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Uber geschlossene ebene Kurven
von beschrankter Kriimmung

Von F. BABLER, Gottingen

Einleitung

Die Kurven, um welche es sich handelt, sollen ,,eben, einfach, glatt und
von beschrankter Kriimmung‘‘?!) sein. Sie werden immer mit dem Buch-
staben C bezeichnet. Solche Kurven spielen eine gewisse Rolle in der
Theorie der konformen Abbildungen. Herr W. Seidel bewies u. a., da8
eine fiir | z | < 1 reguldare Funktion f(z), welche die offene Kreisscheibe
konform auf das von einer derartigen Kurve berandete Gebiet abbildet,
in jedem Peripheriepunkte eine von Null verschiedene Winkelderivierte
besitzt, die Abbildung also gewissermaflen auf dem Rande konform
bleibt?). Ein vollig gleichartiges Resultat kann man auch auf Grund
variationstheoretischer Betrachtungen erzielen. Dieser und einige andere,
die Theorie der schlichten Funktionen betreffende Umstéande haben mich
veranlafit, ein paar Fragen zu untersuchen, welche sich — grob gesagt —
auf die Abhangigkeit der Lange einer Kurve C von der ,,Ausdehnung®
des von ihr eingeschlossenen Bereiches beziehen.

Zunéchst sei bemerkt, daBl man aus der Umkehrung des Jordan’schen
Kurvensatzes und aus dem Heine-Borel’schen Theorem unmittelbar die
Existenz der Lange einer jeden Kurve C folgern kann.

Beschrankt man die Kriimmung X (s) (s sei die von irgendeinem Punkt
auf ¢ aus gemessene Bogenlinge) durch die Ungleichung | K(s)| << —;—;

o > 0, so ist es anschaulich plausibel, daBl der Kreis vom Radius p die
kiirzeste unter allen Kurven C mit derselben Krimmungsbeschrankung
ist, und daB es unter ihnen auch keine geben kann, die einen kleineren
Bereich begrenzt. Betrachtet man eine beliebige unter ihnen, die etwa
noch der weiteren Bedingung unterworfen sei, innerhalb eines Kreises
vom Radius ¢ + & zu verlaufen, oder einen Durchmesser 2 ¢ + 2 ¢ zu
haben oder einen Bereich der Groe = ¢ + ¢ zu begrenzen, so liegt es
wiederum anschaulich nahe, zu vermuten, daB die Linge dieser Kurve
nicht beliebig viel von 2 oz abweichen kann, wenn nur e geniigend
klein ist im Vergleich zu ¢. Auf diese Weise ergeben sich die folgenden
Fragen:
1) Vergl. die exakte Formulierung S. 16—17.

%) Vergl. W. Seidel.: Uber die Randerzuordnung bei konf. Abb. Math. An.
Bd. 104.



1. Gibt es fiir die Lange aller Kurven C, die in einen Kreis vom Radius
eingeschlossen werden koénnen, aber in keinem kleineren eine genaue
obere und eine genaue untere Schranke? Welches sind diese genauen
Schranken und wie hangen sie von » ab? Werden sie von irgendwelchen C
angenommen und wenn ja: von welchen ?

2. Gibt es fiir die Langen aller Kurven C' vom festen Durchmesser d
eine genaue obere und eine genaue wuntere Schranke und wenn ja: wie
hingen diese vom Durchmesser d ab? Welche Kurven haben genau diese
Schranken als Lange?

3. Existiert fiir die Flachen der Bereiche, welche jeweils von den
Kurven C der unter 2 bezw. 3 genannten Kurvenmengen begrenzt
werden, eine genaue untere bezw. eine genaue obere Schranke? Wie
hangen diese Schranken von » und d ab, und gibt es Kurven, fiir welche
sie angenommen werden und welche?

