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Sulle trasformazioni
funzionali lineari commutabili con la derivazione

Per Francesco Tricomi, Torino

1. La trasformazione di Laplace1) deve, com'è ben noto, la sua impor-
tanza principalmente al fatto che essa muta la derivazione in un'opera-
zione assai più elementare: la moltiplicazione per la variabile indipen-
dente. Essa è pertanto atta a semplificare in modo essenziale importanti
classi di equazioni differenziali; p. es. un'equazione aile derivate parziali
in due variabili indipendenti a coefficienti costanti, viene mutata in
una equazione differenziale ordinaria, ecc.

Anche altri tipi di trasformazioni funzionali lineari possono perô tro-
vare utili applicazioni in Analisi, e specie nella teoria délie equazioni
differenziali lineari, p. es. le trasformazioni commutabili con la dériva-
zione, cioè le trasformazioni £ tali che da

segua necessariamente

(2) /'(*) Z [F'(t)]

dove gli apici denotano derivazioni rapporto ai rispettivi argomenti.
Tali trasformazioni, già implicitamente considerate da Appelé) fin dal
1880, sono state più tardi esplicitamente studiate da Pincherle2) ma da
un punto di vista molto astratto e prevalentemente formale, che vero-
similmente è stata la causa dell'ingiusta dimenticanza in cui son presto
cadute tali, pur pregevoli, ricerche.

Naturalmente dette trasformazioni non servono, in générale, per
,,semplificare" date equazioni differenziali chè, per esempio, un'equazione
differenziale lineare a coefficienti costanti resta manifestamente inal-

*) Per la trasformazione di Laplace e qualche considerazione générale sulle trasformazioni

funzionali, v. la mia Conferenza: Sulla trasformazione di Laplace, tenuta al
Seminario Matematico e Fisico di Torino V11-4-35, ch'è pure pubblicata nel ,,Periodico
di Matematiche" (4) 15 (1935) pp. 238—250.

2) Sur une classe de polynômes. ,,Annales Ecole Norm. Sup." (2) 9 (1880) pp.
119—144. (V. spec. le § 12).

8) Sulle operazioni distributive commutabili ecc. ,,Atti Ace. Scienze Torino"
30 (1895) pp. 820—844; v. pure il libro di Pincherle e Amaldi, Le operazioni
distributive ecc... (Bologna, Zanichelli, 1901) Cap. VII.
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terata, ma potranno talvolta fornire utili contributi allô studio délie loro
soluzioni; p. es. sfruttando la circostanza che, nel caso ora indicato,
queste non potranno che venir mutate Funa nell'altra dalle trasforma-
zioni in parola. A convincere di ciô mi lusingo possa contribuire la présente
Nota in cui, riprendendo lo studio délie trasformazioni commutabili dal
punto di vista moderno délia rappresentazione mediante integrali definiti,
mostrerô qualche loro concreta applicazione, e specialmente di una di
queste che, per la sua immediata connessione con l'esponenziale gaus-
siano délie probabilité, proporrei venga chiamata trasformazione di Gauss.

2. Le trasformazioni funzionali lineari, val'a dire distributive rispetto
alla somma, possono notoriamente rappresentarsi mediante un intégrale
di Stieltjes che, nella maggior parte dei casi, si riduce immediatamente
ad un intégrale ordinario; propriamente si puo, in tali casi, porre

(3) f(s) $K(s,t)F(t)dt,
a

dove a e b denotano due date costanti e K una funzione di s e t, detta
ordinariamente ,,nucleo"4). In particolare le trasformazioni lineari
commutabili con la derivazione, che Pincherle caratterizzava corne quelle
il cui sviluppo formale secondo le potenze del simbolo di derivazione D
è a coefficienti costanti, possono anche — forse più utilmente — carat-
terizzarsi corne quelle il cui nucleo è una funzione délia differenza s—t5).

