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Ùber geschlossene ebene Kurven
von beschrânkter Krùmmung
Von F. Babler, Gôttingen

Einleitung
Die Kurven, um welche es sich handelt, sollen ,,eben, einfach, glatt und

von beschrânkter Krummung"1) sein. Sie werden immer mit demBuch-
staben C bezeichnet. Solche Kurven spielen eine gewisse Rolle in der
Théorie der konformen Abbildungen. Herr W. Seidel bewies u. a., dafl
eine fur | z \ < 1 regulâre Funktion f(z), welche die offene Kreisscheibe
konform auf das von einer derartigen Kurve berandete Gebiet abbildet,
in jedem Peripheriepunkte eine von Null verschiedene Winkelderivierte
besitzt, die Abbildung also gewissermaBen auf dem Rande konform
bleibt2). Ein vôllig gleichartiges Résultat kann man auch auf Grund
variationstheoretischer Betrachtungen erzielen. Dieser und einige andere,
die Théorie der schlichten Funktionen betreffende Umstànde haben mich
veranlaBt, ein paar Fragen zu untersuchen, welche sich — grob gesagt —
auf die Abhângigkeit der Lange einer Kurve G von der ,,Ausdehnung"
des von ihr eingeschlossenen Bereiches beziehen.

Zunâchst sei bemerkt, da6 man aus der Umkehrung des Jordan'schen
Kurvensatzes und aus dem Heine-BoreFschen Theorem unmittelbar die
Existenz der Lange einer jeden Kurve C folgern kann.

Beschrànkt man die Krùmmung K (s) (s sei die von irgendeinem Punkt

auf C aus gemessene Bogenlânge) durch die Ungleichung | K(s) | ^ — ;

g > 0, so ist es anschaulich plausibel, da6 der Kreis vom Radius g die
kurzeste unter allen Kurven G mit derselben Krummungsbeschrânkung
ist, und daB es unter ihnen auch keine geben kann, die einen kleineren
Bereich begrenzt. Betrachtet man eine beliebige unter ihnen, die etwa
noch der weiteren Bedingung unterworfen sei, innerhalb eines Kreises
vom Radius g + e zu verlaufen, oder einen Durchmesser 2 q -\- 2 s zu
haben oder einen Bereich der GrôBe 7t g -{- s zn begrenzen, so liegt es

wiederum anschaulich nahe, zu vermuten, daB die Lange dieser Kurve
nicht beliebig viel von 2 g n abweichen kann, wenn nur e genugend
klein ist im Vergleich zu g. Auf dièse Weise ergeben sich die folgenden
Fragen :

*) Vergl. die exakte Formulierung S. 16—17.
2) Vergl. W. Seidel.: Ûber die Rànderzuordnung bei konf. Abb. Math. An.

Bd. 104.



1. Gibt es fur die Lange aller Kurven C, die in einen Kreis vom Radius r
eingeschlossen werden kônnen, aber in keinem kleineren eine genaue
obère und eine genaue untere Schrankel Welches sind dièse genauen
Schranken und wie hângen sie von r ab Werden sie von irgendwelehen C

angenommen und wenn ja: von welchen?

2. Gibt es fur die Lângen aller Kurven C vom festen Durchmesser d
eine genaue obère und eine genaue untere Schranke und wenn ja: wie
hângen dièse vom Durchmesser d ab Welche Kurven haben genau dièse
Sehranken als Lange?

3. Existiert fur die Flâchen der Bereiche, welehe jeweils von den
Kurven C der unter 2 bezw. 3 genannten Kurvenmengen begrenzt
werden, eine genaue untere bezw. eine genaue obère Schranke? Wie
hàngen dièse Schranken von r und d ab, und gibt es Kurven, fur welche
sie angenommen werden und welche?

Schon durch eine einfache Ùberlegung kann festgestellt werden, daB die
oberen Schranken fur 1 und 2, wenn ùberhaupt fur irgendwelche Werte
auBer r q und d 2 q doch sicher nur fur ein beschrànktes Intervall
dieser Parameter existieren kônnen. Genauer : Man stellt leicht fest, daB
eine Kurve C beliebig lang sein kann, sobald ihr Durchmesser eine be-
stimmte feste GrôBe ûbersteigt oder sobald ihr Umkreis einen Radius hat,
der grôBer ist als eine bestimmte feste Zahl. Um das einzusehen, denke

man sich einen ebenen Schnitt durch die Làngsachse einer Hantel, und
dieser werde so abgerundet und geglâttet, daB er uberall den Seite 5 ge-
machten Voraussetzungen iiber Glattheit und Krummung genugt.

Die parallelen Strecken dièses Schnittes sollen sehr lang sein und einen
sehr geringen Abstand haben, und seine, den Gewichtskôrpern entspre-
chenden Bôgen wenig mehr als je einen @-Kreis Kx bezw. K2 einschlieBen.
Dièse Schnittfigur denke man sich, indem man am einen Ende beginnt,
immer in der Ebene bleibend, um einen q-Kreis Ks aufgewunden und zwar
so, daB die Glattheits- und Krummungsvoraussetzungen stets erhalten
bleiben. Man kann sich die Lange der Strecken so gewâhlt denken, daB

nach vollendeter Aufwickelung die drei £-Kreise Kl9 K2, Ks in den Ecken
eines regulâren Dreiecks liegen. Man kann nun, wie lang auch die Strecken
seien, ihren Abstand so gering wâhlen, daB die ganze aufgewundene Kurve
ins Innere eines Kreises eingeschlossen werden kann, dessen Radius r

2
beliebig wenig grôBer ist als 1 + "7=) Q- (Dieser Kreis enthàlt gerade

3 sich gegenseitig beriïhrende £-Kreise.) Die Aufwindung làBt sich ferner
gleichzeitig so einrichten, daB der Durchmesser der aufgewundenen Kurve
4 q beliebig wenig iibersteigt.
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Die genauen oberen Schranken S1(r) bezw. S2(d) existieren demnach
/ 2 \

bestenfalls in den Intervallen g ^ r < 1 + —= J g bezw. 2 g ^ d < 4 g.

In diesen existieren sie wirklich. Durch gewisse einfache Lagebeziehungen
zwischen einer bestimmten Umgebung eines Punktes P auf G und den G

in P beriihrenden ^-Kreisen, zusammen mit einer Art von Symmetrisie-
rungsverfahren durch Spiegelung gelingt es, die Existenz und die analy-
tische Form von Sx(r), S2(d) zu ermitteln. Durch ihre Bestimmung er-
geben sich gleichzeitig diejenigen Kurven, deren Lange gleich diesen
Schranken ist.

Bezïiglich der unteren Schranken «§! (r) zu 1 bezw. s2 (d) zu 2 liegen die
Verhâltnisse viel einfacher. Schon die eben erwâhnten Lagebeziehungen
zwischen den Kurvenbôgen und den beruhrenden @-Kreisen geniigen im
wesentliehen, um ihre Existenz sicherzustellen und die kurzesten Kurven
zu ermitteln. Die Schranken existieren fur aile r und aile d.

„ Die Existenz der genauen oberen Schranke fur 3 ist bei der Kreis-
bedingung trivial. Fur die Kurvenmenge mit festem Durchmesser ist sie

leicht aus der Théorie der konvexen Kurven ableitbar. Sie existiert fur
aile r und aile d und wird immer erreicht. Betreffs der unteren Schranken
F± (r) bzw. F2 (d) gewinnt man gewisse Anhaltspunkte schon bei der Fest-
stellung der genauen oberen Schranken fur die Làngen, indem man dort
beweist, daB jedes G einen @-Kreis ganz, ja sogar deren zwei getrennte
enthalten muB, falls der Durchmesser genûgend groB ist. Jedoch besteht

/ 2 \
ein wesentlicher Unterschied darin, ob r ^( 1 + ~-y=jQ Rhzw. d

oder r > R bzw. d > 4 g ist. Fur die kleineren r bzw. die kleineren d

kann man die Schranken ermitteln, indem man im wesentlichen eine
Tatsache ûber den Kurvenverlauf verwendet, die mit zur Feststellung der
oberen Schranken ^(r) bzw. S2(d) gebraucht wurde. Fur die grôBeren
Werte der beiden Variabeln sind es die schon mehrfach erwâhnten Lage-*

beziehungen zwischen G und den beruhrenden ^-Kreisen, die zum Ziele
fùhren. Indes wird die untere Schranke nur fur die kleineren Werte der

Parameter erreicht.

Die Resultate dieser Arbeit gewinnen vielleicht auch einiges Interesse,
wenn man sie vom variationstheoretischen Gesichtspunkt aus betrachtet.
Sie liefern anschauliche Beispiele dafur, daB Variationsaufgaben mit
Nebenbedingungen fur gewisse Wertebereiche eines Parameters, der dièse

Nebenbedingungen wesentlich bestimmt, wohlbestimmte, einfache Lô-

sungen besitzen, wâhrend sie fur aile anderen Werte des Parameters vôllig
sinnlos werden. Darûber hinaus sind es weitere Beispiele fur die Verwen-



dung der direkten Methoden in Fâllen, in welchen die klassischen Wege
ûber die Difïerentialgleichungen versagen.

ïch werde aile Sàtze unter der Voraussetzung | K (s) | < 1 ableiten, da

die Ûbertragung auf den Fall | K (s) | ^ — ; £ + 1 sich unmittelbar ergibt.

Die Beweismethoden sind ausschlieBlich geometriscli, und den Frage-
stellungen entsprechend fast durchweg élémentar. Mehrere der hier be-
handelten Fragen haben Analoga in der Théorie der konvexen Kurven;
die dort ermittelten Ergebnisse werden an verschiedenen Stellen benutzt.

Eine ,5ebene einfache geschlossene glatte Kurve von beschrànkter
Krûmmung"3) soll immer mit dem Buchstaben G (eventuell mit Index)
bezeichnet werden, und umgekehrt soll jede mit C bezeichnete Kurve den

genannten Bedingungen genugen. Mit s wird in den §§ 1, 2, 3 nur die von
einem beliebigen Punkt einer Kurve aus gemessene Bogenlânge
bezeichnet ; mit P (s) bzw. Q (s) sind dann die Punkte auf C gemeint, die man
erreicht, wenn man von diesem festen Punkt auf C aus den Bogen der
Lange s durchlaufen hat.

Positiver und negativer Umlaufsinn auf einer Kurve C werden wie
ublich so verstanden, daB man bei Durchlaufung der Kurve im positiven
Sinn ihr Inneres zur Linken, bei Durchlaufung im negativen Sinn zur
Rechten làBt. Durchlaufung im positiven Sinn wird durch das Zeichen (p),
Durchlaufung im negativen Sinn durch das Zeichen (n) angedeutet. Das
Zeichen AB soll bedeuten, daB die Strecke AB in der Richtung von

A nach B durchlaufen wird. Unter der Bezeichnung ,,positiver Tangenten-
vektor" wird der dem positiven Umlaufsinn auf einer Kurve C ent-
sprechende Tangentenvektor verstanden. Entsprechend ist die Bezeichnung

,,negativer Tangentenvektor" gemeint.
Wenn von einem Koordinatensystem bzw. dessen Achsen die Rede ist,

so ist immer ein rechtwinkliges karthesisches Koordinatensystem
gemeint. Da die bezuglieh einer Kurve C betrachteten GrôBen invariant
gegenûber Bewegungen sind, wird die Lage von C bezuglieh des Koordi-
natensystems jeweils nach ZweckmâBigkeit willkûrlich gewâhlt. Kurven,
die durch Bewegungen ineinander transformierbar sind, werden als
identisch betrachtet. Mit den Ausdrucksweisen : Eine geschlossene Kurve

8) Vergl. die exakte Formulierung S. 16—17.



,,umsehlieBt" eine andere geschlossene Kurve, oder ,,enthalt sie im
Innern", soll nur gesagt sein, daB kein Punkt der zweiten auBerhalb der
ersten liegen kann. Analog ist der Au^druck ,,eine geschlossene Kurve
liegt im Innern einer andern" zu verstehen. Die beiden Kurven konnen
also je nachdem emzelne Punkte gememsam haben, langs ganzer Bogen
oder vollig zusammenfallen oder ganz getrennt liegen. Dagegen heiBt die
Redeweise ,,ein Punkt liegt in, oder im Innern einer geschlossenen Kurve"
immer, er ist innerer Punkt des von der Kurve eingeschlossenen Gebietes.
Ganz analog heiBt ,,ein Bogen liegt in O", daB sieh auf îhm wirklich
innere Punkte befinden.

§1.
In diesem Paragraphen werden zunachst einige Hilfssatze bewiesen,

welche spaterhin haufig verwendet werden.

Eine glatte, ebene Kurve, deren Krummung stuckweise stetig und
durch | jK'(^) I ^ 1 beschrankt sei, beruhre die #-Achse eines recht-
winkligen Koordinatensystems im Ursprung 0 und verlaufe von da aus
ins Innere der rechten Halbebene. kx bzw. Jc2 seien die beiden Einheits-
kreise, welche die œ-Achse in O beruhren und sonst in der oberen bzw. in

der unteren Halbebene verlaufen. OP sei der von O ausgehende Bogen

der Lange — auf der Kurve. Es gilt dann :

Hilfssatz 1 a. KeinPunht des Bogens OP liegt im Innern emes der beiden
Kreise hx bzw, Jc2.

OP sei dargestellt in der Form

x x(s), y y(a)\ x(0) y(0) 0.

