Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 8 (1935-1936)

Artikel: Sulle trasformazioni funzionali lineari commutabili con la derivazione.
Autor: Tricomi, Francesco

DOl: https://doi.org/10.5169/seals-9287

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-9287
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Sulle trasformazioni
funzionali lineari commutabili con la derivazione

Per Francesco Tricomi, Torino

1. La trasformazione di Laplacel) deve, com’¢ ben noto, la sua impor-
tanza principalmente al fatto che essa muta la derivazione in un’opera-
zione assal pill elementare: la moltiplicazione per la variabile indipen-
dente. Essa é pertanto atta a semplificare in modo essenziale importanti
classi di equazioni differenziali; p. es. un’equazione alle derivate parziali
in due variabili indipendenti a coefficienti costanti, viene mutata in
una equazione differenziale ordinaria, ecc.

Anche altri tipi di trasformazioni funzionali lineari possono pero tro-
vare utili applicazioni in Analisi, e specie nella teoria delle equazioni
differenziali lineari, p.es. le trasformazioni commutabile con la deriva-
zione, cioé le trasformazioni T tali che da

(1) f(s) = T[F(t)]
segua necessariamente
(2) (s) = TIF'(1)]

dove gli apici denotano derivazioni rapporto ai rispettivi argomenti.
Tali trasformazioni, gid implicitamente considerate da Appell?) fin dal
1880, sono state pili tardi esplicitamente studiate da Pincherle3) ma da
un punto di vista molto astratto e prevalentemente formale, che vero-
similmente é stata la causa dell’ingiusta dimenticanza in cui son presto
cadute tali, pur pregevoli, ricerche.

Naturalmente dette trasformazioni non servono, in generale, per
,,semplificare‘‘ date equazioni differenziali ché, per esempio, un’equazione
differenziale lineare a coefficienti costanti resta manifestamente inal-

1) Per la trasformazione di Laplace e qualche considerazione generale sulle trasforma-
zioni funzionali, v. la mia Conferenza: Sulla trasformazione di Laplace, tenuta al
Seminario Matematico e Fisico di Torino 1’11-4-35, ch’é pure pubblicata nel ,,Periodico
di Matematiche‘* (4) 15 (1935) pp. 238—250.

2) Sur une classe de polynomes. ,,Annales Ecole Norm. Sup.* (2) 9 (1880) pp.
119—144. (V. spec. le § 12).

8) Sulle operazionidistributivecommutabiliece...,Atti Ace. Scienze Torino*
30 (1895) pp. 820—844; v. pure il libro di Pincherle ¢ Amaldi, Le operazioni distri-
butive ecc... (Bologna, Zanichelli, 1901) Cap. VII.
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terata, ma potranno talvolta fornire utili contributi allo studio delle loro
soluzioni; p. es. sfruttando la circostanza che, nel caso ora indicato,
queste non potranno che venir mutate I’'una nell’altra dalle trasforma-
zioni in parola. A convincere di cio mi lusingo possa contribuire la presente
Nota in cui, riprendendo lo studio delle trasformazioni commutabili dal
punto di vista moderno della rappresentazione mediante integrali definiti,
mostrero qualche loro concreta applicazione, e specialmente di una di
queste che, per la sua immediata connessione con l’esponenziale gaus-
siano delle probabilita, proporrei venga chiamata trasformazione di Gauss.

2. Le trasformazioni funzionali linear:, val’a dire distributive rispetto
alla somma, possono notoriamente rappresentarsi mediante un integrale
di Stieltjes che, nella maggior parte dei casi, si riduce immediatamente
ad un integrale ordinario; propriamente si puo, in tali casi, porre

b
(3) f(s) = [ K(s,t)F (t)dt,

dove a e b denotano due date costanti e K una funzione di s e ¢, detta
ordinariamente ,,nucleo‘‘4). In particolare le trasformazioni lineari com-
mutabili con la derivazione, che Pincherle caratterizzava come quelle
il cui sviluppo formale secondo le potenze del simbolo di derivazione D
é a coefficienti costanti, possono anche — forse pili utilmente — carat-
terizzarsi come quelle il cui nucleo é una funzione della differenza s—t®).

Infatti dalla (3), con una derivazione sotto il segno e un’integrazione
per parti, sotto condizioni meramente qualitative pel nucleo K e la fun-
zione F, si ha

f'(s) — }K (s, t) F'(t) dt =l]“ [K, (s, t) + K, (s,8) 1 F (t) dt — [K (s, t) F ($)]; =5

a

eppero affinché la (2) valga almeno essenzialmente, cioé a prescindere

4) V. p. es. la mia Conferenza precedentemente citata.