Infatti dalla (3), con una derivazione sotto il segno e un'integrazione
per parti, sotto condizioni meramente qualitative pel nucleo K e la
funzione F, si ha

/'(«) — $K(s, t)F>{t) dt j [K's(s, t) + K't(s,t)]F(t) dt — [K(s, t)F(t)Ytzba
a a

epperô affinchè la (2) valga almeno essenzialmente, cioè a prescindere

4) V. p. es. la mia Conferenza preeedentemente citata.
5) Un accenno di ciô trovasi nell'Articolo di Pincherle, Equations et opérations

fonctionnelles, nella ,,Encyclopédie des se. math." (éd. franc T. II—5, art. 26 (1912),
v. pg. 42. Délie trasformazioni del tipo (3) con nucleo funzione délia differenza s—t, sono
moltre considerate m una Memona di Weierstrass (Ûber die analytische Darstellbar-
keit sogenannter willkurlicher Functionen reeller Argumente, Werke, 3,

1—37) che dovremo ncordare anche più avanti. W. perô non si préoccupa di studiare
quesifce trasformazioni %n se, bensi le funzioni da esse generate, e non ha cosi occasione di
accorgersi délia fondamentale proprieta délia commutabilità con la derivazione.

Ultimamente anche G. Schulz (Umkehrung von Integraltransformationen,
Z. f. angew. Math. 14 [1934], pp. 373—374) ha considerate trasformazioni del tipo in
discorso, accennando alla loro importanza in svariati problemi di Fisica-Matematica e

proponendo un metodo per la loro mversione numerica nel caso di funzioni periodiche.
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(eventualmente) da termini dipendenti solo da F (a) edF (b), dovrà essere

il che implica appunto che K dipenda soltanto dalla difïerenza s—t, e

non da s e t separatamente.

Quanto al cammino d'integrazione e ai suoi estremi a e b, nella più
parte dei casi ci si puô limitare ad assumere corne taie un'intera retta
del piano complesso t, Oppure si puô, con qualche vantaggio formale,
integrare costantamente lungo Fasse reale, da — oo a + oo, a patto di
sostituire in luogo di t il binomio x + Xt, essendo x e X due date costanti
non necessariamente reali : È quello che faremo generalmente in questo
scritto, in cui si considereranno dunque trasformazioni funzionali del tipo :

(4) f(s) =jN(s—x — Xt)F(x + Xt)dt
— 00

essendo N una data funzione di una sola variabile.

È ben facile ma non inutile verificare che le trasformazioni del tipo (4)
sono effettivamente commutabili con la derivazione, a patto che le funzioni
F che si considerano siano dotate di derivate prime continue e che esista
la trasformata di F', anzi che l'intégrale analogo a quello che figura
nella (4) ma opérante sulla funzione F' (k -\- Xt -\- x) sia uniformemente
convergente, rispetto ad x, nelFintorno di x 0.

Infatti, supposto dato ad s un incremento délia forma h — Xhv con
hx reale, eseguendo la sostituzione t tx + lnx si avrà

f(8 + h) J N(s — k — XtJFix + Xtx + h) dtx
— 00

donde, tornando a scrivere t in luogo di tv sottraendo la (4) e dividendo
per h, segue :

J
— 00

+ 00

J N(s — x — Xt) F' (x + Xt + x)dt
— 00

con x Oh, 0 < 6 < 1. Ma, nelle ipotesi in cui ci siamo messi, il limite
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per h -> 0 deirultimo intégrale è uguale all'integrale del limite; dunque
passando al limite per h -> 0, viene f'(s) C [-^'(OL corne volevasi
dimostrare.

3. Val la pena di verificare ulteriormente, appoggiandovi sulla (4),
il fatto noto che le trasformazioni di cui ci occupiamo, formano gruppo,
onde ricavare la semplice formula che, sotto una condizione più appresso
specificata, dà la legge di composizione délie funzioni nucleari N.

AU'uopo supponiamo date le due trasformazioni commutabili

e, supposto esistenti gli integrali che dovremo considerare, formiamoci la
sostituzione-prodotto C2 Ci, intesa corne risultato dell'applicazione délia
Cx "prima e délia C2 dopo, avremo cosi :

