v 4+ 1. Also gilt

7 1
Q2v+1 = v+ 1 oder Qrkz —k—;——
oder @, = %’i+ 1, wenn 7, gerade ist. Diese beiden Félle konnen

, wenn 7, ungerade ist, und @,, =v + 1

. s 7.
wir nun mit der Formel @, = [-2}”— -+ 1] zusammenfassen, w.z.b.w.

§ 4. Weitere Bemerkungen iiber die Variation der 4,

Wir miissen zunichst noch einige speziellere Angaben iiber die Varia-
tion der A,, machen.
a) Es sei n = 2 regulir.

«) Fir a, = 2 gilt dann 4,= A4,_,, und zwar gilt das Gleichheits-
zeichen dann und nur dann, wenn a,, = 2 und ¢, = + 1 ist;

p) firl <a,<2giltd, =2Q,,und 4,,, =24,_, + 1, wobei
4, = @,_, nur fir ¢, = 1 und dann immer gilt.

«) und die erste Behauptung von f) folgen sofort aus der Formel (2,1).
Die zweite Behauptung von f) erhdlt man aus der (2,1) entsprechenden

8) Diese Ungleichung, fiir halbregelmaBige Kettenbriiche ausgesprochen, findet man
bei Cahen (S. 418), der sie allerdings irrtiimlicherweise als fiir alle Indizes giiltig hinstellt.
Wir werden spiter sehen, daB sie fiir singulire Indizes nicht zu gelten braucht.
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Formel fiir 4,,, unter Beriicksichtigung von § 1a), denn darnach ist
An+1 - (a'n+1 - I)Qn + Qn—l 2 Qn—l - Qn-—z + Qn—2 ; An—l + 1

Weiter gilt:
b) Sind n = 2 und n + 1 reguldr, so gilt immer 4,,,, = 4,_,, und zwar

gilt 4,,, =4, nur fira, =a,,,=2und ¢, = ¢,,;, = + 1 und es
ist dann 4, ,, =4, =4,_,.

Beweis: Fir 1 <a, <2, ¢, == —1 ist b) in a) enthalten. Wir diirfen
also @, = 2 annehmen. Wenn nun auch noch a,,, = 2 ist, so folgt aus
a) sofort 4,,, =4, =4,_,, wo beide Gleichheitszeichen zugleich nur
in dem Fall a, =a,,, =2 und ¢, =¢,,;, = + 1 gelten. Wir miissen
also b) nur noch fiir den Fall a, = 2, a,,, <2, ¢,., = —1 beweisen.
Dann gilt aber 4, ,; = (a,,; — 1)@, — &,11@n—1 = @y > 4y

Ferner gilt:
¢) Ay =451 + 1.

Denn aus § la) folgt A4, = (@g41 — 1)@y + Q1 = @1 =
Qo1 — Q2 + Qo2 =41 + 1.

Aus b) und c) folgt nunmehr:

d) Wenn n 4 1 (»n = 2) regulér ist, dann gilt entweder 4,,, > 4,_, oder
An+1 = An = An—l'

§ 5. Allgemeines iiber das Wachstum der @, und der @,

Wir zeigen zunichst:
a) Es gilt fir alle v aus BS(s;—; + 1,8, — 1) 4, =@,.

Beweis: Es ist nach §4Db) fir alle » mit s, ,+1=v=<s,— 3 ent-
weder 4,<4,,_,, wenn nédmlich » = s, (mod. 2) ist, oder 4, <4, _,,
wenn v =8, -+ 1 (mod. 2) ist. Wir brauchen also bloB zu zeigen, daB
unsere Ungleichung fiir » = s, — 2 und » = s, — 1 erfiillt ist. Nun ist

st = 0gq¥g—1 — st—2 = st—l - erz = Ask-——l (5,1)

und nach 4a) 4,_, = 4,,_,, ausgenommen wenn a,,_; < 2 ist; in diesem
letztern Fall konnte aber nach 2a) s, nicht singuldr sein. Also gilt
immer @, =24, _, =4, _,. Dies ist aber gerade unsere Ungleichung fiir
v =8, — 1 und fir v = s, — 2.
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Mit Hilfe dieser Tatsache ergibt sich nun sofort
Satz 111 : In einem T-Kettenbruch gilt
Qury =@, + 1, also Qg 1 co, wenn k — oo ®) .