Schon durch eine einfache Uberlegung kann festgestellt werden, daB die
oberen Schranken fiir 1 und 2, wenn iiberhaupt fiir irgendwelche Werte
auller r = g und d = 2 p doch sicher nur fiir ein beschranktes Intervall
dieser Parameter existieren konnen. Genauer: Man stellt leicht fest, daf3
eine Kurve C beliebig lang sein kann, sobald ihr Durchmesser eine be-
stimmte feste Grofe iibersteigt oder sobald ihr Umkreis einen Radius hat,
der groBer ist als eine bestimmte feste Zahl. Um das einzusehen, denke
man sich einen ebenen Schnitt durch die Lingsachse einer Hantel, und
dieser werde so abgerundet und gegléattet, dafl er iiberall den Seite 5 ge-
machten Voraussetzungen iiber Glattheit und Kriimmung geniigt.

Die parallelen Strecken dieses Schnittes sollen sehr lang sein und einen
sehr geringen Abstand haben, und seine, den Gewichtskorpern entspre-
chenden Bogen wenig mehr als je einen p-Kreis K, bezw. K, einschlieBen.
Diese Schnittfigur denke man sich, indem man am einen Ende beginnt,
immer in der Ebene bleibend, um einen g-Kreis K, aufgewunden und zwar
so, daB die Glattheits- und Kriimmungsvoraussetzungen stets erhalten
bleiben. Man kann sich die Linge der Strecken so gewahlt denken, da83
nach vollendeter Aufwickelung die drei o-Kreise K;, K,, K5 in den Ecken
eines regulidren Dreiecks liegen. Man kann nun, wie lang auch die Strecken
seien, ihren Abstand so gering wahlen, dafl die ganze aufgewundene Kurve
ins Innere eines Kreises eingeschlossen werden kann, dessen Radius 7
beliebig wenig groBer ist als <1 + ~‘—/—2—-§—-> o. (Dieser Kreis enthilt gerade
3 sich gegenseitig beriihrende g-Kreise.) Die Aufwindung 148t sich ferner
gleichzeitig so einrichten, daB3 der Durchmesser der aufgewundenen Kurve
4 o beliebig wenig iibersteigt.
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Die genauen oberen Schranken S, (r) bezw. S,(d) existieren demnach

2
bestenfalls in den Intervallen o <r < ( 1+ 7_—3:) o bezw. 29 <d < 40p.

In diesen existieren sie wirklich. Durch gewisse einfache Lagebeziehungen
zwischen einer bestimmten Umgebung eines Punktes P auf C und den C
in P beriihrenden p-Kreisen, zusammen mit einer Art von Symmetrisie-
rungsverfahren durch Spiegelung gelingt es, die Existenz und die analy-
tische Form von S, (r), Sy(d) zu ermitteln. Durch ihre Bestimmung er-
geben sich gleichzeitig diejenigen Kurven, deren Lange gleich diesen
Schranken ist.

Beziiglich der unteren Schranken s, () zu 1 bezw. s,(d) zu 2 liegen die
Verhaltnisse viel einfacher. Schon die eben erwédhnten Lagebeziehungen
zwischen den Kurvenbogen und den beriithrenden p-Kreisen geniigen im
wesentlichen, um ihre Existenz sicherzustellen und die kiirzesten Kurven
zu ermitteln. Die Schranken existieren fiir alle » und alle d.

. Die Existenz der genauen oberen Schranke fiir 3 ist bei der Kreis-
bedingung trivial. Fiir die Kurvenmenge mit festem Durchmesser ist sie
leicht aus der Theorie der konvexen Kurven ableitbar. Sie existiert fiir
alle » und alle d und wird immer erreicht. Betreffs der unteren Schranken
F,(r) bzw. Fy(d) gewinnt man gewisse Anhaltspunkte schon bei der Fest-
stellung der genauen oberen Schranken fiir die Langen, indem man dort
beweist, daBl jedes C einen ¢-Kreis ganz, ja sogar deren zwei getrennte
enthalten muf}, falls der Durchmesser geniigend grof3 ist. Jedoch besteht