+ OO +00

+ 00 +OO

J F^ + Xxt) dt J ^(^g + X2r - x1- Xxt) N2(s - k2 - A2t) dr
—oo — oo

cioè

— oo

avendo posto per un momento

+ 00

K*{s, t) /^(^a + ^2T— ^i — -M) -^2(5 — ^2 — /\2r)dr „
— 00

Eseguiamo ora, nelFultimo intégrale, la sostituzione

(6) s— x2 — l2x S

ponendo nel contempo
S Kx Xxt X

il che implica
/>• t V I 2 T 0/ 2 /'%Ki ——~ Ç ""2 I *"2 " ~~~~" ^1 ~—~ Ai vj

avremo cosi
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avendo indicato con rs la retta del piano complesso £ luogo dei punti (6)
al variare di r, per valori reali, da + oo a — oo. La formula ottenuta
mostra che, se Vultimo intégrale non si altéra quando, variando s, la retta rs
si sposta parallelamente a se stessa nel piano | 6), il nucleo K* è, com'era
da prevedersi, una funzione soltanto del trinomio x s — x±— lxt.
Pertanto, detta N* questa funzione, posto cioè

in virtù délia (5), il prodotto délie due trasformazioni date ?d e <E2 prese
in quest'ordine, coincide con la trasformazione-capostipite (4) in oui sia

posto N N*, k kv À Xv

4c. La proprietà fondamentale (1) -> (2) délie trasformazioni eommu-
tabili implica che se si opéra con una di queste — diciamola £ — sulle
funzioni F0(t), jF^), F2(t), di un sistema taie che la derivata di ogni
sua funzione sia esprimibile corne una combinazione lineare a coeffi-
cienti costanti di funzioni del sistema stesso — corne per es. succède nel
caso dei due sistemi 1, t, t2, t3, e 1, cos t, sin t, cos 2t, sin 2t, — anche
le funzioni fo(s), f^s), /2(s), • • del sistema trasformato, dovranno
ammettere la medesima ,,regola di derivazione". In particolare se si tra-
sformano per mezzo délia C le successive potenze 1, t, t2, t3,..., si otterranno
certi polinomi tz0, %(<$), n2(s) di gradi uguali ai rispettivi indici,
che ammettono la stessa regola di derivazione délie potenze, cioè sono
tali da aversi

(8)

Questi polinomi diconsi di Appell 7) e possono, dal nostro punto di
vista definirsi, mediante la formula:

6) La condizione in parola è certo verificata se le funzioni JVj ed JV2 sono, corne spesso
succède, funzioni analitiche intere; caso a cui, nel seguito, intenderemo particolarmente
riferirci.

7) Questa denominazione è di Pincherle e Amaldi (Op. cit. [3], pg. 130). I polinomi in
discorso furono invero considerati per la prima volta da Appell, nella Memoria cit. (2),
prendendo corne punto di partenza Fequazione (8). In taie Mem. l'A. studia inoltre, astrat-
tamente, Foperazione consistente nel sostituire, in una série di potenze, x™ con 7tn{%), e

ne fa alcune brillanti applicazioni alla teoria délie equazioni difïerenziali lineari. Pertanto
si puô dire che taie lavoro stia aile trasformazioni commutative corne il metodo simbolico
di Heaviside sta alla trasformazione di Laplace.
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+ 00

nn(s) J N(s — x — Xt) (x + Xt)n dt, (n 0, 1, 2,—),
— 00

dove N dénota una funzione ,,arbitrariail, formula che, ponendo
s — x — Xt £ diviene più semplicemente

cioè

avendo posto

(10)

avendo cioè indicati con a0, av a2, i successivi momenti (in senso lato)
délia funzione N.

5. Un tipico esempio di polinomi soddisfacente all'equazione (8) è offerto
dai polinomi di Hermite Hn definiti dalla formula

donde 8) facilmente si trae

(11) 5B(*)^
avendo indicato con [w/2] il massimo intero contenuto in n/2. Invero
si ha notoriamente

Viene pertanto spontaneo domandarsi quale sia la trasformazione com-
mutabile che muta le potenze in polinomi di Hermite.