Die Vorausset^ung der Glattheit bedeutet, daB x(s), y (s) uberall
existieren und stetig sind. Als Parameter kann man die von O aus auf der

Kurve gemessene Bogenlange wahlen, also 0^5^—. Der positive

Richtungssinn auf der Kurve sei durch den Tangentenvektor in der
Richtung der positiven #-Achse in O definiert. Die Krummung K (s) wird
positiv genommen, falls der Normalenvektor in Richtung auf den
Krummungsmittelpunkt von der im positiven Sinn durchlaufenen Kurve
nach links weist, im anderen Fall negativ. K(s) soll fur aile s existieren
stetig und absolut hochstens gleich 1 sein, abgesehen von einer Punkt-
menge, die so beschaffen ist, daB sie mit Ausnahme von endlich vielen
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ins Innere von Teilintervallen eingeschlossen werden kann, deren Ge-

samtlânge kleiner als s sei (e>0 sonst beliebig). Erteilt man K(s) fur
dièse Punkte beliebige, zwischen — 1 und + 1 liegende Werte, so existiert

8 / \
q)(s) J K(a)da fur jedes s in 0 — 1 und ist von den willkurlich gewàhl-

ten Funktionswerten unabhângig. Es ist alsdann

x (s) co8<p(s)) y (s) sin(p(s)
8 8

x(s) J cob cp (a) da; y (s) J sin cp(a)da. Man setzt ferner

H'

Wegen |

x(

K(s)

*)>

0

s

Jcos ad a
0

| < 1 ist

i(s) und

bzw. rt

\<P(S)\:

1 y(») 1

0

s

h(s) Jsin
0

^ s, woraus

^ Vi(s) — 1

odo

folgt

vJs)

und

i

und rjxis) bzw. g (s) und rj2(s) sind aber die Koordinaten der Punkte
auf den bei O in die rechte Halbebene eintretenden Bôgen von kx und Jc2.

Es ist also

1. Das Gleichheitszeichen in der ersten Gleichung kann nur gelten fiir

K(s) + 1 bzw. K(s) — 1 fur 0 < s ^ — Dann aber gilt in der

zweiten Ungleichung auch entweder das zweite oder das erste Gleichheitszeichen,

d. h. der Bogen OP fâllt mit dem einen der bei O in die rechte
Halbebene eintretenden Viertelkreise zusammen.

2. Ist fur irgendein Teilintervall von (O— |i£(s)| 4= 1, so kônnen in

beiden Ungleichungen I und II nur die Ungleichheitszeichen gelten, d. h.

der Bogen OP verlàuft von einem Punkte Q an im ÀuBeren der beiden
Kreise Jcx und k2, insbesondere liegt P rechts von der Geraden x 1.

Die Kurve setze sich ûber P hinaus mit den gleichen Stetigkeits- und
Differenzierbarkeitseigenschaften versehen fort. Im ersten Falle kann ein

weiteres Bogenstûck PP2 der Lange—nirgends im Inneren von kx und k2

verlaufen.
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Im zweiten Falle gebe es einen ersten Parameterwert s1 > —, so da8

?(<s1) | — ist, d. h. es existiere ein erster Punkt Px{$\) m^ vertikaler

Tangente. Der Bogen PP^s^ liegt sicher redits von x 1, da cos cp(s) > 0

ist fur — ^.8<sv Daher gilt

Hilfssatz 1 : Kein Punkt von OP (sx) liegt in k± bezw. k2. Perner gilt

Zusatz 1 : Falls 0Px (sx) keinen Punkt in der unteren Halbebene hat, liegt
Px (s-J oberhalb der Geraden y 1 oder auf ihr.

Die gegenteilige Annahme wiirde bei Vertauschung von 0 und P1(s1)
zum Widerspruch mit dem eben abgeleiteten Ergebnis iiber den Bogen

OP1 (^fûhren.
Dièse Tatsachen wàren ausreichend fiir aile unsere Ûberlegungen, in

welchen die gegenseitige Lage von Kurvenbôgen auf C und der sie be-

rlihrenden Einheitskreise eine Rolle spielen. Uni jedoch spâter einfacher
schlieBen zu kônnen, werden jetzt noch einige etwas weitergehende
Schlùsse liber dièse Lagebeziehungen gezogen.

Bezuglieh des jetzt betrachteten Bogens OP auf C gelten genau die-
selben Voraussetzungen wie fur den Hilfssatz 1, nur soll die Bogenlânge

ilnicht mehr durch — beschrânkt sein. Ich beweise

Hilfssatz 2: Lângs eines Bogens OP von der Oesamtkrummung &(s) < n
schneidet keiner der von rechts berûhrenden Einheitskreise irgend einen unter
den von links beriihrenden Einheitskreisen.

Ist der Satz fiir den in 0 von links beriihrende Kreise k± richtig, so

gilt er um so mehr fiir aile andern. Es geniigt also, ihn fiir diesen Spezial-
fall zu beweisen.

8

Unter der Gesamtkrummung wird, wie ublich, @(s) J | K{a) \ da
verstanden. Es ist also @(s) > | <p(s) |. °

Zunàchst sei sx der erste Parameterwert, fiir den | y (s^ \ =—ist. Px==

P1(s1) sei der ihm entsprechende Punkt auf OP. Es gilt

Hilfssatz 2a. Der Hilfssatz 2 gilt fiir den Bogen OPlt wenn man links

nur kx in Betracht zieht. Fâllt OPX mit einem der beiden Viertelkreise
zusammen, ist die Behauptung trivial. Ist dies nieht der Fall, so ver-
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folge man die Kurve, welche von den Mittelpunkten der den Bogen OPX

von rechts beruhrenden Einheitskreise beschrieben wird. Sie ist in der
Form y f(x) darstellbar, wobei f(x) eine eindeutige stetige Funktion
von x in einem gewissen Intervall rechts vonNull ist. Den Bôgen auf

OP± mit K(s) — 1 entspricht jeweils auf ihr ein einziger Punkt. Aile
anderen Teilbôgen dieser Mittelpunktskurve sind mit stetiger Tangente
versehen. Durchlâuft man sie vom Punkt (0, — 1) aus, so ist der Tan-
gentenvektor immer ins Innere der rechten Halbebene gerichtet, d. h.
er besitzt eine Komponente in Richtung der positiven #-Achse. Dies
mit AusschluB des Endpunktes.

Soll ein von rechts beriihrender Einheitskreis k den Kreis kx schneiden,
so muB sein Mittelpunkt im Innern des zu kx konzentrischen Kreises jfiT*

vom Radius 2 liegen. Da /(0) — 1 ist, mûBte es auf der Mittelpunktskurve

Punkte geben, welche in der rechten untern Viertelsebene inner-
halb vonZ* liegen. Q mit den Koordinaten (a, b) sei ein solcher, und es soll

sich weiterhin auf dem Bogen (0,— 1), (ab) der Mittelpunktskurve kein

Punkt in der abgeschlossenen oberen Halbebene befinden.

Der Einheitskreis k mit Q als Mittelpunkt schneidet k± in zwei Punkten,
Q± und Q2. Der Punkt (a + 1, 6) Q3 auf k liegt sicher auBerhalb von kl9

und die Indizierung der Schnittpunkte soll so gewàhlt sein, daB man
zunàchst Qx trifft, wenn man k von Q3 aus in negativem Sinn durchlâuft.

k berûhrt den Bogen OPX in einem ersten4) Punkte P\ Fur die Abszisse

von P', b! gilt entweder 1. a^a'^a+1 °der 2. a2 ^ a' ^ a oder
3. a' < ax wobei ax und a2 die Abszissen von Qx bzw. Q2 sind.

Zu 1. Dann existiert auf OP' ein Punkt P m mit maximaler Ordinate.
am,bm seien seine Koordinaten. Er liegt auBerhalb kv Es ist am ^ a,
^m ^ ^ + !» was eine unmittelbare Folge des Hilfssatzes 1 bzw. des
Zusatzes 1 ist. Pm liegt nach Voraussetzung in der unteren Halbebene.

Der Einheitskreis km mit (am, b m— 1) als Mittelpunkt beriihrt OP1 in P m

und schneidet kv Der Bogen OPm hat weder Punkte in kx noch in km
und auch keine in der linken Halbebene und in der Halbebene x > am
(Hilfssatz 1). Er muB aber die Gerade durch (0 1) und (am, bm — 1)

schneiden. Dièse beiden Forderungen stehen in Widerspruch zueinander.

Zu 2. Hier tritt an Stelle von km der Kreis k. OP' kann nirgends in kx

oder in k verlaufen, bleibt im Streifen 0 ^ x ^ a! und muB die Gerade

4) Bei Durchlaufung von OP von O aus.
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durch (0, 1) und (a, b) schneiden. Daraus folgt derselbe Widerspruch wie
unter 1.

Zu 3. Der Mittelpunkt des Einheitskreises Je', der 0Px in P' von links
berùhrt, liegt in der linken Halbebene. Man kônnte daher, indem man

OP' von P' aus durch einen Bogen auf k' fortsetzt, einen Kurvenbogen
konstruieren, derallenVoraussetzungen S. 9—10 genugt und dessen erster
Punkt mit senkrechter Tangente links von der Geraden x 1 làge. Das
steht im Widerspruch zu Hilfssatz 1. Damit ist Hilfssatz 2 a bewiesen.

Den Bogen OP1 denke man sich weiterhin uber Px hinaus fortgesetzt,
und zwar unter Erhaltung der Stetigkeits- und Krummungseigen-
schaften, bis zum ersten Punkt P2, in welchem die Tangente wiederum
mit der x-Achse parallel ist.

Zusàtzlich setzen wir zunâchst ferner voraus, daB der ganze Bogen OP2
in der abgeschlossenen oberen Halbebene verlaufe.

a) Fâllt dann der Tangentenvektor in Pl9 welcher dem positiven
Durchlaufungssinn entspricht, mit der negativen y-Richtung zusammen,
so muB Px auf der Geraden y — 1 oder weiter oberhalb liegen, und der

Bogen OPX trifït in mindestens einem Punkt die Gerade y 2. Die
gegenteilige Annahme ergibt einen Widerspruch zu Hilfssatz 1 und der
zusâtzlichen Voraussetzung.

b) Ist die Richtung des Tangentenvektors in P1 die positive y-Richtung,
so gilt uber die Lage von Px dasselbe wie eben. Wenn wir die zum Beweise

von Hilfssatz 2 a durchgefuhrten Betrachtungen auf den in Px von links

beruhrenden Einheitskreis k' und die làngs PiP2 von ^echts beriihrenden
Einheitskreise ùbertragen, so erhalten wir das Résultat, daB keiner unter

den làngs OP2 von rechts beriihrenden Einheitskreisen kx schneiden kann.

P2 selbst liegt auf der Geraden, y 2 oder oberhalb. Der Bogen QP2 hat
aber mindestens eine Gesamtkrummung n ; damit ist fur diesen Spezial-
fall Hilfssatz 2 bewiesen.

Wenn aber keiner unter den OP2 von rechts beruhrenden Einheitskreisen

den Einheitskreis kx schneiden darf, so liegt keiner der Be-
riihrungspunkte dieser Kreise mit dem Bogen, also kein Punkt des Bogens
selbst im Innern von kx.

Dièses spezielle Résultat wird fur die spàtere Anwendung genûgen.
Es sei als Hilfssatz 3 formuliert.
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Hilfssatz 3. Berûhrt ein stetiger glatter Kurvenbogen, dessen Krummung
im Sinne der Voraussetzung von Hilfssatz 1 existiert und beschrânkt ist, die
x-Achse eines rechtwinkligen Koordinatensystems im Ursprung 0 und weifi
man, da/3 mindestens einer unter den ihn von rechts berûhrenden Einheits-
kreisen den Einheitskreis schneidet, der in 0 von links berûhrt, verlâuft der
Bogen ferner ganz in der oberen Halbebene, so besitzt er einen Punkt, in
welchem der Tangentenvektor mit der y-Richtung zusammenfâllt, und er liât
mindestens einen Punkt mit der Geraden y 2 gemein, und das Bogenstùck
von 0 aus bis zum ersten Punkt auf diesen Geraden verlâuft nirgends im
Innern von kv

Fur den vollstândigen Beweis des Hilfssatzes 2 sind zwei Fâlle zu
unterscheiden : a) Der Tangentenvektor in Px fâllt mit der positiven;
b) er fâllt mit der negativen ^-Richtung zusammen.

Zu a). Px mit den Koordinaten xx yx liegt dann nach Hilfssatz 1 in der
Halbebene x ^ 1 und der ihm entsprechende Punkt der Mittelpunktskurve

in der Halbebene x ^ 2. Sei k[ der in Px von links beriihrende

Einheitskreis und K\ der zu ihm konzentrische, vom Radius 2. Ist PxP2
ein Kurvenbogen, der allen Voraussetzungen des Hilfssatzes 1 bezuglieh
Stetigkeit, Glattheit und Krummung geniigt, und dessen Tangentenvektor

in P2, sonst nirgends, parallel zur #-Achse ist, so besitzt der ihm
entsprechende Bogen der Mittelpunktskurve nach Hilfssatz 2 a) nirgends
einen Punkt im Innern von K\ und seine Tangente hat ûberall da, wo sie

existiert, eine Komponente in der Richtung der positiven ^/-Achse.

Liegt Px in der Halbebene y ^ l, so folgt hieraus unmittelbar die

Behauptung des Hilfssatzes 2.

Sei daher yx< 1, dann ist xx> 1. K* und K\ besitzen eine gemeinsame
Tangente T, die beide Kreise auf ihren oberen Hàlften in den Punkten

J3* und B\ beriihrt. Soll die Mittelpunktskurve, die dem Bogen PXP2 ©nt-

spricht? einen Punkt in K* haben, so mu8 auf ihr mindestens ein Punkt Q

liegen, in welchem der Tangentenvektor mit dem Einheitsvektor in der
positiven «/-Richtung einen gleichen oder grôBeren Winkel einschlieBt als

der Vektor B\B*. Dem Punkt Q entspricht ein Punkt R auf OP2 als

Beriihrungspunkt mit dem Einheitskreis um Q als Mittelpunkt. Die
Tangentenvektoren in Q und R sind parallel.