5) Un accenno di cio trovasi nell’Articolo di Pincherle, Equations et opérations
fonctionnelles, nella ,,Encyclopédie des sc. math.*‘ (éd. fran¢.) T.I1—5, art. 26 (1912),
v. pg. 42. Delle trasformazioni del tipo (3) con nucleo funzione della differenza s—¢, sono
inoltre considerate in una Memoria di Weierstrass (Uber die analytische Darstellbar-
keit sogenannter willkiirlicher Functionen reeller Argumente, Werke, 3,
1—37) che dovremo ricordare anche piti avanti. W. perd non si preoccupa di studiare
queste trasformazioni in sé, bensi le funzioni da esse generate, e non ha cosi occasione di
accorgersi della fondamentale proprieta della commutability con la derivazione.

Ultimamente anche G.Schulz (Umkehrung von Integraltransformationen,
Z.{. angew. Math. 14 [1934], pp. 373—374) ha considerate trasformazioni del tipo in
discorso, accennando alla loro importanza in svariati problemi di Fisica-Matematica e
proponendo un metodo per la loro inversione numerica nel caso di funzioni periodiche.
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(eventualmente) da termini dipendenti solo da F' (a) ed F' (b), dovra essere
K,(s,t) + K,(s,t) = 0

il che implica appunto che K dipenda soltanto dalla differenza s—i, e
non da s e ¢ separatamente.

Quanto al cammino d’integrazione e ai suoi estremi a e b, nella piu
parte dei casi ci si puo limitare ad assumere come tale un’intera retta
del piano complesso t. Oppure si puo, con qualche vantaggio formale,
integrare costantamente lungo l’asse reale, da — oo a 4 oo, a patto di
sostituire in luogo di ¢ il binomio » 4 At, essendo » e A due date costanti
non necessariamente reali: E quello che faremo generalmente in questo
scritto, in cui si considereranno dunque trasformazioni funzionali del tipo:

(4) f(s) =+fN(s— w—At) F (% + At) dt = T[F (t)]

essendo N una data funzione di una sola variabile.

B ben facile ma non inutile verificare che le trasformazions del tipo (4)
sono effettivamente commutabili con la dertvazione, a patto che le funzioni
F' che si considerano siano dotate di derivate prime continue e che esista
la trasformata di F’, anzi che l’'integrale analogo a quello che figura
nella (4) ma operante sulla funzione ¥’ (x 4+ At + x) sia uniformemente
convergente, rispetto ad z, nell’intorno di z = 0.

Infatti, supposto dato ad s un incremento della forma » = Ak,, con
h, reale, eseguendo la sostituzione ¢ = ¢, + &, si avra

400
f(s +h)=[N(s—x— At)) F(x + At, + h) dt,
donde, tornando a scrivere ¢ in luogo di ¢;, sottraendo la (4) e dividendo

per k, segue:

+ o0
f(s—;-hl)b—-f(s) _ fN(S__%__M)F(%+At+h;b—F(%+lt) dt —

»

40
=f N (s — x— At) F' (3 + At + x)dt
con x = Oh, 0 < 6 < 1. Ma, nelle ipotesi in cui ci siamo messi, il limite
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per & — 0 dell’'ultimo integrale é uguale all’integrale del limite; dunque
passando al limite per A — 0, viene f/(s) = T [F’(t)], come volevasi
dimostrare.

3. Val la pena di verificare ulteriormente, appoggiandovi sulla (4),
il fatto noto che le trasformazioni di cui ci occupiamo, formano gruppo,
onde ricavare la semplice formula che, sotto una condizione piu appresso
specificata, da la legge di composizione delle funzioni nucleari N.

All’uopo supponiamo date le due trasformazioni commutabili
+o0 Foo
T[F (0)]= [Ny (8=21-Ay ) F (sey+ 1) b, Ty[F (1) ]= [N o (8-29-Aot) F (254 Aot) dit

e, supposto esistenti gli integrali che dovremo considerare, formiamoci la
sostituzione-prodotto T, T,, intesa come risultato dell’applicazione della
T, prima e della T, dopo, avremo cosi:

+ o0 +o
T, T, [F(t)] = f Ny(s—#5-257) dTINl (%94 Ao =20y =41 8) F (3¢ + Ay 8) dt =
+o0 =}

= [Py + )t [ Ny (g + Ag7 =2y = ) N8 = g = A7) dt

-0 p—

+ oo
(5) T, T, [F)= IK*(S, t) F (2 + 4,%) dt,
avendo posto per un momento

-+ o0
.K*(S, t) _ le(xz + 127“"" %1 I }'lt) Nz(s—‘— %2_‘ 127) dT.