Per cercare di risolvere questo problema confrontiamo la (9) con la
(11), si vede cosi che la trasformazione cercata dovrà esser taie da aversi

(12) a2r + 1 0, a2r =(—l)r 1.3.5— (2r —1), (r 0, 1, 2, • • •) ;

8) Pei polinomi di Hermite v.p.es. il récente libro di Appell et Kampé de Fériet, Fonctions

hypergéométriques et hypersphériques. Polynômes d'Hermite. (Paris,
Gauthier-Villars, 1926.)
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dovranno cioè esser tutti nulli i momenti dispari délia funzione JV, e

quelli pari uguali, a meno del segno, ai prodotti dei successivi numeri
dispari 1, 3, 5, Orbene una funzione che soddisfa press'a poco a queste
condizioni è presto trovata ed è il classico esponenziale di Gauss délia
teoria degli errori:

2m

\ Znm

dove m dénota una costante positiva (ordinariamente designata con /u2)9

esponenziale i cui momenti sono dati dalle ben note formule :

(ïô) 1U2r + l -irr I e *> UJU \J
v \27tmJf —oo

-, +00 X*

M2r=7]== Ce 2mx2rdx= 1-3... (2r— l)mr\

essi differiscono dunque, nel caso m 1, solo pel segno dai momenti (12).

Ne segue che ponendo nella (4) x 0, X 1 e

(14) "Mk^
o, più generalmente,

(14*) ^(a?)=
v

si générera una trasformazione funzionale che, pur non essendo cer-
tamente quella che muta le potenze in polinomi di Hermite, non dovrà
esser da essa molto lontana.

Propriamente, ricordando un'importante formula sui polinomi di
Hermite 9), già da altri e da me utilizzata per altri scopi, formula che,

con lievi cambiamenti formali, puô scriversi

y2nm J
F — 0

con un passaggio al limite per m -» 1, si ha

9) Appell et Kampé de Fériet, op. cit. (8), pg. 351.
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(15) -= C

V2^

il che mostra corne la trasformazione commutabile corrispondente alla
funzione N data dalla (14) non è quella che muta le potenze in polinomi
di Hermite, bensi la sua inversa.

6. Per determinare la trasformazione di cui andiamo in cerca bisogna
dunque invertire quella corrispondente alla funzione N data dalla (14) o,
più generalmente, dalla (14*) ; trasformazione che propongo chiamare
di Gauss e designare col simbolo <S(m) o ©(5m) se occorre porre in luce la
variabile indipendente 10), si porrà cioè in générale

(16)

convenendo xnoltre che sia (B ®(1).

Il problema suaccennato puô risolversi — in certo senso assai agevol-
mente — riconducendolo al classico problema deU'inversione délia
trasformazione (bilatera) di Laplace:

10) La trasformazione in parola era stata da me già incontrata nella Nota: Su la rap-
presentazione di una legge di probabilità mediante esponenziali di Gauss
e la trasformazione di Laplace. (Giorn. Ist. Italiano Attuari, 6 [1935], pp.135-140).

Essa si era, del resto, già da tempo presentata m problemi di propagazione del calore
chè, ad esempio, la temperatura ^{x, t) al tempo t e all'ascissa x di un conduttore retti-
lmeo, mdefinitamente esteso nei due versi, di conduttanza 1, è data, eoinostn simboli,
dalla formula

<Z>(M) ©f>[<?(£, 0)].
(Cfr. O. Doetsch, Problème aus der Théorie der Warmeleitung. III. Mathem.
Zeitschr 25 [1926], pp. 608—626; v. spec. a pg. 613

Inoltre il punto dipartenza di Weierstrass nel suo lavoro cit. (5) è proprio una formula
sulla trasformazione @(w), é precisamente, coi nostri simboli, la formula

lira <B

che l'illustre A. estende, sotto certe condiziom, aile trasformazioni generali col nucleo
del tipo JV (s—t).
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che, a prescindere da difficoltà su cui non è il caso di qui soffermarsi11),
viene risolto dalla nota formula:

(17)

dove x è una costante (reale), entro certi limiti, arbitraria.