Nach Voraussetzung schneidet OPX den Kreis kx nicht. Er schneidet
auch k[ nicht (b)S. 13). Die beiden Kreise haben eine gemeinsame
Tangente t, die sie beide auf der unteren Hàlfte in den Punkten b± und b[
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berûhrt. t ist parallel zu T. Der Vektor bx b[ ist entgegengesetzt gerichtet

zumVektor jB* jB*. Auf OP1 muB es mindestens einenPunkt Rx geben, in

welchem der Tangentenvektor parallel und gleichgerichtet zu ft^ ist.

Làngs des Bogens B± R dreht sich daher die Tangente mindestens um n,

d. h. die Gesamtkrûmmung ist mindestens n.

Zu b). Palis die Ordinate yx von Px nicht grôBer ist als —1, ist die
Behauptung trivial. Andernfalls ziehe man die Tangente an K* in Pj,
wenn dieserPunkt auf X* liegt, oder man lege diejenige Tangente von Pj
an K*, welche K* auf der unteren Hàlfte beruhrt. (Pj ist der Punkt auf der

Mittelpunktskurve, welcher P1 — eventuell einem ganzen von Px be-

grenzten Bogen — entspricht.) Liegt Pj in der Halbebene y < 1, so ist es

klar, daB es immer eine solche Tangente gibt. Ist dagegen yx > 1, so

muB xx > 2 sein, da sonst OPX entweder k± oder den in Px von rechts
beriihrenden Einheitskreis 1c[ schneiden oder in mindestens zwei inileren
Punkten Tangentenvektoren inRiehtung derpositiven ^/-Richtung haben
muBte, woraus wiederum die Existenz der Tangente folgt.

Von hierab verlaufen die Schlusse genau wie im Pall a), nur daB an
Stelle des von links in P1 berûhrenden Einheitskreises der von rechts
berûhrende tritt.

Was fur lcx gilt, ist um so mehr fur aile andern lângs OP von links
berûhrenden Einheitskreise wahr. Damit ist Hilfssatz 2 bewiesen.

Ein Bogen OP von der Gesamtkrûmmung n hat mindestens die

Lange n. Da keiner der von rechts berûhrenden Einheitskreise einen
Punkt in hx hat, kann das auch fur den Bogen selbst nicht der Fall sein.

Es gilt daher

Hilfssatz 4. Kein Bogen einer Kurve, die den Voraussetzungen bezûglich

Stetigkeit, Olattheit und Krummung in den vorangehenden Hilfssâtzen
genûgt, und der nicht langer ist als n, kann einen Punkt im Innern eines

der Einheitskreise haben, die ihn berûhren.

Ohne weiteres folgt, daB man in den Hilfssâtzen 2 a und 3 die Kreise
in den Endpunkten durch jeden andern im Innern von derselben Seite
berûhrenden Einheitskreis ersetzen darf.

n ist ûbrigens sowohl fur die Gesamtkrûmmung, als auch fur die
Bogenlânge die genaue obère Schranke, fur welche dièse Sàtze gelten.
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§2.
In diesem Paragraphen werden zunachst die Voraussetzungen be-

zuglich dei>Kurven C prazisiert, die wir bisher ungenau

1. ak ,,eben, einfach und geschlossen", 2. als ,,glatt und von beschranhter

KrUmmung" bezeichnet haben. Daran anschlieBend lassen sich dann
unmittelbar zwei Eigenschaften solcher Kurven ableiten, von welchen
die eine die Rektifizierbarkeit, die andere das von der Kurve begrenzte
Gebiet betriiït.

Unter ,,eben, einfach und geschlos&en" ist das in der Literatur ubliche
zu verstehen5). Eine Kurve mit diesen Eigenschaften kann immer in
unendlich vielfacher Art eineindeutig und stetig auf die Peripherie eines
Einheitskreises abgebildet werden. Eine beliebige unter diesen Abbil-
dungen werde herausgegriffen. Dabei entspreche dem Punkte Po auf C
der Punkt œ0 auf dem Einheitskreis (co bedeutet die von einem beliebigen
Punkte aus gemessene Bogenlange auf dem Einheitskreis). Dann ver-
stehe ich unter einer e Umgebung von Po denjenigen Bogen auf 0, der

auf den abgeschlossenen Bogen (co0 — e), (œQ + e) mit coQ als Mittel-
punkt abgebildet wird. (e > 0, klem.)

Die Eigenschaften ,,glatt und von beschrankter Krummung" werden
jetzt folgendermaBen definiert:

1. Es gibt zu jedem Punkt Po auf C eine von Po abhangige e-Umge-
bung und zu ihr einen Parameter t, so dafi jeder Punkt dieser Umgebung
in einem rechtwinkligen Koordinatensystem in der Form

darstellbar ist, wobei x0, y0 die Koordinaten von Po bedeuten. ij(t),
?](t)> î(^)> htf) sm(l dabei im ganzen abgeschlossenen Intervall (—tv t^)

stetig. Ferner existiere

2. Die Krummung i£(£) fur das ganze Intervall (— tx t-J mit Ausnahme
einer Menge von Punkten, die in eine Anzahl von Teilintervallen mit
beliebig kleiner Gesamtlange eingeschlossen werden konnen. K(t) &ei

uberall da stetig, wo es existiert und | K(t) \ < 1. Wahlt man dann K(t)
positiv, wenn der Normalenvektor nach dem Krummungsmittelpunkt
hin bezuglich des positiven Umlaufssinns nach links weist, im anderen
Fall negativ und setzt man den Weit der Funktion uberall da, wo sie

5) Vergl. z. B. : Kerékjartô: Vorl. uber Topologie, Berlin 1923 S. 59 ; 79.
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t
nicht definiert ist, gleichNull, dann existieren die Intégrale cp (t) jK (t)dx,

t o

0(t)\= J | K(x) | dx | fur aile £ des Intervalls (— tx tx)
o

Aus 1. folgt, daB J J^a _j_ ^2 ^T existiert, d. h. der Bogen P~P+ auf C

hat eine Bogenlànge. P~ ist dabei der Punkt mit den Koordinaten
x+ H—*i), y+ rj( —1±), P+ derjenige mit den Koordinaten x + f (^)3

î/ + ^(^). Nach dem Heine-Borelsehen Satz genugen endlich viele von
den e-Bôgen auf dem Einheitskreis, um diesen ganz zu bedecken. Darum
gilt:

Satz 1 : Jede Kurve C hat eine endliche Lange,

Es hâtte fur diesen Satz genugt, die Kurve C in jeder e-Umgebung
rektifizierbar vorauszusetzen. Dièse Voraussetzung ist dann aber auch
notwendig.

Um den AnschluB an die HiKssàtze des vorigen Paragraphen zu er-
halten, bemerken wir, daB man nach Satz 1 eine beliebige Kurve C in
einem beliebigen rechtwinkligen Koordinatensystem in der Form

x x(s), y y(s)

darstellen kann. Dabei ist s die von einem beliebigen Punkt auf C aus-
gemessene Bogenlànge und S Gesamtlânge von C, so daB also fur s

0 ^ s < S gilt. Es ist x(o) x(S); y(o) y{S); ferner sind beide
Funktionen und ihre Derivierten fur das ganze Intervall stetig und
K (s) genugt ebenfalls fur das ganze Intervall genau den S. 9 und 10

aufgestellten Voraussetzungen.
Es folgen jetzt einige, das von einer beliebigen Kurve C eingesehlossene

Gebiet g betrefïende Feststellungen.
Sei Q ein beliebiger innerer Punkt von g. Um ihn schlage ich den

grôBtenKreis K(Q), der noch in (7 liegt. Beriihrt er C nur in einem einzigen
Punkt P, dann wird der grôBte unter allen Kreisen gewâhlt, die die
Kurve im selben Punkt von innen beruhren und der ganz im Innern der
Kurve liegt. Dieser Kreis heiBe Berûhrungskreis in P. Andernfalls ist
schon K (Q) Berûhrungskreis fur jeden seiner Berûhrungspunkte mit C.

Nun seien zu allen Punkten von C die Beruhrungskreise konstruiert.
Ihr Radius r ist, wie man aus den Stetigkeitseigenschaften der Kurve
bzw. ihrer Tangente leicht folgert, eine stetige positive Funktion r(s)
s Bogenlànge). Sie nimmt im abgeschlossenen Intervall (08) ihren
kleinsten Wert an. Dieser ist grôBer als Null. Wàre er nàmlich in einem
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Punkte B(s0) gleichNull, so gâbe es zu R(s0) eine Umgebung auf G,

fur die aile Beriihrungskreisradien kleiner als e, eine beliebig kleine
positive Konstante wâren. Es miiBte dann wegen des durch Hilfssatz 1

charakterisierten Kurvenverlaufs fur die Umgebung eines beliebigen
Punktes auf C1 zwei Werte sQ und st (s0 $ s^) geben (Null und 8 gelten
hier als ein Wert), so daB der Punkt P(s) fur s -> s0 und auch Q(s) fur
s~> si gegen ^(^o) ginge- ^ wâre also nicht einfach. Aus der Stetigkeit
von r(s) folgt weiterhin, daB es grôfite Beriihrungskreise gibt.

Nun gebe es auf G einen Punkt P(s') mit dem Berïihrungsradius
r(s')< 1. Durchlaufe ich den Beruhrungskreis K(s') von P' P(s') aus
in positivem Sinn, so sei Q' der erste weitere Beriihrungspunkt auf (7, den
ich trefïe. (Es gibt ihrer, wie man leicht sieht, hôchstens fiinf.) Jetzt fasse

man die einfache gesehlossene Kurve <p' ins Auge, die von Pr aus im

positiven Sinn durchlaufen, successive aus den Bôgen P'Q' auf G (p)e) und

(fl>' auf K(sf) (p) besteht. Bezuglich cpf gilt:

Hilfssatz 5. y enthâlt mindestens einen Einheitskreis ganz im Innern.
G werde von P' aus in positivem Sinn durchlaufen, bis zum Punkte

P\8' +—) und dort der Beruhrungskreis K [s'-\-—\ konstruiert. Istsein

Radius 1 oder grôBer, so ist man fertig. Ist er kleiner, so beachtet man,

daB P"= pis' +-^)auBerhalb von if (s') liegen muB (Hilfssatz 1), daB sich

also auf dem Beruhrungskreis KI s' -\—— kein Punkt des abgeschlossenen

^ \ ' I n\
Kreisbogens QP' befindenkann. Bezuglich K [s' +-1r), P" und G kon-

struiere man genau analog zu g/ die gesehlossene Kurve y". Das von ihr
umschlossene Gebiet g" ist ein Teil des von <p' umschlossenen, g'\ Der ihr

zugehôrige Bogen von G ist um mehr als — kiirzer als P'Q'. Von P" aus-

gehend, wende man ein zweites Mal das eben beschriebeneVerfahren an,
und so fort. Man kommt derart entweder nach endlieh vielen, n Schritten
zu einem Beruhrungskreis, der ein Einheitskreis ist oder grôBer und der

in einer geschlossenen Kurve <p{n) liegt, deren Inneres selbst einen Teil des

Inneren von g' ausmacht, oder man endet bei einem Beruhrungskreis,
der einen Radius r < 1 hat und den ein Bogen auf G von hôchstens der

Lange — in zwei Punkten beriihrt. Das Letztere steht im Widerspruch zu

Hilfssatz 1. Damit ist Hilfssatz 5 bewiesen. Unmittelbar erhàlt man jetzt:
8) Vergl. S. 10.
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Satz 2. Jede Kurve C enthâlt mindestens einen Einheitskreis ganz.
Hat der grôfite Berûhrungskreis von C einen Radius r ^ 1, so ist nichts

zu beweisen. Die gegenteilige Annahme aber wird durch HiKssatz 5

widerlegt, da man mit Hilfe eines Beriihrungskreises und eines Bogens auf
C eine Kurve 9/ konstruieren kann.

Dieselben Ûberlegungen fuhren zu

Satz 3: Jede Kurve C, deren Durchmesser mindestens 4 ist, enthâlt
mindestens zwei getrennt liegende Einheitskreise ganz.

Unter dem Durchmesser einer Kurve C, wird, wie iiblieh, das Maximum
des Abstandes zweier Punkte auf C verstanden. DaB dièses existiert folgt
daraus, daB das Maximum des Abstandes eines festen Punktes P von allen
anderen Punkten auf C existiert und eine stetige Funktion der Bogen-
lànge ist.

Auf der Kurve C vom Durchmesser d gibt es mindestens zwei Punkte
P± und P2 mit diesem Durchmesser als Abstand. Dièse beiden Punkte

sollen mit den Punkten —und-— der #-Achse eines rechtwinkligen
2 2

Koordinatensystems zusammenfallen. C liegt dann im Streifen g zwischen

den Geraden x — und x —. Kx sei der Bertihrungskreis in Px,
2 2

K2 derjenige in P2. Sind beide Einheitskreise oder grôBer, oder hat der
eine von ihnen den Durchmesser ^ 4, so ist die Richtigkeit der Be-

hauptung évident.
Es sei der Radius von Kl9 r1<\. Ich denke mir C von Px âus zuerst

im positiven Sinne bis P2 durchlaufen. Den durchlaufenen Bogen be-

zeichne ich mit f}v Entsprechend sei /?2 der im negativen Sinn von P1
bis P2 durchlaufene Bogen. Mindestens der eine von ihnen muB Kx auBer
in Px in mindestens einem weiteren Punkte beriihren. Ohne Beschrânkung
der Allgemeinheit kann man annehmen, f}x tue dies. Der erste Beruhrungs-
punkt mit Kv den man bei der Durchlaufung des Bogens pl von P1 aus

triflft, sei P[. Der Bogen P1P1 werde mit /}[ bezeichnet. Auf (}[ liegt hein
Punkt von K2. Es sei nâmlich Q der erste gemeinsame Punkt von ^ und
K2, beziighch derselben Durchlaufung von pv Dann muB der Tangenten-
vektor an px in Q mit dem positiven Tangentenvektor an K2 in Q zu-
sammenfallen. Andernfalls miiBte ein auf pt in positivem Sinn laufender
Punkt die x-Achse in P2 in der Richtung von der oberen zur unteren
Halbebene durchqueren, was gegen die Voraussetzungen geht. Wûrden
P' und Q zusammenfallen, so miiBte der Tangentenvektor in diesem
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Punkt gerade die nicht erlaubte Richtung haben. Wâre Q ein innerer
Punkt von $[, so kônnte /?x iïberhaupt keinen Berùhrungspunkt mit Kx

haben. Die Kurve, bestehend aus den Bogen PXQ und QP2 auf K2 (p)
zerlegte nâmlich den Streifen g in zwei Gebiete gx und g2. Wâhrend K1
bis auf den Punkt Pt ganz im Innern des oberen, gx liegt, muBte $x von
Q aus im Innern oder auf dem Rande de3 unteren, g2 verlaufen.