Eseguiamo ora, nell’ultimo integrale, la sostituzione
(6) 8‘_%2——)’2725

ponendo nel contempo
§—uy— Mt =
il che implica
Xx— & =ny+ Aot — %y — At
avremo cosi

. 1
K =72!N1(w—£>N2<5)d5
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avendo indicato con 7, la retta del piano complesso & luogo dei punti (6)
al variare di 7, per valori reali, da 4 oo a — co. La formula ottenuta
mostra che, se l'ultimo integrale non st altera quando, variando s, la retta r,
st sposta parallelamente a se stessa nel piano & ©), il nucleo K* é, com’era
da prevedersi, una funzione soltanto del trinomio x = s — »;, — 4,¢.
Pertanto, detta N questa funzione, posto cioé

M N*(2) =—}2- [ Nile—& No(©)de,

in virth della (5), il prodotto delle due trasformazioni date T, e T, prese
in quest’ordine, coincide con la trasformazione-capostipite (4) in cui sia
posto N = N°, % = x;, A = A,.

4. La proprietd fondamentale (1) — (2) delle trasformazioni commu-
tabili implica che se si opera con una di queste — diciamola T — sulle
funzioni F (t), F,(t), F,(t), . . . di un sistema tale che la derivata di ogni
sua funzione sia esprimibile come una combinazione lineare a coeffi-
cienti costanti di funzioni del sistema stesso — come per es. succede nel
caso dei due sistemi 1,¢,¢2,¢3, ... e 1, cost, sint, cos 2¢, sin 2¢, ... — anche
le funzioni f,(s), f,(s), fa(s), ...del sistema trasformato, dovranno
ammettere la medesima ,,regola di derivazione’*. In particolare se si tra-
sformano per mezzo della T le successive potenze 1, ¢, £, ¢3, .., si otterranno
certi polinomi 7, 7,(s), 75(s) ..., di gradi uguali ai rispettivi indici,
che ammettono la stessa regola di derivazione delle potenze, cioé sono
tali da aversi

(8) 7.(8) =nm,_,(8).

Questi polinomi diconsi di Appell ?) e possono, dal nostro punto di
vista definirsi, mediante la formula:

8) La condizione in parola & certo verificata se le funzioni N, ed N, sono, come spesso
succede, funzioni analitiche intere; caso a cui, nel seguito, intenderemo particolarmente
riferirei.

7) Questa denominazione & di Pincherle e Amaldi (Op. cit. [3], pg. 130). I polinomi in
discorso furono invero considerati per la prima volta da Appell, nella Memoria cit. (2),
prendendo come punto di partenza I’equazione (8). In tale Mem. I’A. studia inoltre, astrat-
tamente, ’operazione consistente nel sostituire, in una serie di potenze, a7 con wn(z), e
ne fa aleune brillanti applicazioni alla teoria delle equazioni differenziali lineari. Pertanto
si pud dire che tale lavoro stia alle trasformazioni commutative come il metodo simbolico
di Heaviside sta alla trasformazione di Laplace.
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+o00
7, (8) = fN(s— x— At) (x + At)*dt, (n =0, 1, 2,--+),

dove N denota una funzione ,arbitraria’, formula che, ponendo
8§ — % — At = & diviene piu semplicemente

7 lfN e = sz 5)2~1>( Jersn-va

v
cioe
n/n
(9) 7, (8) = E( \avsn“’,
v=0\7?/
avendo posto

— 1\
=L (M@ e,

(10) ay =

avendo cioé indicati con a4, a,, a,, . . . 1 successivi moment: (in senso lato)
della funzione N.

5. Un tipico esempio di polinomi soddisfacente all’equazione (8) é offerto
dai polinoms di Hermite H, definiti dalla formula

H, ()= (—1)" e%fdd:n<e— %2>

donde 8) facilmente si trae

(11) H,(x) Wz(——l)’( >l 3.5 (2r—1) an—2r

avendo indicato con [n/2] il massimo intero contenuto in n/2. Invero

si ha notoriamente
H,(2) = nH,(a).