Infatti dalla (16), ponendo s —j/m^, t ]/m^ e sviluppando il
quadrato ad esponente, segue

je"lk~iq
cioe

(18)

donde, in virtù délia (17), si trae

ovvero, tornando a porre s al posto di — |/m ^ e ^ al posto di

Siamo cosi condotti alla considerazione délia trasformazione ,,antiganssi

11 Per l'mversione délia trasformazione di Laplace, v la mia Nota succitata e le altre
tre (Trasformazione di Laplace e polmomi di Laguerre, Note la e 2a, Ancora
sull'mversione délia trasformazione di Laplace) pubblicate nei Rendiconti
dell'Acc dei Lmcei (6) 21 (19351), pp 232—239, 332—335 e 420—426

Dell'mversione délia trasformazione qui detta di Gauss, si era gia occupato G Doetsch

(Die Elimination des Dopplereffekts bei spektroskopischen Femstruk-
turen usw Z f Physik, 49 [1928], pp 705—730) che aveva mcontrata, ma non siste-
maticamente studiata, questa trasformazione m un problema di spettroscopia o, meglio,
in un problema di teoria del calore a cui quello di spettroscopia e nconducibile Doetsch
compie l'mversione mediante un'intéressant issima formula, contenente un intégrale
doppio reale, che ha dato origine ad una mia Nota dal titolo Ûber Doetsch's Um-
kehrformel der GauÔ -Transformation und eme neue Umkehrung
der Laplace-Transformation, attualmente in corso di stampa nella Mathem.
Zeitschrift.
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(19) <Blm\F(t)]=
x+ioo (s-t)

eÇ

4
2m

che, cambiando £ in « + * t si riduce subito alla forma oanonica (4) :

(20)

propriamente siamo del caso di

05 [Jf (t) J —
1

]/2^r

+00 (s—*

l'e « m F(x+it)dt;

> 2m

Anche qui converremo che sia (B (B(1).

Coi simboli adottati i principali risultati raggiunti in questo e nel
précédente possono essere brevemente condensati nelle seguenti formule :

—m), (0<m< 1) ;

Hn(s)
(21)

Meritano inoltre di essere esplicitamente osservate le due owie relazioni
di omogeneità:

(22) ©

nonchè la formula

(23)

immediatamente deducibile confrontando le (12) con le (13) in cui si
sia posto m 1.

7. Le trasformazioni ©(m) e <B(m) costituiscono due interessanti sotto-
gruppi a un parametro del gruppo délie trasformazioni commutabili,
dotati di semplicissime leggi di composizione.

Invero, la funzione N* corrispondente al prodotto délie due
trasformazioni di Gauss @{wu) e ®(Wa) (per cui è Xt A2 1) è data, in virtù
délia (7), dalla formula:
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2jr|/m1m2

donde, sostituendo alTultimo, ben noto intégrale il suo valore, segue

1 x*

N*(z)= _e
y2jr(m +

si ha dunque, simbolicamente,

(24) (g(wi)(g(TO

In modo perfettamente analogo si trova che

e, da queste due e dal fatto che ®(w) e @(m) son Funa l'inversa delFaltra
si deduce senz'altro ehe

_ __ j ©(wi-m.) (WL>m8)
(24") <B{m%) <B{mi) (B{mi)(B{m2) \ __[©(111111!) (m2>m1)

Più semplicemente, ponendo formalmente

(il che poi implica (B F), tutte queste formule di composizione possono
condensarsi nelPunica:

(25) rm rmf rmJtm\

Mérita infine la pena — prima di passare a qualche applicazione —
d'indagare corne si presentino gli sviluppi formai] di Pincherle, secondo
le potenze del simbolo di derivazione D, nel caso délie trasformazioni

Ricordando che, in générale, per una trasformazione commutabile,
si ha

dove le costanti av sono le stesse che figurano nella (9)12) ; nel caso délie
trasformazioni © e (B si trova rispettivamente :

12) Pincherle e Amaldi, op. cit. (3), pp. 119—130.

80



(26)
n=0

più generalmente si hanno le formule

oo fn.n
(26*) @(w)m y-—-b**f ©<m) m

Queste formule presentano, fral'altro, l'mconveniente d'identificare ©(m)
con ©(~m), il che non è sempre vero.

8. Una délie più interessanti applicazioni délie trasformazioni più
sopra considerate, consiste nella sommazione di série di polinomi di
Hermite.