Der Bogen f}'x auf C (p) zusammen mit P' Px auf Kx (p) bildet eine
einfache geschlossene Kurve cpx vom Charakter der im Hilfssatz 5 be-
trachteten. Sie liegt vôllig auBerhalb des G in P2 berùhrenden Einheits-
kreises wenn rz ^ 1, und, wenn r2 der Radius von K2 kleiner ist als 1,

vôllig auBerhalb von K2. Auch enthàlt sie keinen Bogen von G in ihrem
Innern.

Ist auch r2< 1, kann man bezûglich K2 und G eine entsprechende be-
schlossene Kurve cp2 konstruieren. cpx und cp2 liegen vôlhg getrennt, und
keine befindet sich im Innern der anderen. Sie umschlieBen nur innere
Punkte von C. Nach Hilfssatz 5 enthàlt jede mindestens einen Einheits-
kreis vollstândig. Dièse Einheitskreise liegen in C und sind getrennt.
Ist r2 ^ 1, so sind der in q>t enthaltene und der C in P2 berûhrende Ein-
heitskreis Kreise der behaupteten Art.

§Q

Zuerst soll jetzt das in der Einleitung angedeutete Aufwicklungs-
verfahren einer Kurve C exakt beschrieben werden. Mit anderen Worten :

Es soll durch ein Beispiel Satz 4 bewiesen werden.

2
Satz 4: Es gibt im Innern jedes Kreises vom Radius r>\ +rr^= und zu

jedem Durchmesser d > 4 Kurven C, deren Lange jede beliebige Grôjie M
ûbertrifft.

Um die Punkte Mx (— 1 — e, 0) ; e > 0 und M2 (1 + e, 0) der
#-Achse werden die beiden Kreise K± und K2 vom Radius r 1 + e ge-
schlagen, desgleichen um den Punkt Mz (0, (l + e) ]/3) der Kreis Kz

vom selben Radius. Der Kreis Km mit (0, (1 + s) -7= als Mittelpunkt und
2 y6

rm= l + (l + e) -/= als Radius, beruhrt Kl9 K2 und Kz und enthàlt sie
y 3

in seinem Innern. Kv K2, Kz beruhren sich paarweise gegenseitig. Um
Mi i 1, 2, 3 konstruiere man hierauf die Kreise K{j mit den Radien

i=zi9j — 1,1,2,3,4 s-j
rt « o ,i xmdrij r+-f;i 3;j —1,1,2,3,

e 2;^= 1,2,3, 4 4
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ferner, um den Punkt (—l—e,-^-) die Kreise K'1$ mit den Radien

5 e
r, r -£\ j 1, 2,3,4 und um /1 + —, 0 j den Kreis K'21 mit dem

Radius r *- SchlieBlich werde um den Punkt 0, (1 + e) l/~3 + —4 \ x ' w ' 4

der Kreis X3 vom Radius ^3 r — und um M2 der Kreis K vom
Radius 3 (1 + e) geschlagen.

Fig 1

Z beruhrt Zj bzw. Z3 in den Punkten (— 2 (1 + e), 0) bzw. P, dessen
Koordinaten uns nicht interessieren.

KSj beruhrt die Kreise Kl3 bzw. K2j j 1, 2, 3 und Kz _x den Kj:eis
^1,-1.

Es ist nun leicht an Hand der Fig. 1 die Entstehungsweise der Kurve G
aus Bôgen der Kreise Kt}, K'%jiK'Zy K und Strecken auf den gemeinsamen
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Tangenten an sie zu ûberblicken und nachzuprûfen, da6 sie allen Vor-
aussetzungen genûgt. Natiirlich hàtte man e ebenso gut in 2 n gleiche Teile
teilen kônnen statt in 4, wobei n eine beliebige ganze Zahl ist. Es wâre
dann eine n mal gewxmdene Kurve G statt der zweimal gewundenen ent-
standen. Da n beliebig groB sein kann, ist die Lange der so in Km kon-
struierten Kurven nicht beschrànkt. Der Radius rm ist fur gentigend

2
kleines e beliebig wenig grôBer als 1 + -t= und ebenso der Durchmesser d

j/3
beliebig wenig grôBer als 4.

Um die in der Einleitung genannte Schranke S1(rm) fur die Lângen
aller in einem bestimmten Kreis eingeschlossenen Kurven G bzw. die
Schranke S2 (d) fur die Lângen aller Kurven C vom festen Durchmesser d

herzuleiten, definiere ich zunàchst den Begrifï des Umkreises einer
solchen Kurve und leite einige seiner Eigenschaften ab.

Définition : Unter dem Umhreis einer Kurve G ist der Meinste Kreis zu
verstehen, in welchem sie liegt.

Hilfssatz 6: Es gibt zu jeder Kurve C genau einen Umhreis. DaB es zu
jedem Punkt P im Innern und auf G als Mittelpunkt einen kleinsten
Kreis gibt, in welchem C liegt, ist évident. Die Radien r(P) dieser Kreise
stellen eine stetige Funktion liber dem durch C abgeschlossenen Bereich
dar. Eine stetige Funktion nimmt ûber einem abgeschlossenen Bereich
einen kleinsten Wert an. Gâbe es zwei Punkte des Bereiches, fur welche die

zugehôrigen Radien gleich diesem kleinsten Wert wàren, so mtiBte G in
dem von beiden gleichzeitig bedeckten Bereich liegen. Das hâtte zur
Folge, daB es sicher einen Kreis mit noch kleinerem Radius gàbe, der C

einschlôsse.

Hilfssatz 7 : Jede Kurve C beruhrt ihren Umkreis entweder in den End-
punkten eines Durchmessers oder dann in drei Punkten, welche die Ecken
eines spitzwinkligen Dreiecks sind.

Lâgen nàmlich aile Berûhrungspunkte zwischen dem Umkreis K m

und C auf ein und demselben ofïenen Halbkreis von Km, so kônnte man
letzteren sicher senkrecht zur grôBten Sehne zwischen zwei Beruhrungs-
punkten um einen kleinen Betrag verschieben, so daB er in der neuen
Lage keinen Punkt mit C gemeinsam hàtte. Es gàbe also noch einen
kleineren Kreis, in dem C làge.

Anderseits ist der Umkreis eines spitzwinkligen Dreiecks der kleinste,
in welchem es liegen kann, und der Durchmesser eines Kreises kann nicht
Sehne oder Teil einer Sehne einea kleineren Kreises sein.
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Hilfssatz 8: Der Radius rm des Umkreises Km einer Kurve C, die einen
2

Durchmesser d ^ 4 hat, ist hochstens 1 -f -r=
V 3

Seien QxQ2Qz drei unter den Beruhrungspunkten von C und Km, die
ein spitzwinkliges Dreieck bilden. Die Mittelpunkte Mv M2, M3 der
Einheitskreise, die C in Q1? Q2 und Q3 von innen beruhren, liegen auf der
Peripherie eines zuITO konzentrischen Kreises K* vom Radius rw — 1

und sind gleiehfalls Eeken eines spitzwinkligen Dreieeks. Jede der drei
Geraden durch je zwei der Mittelpunkte schneidet C auBerhalb der zu-

2
gehorigen Kreise und auBerhalb von K* (Hilfssatz 1). Ware rm > 1 + —=

2 V3
also der Radius von K* groBer als -j—, so ware mindestens eine Seite des

Dreieeks M1M2M3 groBer als 27), und C hatte dann einen Durchmesser

> 4.

Im Zusammenhang mit dem Umkreis werden in den folgenden Be«

trachtungen die Eigenschaften der konvexen Huile einer Kurve G

wesentlich verwendet.

Unter der konvexen Hûlle c der Kurve C wird wie ublich die Einhûllende
derjenigen Tangenten an C verstanden, die C ganz auf der einen Seite lassen.

Die konvexe Huile c einer Kurve C liegt in ihrem Umkreis Km und es

gilt daher nach der Théorie der konvexen Kurven

Hilfssatz 9 : Die Lange der konvexen Huile c einer Kurve C ist kleiner als
der Umfang ihres Umkreises.

Dasselbe gilt naturlich von C selbst, falls es konvex ist und nicht mit
Km zusammenfallt. Es wird daher fur das Folgende stets vorausgesetzt :

C sei nicht konvex. Bezuglich der von jetzt ab betrachteten Kurven C gelte
2

uberdies immer rm < 1 + ~nf bzw. d ^ 4.
y s

Das in der Einleitung erwahnte Symmetrisierungsverfahren kann nun
folgendermaBen beschrieben werden : c sei die konvexe Huile von C und

PxP2 eine ihrer Strecken. Durchlauft man C von Px aus im positiven
Sinn, so soll man auBer eventuellen Punkten der Strecke PxP2 keine
anderen Punkte von c treffen, ehe man P2 erreicht. Der durchlaufene

Bogen PiP2 werde nun an P^Pi gespiegelt. Dasselbe geschehe mit allen

im selben Sinne einer Strecke PtPk der konvexen Huile zugeordneten

7) Vergl. auch S. 31.
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Teilbôgen von C. Man erhâlt durch diesen ProzeB eine neue Kurve. Von
dieser weiB man :

1. da8 sie stetig und glatt ist und den Seite 16—17 formulierten
Voraussetzungen liber die Kriimmung genugt ;

2. daB sie die gleiche Lange hat wie C.
Wàre man auBerdem sicher, daB sie

3. ebenfalls einfach wàre und
4. denselben Umkreis Km hàtte wie 0, so hàtte man nach der Spiege-

lung eine neue vergleiehsfàhige Kurve C± vor sich. Auf dièse wiirde man
das Spiegelungsverfahren von neuem anwenden. Man wiirde also die
konvexe Huile cx von C^ konstruieren und die ihren Strecken auf die eben
charakterisierte Weise zugeordneten Bôgen an den Strecken spiegeln.

Setzen wir einen Augenblick als bewiesen voraus, daB aus jeder ver-
gleichsfâhigen Kurve durch die Spiegelung wiederum eine vergleiehsfàhige

Kurve hervorgeht, so kônnen wir durch eine nicht abbrechende
Folge von Spiegelungen eine Folge von Kurven C, Cl9 C2 mit folgenden
Eigenschaften erzeugen:

a) Sie sind aile vergleichsfâhig, d. h. sie haben denselben Umkreis, sind
einfach, geschlossen, glatt und von beschrânkter Krummung.

b) Sie haben aile dieselbe Lange.

c) In der Folge der ihnen entsprechenden konvexen Hullen c, cv c2, c3...
enthàlt jede mindestens einen Teilbôgen der vorhergehenden im Innern
und keinen im ÂuBern.

d) Die Difïerenz zwischen der Lange von Cv und derjenigen von cv wird
mit wachsendem v beliebig klein.

e) Die Lange von cv ist fur jedes v kleiner als der Umfang von Km.

Aus diesen Punkten folgt unmittelbar

Satz 5 : Die Lange einer Kurve C ist nicht grojier als der Umfang ihres
2

Umkreises Km, wenn dessen Radius rm ^ 1 -f- -r== ist.
X

DaB dann 2 rmn fiir die Lângen aller in Km liegenden C die genaue obère

Schranke ist, bedarf keiner weiteren Erôrterung; denn es ist leicht,
Kurven C anzugeben, die Punkte im Innern von Km haben und deren
Lange vom Umfang dièses Kreises beliebig wenig abweicht. Offen bleibt
noch die Frage, ob es auBer Km selbst Kurven C von der Lange 2 rmn in
Km gibt. Von den Punkten a, 6, c, d, e ist einzig der Punkt d eines Be-
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weises bedûrftig. Dieser ergibt sich am einfachsten aus dem Beweis fur
Punkt 3 S. 19. Letzterer soll jetzt gefuhrt werden.

Px und P2 seien die Endpunkte einer Strecke, der einer Kurve G

zugehôrigen konvexen Huile e. Sie sollen in die Punkte — a und a (a > 0)
der #-Aehse eines rechtwinkligen Koordinatensystems fallen und C selbst
liège in der abgeschlossenen oberen Halbebene. Unter kx und k2 werden
die beiden Einheitskreise verstanden, welche die #-Achse in — a bzw. a
beriihren und die in der oberen Halbebene liegen. k3 ist derjenige Einheits-
kreis, der sowohl kx als k2 berûhrt und dessen Mittelpunkt auf der nega-
tiven y-Achse liegt. Da8 es immer ein k% gibt, folgt durch eine leichte

2
Rechnung aus der Tatsache, da8 a ^"7=== sein mu6. Dièse letzte Tat-

sache folgt aus Hilfssatz 1, Zusatz 1, wenn man C von Px aus in negativer
und von P2 aus in positiver Richtung bis zu den Punkten verfolgt, in
denen die Tangente zum erstenmal parallel zur y-Achse ist. Aus Hilfssatz

2 a folgt weiterhin, daB man, bei diesen Durchlaufungen ûber die
letztgenannten Punkte hinaus fortschreitend, nicht ins Innere von kx

bzw. k2 gelangen kann, ehe man die Gerade y 2 erreicht hat. Man mu6
aber dièse auf beiden Wegen erreichen, da C geschlossen ist. Daraus folgt,
daB kx und k2 in Km liegen.