Viene pertanto spontaneo domandarsi quale sia la trasformazione com-
mutabile che muta le potenze in polinomi di Hermite.

Per cercare di risolvere questo problema confrontiamo la (9) con la
(11), si vede cosi che la trasformazione cercata dovra esser tale da aversi

(12)  ay,.,=0, ay,=(—11.83.5:-- (2r—1), (r=0,1,2,-+) ;

8) Pei polinomi di Hermite v. p. es. il recente libro di Appell et Kampé de Fériet, Fonc-
tions hypergéométriques et hypersphériques. Polynomes d'Hermite. (Paris,
Gauthier-Villars, 1926.)
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dovranno cioé esser tutti nulli i momenti dispari della funzione N, e
quelli pari uguali, a meno del segno, ai prodotti dei successivi numeri
dispari 1, 3, 5, ... Orbene una funzione che soddisfa press’a poco a queste
condizioni é presto trovata ed é il classico esponenziale di Gauss della
teoria degli errori:

xﬂ
1 -5

V2am®

dove m denota una costante positiva (ordinariamente designata con u?),
esponenziale i cui momenti sono dati dalle ben note formule:

1 T
(13) My, 1= e Zmp2rildy =0,
2amJ
I 1R -Z
My,= —— | e 2™®dx=1-3---(2r— 1) m";
]/2n’m_°°

essi differiscono dunque, nel caso m = 1, solo pel segno dai momenti (12),

Ne segue che ponendo nella (4) x =0, A =1e

z?

| R
N(z) =—e 2
(14) () Vom
0, pill generalmente,
| D
* N(z) =——=e¢ 2m
(14%*) () Vomm

si generera una trasformazione funzionale che, pur non essendo cer-
tamente quella che muta le potenze in polinomi di Hermite, non dovra
esser da essa molto lontana.

Propriamente, ricordando un’importante formula sui polinomi di
Hermite ?), gia da altri e da me utilizzata per altri scopi, formula che,
con lievi cambiamenti formali, pud scriversi

1 +oo  (8-2)? 8
Vomm fe em H,(f) dt = (Vl——m)”Hn(m> , (0 <m<1);

con un passaggio al limite per m — 1, si ha

9) Appell et Kampé de Fériet, op. cit. (8), pg. 351.
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1 t® _(s—t)?
e ’ e 2 Hn(t)dt=8m,
]/23'6

e
— o0

(15)

il che mostra come la trasformazione commutabile corrispondente alla,
funzione N data dalla (14) non é quella che muta le potenze in polinomi
di Hermite, bensi la sua snversa.

6. Per determinare la trasformazione di cui andiamo in cerca bisogna
dunque ¢nvertire quella corrispondente alla funzione N data dalla (14) o,
pilt generalmente, dalla (14"); trasformazione che propongo chiamare
di Gauss e designare col simbolo @™ o G se occorre porre in luce la
variabile indipendente 19), si porra cioé in generale

| R i
_ e ZmF t dtz 8),
Vznmi (=1

(16) G ™ [F ()]

convenendo inoltre che sia & = G,

Il problema suaccennato puo risolversi — in certo senso assai agevol-
mente — riconducendolo al classico problema dell’inversione della tra-
sformazione (bilatera) di Laplace:

2P (t)] =+f°e—st¢(t)dt = ¢ (s)

10) T.a trasformazione in parola era stata da me gia incontrata nella Nota: Su la rap-
presentazione di una legge di probabilitd mediante esponenziali di Gauss
e la trasformazione di Laplace. (Giorn. Ist. Italiano Attuari, 6 [1935], pp.135-140).

Essa si era, del resto, gia da tempo presentata in problemi di propagazione del calore
che, ad esempio, la temperatura ®(x, t) al tempo ¢ e all’ascissa # di un conduttore retti-
lineo, indefinitamente esteso nei due versi, di conduttanza = 1, & data, coi nostri simboli,
dalla formula

D (z,t) = BE[D(£0)].

(Cfr. G. Doetsch, Probleme aus der Theorie der Warmeleitung. III. Mathem.
Zeitschr. 25 [1926], pp. 608—626; v. spec. a pg. 613.)