Invero, per sommare una série délia forma:

(27) f(x) nn()

potrà cercarsi di sommare la série di potenze:

(28) F(x)=Zcnx",

il che costituisce certo un problema più elementare; se ciô riesce, se si
riesce cioè ad esprimere F(x) in termini finiti, allora f(x) potrà calcolarsi
mediante la formula

(29) f{s)==(B[Fm= re F(t)dtj
q'fZ7lx-ioo

ammesso che la costante n possa determinarsi in modo da far si che

l'intégrale del secondo membro risulti convergente.
Un'altra circostanza assai importante da tenersi présente nello studio

di série del tipo (27) per la via ora indicata, è che se la funzione F(t)
soddisfa ad una certa equazione differenziale lineare, ordinaria o aile de-

rivate parziali E, la funzione f (s) soddisfa alVequazione differenziale otte-

nuta operando con (B su E, epperà, in particolare, alVequazione E stessa,

se questa è un'equazione a coefficienti costanti13).

13) Quest'osservazione, che evidentemente vale per tutte le trasformazioni commutabili
(e non commutabili), è, in sostanza, dovuta ad Appell che, nella Mem. cit. (2), indica, fra
l'altro, un metodo per determinare la trasformata d'ogni equazione differenziale (ordinaria)
a coefficienti polinomiali.
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Per esempio, prendendo le mosse dalla série esponenziale

che soddisfa all'equazione differenziale lineare a coefficienti costanti
y' — y 0, si ha, senz'alcun calcolo, che la série

èo ni

deve rappresentare aneora una soluzione délia medesima equazione,
cioè una funzione del tipo cex. Si trova cosi, determinando la costante c

col porre x 0, la formula

che puô agevolmente controllarsi per mezzo délia classica funzione
génératrice dei polinomi di Hermite.

Analogamente, partendo invece dagli sviluppi in série di potenze délie
funzioni cos kx e sin kx, dove k dénota una costante qualsiasi, si trovano
le formule:

la seconda délie quali, ponendo i l/2e cambiando x in #/|/2, s'iden-
tifica con la formula (14) délia mia 2a Nota sulla ,,Trasformazione
di Laplace e polinomi di Laguerre", citata sotto11) ; formula
che è stata il punto di partenza délie ricerche formanti oggetto del

présente lavoro. Ponendo invece k i|^2 le (31) divengono:

e forniscono cosi i valori di due série incontrate (ma non sommate) da
G. Doetsch in un suo récente lavoro14).

l4) Integraleigensclaaften der Hermitesehen Polynôme. (Mathem. Zeitsehr.,
32 [1930], pp. 587—599). Attenzione al signifioato leggermente diverso del simbolo Hn dei
polinomi di Hermite!
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9. Per mostrare un esempio meno immédiato e perciô più istruttivo
di applicazione del metodo indicato nel § précédente, proponiamoci lo
studio délia trascendente

ottenuta rimpiazzando x2n con H2n (x) nella classica série che definisce
la funzione di Bessel d'ordine zéro J0(x)5 il che implica

(33) j(s) ®[Jo(t)1

Lo studio di questa intéressante funzione intera puô compiersi da due
diversi punti di vista che si completano a vicenda, e cioè o si puô, tra-
ducendo in forma esplicita la (33), partire dall'integrale definito

(34) j(s) -Ljei«-itr J0(it) dt ;

oppure si puô partire dall'equazione differenziale cui soddisfa J0(x):

(35) xy' + t/+xy=09
cominciando con Fosservare che dalla (19), con una derivazione rapporto
ad s, si trae :

î]/2nm J. m

±®(m) [F (t)] l-W{m) [tF(t)]
m L J m L J

donde segue:

(36)
(t s

pertanto, operando con la <B sulla (35), avremo

cioè

xz" — z'" + z' +xz — z' 0

ovvero
(37) z'" — x(z" + z) 0,
avendo posto <B[y] z.
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La funzione j(x) puô dunque caratterizzarsi corne la soluzione dell'equa-
zione differenziale di terz'ordine (37) soddisfacente aile condizioni ini-
ziali :

z(0) =Jc0, z'(0) 0, z"(0) k2

essendo

2-7 } r0( ' (2».»!)»~ ntl (2-4...2n)« '

espressioni più semplici (in termini finiti) di k0 e k2 si vedranno più avanti.
Per tal via, col classico metodo d'integrazione per série, si giunge alla

seguente, semplice espressione délia funzione in esame:

(38)

essendo R(x) ed S(x) le due trascendenti intere definiti dalle série:

(39) B(x) l + ±^ ^±^
dove A2n e B2n sono dei numeri interi positivi definiti da una medesima

equazione ricorrente, e precisamente dalla

(40) X2n+2 (2«-1) (X2n + X2K_2), (X2n A2n oppure X2n B2n)

congiunta aile „condizioni iniziali" Ao 1, A2 0; J50 0, J52 1.