&3 beriihre kx bzw. k2 in den Punkten P[ bzw. P'2. tp12 sei der Kurven-

bogen, der sich zusammensetzt aus P\P\ auf kx (p) P\P2auf kz(n), P[P2
auf k2 (p) und 0 sei die geschlosseneKurve aus \p12 und Px P2. Dann gilt der

Hilfssatz 10: Kein Punkt des Bogens PXP2 auf C liegt aufierhalb von 0.

Beweis: Man denke sich PXP^ von Px durchlaufen. Nach Hilfssatz 3

kann keiner unter den von rechts den Bogen beruhrenden Einheits-
kreisen den Kreis kx schneiden, ehe der Bogen die Gerade y 2 erreicht

hat. Nun schneide PXP2 y>12 zum erstenmal im Punkte P auf P[P2- Der
dort von rechts berûhrende Einheitskreis k schneidet k2. Der Mittelpunkt
von k liegt nàmlich, wie man leicht erkennt, innerhalb des zu k2 konzen-
trischen Kjreises vom Radius 2. Dasselbe wàre a fortiori der Fall, wenn der

erste Schnittpunkt P auf P[ P2 làge.

Zweigt PXP2 in einem Punkte P' von P[P'2 berùhrend von xp12 nach

auBen ab, dann gibt es beliebig nahe an P' auf Px P2 Punkte P, fur welche
der von rechts berûhrende Einheitskreis k2 schneidet. In allen diesen
FàUen muB man nach Hilfssatz 3 auf dem von P2 aus im negativen Sinn

durchlaufenen Bogen P2 P einmal die Gerade y 2 erreicht haben, ehe
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man zum Punkt P gelangt. Erreicht man aber von P2 aus in negativem
Sinn die Gerade y 2, so muB das auch bei der Durchlaufung in posi-
tivem Sinn von Px aus der Fall sein. Bei der Durchlaufung von Px aus
kann man aber nicht ins Innere von kx gelangen, ehe man die Gerade

y 2 erreicht hat, und bei der Durchlaufung von P2 aus bleibt man auf
oder auBerhalb von k2, so lange man im Streifen 0 ^ y < 2 bleibt
(Hilfssatz 3).

Schneiden oder beriihren sich kx und k2, so ist es leicht einzusehen, daB

den obigen Forderungen nicht genugt werden kann, ohne daB der Bogen

P1P2 mindestens einen Doppelpunkt hat. Liegen kx und Jc2 getrennt, fo

denke ich mir PiP2 von Px aus bis zum ersten Schnittpunkt mit y 1

durchlaufen. Dort sei unter den C von rechts berùhrenden Kreisen der

grôBte, Ka geschlagenen, der keinen Punkt von P1P2 enthâlt. DaB

es einen solchen gibt, folgt ebenso wie die Existenz des Berûhrungs-
kreises (S. 22). Sein Radius ist sicher kleiner als 1.

Aus einem Bogen auf Ka und einem Teilbogen von P1P2, lâBt sich eine
den Voraussetzungen des Hilfssatzes 5 geniigende geschlossene Kurve <p'

konstruieren. Sie liegt ganz in Km und enthâlt nach Hilfssatz 5 einen
Einheitskreis k' ganz in ihrem Innern. Dieser liegt auBerhalb von C. Da
aber C bei dieser Lage von kx und k2 einen Durchmesser hat, der grôBer ist
als 4, so liegen in ihrem Innern zwei getrennte Einheitskreise k" und k"r.
Die Kreise k'\k"\k"r liegen aile in Km und sind getrennt. Das ist sicher

2 2^ ^ 1 +
2 2

nicht môglich, wenn rm< 1 + "rf" ^* -^ur rm— 1 + "nr a':)er muBten

die beiden in C liegenden Einheitskreise sich berûhren, wenn auBer ihnen
noch ein dritter Einheitskreis in Km liegen soll, d. h. keine Strecke der

2
konvexen Huile kann dann grôBer sein als -r== Dièse Konfiguration ist

y s

aber bereits im vorigen Abschnitt behandelt.

Aus dem eben bewiesenen Hilfssatz folgt, daB aile Punkte des Bogens

Px P2 auf den inneren Normalen der Strecken Px P2 der konvexen Huile c

liegen. Die Punkte des aus P1P2 durch Spiegelung hervorgehenden

Bogens PxP2 liegen daher auf den âuBeren Normalen zu PXP2. Es kann
aber die âuBere Normale in einem beliebigen Punkte einer komvexen
Kurve weder dièse selbst in einem zweiten Punkt noch irgendeine andere
àuBere Normale schneiden. Daraus folgt, daB die durch die Spiegelungen
aus C entstehende Kurve C1 einfach ist, d. h. Punkt 3 ist bewiesen.
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Die den verschiedenen Strecken PtPk von c entsprechenden Bôgen \ptk
bilden mit den der konvexen Huile c angehorigen Bogen von C ebenfails
eine einfache geschlossene Kurve C". Die aus dieser durch die Spiegelun-
gen der \plk hervorgehende Kurve 0* hat dieselben Eigenschaften. Kein
Punkt Cx liegt auBerhalb von 0*. Wir brauchen also, um Punkt 4 S. 24

zu beweisen, nur zu zeigen, da8 auch 0* in Km liegt.
Im Hinblick auf spatere Betrachtungen wird etwas mehr bewiesen.

Um die Punkte —x0 und x0 (0<#0<2) der #-Achse werden die
Einheitskreise kx und k2 geschlagen. Sie beruhren die Gerade y — 1 in
den Punkten (— x0, — 1) bzw. (x0, — 1). K3 sei der Kreis vom Radius 3,

dessen Mittelpunkt auf der positiven ?/-Achse (inkl. Null) liegt und der
kx und k2 im Innern enthalt und beruhrt. Mit k3 bezeichne ich den Ein-
heitskreis der kx und k2 beruhrt und dessen Mittelpunkt auf der negativen
y-Achse liegt.

ip12 sei der aus Bogen von kl9 k2 und k3 auf die gleiehe Weise wie der
S. 25 mit demselben Buchstaben bezeiehnete Kurvenbogen zusammen-
gesetzte Bogen. Dann gilt

Hilfssatz lia. Der durch Spiegelung an der Geraden y — 1 aus tp12

hervorgehende Bogen tp[2 liegt in K3.

Ich beweise, dafî der durch dièse Spiegelung aus k3 hervorgehende
Kreis k's in K3 liegt. Das ist der Fall, wenn sein Mittelpunkt nicht auBerhalb

des zu K3 konzentnschen Kreises K* vom Radius 2 liegt. Die
Ordinate des Mittelpunktes von k3 ist —1/4 — x\ Durch Spiegelung an

y — 1 geht dieser Punkt uber in den Punkt — 2 -f |/4 — x l auf der

negativen i/-Achse. Das ist aber auch die Ordinate des Schnittpunktes
von i£* mit der negativen ^/-Achse.

Jeder andere Kreis von kleinerem Radius als 3, der ebenfalls kx und k2

enthalt und beruhrt und dessen Mittelpunkt auf der positiven ^/-Achse
(inkl. Null) liegt, enthalt denjenigen Bogen auf K3, der in der unteren
Halbebene zwischen den Beruhrungspunkten von K3 mit kx und k2 hegt
in seinem Innern. Also enthalt er auch den Bogen \p'12.

Nun sei K'3 ein Kreis vom Radius 3 mit dem Mittelpunkt in der oberen

Halbebene, der weder kx noch k2 beruhrt und sie enthalt.
Dann gibt es einen zu K'3 konzentrischen Kreis K' von kleinerem

Radius, der sie beide enthalt und wenigstens den einen von ihnen beruhrt.
Ohne Beschrankung der Allgemeinheit kann man annehmen, kt sei der
beruhrte und zwar werde er im Punkt B {x-^y-^ beruhrt (y1 > — 1).

Alsdann gibt es einen weiteren Kreis K", dessen Mittelpunkt auf der

Strecke B M (M Mittelpunkt von K.3) und auf der y-Achse liegt, der
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durch B geht und der aueh k2 berùhrt. K" liegt in K'%. Spiegeln wir
die Kurve tp12 an der Geraden y — 1, so liegt das Spiegelbild ganz
in K', also auch in K's. Lâge der Mittelpunkt von K'z in der unteren
Halbebene, so wiirde dies um so mehr der Fall sein. Es gilt also allgemein :

Hilfssatz 11. Genilgten 3 Einheitskreise kl7k2, k3 den S. 25 Zeile 6—10
genannten Voraussetzungen, ist ferner \p12 die dort definierte Kurve und
enthâlt ein Kreis K vont Radius r ^ 3 die Kreise k± und k2 im Innern,
so liegt das Spiegelbild von ip12 bezûglich der gemeinsamen Tangente an kx

und k2, die ip12 in den Endpunkten berûhrt, ganz in K,

Die unter 4 S. 24 aufgestellte Behauptung ist also richtig.
Um Punkt d der Seite 22 sicherzustellen, und dann zu zeigen, da8 der

Umkreis langer ist als jede unter den von ihm eingeschlossenen Kurven,
beweise ich

Hilfssatz 12: Der Bogen P1P2 aus Hilfssatz 10 ist kilrzer als der Bogen

tp12, wenn er nicht mit diesem zusammenfâllt.

Ich denke mir P1P2 in der Form

y /i2(#)> — a < a: < a; f12{x) > 0

dargestellt.

Die Lange l12 von Px P2 ist

fi«= J y\+fn(x)dx.
—s

Der Bogen ip12 sei dargestellt durch die Gleichung

y y)12(x), —a<#<a.
Das Maximum von f12(x) in (—a,a) sei 2 6, dasjenige von y)i2(x) sei 2 61#

Es ist bx ^ b. Im Falle des Gleichheitszeichens ist f12(x) y)12(x).

Um den Punkt (0, — 1 + b) werde ein Einheitskreis k geschlagen.

Er schneide die ic-Achse in den Punkten—d und d. Es ist d ^ —-. Der

DifEerentialquotient der Funktion, welche den in der oberen Halbebene
verlaufenden Bogen von k darstellt, hat in den Punkten der #-Achse
absolut genommen seinen grôBten Wert. Wir bezeichnen diesen mit m (6).

f12(x) nehme sein Maximum 2 6 fur x x0 an. Nach den Unglei-
chungen, die zum Beweis fur Hilfssatz 1 fûhren, gilt dann fur die Intervalle
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(— a, — a + d) und (a — d, a) a) \ f12(x) I <S I V12(x) I C bedeutet hier
Derivierte). Ferner

P) \f'i2(Xo — d+S)\ <\y>'12(—d+£)\ fur 0<f <2rf.
Fur das ganze Intervall (— a, a) ist

y) l/i2

da sonst nach Hilfssatz 1 entweder fur ein xx /12(#i)< 0 oder fur ein
x2 f12(^2) > 2 6 sein muBte.

Fur — a + d< x< — d und d < x < a — d gilt aber ander&eits

à) I Vi2

Aus a, /S, 7, (3 folgt fur /12(a)

^12= / M + /12W dx< J M + Vi2 (^) d^ Lange von ^w.
—a -a

Wenn max \f1<i(x)\^=2b1 ist, folgt aus Hilfssatz 1 und Zusatz 1

weiterhin, daB die Flache des von Cx umschlossenen Bereichs um mehr
als 4 b\ grofier sein muB als die des von C begrenzten Bereiches. Es kann

demnach unter den Gv nur endlich viele geben, welche Bôgen PtPk be-

sitzen, auf denen Punkte mit einem Abstand D ^ 2 61;(61>O fest) von
der zugehorigen Geraden PtPk der konvexen Huile c besitzen. Son&t

gabe es ein N, so daB fur aile v > N die Cv Flache einschlossen, welche
1/

groBer ware als r^ n. Wegen y ist ferner Z12 < 2 a y l+m (bx), und dièse

GroBe geht mit ôj-^O gegen 2 a. Damit ist auch Punkt d S. 24 bewiesen.

Jetzt kann man auch die Frage nach den langsten in K
y

eingeschlossenen Kurven C entscheiden. Es gilt

Satz 5 a. Jede von Km verschiedene in Km eingeschlossene Kurve C ist
kurzer als 2rmn.

Die den successiven Spiegelungen entsprechende Folge der konvexen
Hullen cx c2 c3 konvergiert gegen eine konvexe Kurve c0. Die Lange
von C ist gleich der Lange dieser Grenzkurve. Hat c0 Punkte im Innern
von Km, ist ihre Lange kleiner als 2 rm7t. Das heiBt aber: daB jeder Punkt
von C im Innern von Km nach einer endlichen Anzahl //, von Spiegelungen
im Innern von c^ liegen muB, falls die Lange von C gleich 2 rmn sein soll.
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Sei Px P2 ein Bogen auf C, der im Innern der konvexen Huile c verlàuft.
Fâllt er nicht mit dem S. 25 definierten Bogen y>12 zusammen, so kann er
durch diesen nach Hilfssatz 12 lângeren Bogen ersetzt werden, und man
erhàlt wieder eine vergleichsfàhige Kurve. Dièse wâre aber langer als
2 rm n, fails C selbst dièse Lange besitzt, was nicht môglich ist.