2
ein wesentlicher Unterschied darin, ob r <(1 -} ]7—?—> o=Rbzw.d <4p

oder r > R bzw. d > 4 ist. Fiir die kleineren r bzw. die kleineren d
kann man die Schranken ermitteln, indem man im wesentlichen eine
Tatsache iiber den Kurvenverlauf verwendet, die mit zur Feststellung der
oberen Schranken 8, (r) bzw. S,(d) gebraucht wurde. Fiir die groBeren
Werte der beiden Variabeln sind es die schon mehrfach erwahnten Lage-
beziehungen zwischen C und den beriihrenden p-Kreisen, die zum Ziele
filhren. Indes wird die untere Schranke nur fir die kleineren Werte der
Parameter erreicht. '

Die Resultate dieser Arbeit gewinnen vielleicht auch einiges Interesse,
wenn man sie vom variationstheoretischen Gesichtspunkt aus betrachtet.
Sie liefern anschauliche Beispiele dafiir, daBl Variationsaufgaben mit
Nebenbedingungen fiir gewisse Wertebereiche eines Parameters, der diese
Nebenbedingungen wesentlich bestimmt, wohlbestimmte, einfache Lo-
sungen besitzen, wihrend sie fiir alle anderen Werte des Parameters vollig
sinnlos werden. Dariiber hinaus sind es weitere Beispiele fiir die Verwen-
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dung der direkten Methoden in Féllen, in welchen die klassischen Wege
iiber die Differentialgleichungen versagen.
Ich werde alle Satze unter der Voraussetzung | K (s) | < 1 ableiten, da

die Ubertragung auf den Fall | K (s)| < % ; 0 + 1 sich unmittelbar ergibt.

Die Beweismethoden sind ausschliefilich geometrisch, und den Frage-
stellungen entsprechend fast durchweg elementar. Mehrere der hier be-
handelten Fragen haben Analoga in der Theorie der konvexen Kurven;
die dort ermittelten Ergebnisse werden an verschiedenen Stellen benutzt.

Eine ,,ebene einfache geschlossene glatte Kurve von beschrinkter
Kriimmung‘‘®) soll immer mit dem Buchstaben C (eventuell mit Index)
bezeichnet werden, und umgekehrt soll jede mit C bezeichnete Kurve den
genannten Bedingungen geniigen. Mit s wird in den §§ 1, 2, 3 nur die von
einem beliebigen Punkt einer Kurve aus gemessene Bogenldnge be-
zeichnet ; mit P (s) bzw. @ (s) sind dann die Punkte auf C gemeint, die man
erreicht, wenn man von diesem festen Punkt auf C aus den Bogen der
Lange s durchlaufen hat.

Positiver und negativer Umlaufsinn auf einer Kurve C werden wie
iiblich so verstanden, daBl man bei Durchlaufung der Kurve im positiven
Sinn ihr Inneres zur Linken, bei Durchlaufung im negativen Sinn zur
Rechten 148t. Durchlaufung im positiven Sinn wird durch das Zeichen (p),
Durchlaufung im negativen Sinn durch das Zeichen (n) angedeutet. Das
Zeichen AB soll bedeuten, daB die Strecke A B in der Richtung von

A nach B_d>urchlaufen wird. Unter der Bezeichnung ,,positiver Tangenten-
vektor wird der dem positiven Umlaufsinn auf einer Kurve C ent-
sprechende Tangentenvektor verstanden. Entsprechend ist die Bezeich-
nung ,,negativer Tangentenvektor gemeint.

Wenn von einem Koordinatensystem bzw. dessen Achsen die Rede ist,
so ist immer ein rechtwinkliges karthesisches Koordinatensystem ge-
meint. Da die beziiglich einer Kurve C betrachteten Grofen invariant
gegeniiber Bewegungen sind, wird die Lage von C beziiglich des Koordi-
natensystems jeweils nach ZweckmafBigkeit willkiirlich gew#hlt. Kurven,
die durch Bewegungen ineinander transformierbar sind, werden als
identisch betrachtet. Mit den Ausdrucksweisen: Eine geschlossene Kurve

8) Vergl. die exakte Formulierung S. 16—17.