Inoltre il punto di partenza di Weierstrass nel suo lavoro cit. (5) & proprio una formula
sulla trasformazione & (m), é precisamente, coi nostri simboli, la formula

lim G [F(5)]=Fls),
m-—>0
che l’illustre A. estende, sotto certe condizioni, alle trasformazioni generali col nucleo

del tipo N (s—¢).
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che, a prescindere da difficoltd su cui non é il caso di qui soffermarsi1?),
viene risolto dalla nota formula:

%414 00

(17) D (1) =§}z73 f elp(s)ds,

*—1 00

dove » é una costante (reale), entro certi limiti, arbitraria.

Infatti dalla (16), ponendo s = — }ms,, ¢ = }mt, e sviluppando il
quadrato ad esponente, segue

e_ %8% +o0 —a b %t% L .
—]/5—;_ e .l'f’(]/mtl)dt1 = f(—-—]/msl)

cioé

393 -5~
(18) V2me  'f(—Yms,) = Ln [e F( mtl)] ,
donde, in virtu della (17), si trae

-3 IR A 1 —
e F(Ymt) = im”:j;:s:‘:e f(—Vms,)ds,,
ovvero, tornando a porre s al posto di —}m s, e ¢ al posto di Ymt, :
x+ioo (8—1)2
s 2m
F(t) = '&']/-——2nm x:[we f(s) ds.

Siamo cosi condotti alla considerazione della trasformazione ,,antigauss‘ :

11) Per I'inversione della trasformazione di Laplace, v. la mia Nota succitata e le altre
tre (Trasformazione di Laplace e polinomi di Laguerre, Note 12 e 22; Ancora
sull’inversione della trasformazione di Laplace) pubblicate nei Rendiconti
dell’Ace. dei Lincei (6) 21 (19351), pp. 232—239, 332—335 e 420—426.

Dell’inversione della trasformazione qui detta di Gauss, si era gia occupato G. Doetsch
(Die Elimination des Dopplereffekts bei spektroskopischen Feinstruk-
turen usw., Z. f. Physik, 49 [1928], pp. 705—730) che aveva incontrata, ma non siste-
maticamente studiata, questa trasformazione in un problems di spettroscopia o, meglio,
in un problema di teoria del calore a cui quello di spettroscopia é riconducibile. Doetsch
compie linversione mediante un’interessantissima formula, contenente un integrale
doppio reale, che ha dato origine ad una mia Nota dal titolo: Uber Doetsch’s Um-
kehrformel der GauBl-Transformation und eine neue Umkehrung
der Laplace-Transformation, attualmente in corso di stampa nella Mathem.

Zeitschrift,
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x+i00 (8—1)8
(19) B ™[F (1)] = - +feng‘"F(t)olt,

_
iY2am, o,

che, cambiando ¢ in » - ¢¢ si riduce subito alla forma canonica (4):

+oo (§—xn—1t)?

(20) G™[F(t)] = f e 2m  F(x-tit)dt;

N V2n'm Yo

propriamente siamo del caso di

A=1,N(x) — L o,
2am

Anche qui converremo che sia & = G,

Coi simboli adottati i principali risultati raggiunti in questo e nel
precedente possono essere brevemente condensati nelle seguenti formule:

G ™[H, (6)]=(1—m)"H (s/Y1—m) , (0<m<1); G[H ,(t)]=s";
(21)
BB =@mW@E™M =1, B =H,(s).

Meritano inoltre di essere esplicitamente osservate le due ovvie relaziont
di omogeneita :

(22) ®M[F ()] =@, m[F(Ymt)], B™[F (t)] = By w[F (Ymt) ]

nonché la formula

[n/2] .
(23) (E[tn]:E(n>l'3'-'(27‘-—1)8n"2r:w’
720\27' ’bn

immediatamente deducibile confrontando le (12) con le (13) in cui si
sia posto m = 1.

7. Le trasformazioni ™ e @™ costituiscono due interessanti sotto-
gruppi a un parametro del gruppo delle trasformazioni commutabili,
dotati di semplicissime leggi di composizione.

Invero, la funzione N* corrispondente al prodotto delle due trasfor-
mazioni di Gauss B™) e G'™) (per cui é 4, = 4, = 1) é data, in virtu
della (7), dalla formula:
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x!
+oo  (z-§)* &2 e" 2m,; +oo ( 1 1 )E' z

Jo e tmdt= o [ g
) 177°2

1
2 Ymymy ¢ J

donde, sostituendo all’ultimo, ben noto integrale il suo valore, segue

N*(z)=

1 z*

N*(z)= e Z(m+m,)
]/Zn (my + my)
si ha dunque, simbolicamente,
(24) @ (ma) @(’mz) — @(mﬁ'ms) .