Sei PkPi irgendein Bogen auf c zwischen zwei aufeinanderfolgenden
Strecken. Den nachfolgenden konvexen Htillen c±,c2,c3... kônnen

bestenfalls Teilbôgen Piv)P\v); v 1, 2, 3 von P^Pl angehôren, und

es gibt nach Voraussetzung ein letztes v /u, — 1 derart, daB P(j^"1) P^^
noch Bogen der konvexen Huile c^ ist, und so, daB er nur Punkte im
Innern von c^ hat. Damit sind wir auf den eben behandelten Fall zurûck-
gekommen, d. h. man kônnte aus C^ eine làngere vergleichsfàhige Kurve
C'p gewinnen. C^ und damit C kann also nicht die Lange 2 rm uz haben.

Eine vorlâufige, wenn auch ungenaue Antwort auf die Frage nach der

genauen oberen Schranke (eventuell dem Maximum) der Lange aller
Kurven C vom festen Durchmesser d ^ 4 enthàlt bereits das im vorigen
Abschnitt abgeleitete Résultat uber das Maximum der Lange aller C mit

2
festem Umkreisradius rm < 1 + ~nr • Der Umkreis, welcher zu irgend

einer Kurve vom Durchmesser gehôrt, hat ja nach Hilfssatz 8 einen
2

Radius rm < 1 + -t=
Es handelt sich nun zuerst darum, festzustellen, in welchem Intervall

die Radien der Umkreise aller C mit festem Durchmesser d liegen kônnen.
Beruhrt C den Umkreis Km in den Endpunkten eines Durchmessers, so

ist rm —. Sind dagegen drei Beriihrungspunkte Ql9Q2,Qs vorhanden,

welche ein spitzwinkliges Dreieck bilden, so mussen die Mittelpunkte Mi
der dort von innen berûhrenden Einheitskreise k€(i 1,2,3) Ecken
eines spitzwinkligen Dreiecks sein und auf dem zu Km konzentrischen
Kreise K* vom Radius rm— 1 liegen. Die Lângen der Seiten l^ l, 2, 3)
dièses Dreiecks sind gegeben durch die Gleichung

wobei 2 at der zur Sehne l{ gehôrige Zentriwinkel in K* ist. Fur einen

unter ihnen — es sei ax — gilt sicher ax ^ — woraus folgt :
3

30



Nach Hilfssatz 1 S. 11 trifft die Gerade, auf der lt liegt, C auBerhalb oder
auf den Einheitskreisen, deren Mittelpunkte sie verbindet und auch
auBerhalb von K*, so daB es auf C mindestens zwei Punkte mit der

Entfernung

geben muB.

Aus d± ^.d folgt dann

d — 2yr+(r d==* ist

insgesamt also

III 4<r.<^
Die genaue obère Schranke S2(d) der Lange aller Kurven vom Durch-
messer d ist darum der Ungleichung

unterworfen. Wird dièse obère Schranke von einer der Kurven ange-

nommen, so ist sicher, daB sie kleiner ist als 2tz\1 + r-- ); denn der
* y o j

Kreis mit diesemUmfang, in dessen Inneres jede der betrachteten Kurven
eingebettet werden kann, gehôrt selbst nicht zu den Vergleichskurven.

Zur genauen Bestimmung von S2(d) kann man wiederum versuchen,
sich des Spiegelungsverfahrens zu bedienen, d. h. also: an Stelle einer
beliebigen Kurve C eine Folge von konvexen Kurven zu betrachten,
deren Lângen monoton wachsend gegen diejenige von C streben. Dieeben
festgestellten Resultate uber den Radius des kleinsten Umkreises geben
Gewàhr dafûr, daB die durch die Spiegelungen entstehenden Kurven
im Umkreis Km von C bleiben. Achtet man auf die Durchmesser der
successiven konvexen Kurven, so bemerkt man, daB sie eine monoton
nicht abnehmende, beschrânkte Folge bilden. Dièse hat einen Limes.
Gelingt es diesen zu bestimmen und zu zeigen, daB er fur festes d unab-
hângig von der speziell gewàhlten Kurve C ist, so kann man erwarten,
auf Grund von bekannten Sâtzen liber konvexe Kurven, die Funktion
^2 (d) genau bestimmen zu kônnen.

Das im vorigen Abschnitt verwandte Spiegelungsverfahren erweist sich
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indes in jener Form als unzweckmaBig. Es ware namlich unter anderem
festzustellen, welchen maximalen Abstand die Punkte zweier Bogen
haben konnen, die aus zwei Bogen von G durch Spiegelung hervorgehen,
was weitlaufige Betrachtungen erfordert. Eine leichte Modifikation fuhit
jedoch sofort zum Ziel. Anstatt an allen Strecken der konvexen Huile auf
einmal zu spiegeln, kann man sich mit der Spiegelung an einer einzigen
begnugen. Die Kurve Cv welche mit ihr langengleich und ebenfalls ver-
gleichsfahig ist, geht also aus C durch dièse einzige Spiegelung hervor.
Zu ihr konstruiert man die konvexe Huile cx und nimmt wiederum eine

Spiegelung um eine ihrer Streeken vor usf. Bezuglich des Anschmiegens
der Cv an die konvexen Hullen cv gilt das auf S. 29 Festgestellte, da sich
an den dortigen Ùberlegungen gar nichts andert. Dasselbe ist fur die

Konvergenz der Langen der cv gegen die Lange von C der Fall.

Man hat also nur festzustellen, wie groB der Abstand irgendeines

Punktes eines Bogens, PtPk, der aus einem Bogen PtPk von C durch

Spiegelung hervorgeht, von irgend einem Punkte auf C hochstens sein
kann.

Statt dièse Feststellungen fur C selbst zu machen, betrachte ich die
konvexe Huile c mit AusschluB der Strecke, um die umgeklappt wird.
0 sei irgendein Punkt auf ihr. Er falle in den Ursprung eines rechtwink-
ligen Koordinatensystems, die #-Achse sei Tangente an c in O und c liège
in der oberen Halbebene. k sei der in der oberen Halbebene liegende
Einheitskreis, der die x-Achse im Ursprung beruhit, und K der zu k
konzentrische Kreis vom Radius d — 1. Aus d < 4 folgt d — 1 < 3.

Ferner folgt aus den Hilfssatzen 2a und 3 S. 11 ; 14, daB kein Punkt von c

aufïerhalb des Kreises K liegen kann. Da man namlich von O aus in posi-
tivem und in negativem Sinn laufend auf C die Gerade y 2 erreichen
muB, indem man auBerhalb oder auf k bleibt, liegt einerseits sicher
kein Punkt von c in k, anderseits schneidet jede Gerade durch den Mittel-
punkt von k c genau in zweiPunkten. Lageder eine derbeiden auBerhalb

von K, so muBte er vom anderen einen Abstand haben, der groBer ware
als d. Aber der Durchmesser von c ist gleich dem von C. Wenn aber c in

K liegt, dann muB nach dem Hilfssatz 12 das Spiegelbild PtP^ eines

Bogens PtPh bezuglich der Strecke PtPk der konvexen Huile c auch

noch innerhalb von K liegen. Darum ist kein Punkt des Bogens PtP'k von
O um mehr als d entfernt. Was fur die Punkte der konvexen Huile gilt,
gilt naturlich um so mehr fur die in ihrem Inneren gelegenen Punkte
auf C, die in Betracht fallen. Man hat also
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Hilfssatz 13: Der Durchmesser der Kurve Clf die ans C dadurch ent-

steht, daji ein Bogen Pt Pk der letzteren an der ihm im Sinne von Hilfssatz 10

zugeordneten Strecke PlPJC der konvexen Huile c gespiegelt wird, hat den-
selben Durchmesser wie C selbst.

Man erhalt also durch die successiven Spiegelungen eine Folge von
gleichlangen Kurven Cv und damit eine Folge von konvexen Hullen cv,
die aile den Durchmesser d besitzen und so, daB die Langen der konvexen
Hullen die Lange von C als Grenzwert besitzen. Nun ist aber nach be-
kannten Satzen8) die Lange einer konvexen Kurve vom Durchmesser
d hochstens gleich dn. Daraus folgt mit Hilfe der Ungleichung III :

Es gilt also Satz 6. Jede Kurve C, deren Durchmesser d ^ 4 ist, ist hôch-

stens gleich lang wie der Kreis mit dem Durchmesser-—. Es ist aber indiesem

Fall nicht mehr so, daB nur der Kreis allein unter allen Vergleichskurven
dièse Lange wirklich hat. Sie wird von allen konvexen Vergleichskurven
vom konstanten Durchmesser d angenommen. Die Bezeichnung ,,kon-
stanter Durchmesser" bedeutet dabei, daB es zu jedem Punkt auf C
mmdestens einen weiteren gibt, der von ihm den Abstand d hat.

§*•
Auf S. 19 stellten wir fest, daB jede Kurve C mindestens einen Einheits-

kreis ganz enthalten muB und, wenn ihr Durchmesser mindestens 4 ist,
deren zwei sich nicht schneidende. Durch dièse Feststellungen sind untere
Schranken fur die GroBe der von einer Kurve C eingeschlossenen Flache
gegeben. DaB eine solche Flache immer quadrierbar ist, folgt ubrigens
leicht aus den Stetigkeitsvoraussetzungen bezuglich x (s), y (s) S. 16 und
deren Derivierten. Das Ziel dièses Paragraphen ist, die genaue untere
Schranke fur die von einer Kurve C eingeschlossene Flache als Funktion
des Radius rm des Umkreises bzw. des Durchmessers d zu bestimmen,
also zwei Funktionen Ft (rm) und F2 (d) zu ermitteln, so daB fur die Flache
F (C) des Bereiches, welcher von irgendeiner Kurve C vom Umkreis-
radius rm berandet wird, gilt

8) Vergl : A. Rosental u. O. Szâsz, Jahresbencht d deutschen Math Ver. Bd. 25

(1917), S. 278 — 282.
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und analog ftir den Inhalt F (C) irgendeines Bereiches, der von einer be-

liebigen Kurve C mit festem Durchmesser d begrenzt wird :

2
Zunâchst sei rm < 1 -f -r=~- bzw. d < 4. Die Funktion F2 (d) wird sich

M s

unmittelbar aus der Funktion Fx (rm) ableiten. Nach Seite 31 des vorigen
Abschnittes gentigt ja der Radius rm des Umkreises einer Kurve C vom

j ^ 2
Durchmesser d der Umgleichung — < rm < ,— -f- 1, und es ist auBer-

2i \
dem zu erwarten, da8 F1(rm) mit wachsendem rm nicht abnimmt. Be-
stâtigt sich dièse Vermutung, so ist

Ich beweise zuerst drei Hilfssàtze. Ùber die Kurven C und ihre Lage
werden genau dieselben Voraussetzungen gemacht wie bei Hilfssatz 10

S. 25. PXP2, klf k2, k3 und y>12 haben dieselbe Bedeutung wie dort
(Fig. 2, S. 35). Der Mittelpunkt des Umkreises Km liège in der oberen
Halbebene, und er beruhre mindestens den einen der beiden Kreise kx

oder k2 nicht. Nun werden kx und k2 oder nur kv wenn k2 beruhrt wird,
bzw. k2, wenn kx beruhrt wird, lângs der #-Achse nach aufien verschoben,
bis es zur Beruhrung mit Km kommt. In dieser neuen Lage sollen sie mit
k\ bzw. &J bezeichnet werden. P\ bzw. Q\ seien die Beruhrungspunkte
von k\ mit der a;-Achse bzw. mit dem Kreise Km, und P*2 bzw. Q[ haben
die analoge Bedeutung fur k\. Ferner seien k\ und ip*12 die Analoga zu k3

und ip12 oben. Nun betrachte ich folgende zwei Kurven C:

1. Cl9 die von Pt aus im positiven Sinn durchlaufen sukzessive aus

den folgenden Bôgen besteht: ip12i P2P*2, P*2Q*2 auf k*2(p) Q*2Q*X auf Km(p),

Q[P{ auf k[(p) und P\Px.
>

2. C\ von P\ aus in positivem Sinn durchlaufen aus xp*12 und von P2 aus

wie Cv Nach HiKssatz 10 hat PXP2 auf G keinen Punkt in Cx und C± nach

dem gleichen Hilfssatz keinen Punkt in C*. Darum gilt

Hilfssatz 14: Der Bogen PXP2 auf C schneidet den Bogen Q\Q*2 auf C[

(von Ql aus auf C* in positivent Sinn durchlaufen) nirgends und liegt teil-
weise aufierhalb von C\.
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Jetzt gehe man von Q*2 ans im positiven Sinn auf Km zu einem Punkt

Q*2* uber, der so liège, da8 der Bogen Q* Q*2 Q*2* nicht langer als rmn sei.

Sei k*2* der Km in Q*2* von innen beriihrende Einheitskreis, und kl* der-

jenige Einheitskreis, welcher k\ und k*2 in analoger Weise berûhrt, wie
^3 k[ und k*v Hierauf werde aus Bogen von k*, k**, k*2 und K die C* ent-
sprechende Kurve C** konstruiert. Es gilt

y

Fig. 2

Hilfssatz 15: Kein Punkt von C* liegt im Innern von C**. Dann liegt

auch kein Punkt von C1 und keiner von P±P2 (Hilfssatz 14) in G**.

Seien B[ bzw. B*2 die Beruhrungspunkte von k\ und k\ bzw. von k*2 und
&3, J5** bzw. B*2* diejenigen von k* und k\* bzw. von k*2 und k*3*. C** fâllt
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mit Ausnahme des in positivem Sinn durchlaufenden Bogens B\Q^ mit
0* zusammen. B\B\* liegt im Innern von C*v Der Kreis k*2* schneidet

sowohl k\ als k*2, wenn schon, dann innerhalb von C* und k\ uberhaupt

nicht; also mtîBte der Bogen B\* B*2* auf k*s* G[ zweimal schneiden, wenn
Hilfssatz 15 nicht wahr wâre. Aber der erste Schnittpunkt von Jc*s* mit
k*z wird bei Durchlaufung des Kreises k*s* von B{* aus in negativem Sinn

erst nach B*2* getroffen. Wûrde andererseits B[* B*2* auf k*s* (p) k\ zweimal
sehneiden und zwischen den Schnittpunkten im Âussern von k\ ver-
laufen, so mufite der Bogen langer sein aie n, was nicht môglich ist.