,,umschlieBt‘‘ eine andere geschlossene Kurve, oder ,,enthilt sie im
Innern®, soll nur gesagt sein, dafl kein Punkt der zweiten auBlerhalb der
ersten liegen kann. Analog ist der Ausdruck ,,eine geschlossene Kurve
liegt im Innern einer andern‘ zu verstehen. Die beiden Kurven konnen
also je nachdem einzelne Punkte gemeinsam haben, lings ganzer Bogen
oder vollig zusammenfallen oder ganz getrennt liegen. Dagegen heif3t die
Redeweise ,,ein Punkt liegt in, oder im Innern einer geschlossenen Kurve‘
immer, er ist innerer Punkt des von der Kurve eingeschlossenen Gebietes.
Ganz analog heilt ,,ein Bogen liegt in C, daf} sich auf ihm wirklich
innere Punkte befinden.
§ 1.

In diesem Paragraphen werden zunéichst einige Hilfssitze bewiesen,

welche spaterhin haufig verwendet werden.

- Fine glatte, ebene Kurve, deren Kriimmung stiickweise stetig und

durch | K(s)| <1 beschrankt sei, berithre die z-Achse eines recht-
winkligen Koordinatensystems im Ursprung O und verlaufe von da aus
ins Innere der rechten Halbebene. k, bzw. k, seien die beiden Einheits-
kreise, welche die z-Achse in O berithren und sonst in der oberen bzw. in

der unteren Halbebene verlauten. OP sei der von O ausgehende Bogen

der Lange % auf der Kurve. Es gilt dann:

Hilfssatz 1a. KeinPunkt des Bogens OP liegt ym Innern eines der beiden
Kreise ky bzw. k.

OP sei dargestellt in der Form
x=1u(s); y=y(s); 2(0)=y(0)=0.

Die Voraussetzung der Glattheit bedeutet, daf3 x.(s), y.(s) iiberall
existieren und stetig sind. Als Parameter kann man die von O aus auf der

Kurve gemessene Bogenlinge wahlen, also 0 << s < —7—;— Der positive

Richtungssinn auf der Kurve sei durch den Tangentenvektor in der
Richtung der positiven z-Achse in O definiert. Die Kriimmung K (s) wird
positiv genommen, falls der Normalenvektor in Richtung auf den
Kriimmungsmittelpunkt von der im positiven Sinn durchlaufenen Kurve
nach links weist, im anderen Fall negativ. K (s) soll fiir alle s existieren
stetig und absolut hochstens gleich 1 sein, abgesehen von einer Punkt-
menge, die so beschaffen ist, dall sie mit Ausnahme von endlich vielen
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ins Innere von Teilintervallen eingeschlossen werden kann, deren Ge-
samtlange kleiner als ¢ sei (¢>0 sonst beliebig). Erteilt man K (s) fir
diese Punkte beliebige, zwischen — 1 und + 1 liegende Werte, so existiert

j K (0)do fiir jedes s in (0 ﬁ-) und ist von den willkiirlich gewahl-

2
ten Funktlonswerten unabhingig. Es ist alsdann

z(s) = cos g (s); y(s) = smqo(s)

8
f cos p(0)do; y(s) = [sing(o)de. Man setzt ferner
0 0

lI

£(s) = [cos odo bzw. 7,(s) = [sin cdo und
0 0

75(8) = — n1(8) .
Wegen | K(s) | < 1ist|g(s)| < s, woraus folgt:
z(s) = &(s) und | y(s) | < 71(8) = | 7a(s) |.

&(s) und #, (s) bzw. £(s) und #,(s) sind aber die Koordinaten der Punkte
auf den bei O in die rechte Halbebene eintretenden Bogen von k, und k,.
Es ist also

g {3 moien() ()<l

1. Das Gleichheitszeichen in der ersten Gleichung kann nur gelten fiir

K=+ 1bzw. K(s)=— 1 fir 0 <s<£—. Dann aber gilt in der

2
zweiten Ungleichung auch entweder das zweite oder das erste Gleichheits-

zeichen, d.h. der Bogen OP fallt mit dem einen der bei O in die rechte
Halbebene eintretenden Viertelkreise zusammen.