In modo perfettamente analogo si trova che
(24’) @(ml) @(mz) — @(mﬁ- ms)

e, da queste due e dal fatto che G™ e B'™ son I'una I'inversa dell’altra
si deduce senz’altro che

(mi—ms)
(24") @(ma) @(’mq) — @(m,)@(ms) _ ’ S‘i ’ (ml >m2)
(B(ma—'ml) , (m2 >m1)

Pili semplicemente, ponendo formalmente
@m) = ['m | @B m — [-m

(il che poi implica & = I'), tutte queste formule di composizione possono
condensarsi nell’unica:

(25) [m ['m’ — ['mtms,

Merita infine la pena — prima di passare a qualche applicazione —
d’indagare come si presentino gli sviluppi formali di Pincherle, secondo
le potenze del simbolo di derivazione D, nel caso delle trasformazioni
@m ¢ Blmr,

Ricordando che, in generale, per una trasformazione commutabile,
si ha

TF=3, 5 DF,

dove le costanti a, sono le stesse che figurano nella (9) 12); nel caso delle
trasformazioni @ e @ si trova rispettivamente:

12) Pincherle o Amaldi, op. cit. (3), pp. 119—130.
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e <)

@9 GF=X D (B[F]_E(gn;)' DF,

piu generalmente si hanno le formule

(26%) @(m)[F]—EQZZ D | Bm [F]_i(; )Dan
n=0

Queste formule presentano, fra ’altro, I'inconveniente d’identificare @& (™
con @™ il che non ¢ sempre vero.

8. Una delle pill interessanti applicazioni delle trasformazioni pil
sopra considerate, consiste nella sommazione di serie di polinomi di
Hermate.

Invero, per sommare una serie della forma:

(27) f(w)=§ H, ()

11::

potra cercarsi di sommare la serie di potenze:

(28) F(x)=§;cnxn,
n=0

il che costituisce certo un problema pil elementare; se cio riesce, se si
riesce cioé ad esprimere F (x) in termini finiti, allora f(x) potra calcolarsi
mediante la formula

#+io00 1(8_ ?)?

(29) f(8) = @B[F (¢)] '»V2n~ e

F(t)dt

ammesso che la costante » possa determinarsi in modo da far si che
Pintegrale del secondo membro risulti convergente.

Un’altra circostanza assai importante da tenersi presente nello studio
di serie del tipo (27) per la via ora indicata, & che se la funzione F (t)
soddisfa ad una certa equazione differenziale lineare, ordinaria o alle de-
rwvate parziali E, la funzione f(s) soddisfa all’equazione differenziale otte-
nuta operando con @ su K, epperod, in particolare, all’equazione E stessa,
se questa ¢ un’equazione a coefficienti costantil®).

18) Quest’osservazione, che evidentemente vale per tutte le trasformazioni commutabili
(e non commutabili), &, in sostanza, dovuta ad Appell che, nella Mem. cit. (2), indica, fra
Paltro, un metodo per determinare la trasformata d’ogni equazione differenziale (ordinaria)
& coefficienti polinomiali.
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Per esempio, prendendo le mosse dalla serie esponenziale

©  qn
=27

che soddisfa all’equazione differenziale lineare a coefficienti costanti
y’ — y = 0, si ha, senz’alcun calcolo, che la serie

> H, (x
ngo n!

deve rappresentare ancora una soluzione della medesima equazione,
cioé una funzione del tipo ce®. Si trova cosi, determinando la costante ¢

col porre z = 0, la formula

1

(30) §: e

V

che pud agevolmente controllarsi per mezzo della classica funzione
generatrice dei polinomi di Hermite.

Analogamente, partendo invece dagli sviluppi in serie di potenze delle
funzioni cos kx e sin kxz, dove k denota una costante qualsiasi, si trovano

le formule:
2 ekt Hy () _ e 2k e (2) _ b
31 Yy A St 1 Sl A 1" 2n+1\Y)
(31) ngo( ) 2n)] e’ coskzx , nE:O( ) Gn L)l e sinkx ,

la seconda delle quali, ponendo k = ]/§ e cambiando # in x/})/2, s’iden-
tifica con la formula (14) della mia 2% Nota sulla ,,Trasformazione
di Laplace e polinomi di Laguerre®, citata sotto!!); formula
che é stata il punto di partenza delle ricerche formanti oggetto del
presente lavoro. Ponendo invece k = i]/@ le (31) divengono:

_ - . H,, 1
(31%) 2 2n ;;’Z()gf)=%¢os(1/2x) , §=JO2”+?(—§;—EL? — Sin (}/22)

e forniscono cosi i valori di due serie incontrate (ma non sommate) da
G. Doetsch in un suo recente lavorol4).