Fig. 3

Ist der Bogen QlQlQl* nicht gleich rmn, so kann man weiterhin von

Q\ auf Km im negativen Sinn zu Punkten Q\* gelangen, so da8 Q[*QlQlQl*
immer noch hôchstens gleich rmn ist. Man konstruiere dann analog zum
Vorhergehenden den Kreis k[* und zu k\* und k*2 i***, ferner aus ihnen
und Km die Kurve Cj*\ Es folgt wie eben

Hilfssatz 16: Kein Punkt von C\\C\,C1 und somit von I\P2 des

Hilfssatzes 14 kann im Innern von C[** liegen.
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Auf Grund dieser Hilfssâtze wird jetzt in zwei Schritten die genaue
untere Schranke F1(rm) bestimmt, und diejenige Kurve Cm ermittelt,
welche genau die Flàche mit dieser Schranke als Inhalt begrenzt.

Um die Punkte — rm + 1 und rm — 1 der #-Achse werden die Einheits-
kreise kx und k2 geschlagen (Fig. 3). Km hat dann seinen Mittelpunkt im
Ursprung und geht durch die Punkte Qx (— rm, 0) und Q2 (rm, 0).
k3 und fc4 seien die Einheitskreise, welehe kx und k2 gleichzeitig berlihren,
und der Mittelpunkt von k3 liège auf der negativen, derjenige von &4 auf
der positiven y-Achse. B13 und B23 seien die Berûhrungspunkte von k3

mit kx und 1c2 ; jB14 und i?24 die entsprechenden Berûhrungspunkte
zwischen &4 und kx bzw. k2. Die geschlossene Kurve Gm setze sich von
B13 aus in positivem Sinn durchlaufen successive aus den folgenden Bôgen

zusammen: B13B23 auf k3 (n) B23BM auf k2 (p) B2iB14^ auf fc4 (n) und

schlieBlich BX^B12 auf kx (p).

Sei C eine beliebige Vergleichskurve, die durch Q± und Q2 geht. Da sie

von Qx und von Q2 aus in beiderlei Sinn durchlaufen nach Hilfssatz 1 Cm

nicht schneiden kann, ehe sie die Geraden x — rm + 1 erreicht, liegt
Cm im Innern der konvexen Huile c von C. P{ Pk sei eine beliebige Strecke

von c, und PiPk der ihr im Sinne von Hilfssatz 10 entsprechende Bogen

auf G. Dann kann man in den Hilfssàtzen 14, 15 und 16 Q** bzw. Q*2 durch

Qi bzw. Q2 ersetzen, und die vier Kurven C1 C\ C** und C*** konstruieren,

die aile Cm enthalten, so dafi also der Bogen PiPk keinen Punkt in Cm

haben kann. Da die konvexe Huile c keine Punkte in Cm hat, ist es auch
nicht môglich, daB ein Bogen von G, der der konvexen Huile c angehôrt,
ganz oder teilweise in Gm liegt. Damit ist

Satz 7a: Kein Punkt auf irgendeiner durch Q± und Q2 gehenden
Vergleichskurve C liegt im Innern von Gm bewiesen.

Qi> Q%> Qz (Fig. 4) seien drei Punkte auf Km, die in dieser Reihenfolge
in positivem Sinn aufeinander folgen, und Ecken eines spitzwinkligen
Dreiecks sind. lct, k2 und k3 seien die dort Km von innen beriihrenden
Einheitskreise, tl9 t2, t3 die gemeinsamen Tangenten an kl9 k2 und k3,
welche ein Dreieck D3 bestimmen, das die drei Kreise im Innern ent-
hâlt. Dabei ist tx die Tangente an kx und k2 usf, k[, k2, k'3 seien die
Çinheitskreise, welche gleichzeitig kx und k2, k2 und k3, k3 und kx in den
Punkten B\, B2 ; B*2, Bs ; B*s, Bx beruhren, und deren Mittelpunkte
auBerhalb des Dreiecks D3 liegen. Die geschlossene Kurve C" setze sich
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von Bx aus im positiven Sinn durchlaufen aus den Bogen B\B2 auf k[(n),
B^Bl auf k2 (p), BlB3 auf k'2 (n), B^B\ auf k3 (p), ElB1 auf k'z (n) und

B1B\ auf kt (p) zusammen.
G sei eine beliebige durch Qx, Q2 und Qs gehende Vergleichskurve und c

ihre konvexe Huile, c enthalt (7', denn nach Hilfssatz 1 mu6 C bis zu den

ersten Schnittpunkten mit den von den Mittelpunkten der kt (i 12 3

nach den Beruhrungspunkten B% J5*5 gezogenen Strahlen auf den Kreisen
oder auBerhalb verlaufen. Daher kann kein Bogen von G, welcher der
konvexen Huile c angehort, Punkte innerhalb von C haben.

Sei QxQ2 der in positivem Sinn auf c durchlaufene Bogen, PtPk irgend

eine seiner Strecken und PtPk der ihr in ublichem Sinn zugeordnete
Bogen auf C. Wieder kann man, indem man in den Hilfssatzen 14, 15

und 16 Px und P2 durch P% und Pk ersetzt, die Folge Cl9 C[ C\\ C***

konstruieren, so da6 C*x** G' enthalt (es ist dabei Q*x* Qx und Q*2* Q*2).

Damit kann aber nach den Hilfssatzen 14, 15 und 16 kein Punkt von

P1P2 auf C in G' liegen. Daraus folgt

Satz 7b: Jeder Punkt, der durch die Punkte Ql9 Q2 und Qs gehenden

Vergleichskurve G liegt auf oder au/ierhalb von C".
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Wir mûssen also, um die Schranke F1(rm) zu bestimmen, nur den

Inhalt von C fur beliebige Lage der Punkte Qx, Q2, Q3 ermitteln und
die untere Schranke dièses Inhaltes aufsuchen. Seien Ml9 M2, Ms die

Mittelpunkte von kl9 k2, k3 und M1M2 ll9 M2M3 l2, M3MX l3.

Dann ergibt eine kurze Rechnung den Inhalt -F (C) des von G' begrenzten
Bereiches als

F(C

Es ist aber fur

und

7) n + Y

2 (r
3

— i)

U-

fur

li 4-
4

-1)
1

denn Dreieck M±M2M3 ist spitzwinklig und dem Kreis vont Radius

rm— 1 einbeschrieben. Daraus folgt:

IV

Die reehte Seite dieser Ungleichung ist aber gerade der Inhalt des von
der Kurve Cm begrenzten Bereiches, wie man durch eine kurze Rechnung
feststellt. Damit gilt

2
Satz 7 : Aile Kurven G vont festen Umkreisradius rm < 1 + -y—= mit

y s
Ausnahme der im Vorangehenden als Gm bezeichneten begrenzen einen
Bereich, dessen Inhalt grôfier ist als n + 2 (rm — 1) j/4 — (rm—^l)2 ; der
von Cm begrenzte Bereich hat genau diesen Inhalt.

Die genaue untere Schranke Fx (rm) n + (rm — 1) • 2 |/4— (rm— l)2
ist nach rm differenzierbar, und der Difïerentialquotient ist

V*-(r.-l)" "i ^^"

Die untere Schranke wàchst mit wachsendem rm. Nach den Bemerkungen
S. 34 ist also die untere Schranke

J/4—

insbesondere .F2(4) n + 2 ]/ 3 Damit ist

Satz 8 bewiesen. Aile Kurven C vom festen Durchmesser d ^ 4 mit einer
einzigen Ausnahme begrenzen einen Bereich, dessen Inhalt grôfier ist als

39



7T + (d — 2) 1/4—( Dièse Ausnahme ist die im vorigen Satz als
F \ 2 /

Cm bezeichnete Kurve.

m Jetzt bleibt noch die untere Schranke F2 (d) fur aile diejenigenBereiche
zu ermitteln, die von Kurven C mit festem Durchmesser d > 4 begrenzt

2
werden. Da jede Kurve C, deren Umkreisradius rm> 1 + -r=— ist, einen

M6 2
Durchmesser d > 4 hat, ist zu erwarten, da6 sich i^ (rm) ftir rm > 1 + ~nfj/3
aus jP2 0) bestimmen lâBt.

Zu jedem d! > 2 (1 + ]/ 3 ist es leicht, Kurven C derart anzugeben, daB
der von ihnen begrenzte Bereich einen Flâcheninhalt hat, der F2(4:)

n + 2 |/ 3 beliebig wenig ubertrifft*). Ich werde jetzt beweisen, daB

F2(d) n + 2 ]/T ist fur aile d ^ 4.

Naeh Satz 3, S. 19 enthàlt jede Kurve C mit d> 4 mindestens zwei
Einheitskreise, die sieh nicht schneiden. Sei Jcx der eine von ihnen. Er
berûhre C im Punkte 0, der mit dem Ursprung eines rechtwinkligen
Koordinatensystems zusammenfalle. Die #-Achse sei Tangente an C in 0,
und der Mittelpunkt von lcx liège auf der positiven y-Achse. K* sei der zu
kx konzentrische Kreis vom Radius ]/ 3

Ein beweglicher Punkt P durchlaufe C von 0 aus in positivem Sinne

und trefife i£* zum erstenmal in Qv Bezuglich des Bogens OQ1 gilt

Hilfssatz 17: Kein vom Mittelpunkt Mx (0, 1) von K* ausgeJiender

Strahl ist Tangente in einem innern Punkte von OQt.

Angenommen, dies wàre fur einen Punkt P' der Fall. Dieser lâge im
Innern des Kreisringes zwischen K* und kv Aber die zwei Einheitskreise,
welehe einen Radius von K* in einem inneren Punkt dièses Kreises
beiderseits beruhren, schneiden beide kv Mit Hilfe von Hilfssatz 1

schlieBt man sofort, daB dies dann auch der Bogen OQX tun muBte, was
der Voraussetzung widerspricht.

Denkt man sich also einen immer durch M1 gehenden Strahl vom beweg-

lichen Punkt mitgefûhrt, so mufi er sich stàndig gegen den Uhrzeigersinn

um Mx drehen, wâhrend P den Bogen OQ1 durchlauft.

*) Vergl. Beisp. 1.
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Unter s± verstehe ich den Strahl von Mx aus durch Q1 und der Vektor

MXQX ^eëe au;f ihm die positive Richtung fest. Die sx in Qx von rechts und
links beruhrenden Emheitskreise werden k\ und lc[ genannt, und ihre
Beruhrungspunkte mit kx Q[ und Q[\ Es werde nun die geschlossene
Kurve 01 ins Auge gefaBt, die von Q'x aus in positivem Sinn durchlaufen
successive aus den folgenden Bogen besteht

Q[QX auf k[ (ri) QXQ[ auf 1c[ (ri) QlQ[ auf kx (p). Es gilt

Hilfssatz 18 : Die Kurve C hat keinen PunJct im Innern von &v Ware das

Gegenteil wahr, so muBte C entweder langs Q'1Q1 oder langs Q1Q'1' ins

Innere von &x eindringen. Ich beweise zunachst, dafi dies langs Q^Qx

nicht moglich ist. Fallt die Tangente an C in Qx mit s1 zusammen, so

muB nach HiKssatz 1 und Zusatz 1 Q1Q1 auf OQX liegen. Liegt die
Tangente anders, so schlieBt die positive Richtung auf sx mit dem positiven
Tangentenvektor an G in Qx einen Winkel ein, der vom ersten zum

zweiten entgegen dem Uhrzeigersinn gemessen hochstens—- ist. Jetzt

werde OQX von Qx aus im negativen Sinn durchlaufen. Trifft man den

Strahl s[ von Mx durch Q'v ehe man den Bogen Q1Q1 auf k[ getrofïen hat,

so kann OQX diesen Bogen uberhaupt nicht schneiden und die Behauptung
des Hilfssatzes ist richtig. Andernfalls gibt es einen ersten Punkt R' auf

dem Bogen, Q'1Q1, den man erreicht. OQX muB nach HiKssatz 1 Q[QX dort
schneiden. Die Tangente an C in Rf liegt nach Hilfssatz 17 im spitzen
Winkel zwischen dem Strahl von Mx durch R' und der Tangente an k[ in
-R'. Daher schneiden die beiden C in R' beruhrenden Einheitskreise den

Kreis kl9 und OQX muB ins Innere von kt eintreten, was gegen die Vor-

aussetzung ist. Der Bogen OQX hat also keine Punkte innerhalb von 0t.

Nun laufe P in positiver Richtung uber Qx hinaus weiter. Wurde er

spater ins Innere von <J>X eintreten, so konnte das nur langs QXQ[ (ex-
klusive Qx) der Fall sein. R" + Q'[ sei der erste gemeinsame Punkt von
0 und Qx Q'î, den man auf diesem Wege erreicht, s" der Strahl von Mx
durch R", t" die Tangente an lc[ in R". C muB wegen HiKssatz 1

Q1Q2 in R" schneiden. Daher liegt die Tangente an C in R" entweder
im spitzen Winkelraum zwischen V und s" — dann schneiden aber die
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rechts und links beruhrenden Einheitskreise beiden den Kreis kv und
C hâtte nach Hilfssatz 1 Punkte im Innern von kx — oder sie liegt im
stumpfen Winkelraum. Wenn auch in diesem Fall beide Beruhrungs-
kreise den Kreis k± schneiden, dann muB es auch C tun. Andernfalls
kônnte es sx auBerhalb von k± schneiden. Dann muBte die Kurve aber
den Ùberlegungen fur Hilfssatz 17 zufolge OQ1 schneiden oder zum
zweitenmal durch 0 gehen, was gegen die Voraussetzung geht. Ginge G

durch Q'[ so muBte die Kurve entweder auf kx weiterlaufend durch Q[

gehen oder làngs QxQ^ ins Innere der geschlossenen Kurve <p* eintreten,

die der Reihe nach aus den Bôgen 0Q1 auf C (p), Q±Q[ auf k[ (p), Q[0 auf

kx (n) besteht (Hilfssatz 1). In beiden Fâllen muBte sie dann aber nach

den Ùberlegungen S. 41 entweder ein zweites Mal durch 0 gehen oder

OQx oder Q[O schneiden, was gegen die Voraussetzungen ist.