Beweis: Nach a) ist @, =4, fiur alle v aus RS (s, + 1, 841 — 1)
Wir miissen also blof} zeigen, dafl mindestens fiir eines der angegebenen
v 4,=2Q, + 1 gilt. Es ist nach §2a) ¢,,; = —1 und daher 4, =
(@11 — 1) Qg + Q1 - Istay,, = 2,s0giltnach §1a)d, ., =@, + 1;
ist aber ag,, < 2, dann braucht die angegebene Ungleichung nicht zu
gelten. Da in diesem letztern Fall nach § 2a) e, ., = —1, so ist s, -+ 2.
nicht singulir und es gilt A, ., = (A0 — 1) Q41 + Q- Firag , =2
ist Ay p Z Qi + @ > @y, + 15 ist a, ., <2, dann ist nach §2a)
Eqt3 = — 1, 8, + 3 also nicht singulér, und wir finden nach Satz I«)
Aois = (@3 — 1) Qqpio + @opi1 = @iy = @, + 1, womit wir den Be-
weis unserer Behauptung erbracht haben.

Aus den Satzen IT und III folgt unmittelbar
Satz IV : In einem T-Kettenbruch gilt

Q, — co mit n — oco19) .

Il. Allgemeines iiber das Wachstum der
Nidherungsnenner der halbregelméfBigen Kettenbriiche
§ 6. Allgemeines iiber das Wachstum der 4,

Uber das Wachstum der 4
beweisen :

rp» 188t sich die folgende Aussage einfach

Satz V: In einem wunendlichen halbregelmdfiigen Kettenbruch gilt

Ay, —> oo mit k — oo
und
) Ay —-— oo, sofern k — oo gilt.

Beweis: Es sei uns ein unendlicher halbregelméBiger Kettenbruch
vorgegeben. Wir greifen aus der Folge der Indizes n diejenige Teilfolge

) Diesen Satz, fiir halbregelmaBige Kettenbriiche formuliert und bewiesen, findet
man bei Pipping.

10) Dieser Satz wurde zuerst von Tietze bewiesen; einen weitern Beweis hat spater
Perron (8. 149) erbracht.
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ny, heraus, fir die 4,, = 4,,_, gilt. DaB solche n,, und zwar sogar un-
endlich viele, existieren, ergibt sich aus Satz Ia und der Tatsache, daf3
in halbregelmaBigen Kettenbriichen die 4, ganzzahlig sind. Aus Satz
Ia) folgt, daB alle %, reguldr sind. Nun zeigen wir, dafl n,, , —n, < 2
gilt. Ist n, + 1 55 n4y,, d. hoist 4,,,, <4, ,dann ist nach § 4a) und
nach Satz Ia) a,,, =1, und zwar kann dabei n, + 1 regulir
{€np41 = —1) oder singulér (e, = 1) sein. In den beiden Fillen
ist nach §4af) und nach §4c¢) 4,,.,, =4, -+ 1, also erst recht
Appvo > Aypr> s0 dal also in diesen beiden Fillen ny ++ 2 = n;,, ist.
Weiter ergibt sich daraus, daB fiir unsere Teilfolge n, auch 4,, =4,
ist. Dabei gilt das Gleichheitszeichen fiir k' = 3 nach §4a) nur fir
Wppp, =2 und ¢, = +1, denn fir @, =1 ist 4, = an_l und
Qug—1 7 Qrg — @1, Weil ja sonst wegen §3b) @, =20, , = 3 wire,
was im Widerspruch steht zu (1,4). Nach der Eigenschaft C der halb-
regelméfligen Kettenbriiche in § 1 ist aber in jedem unendlichen Ketten-
bruch unendlich oft a, —¢,,; = 2, so daB also unendlich oft 4,
A, + 1 gilt, womit gezeigt ist, da 4, — oo mit k — oo gilt. Fiir die
iibersprungenen regulidren Indizes, fir die also @, = 1 und ¢, = —1 ist,
gilt nach §4ap) 4, = Q,—,, so dafl auch diese 4,, sofern es unendlich
viele dieser Art gibt, nach Satz IV ins Unendliche wachsen. Damit haben

wir unsere erste Teilbehauptung bewiesen.