1) Integraleigenschaften der Hermiteschen Polynome. (Mathem. Zeitsehr.,
32 [1930], pp. 587—599). Attenzione al significato leggermente diverso del simbolo Hy dei
polinomi di Hermite!
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9. Per mostrare un esempio meno immediato e percio piu istruttivo
di applicazione del metodo indicato nel § precedente, proponiamoci lo
studio della trascendente

(32) i@ = 3 g

ottenuta rimpiazzando z?* con H,, (x) nella classica serie che definisce
la funzione dv Bessel d’ordine zero J (x), il che implica

(33) J(8) = B[y (t)]

Lo studio di questa interessante funzione intera puo compiersi da due
diversi punti di vista che si completano a vicenda, e cioé o si pud, tra-
ducendo in forma esplicita la (33), partire dall’integrale definito

+ 00

fe%‘“ W' (5t) di ;

l H

(34) J(8) =

[\

4

V

oppure si pud partire dall’equazione differenziale cui soddisfa J,(x):

(35) zy" +vy +xy=0,

cominciando con l'osservare che dalla (19), con una derivazione rapporto
ad s, si trae:

d . 1 %+t too (s—t)’s
@B m) F e 2m —_
=B [F(t)]= Vo f ¢ F(t)dt

— 5 ®m _ 1 mm
. G™ [F(1)] p” @™ [tF (t)] ,
donde segue:

(36) B [1F ()] = sB™[F ()] —m - B [F 1)]
pertanto, operando con la @ sulla (35), avremo

2By — = Bly"] + Bly’] + 2By] — o Bly] =0

cioé

22" —z2'"" + 2+ xz—z2' =0
ovVvero
(37) 2 —x(2"+2) =0,

avendo posto B[y] = z.
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La funzione j (x) pud dunque caratterizzarsi come la soluzione dell’equa-
zione differenziale di terz’ordine (37) soddisfacente alle condizioni ini-
ziali:

2(0) =ky, 2(0) =0, 2"(0) =k,

essendo
, hd H, (0 > 1.3---2n—1
ky =7 (0) :.—ngo(—l)"a‘,%%T))a =n§0 (2- 4.(..7;7&) ) )
" oo HY. (0 ® 1.9 ... (2% —
ky=7"(0) :-_1120(_1)7&(—2%—”’2——!35:-_—2”%% (2.4:.(..1;%)21) ;

espressioni pit semplici (in termini finiti) di k£, e k, si vedranno pil avanti.
Per tal via, col classico metodo d’integrazione per serie, si giunge alla
seguente, semplice espressione della funzione in esame:

(38) J(®) = ko B (x) + koS (2)

essendo R(x) ed S(x) le due trascendenti intere definiti dalle serie:

(39) R(x)=1+ 2 ; xzn
n=1 (2 )
dove 4,, e B,, sono dei numeri interi positivi definiti da una medesima

equazione ricorrente, e precisamente dalla

’

2m g2 S(x)=—g—— 2

(40) X,,..=(2n—1) (X,,+ X5,-9), (Xg,= A,, oppure X,, = B,,)

congiunta alle ,,condizioni iniziali“ 4, =1, 4,=0; B, =0, B, = 1.
Calcolando esplicitamente i primi termini delle due serie si trova:

20 161 1629

R(a:):l-{_4 x‘—l———x“ ; ——x3+ 10'x10+ x12—|—
(39%)
1 6 35 287 2898
8@ = _”x2+ tar Te o T

Ponendosi invece dal primo dei due punti di vista sopra accennati, si
procurerd di semplificare I'integrale (34) con opportune trasformazioni.
Per esempio si puo sostituire in esso, in luogo di Jy(¢?), la sua espressione
data dal noto integrale di Hansen, ottenendo cosi:
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1