Calcolando esplicitamente i primi termini délie due série si trova:

3
6 •

20 8 I
161

10
1629

12

(39*)
JL 35

T« i

287
o;io I

2898
8T +ÏÔ1 + 12!

Ponendosi invece dal primo dei due punti di vista sopra accennati, si

procurera di semplificare l'intégrale (34) con opportune trasformazioni.
Per esempio si puô sostituire in esso, in luogo di J0(it), la sua espressione
data dal noto intégrale di Hansen, ottenendo cosi:
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donde, per una nota formula già più sopra applicata, segue

6 f* A cos2 <p + i« cos <p

0 0

ovvero, eseguendo la sostituzione 2 cp q>v

0* n(

avremo dunque in definitiva, tenuto conto délia realtà di j per argomento
reale e scrivendo x e cp in luogo di s e cpv la formula, notevolmente semplice
ed espressiva:

(41)

Per mostrare un'applicazione délia (41), serviamocene per esprimere
in termini finiti — mediante funzioni di Bessel — le costanti k0 e k2 più
sopra incontrate. AlFuopo deriviamo anzitutto l'ultima formula n volte
rispetto ad x, avremo cosl

4

l/ "¦ / 1 \ 1

j(n)(x) — fe^COS9Pcos (cecos — <p+n^~) cosn — <p dy

donde, ponendo x 0, segue

I— \e cosixgob—-w )d(p
n J \ 2 /

0 j^ (0) (-1

avremo dunque in particolare:

i(o) è ./(0) o /-(0) -è
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epperô, ricordando la rappresentazione di Hansen délia funzione Jn(z),
viene

4

(42) *o=/(O) =feJ0(jj, *,=i'(O)=-^[jo(4-)-*'J

Eseguendo il calcolo numerico con l'ausilio délie tabelle (a quattro deci-
mali) dei valori délie funzioni di Bessel per argomento immaginario puro
contenute nelle ben note Funktionentafeln di Jahnke-Emde15), si
trova cosi che

Jc0 1,3042 k2 —0,7330

L'intégrale (34) puô perô trattarsi anche in altro modo, e cioè eseguire
dapprima la sostituzione s ix, t x + y, cosi che viene

e servirsi poscia del cosi detto teorema d'addizione délia funzione Jo,
che fornisce

(43) j (ix) c0 Jo (ta;) + 2 X c* v J2 v (ix),

avendo posto

C2v=~]L (eiy2 J2v(iy)dy (v - 0, 1,2, •••)

e osservato che gli integrali analoghi contenenti funzioni J d'indice
dispari sono tutti nulli.

Le costanti c2v possono esplicitamente calcolarsi medianti funzioni
di Bessel, servendosi ancora una volta délia rappresentazione intégrale
di Hansen, con l'ausilio délia quale si trova che:

c2p^-1= e —^ e co8 2v(pd(p
» —00 U

7 rt j +r -i^-vcosy, l)^^-|cos29P
2v<pd<p \e dy - e cos 2vcpdq>\

16) Zweite Auflage (Leipzig, Teubner, 1933).
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ponendo 2 <p (px corne più sopra, avremo dunque in definitiva, sempre
per la formula di Hansen, che:

vtp1dVl (—i

Se ne conclude, sostituendo nella (43) e cambiando i x in x, che
sussiste la semplice ed élégante formula:

(44)

Un controllo numerico délie precedenti formule, eseguito in corri-
spondenza ad x 1, ha fornito i seguenti risultati: La série originaria
(32), tenuto conto dei termini fino a quello con H12 (il che assicura almeno
5 decimali esatti), dà j(l) 0,960823; la formula (38) dà (con quattro
decimali esatti) j(l) 0,96083;* finalmente la formula (44) dà, pure
con 4 decimali esatti, /(l) 0,96082. Corne si vede, l'accordo non potrebbe
esser migliore

(Reçu le 31 mai 1935.)
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