Die zweite Teilbehauptung folgt sofort aus der Tatsache, dall nach
Satz 1) Q,, = 4, = Qg1 — Qg 0deralsod, = —@Q, , ist und daBl
nach Satz IV @, - oo mit n — oo gilt.

§ 7. Das Wachstum der @, verglichen mit dem Wachstum der »,

Aus Satz V folgt
Satz VI: In einem unendlichen halbregelmdfSigen Kettenbruch gilt

@ri

T

—> o0 mit k— oco.

Beweis: Wir geben eine beliebige positive Zahl C vor und zeigen, daf3
fiir alle £ = K (C) Q

eine ganze posmve Zahl K, derart, daB fiir k_>_K0(O) 4., > 4 C gilt.
Nun kann 7, ,—r, nach § 2¢) nur einen der beiden Werte 1 oder 2 an-
nehmen. Gilt nun r, ., — r;, = 2, dann ist r;, 4 1 ein singuldrer Index s,
und nach (1,3) gilt @,,,, = @,, + @,,—,. Also gilt nach Satz I18) @, ., —

—% > C gilt. Da nach Satz V 4, — co gilt, so existiert
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Qs;-1 =@, =4,y > 4 C,wenns; — 1 Zrg ist. Damit haben wir gezeigt,
daB fir alle k= K, @,  —@, >4C gilt. Aus dieser Ungleichung folgt

Q,.KW> Qrg,+4Cx
,rKo‘l"" TK() + 2%

Q, 4C x iy 40
Daa—;:i;—-———é.%— — 2C mit %— oo gilt, so ist fiir % =x,(K,) %

QTKg-{-X

TE1

> S . . .
Q"K0+z Q.-Ko—i— 4Cx%, wo Tyt _TKO—I—Zx ist. Somit ist

> C.

Also gilt wirklich fir »=x4(K,)
QTk

7

> (' oder also fiir
TKo+x

k= K,(C) >C, w.z.b.w.

§ 8. Kettenbriiche mit (), von minimalem Wachstum

Satz V1 sagt aus, dafl die ¢, stirker ins Unendliche wachsen als die 7.
In diesem Paragraphen wollen wir nun zcigen, dal man in Satz VI r,
nicht durch eine starker anwachsende Funktion von r, ersetzen kann.
Es gilt namlich

Satz VII: Es sei p(x) eine stetige Funktion, fir die (x) T oo mit
x — oo ¢ilt. Dann existieren tmmer Kettenbriiche, die unendliche Teil-

folgen m,, von r, besitzen, derart, daf3

Qi

—> 0 mit k— o
gilt. my, @ (Mmy,)

Beweis: Wir wihlen eine beliebige monoton fallende Nullfolge ¢, aus,

bei der nur, um den Beweis zu vereinfachen, ¢, > a(l_ﬁ gelten soll. Fiir
jede Funktion der Folge c,p(x) gilt fir x = X, = :X,,(c,,, M, N,) die

Ungleichung ¢,z (x) > M,x + N,, wie auch M, und N, als positive
Zahlen gewihlt werden.

Nun definieren wir einen Kettenbruch, der die im Satz VII angegebenen
Eigenschaften besitzt. Es sei @ eine beliebige positive ganze Zahl und
e = 41, wobei a — ¢ = 2 sei. a, wahlen wir beliebig, ¢ = —1 und
a, = 1, so daB also nach (2,2) und nach der Definition von ¢; @, =1 <
¢, @ (1) gilt. Wir wollen in dem zu definierenden Kettenbruch den ersten
Index =, fiir den @, < c,ng(n) gilt, mit m, bezeichnen. Nach dieser
Definition ist also n = 1 = m,.