1t Le—ivndt -—tcosqo 2" gt'— (cos p +1i8)¢
= —— fe —\i € fle
V2 Yo [ A 0 JT 27! dt ’

donde, per una nota formula gia piu sopra applicata, segue

;a

2
28

(cos ¢ + ©8)? 1 7 Lcostop+iscosg
J(«S‘)———f2 olgv=—n—feE do

7T o

ovvero, eseguendo la sostituzione 2 ¢ = ¢,

ib]’ﬂ

27T

T

1 11+ cosgp) +i 1 1

7 —_ 1 P1) T8 COS 5 Py 4 €08 ¢y zs cos 29"1

j@) =5 [e dpy== | dgs ;
0

0
avremo dunque in definitiva, tenuto conto della realta di j per argomento
reale e scrivendo z e ¢ in luogo di se ¢, la formula, notevolmente semplice
ed espressiva:

a|'<*‘

41 e [ foosy 1
(41) j(x) = f cos <xcos 5 (p) do .

0

Per mostrare un’applicazione della (41), serviamocene per esprimere
in termini finiti — mediante funzioni di Bessel — le costanti &, e k, piu
sopra incontrate. All'uopo deriviamo anzitutto I'ultima formula n volte
rispetto ad z, avremo cosi

4
Jm (x) = ]/e fe%?cowcos (x COS — <p -I—n——) cos” 5 ¢ do
0

donde, ponendo z = 0, segue

4

JevEN0) =0, ;2 (0) = (-1) vffe%m%osz"‘gl“fp dp , (#»=0,1,2,--) ;
0

avremo dunque in particolare:

4_ 4—
¢ 1
](0) %fe,;coswd(p ] (0) _ 0 j" (0) ly/tefe%cosgo +OOSq) d(p ’

2
0 0
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eppero, ricordando la rappresentazione di Hansen della funzione J,(2),

viene
4

42) Ky —7(0) = ]/e <)k2—_] (0) = ——V—Z—é[J(,(—i.—)——iJl(.i_)].

Eseguendo il calcolo numerico con l'ausilio delle tabelle (a quattro deci-
mali) dei valori delle funzioni di Bessel per argomento immaginario puro
contenute nelle ben note Funktionentafeln di Jahnke-Emdel®), si

trova cosi che

L’integrale (34) puo pero trattarsi anche in altro modo, e cioé eseguire
dapprima la sostituzione s = 12, ¢ = « + y, cosi che viene

1 TR -3 . .
= [ e*" dolin+iy)dy,
e servirsi poscia del cosi detto teorema d’addizione della funzione J,,
che fornisce

J(sx) =

d

(43) (62) = o (62) + 2 3 00y Jay (i) ,

v=1
avendo posto
+

=__f13: f J2v(iy)dy,(v==0,1,2,---)

-0

e osservato che gli integrali analoghi contenenti funzioni J d’indice
dispari sono tutti nulli.

Le costanti c,, possono esplicitamente calcolarsi medianti funzioni
di Bessel, servendosi ancora una volta della rappresentazione integrale
di Hansen, con l’ausilio della quale si trova che:

T
m»—__—;fe —.'“fe~ycowcos 2vpdp =
]/275_0O L T

—1)W LI —1Ww 7% _1 .
( 1) fOOS 2"’¢d¢ fe e ycoswdy = .(__.__.)_fe g 008 ¢COS 2v¢d(p ;
JZ]/2n K 4 2

15) Zweite Auflage (Leipzig, Teubner, 1933).
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ponendo 2 ¢ = ¢, come piu sopra, avremo dunque in definitiva, sempre
per la formula di Hansen, che:

1
e 72. LCO X 1 . 4_’ -
Cov = (—1)¥ I/E‘J e’ eos v dp, = (———1)"]/2 v, (—— —i—>=]/e‘i"J,,(%> .

T <

Se ne conclude, sostituendo nella (43) e cambiando ¢ x in =, che
sussiste la semplice ed elegante formula:

o = el o) + 220 )]

Un controllo numerico delle precedenti formule, eseguito in corri-
spondenza ad x = 1, ha fornito i seguenti risultati: La serie originaria
(32), tenuto conto dei termini fino a quello con H,, (il che assicura almeno
5 decimali esatti), da j(1) = 0,960823; la formula (38) da (con quattro
decimali esatti) j(1) = 0,96083; finalmente la formula (44) da, pure
con 4 decimali esatti, (1) = 0,96082. Come si vede, I’accordo non potrebbe
esser migliore!

(44)

(Regu le 31 mai 1935.)
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