Damit ist der Hilfssatz 18 bewiesen.

Analog entspricht einem von 0 aus im negativen Sinn laufenden
beweglichen Punkt eine geschlossene Kurve 0[. 0t und 0[ haben kx

gemeinsam. Die aufgesetzten Spitzen kônnen entweder getrennt liegen
oder sich in einem Punkte schneiden.

Geht man bezuglich des zweiten in G liegenden Einheitskreises, k2

welcher C ebenfalls berûhren soll, genau so vor wie bezuglich kv so erhâlt
man zwei weitere 0X und &[ entsprechende zu ihnen kongruente
geschlossene Kurven @2 un^ ^2- Schneiden sich die Kreise Kl und K*2

nicht {K*2 ist konzentrisch zum Einheitskreis k2 und vom Radius |/ 3

so liegen @t und 0[ von @2 und &'2 getrennt. Schneiden sie sich jedoch,
so fassen wir 01 und @2 ins Auge. Die Mittelpunkte M1 und M2 von kx und
k2 sollen alsdann symmetrisch zum Ursprung eines rechtwinkligen
Koordinatensystems auf der x-Achse liegen, und zwar Mx links. Es darf
weder die Spitze Qx von <1>1 in 02, noch die Spitze Q2 von @2 in &± liegen
(Hilfssatz 18). Sollen 0X und 02 innere Punkte gemeinsam haben, so

mûssen sich die Bogen Q^QxQl und Q'2Q2Ql gegenseitig durchdringen.

Daraus folgt, daB die Strecken MXQX und M2Q2 sich schneiden mûssen,

Qx kann alsdann nicht auf der œ-Achse liegen. P1 bezw. P2 seien diejenigen
Punkte auf G, von welchen man bei der Konstruktion von 0X und 0\
bezw. 02 und 0'2 ausging; R sei derjenige Teil des Kreisringes zwischen
kx und K*> der von den Radien durch Pt und Qx abgeschlossen wird und

auf dessen Rand oder in dessen Inneren P1Q1 von Px aus zunàchst ver-
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lauft9). P161 kann nach Hilfssatz 18 auBer Qx keinen Punkt haben, der
den geradlinigen Begrenzungsstucken oder dem Bogen auf K* angehort.

Nun liège Q1 in der oberen Halbebene und MXQX schneide M2Q2. Dann

muBte auch der Bogen PxQ^ M2Q2 schneiden, d h. er drange ins Innere

von @2 em- ^as ^ nacn Hilfssatz 18 nicht erlaubt.

Lage Qx in unterer Halbebene und schnitten sich M1Q1 und M2Q2, so

wurde man analog schlieBen, daB P2Q2 Punkte im Innern von 01 haben
muBte. @! und 02 konnen also keine inneren Punkte gemeinsam haben.
Genau so folgt, daB 0[ und 02 keine innern Punkte gemeinsam haben.
Aile innem Punkte von 0V 0V 02 und 02 sind auch innere Punkte von C.

Es gilt aber fur die Machen Fx und F2 der von 0X und 02 begrenzten
Bereiche

Da auch 0[ und 02 aus den gleichen Grunden getrennt liegen, und weder

0t mit 0[ noch 02 mit 0'2 zusammenfallen kann, da sonst Doppelpunkte
vorhanden waren, gilt fur die Flache F (C) des von C begrenzten Bereiches

F(C)>jz+ 2|/T.

Im ubrigen ist es einfach, zu jedem Durchmesser d > 4 oder zu jedem
2

Umkreis, vom Radius rm > 1 + Tô~ I^urven C anzugeben, so daB der

Inhalt des von ihnen begrenzten Bereiches dieper Schranke beliebig nahe
kommt.

Beispiel 1 : Es sei d > 2 + 2 j/ 3 oder rm > 1 + ]/ 3 Dann schlagt man
um die Punkte — d-\-l und d — 1 auf der #-Aeh&e eines rechtwinkligen
Koordinatensystems die Einheitskrei&e k± und k2 und zieht die Geraden

y e und y — s (0< e< 1). Die Einheitskreise k[ und k[ sollen

gleichzeitig kx auf der rechten Halfte in P[ bzw. P'[ und y — e bzw.

y -\- e in den Punkten Q[ bzw. Q'[ beruhren. Entsprechende Beruh-

rungen sollen die Einheitskreise k2 und k'2 mit k2 und denselben Geraden

9) Ein durch M1 gehender Strahi, der bei der positiven Durchlaufung von P± Qx von
emem beweglichen Punkt P mitgefuhrt wird, uberstreicht einen Wmkelraum, dessen

Ofînung a klemer ist als — Die gegenteihge Annahme hat die Existenz von Doppel-
6

punkten zur Folge, was man nach S. 41 emsieht, wenn man G von P1 aus in nega-
tivem Smn durchlauft.
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haben, nur mit dem Unterschied, daB k2 auf der linken Hàlfte beriihrt
wird. Die Kurve C, welche die behaupteten Eigenschaften besitzt, setzt
sich von Q[ aus in positivem Sinne durchlaufen sukzessive aus den
folgenden Teilbôgen zusammen:

i* & K (n); KP\ auf k2 (p); P^Ql auf *£(*); <£(%; ^
auf Tc[ (n); P[P[ auf k^p); P[Q[ auf k[ (n). Der Inhalt der Flâche,

welche von einer derartigen Kurve begrenzt wird, geht mit e -> 0 gegen

71+ 2|/T.

Beispiel 2. DerUmkreis Km habe einen Radius rm< 1 + |/~3~. Um die
Punkte M1,M2,MQ, M7 seien Einheitskreise geschlagen, um MS,M^, MB

Fig. 5

ebenfalls und dazu solche vom Radius 1 + e (e>0, klein), Fig. 5. Die
Entstehung von C aus Bôgen dieser Kreise und gemeinsamen Tangenten
ist leicht zu ûberblicken. Auch sieht man unmittelbar, daB der Inhalt,
des von C begrenzten Bereiches mit s -> 0 gegen n + 2 |/1T geht.
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Es gilt also Satz 9: Unter allen Kurven C vom festen Durchmesser
2

rm > 1 + Z]=x= oder vom kleinsten Umkreisradius d > 4 gibt es Jceine mit der

Eigenschaft, dafj der Inhalt des von ihr begrenzten Bereiches ein Minimum
ist. Fur diesen Inhalt existiert aber eine genaue untere Schranke, und dièse

ist fur aile d und aile rmn + 2 |/~3~.

§5-
Die Frage nach der kurzesten unter allen Kurven C mit festem Um-

kreis vom Radius rm oder mit festem Durchmesser d ist leicht zu be-
antworten. Es gilt namlich :

Satz 10 : Es gibt unter allen Kurven C mit festem Umkreis vom Radius rm
eine kurzeste, und dièse hat die Lange 2 n + 4 (rm — 1).

Ebenso existiert unter allen Kurven C vom festen Durchmesser d genou
eine kurzeste. Ihre Lange ist 2 n + 2 d — 4.

Es genugt, wiederum den Beweis fur festes rm zu fuhren. Der Umkreisradius

fur Kurven mit festem Durchmesser durch die Ungleichungen III
S. 31 festgelegt. Ferner ist, falls die obige Behauptung richtig ist, das

Langenminimum fur Kurven mit festem Umkreis eine mit rm wachsende
Funktion von rm. Also hat man fur ein testes d nur das Minimum fur die
Kurvenlange im kleinstmoglichen Umkreis in Betracht zu ziehen, woraus
sich dann sofort die Behauptung des Satzes 10 bezuglich des Durch-
messers ergibt.

Der Beweis fur die erste Behauptung des Satzes 10 vollzieht sich in
zwei Schritten.

1. Ich setze voraus, C beruhre den Umkreis Km in den Endpunkten
eines Durchmessers. Dieser liège mit dem Mittelpunkt im Ursprung auf
der #-Aehse eines rechtwinkligen Koordinatensystems. Um die Punkte
—rm + 1 und rm — 1 werden die Einheitskreise kx und k2 geschlagen, und
hierauf die Geraden y + 1 und y — 1 als gemeinsame Tangenten
gezogen (Fig. 3, S. 36). Dièse beruhren kx und k2 in denPunkten P[ und
P'î, k2 in den Punkten P'2 und P\. Die gesuchte kurzeste Kurve C*m setzt
sich vonPj aus inpositivem Sinn durchlaufen successive aus den folgenden

Bogen zusammen: P[Pi auf kx (p), P[Pn2\ P2P2 auf ^2 (P) > ^2^1*
C*m hat die Lange 2 n + 4 (rm— 1). Jede durch (—rm, 0) und (rm, 0)
laufende Kurve C verlauft von diesen Punkten aus im positiven und im
negativen Sinn bis zu ihren ersten Schnittpunkten Q[ und Q[ bzw. Q2 und
Q2 mit den Geraden x — rm + 1 bzw. x rm — 1 auf oder auBerhalb
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von kx bzw. k2 (Zusatz 1). Das Linienelement jedes der Bogen Q'tQ"%

(i 1, 2) lautet in Polarkoordinaten von den Punkteii (—rm + 1, 0)
bzw. (rm — 1,0) aus dargestellt:

(q > 1);

dasjenige auf den entsprechenden Kreisbogen do dœ.

TV TV

Also ist J ds ^ J dœ rc;
o o

gleich nur, wenn die Bogen von G auf den Kreisen liegen. Die Lange der

Bogen QiQ^ und Q'2Q[ auf C ist einzeln genommen, sicher nicht kleiner
als 2 (rm— 1) und gleich nur, wenn sie zur #-Aehse parallèle Strecken
sind, also ist die Lange jeder Kurve C durch (— rm, 0) und (rm, 0) sicher
groBer als 2 n + 4 (rm — 1), wenn sie nicht mit der Kurve C*m zusammen-
fallt.

2. Die drei Punkte Ql9 Q2, Qs sollen bei positivem Umlauf auf Km von
Qx aus in dieser Reihenfolge aufeinander folgen und Ecken eines spitz-
winkligen Dreiecks sein (Fig. 4, S. 38). ^,^2,^3 mit den Mittelpunkten
M1, M2, M3 seien die drei Einheitskreise, die Km in Q1} Q2, Qs beruhren
und gleichzeitig in Km liegen. Ml9 M2, M3 sind dann ebenfalls Ecken
eines spitzwinkligen Dreiecks; und dièses ist dem zu Km konzentrischen
Kreise K* vom Radius rm — 1 einbeschrieben. Die drei gemeinsamen
Tangenten tl912, t3 an je zwei der Kreise Jc1} k2, k3 sollen der Reihe nach

den Strecken M1M2, M2M3, MZMX parallel laufen und ein Dreieck
bestimmen, das die drei Kreise enthalt. Ihre Beruhrungspunkte mit kt
sollen mit Q'% und Q[ in dem Sinn bezeichnet werden, daB der Umlauf
um jeden der Kreise von Q'% aus uber Qt nach Q"% positiv ist. Man betrach-
tet alsdann die geschlossene Kurve Cf'm, deren Teilbogen bei positivem

Umlauf von Qx aus der Reihe nach die folgenden sind: Q1Ql auf kx (p),

QlQ'2 auf t±i Q'2Q'2r auf k2 (p), QlQ's auf t2, Q'3Ql auf k3 (p), QlQ[ auf t3

und Q1Q1 auf kx (p). Dièse Kurve C"m ist kurzer als irgendeine andere

Vergleichskurve C durch Qx, Q2, Q3. Das erkennt man analog wie unter 1.,
indem man von Mt aus die Strahlen s[ und s^ nach den Q[ und Q'^ zieht
(i 1, 2, 3). Die Bogen von Qt aus nach den beiden Richtungen bis zu
den ersten Schnittpunkten mit s'% und a" sind fur jedes i zusammen nicht
kleiner als n — at, wobei at der Winkel des Dreiecks Mx M2 M3 in der
Ecke M% ist, und sicher groBer, wenn die Bogen nicht auf den Kreisen
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Je. (i 1, 2, 3) liegen. Die ubrigen Bôgen auf G sind zusammen nicht
kleiner als der Umfang des Dreieeks M1 M2 Mz, also ist die Lange einer
jeden von G"m verschiedenen Kurve G, die durch Qx, Q2 und Q3 geht, grôBer
als 2n + Umfang von Dreieck M1M2M3. Letzterer aber ist grôBer als der

doppelte Durchmesser von K*. Somit ist die Lange einer jeden Vergleichs-
kurve C auch diejenige von C"m grôBer als 2 tt + 4 (rm— 1), was zu
beweisen war.

Zum Schlusse sei noch bemerkt, daB man etliche von den fur die ge-
schlossenen Kurven G abgeleiteten Resultate ohne Miihe auf einfache
geschlossene Flâchen ubertragen kann. Man hat dabei bezuglich der
Stetigkeit und Glattheit dieselben Voraussetzungen zu machen und ent-
weder die beiden Hauptkrummungen als stùckweise stetig und gleieh-
artig beschrànkt vorauszusetzen, oder der GauB'schen Krummung
entsprechende Voraussetzungen aufzuerlegen.

(Eingegangen den 6. Màrz 1935.)
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