Allgemein, sind wir beim Index m,_, angelangt, so wollen wir unsern
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Kettenbruch folgendermalien fortsetzen. Wir wihlen a,,  ,, = a und
Emp,t1 = €. Gilt dann @, ., < cp(my_y, + 1)p(m—y + 1), so ist
My—y + 1 = my. Gilt aber ¢, ., > cp(my—y + 1) ¢(m;; + 1), dann
wéhlen wir a,,, =2 und ¢, ., =-+1 fir 7=2_3, .., 1,=X,—m;_,,
wo X, die kleinste positive ganze Zahl ist derart, daB fir alle
v = X, = Xy(er , Admp_yt1> Qrg,) CrZP(X) >4, «+ Q,, , ist.
Daf3 ein solches X, immer existiert, haben wir am Anfang unseres
Beweises allgemein vermerkt. Der so ermittelte Index m,_, 4+ 7, == X,
ist der Index m;. Denn nach §4ax)ist Q,., = @, 11+ (1,—1)
Amk__l+1 = ka_l +Amk__1+1 + (TO - 1) Amk._1+1 = ka__l + T()Amk_l 1 <
ka___l + (My—1+ 7o) Anzk_.1+1 < g (My—y + To) @ (Myy + 7o) -

mi

mk
My @ (M)

my @ (M)

Fiir die so definierten m, gilt nun = ¢, also -0

mit £k — co, w.z. b. w.

§ 9. Kettenbriiche mit @, von minimalem Wachstum

Zunichst wollen wir bemerken, dal es Kettenbriiche gibt, in denen
ein @, kleiner ist als eine beliebig vorgegebene Anzahl von unmittelbar
vorangehenden @,,. Um das zu zeigen, geben wir einen Kettenbruch an,
in dem ¢, mit s; = n 4 1 kleiner ist als die ersten n @y, - Zu diesem
Zweck wihlen wira, = 2und ¢, = + 1 fir = 0,1, .., nund a,, = 1,
&,41 = + 1. In diesem Fall ist @, = 2Q,., — @,_, oder also 4, =4,_,
fir v=1,2, ..., nund @,,, == @, — Q,—, = 4, = 4,. Da nun nach (1,2)
4,=1 und nach (2,2) @,=2 gilt, so ist wirklich @, > @, fiir v=1,2, ...,n.

Analog dem Satz VII finden wir fiir die @,, den

Satz VIII : Es sei ¢(x) eine stetige Funktion, fir die ¢ (x) T oo gilt mit

& — oo. Dann gibt es Kettenbriiche, fiir die - (;k) — 0 mit s, — oo gilt.
k

Beweis: Wir geben einen Kettenbruch an, der unserer Behauptung
geniigt. Es sel ¢y =a, =2, a, =1 und ¢ = ¢ = + 1, so da} also
8; = 2 1ist. Vom Index s, 4+ 1 oder allgemein vom Index s, -+ 1 an setzen

wir den Kettenbruch folgendermaflen fort: a, ., = 2, ,,, = —1,
Ao 0 =2, &, =+ 1fir v=23, ..., [#4] wnd @[z =1,
Elay, 41 = T 1, WO @, der Relation ¢(24;,) = (@ + Q1) mit

einem beliebig vorgegebenen &> 0 geniigt. Es ist also [, ]+ 1="8;,,.
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Fiir den so definierten Kettenbruch gilt nun @, = 2Q,, + @,
also Ask+1 = st + st—l und st+t == 2 st +1—-1 7 st+1~2 oder also
Agre = Agpyi—r - HierausfolgtQ, =4, =4, =0, + @, und
daraus

, oder

Qury  Qut Q-1 Qu+@u-1_ Qut+Qu 1

@ (8x+1) @ (8+1) @ (®411) (@sg + Qog—1)'T* (s st—l)b.

1
-0
(st + st—l)b

Da nach Satz IV @, — co mit » — oo gilt, so gilt also

—%+1 50, w.z. b.w.

mit £ — oo und damit auch
(p(sk-i-l

(Eingegangen den 27. Marz 1937.)
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