2. Ist fiir irgendein Teilintervall von (0—721 | K(8)| + 1, so konnen in
beiden Ungleichungen I und IT nur die Ungleichheitszeichen gelten, d. h.

der Bogen OP verlauft von einem Punkte @ an im AuBeren der beiden
Kreise k; und k,, insbesondere liegt P rechts von der Geraden x = 1.

Die Kurve setze sich iiber P hinaus mit den gleichen Stetigkeits- und
Differenzierbarkeitseigenschaften versehen fort. Im ersten Falle kann ein

weiteres Bogenstiick PP, der Lange %—nirgends im Inneren von %, und %,
verlaufen.
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. . 7T
Im zweiten Falle gebe es einen ersten Parameterwert s, > 5 SO daB

lo(sy) | = -g— ist, d. h. es existiere ein erster Punkt P,(s;) mit vertikaler

Tangente. Der Bogen P/I?1 (81) lregt sicher rechts von x = 1, da cos ¢(s) > 0

ist fiir —725 < 8 < 8;. Daher gilt

Hilfssatz 1: Kein Punkt von 6?’(81) liegt in k, bezw. k,. Ferner gilt

Zusatz 1: Falls O/I\’1 (8,) ketnen Punkt in der unteren Halbebene hat, liegt
P, (s,) oberhalb der Geraden y = 1 oder auf ihr.

Die gegenteilige Annahme wiirde bei Vertauschung von O und P, (s,)
zum Widerspruch mit dem eben abgeleiteten Ergebnis iiber den Bogen

51\’1 (sy) fithren.

Diese Tatsachen waren ausreichend fiir alle unsere Uberlegungen, in
welchen die gegenseitige Lage von Kurvenbogen auf C' und der sie be-
rithrenden Einheitskreise eine Rolle spielen. Um jedoch spiater einfacher
schlieBen zu konnen, werden jetzt noch einige etwas weitergehende
Schliisse iiber diese Lagebeziehungen gezogen.

Beziiglich des jetzt betrachteten Bogens 0/1? auf C gelten genau die-
selben Voraussetzungen wie fiir den Hilfssatz 1, nur soll die Bogenlinge

nicht mehr durch —723 beschrinkt sein. Ich beweise

~~

Hilfssatz 2: Lings eines Bogens OP von der Gesamtkriimmung @ (s) <=
schneidet keiner der von rechts berithrenden Evnheitskreise irgend einen unter
den von links berihrenden Einheitskreisen.

Ist der Satz fiir den in O von lirks beriihrende Kreise k; richtig, so
gilt er um so mehr fiir alle andern. Es geniigt also, ihn fiir diesen Spezial-
fall zu beweisen.

Unter der Gesamtkriimmung wird, wie iblich, ®(s) = [| K(o)|d o
verstanden. Es ist also @ (s) > | ¢ (s) | . 0
7

Zunichst sei s; der erste Parameterwert, fiir den | ¢(s;) | = 5 ist. P;=

P, (s;) sei der ihm entsprechende Punkt auf OP. Es gilt

Hilfssatz 2a. Der Hilfssatz 2 gilt fiir den Bogen 0/151, wenn man links

nur k, in Betracht zieht. Fillt OP; mit einem der beiden Viertelkreise
zusammen, ist die Behauptung trivial. Ist dies nicht der Fall, so ver-
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folge man die Kurve, welche von den Mittelpunkten der den Bogen 6?’1
von rechts beriihrenden Einheitskreise beschrieben wird. Sie ist in der
Form y = f(«x) darstellbar, wobei f(x) eine eindeutige stetige Funktion
von z in einem gewissen Intervall rechts von Null ist. Den Bogen auf

6?’1 mit K (s) = — 1 entspricht jeweils auf ihr ein einziger Punkt. Alle
anderen Teilbogen dieser Mittelpunktskurve sind mit stetiger Tangente
versehen. Durchlduft man sie vom Punkt (0, — 1) aus, so ist der Tan-
gentenvektor immer ins Innere der rechten Halbebene gerichtet, d. h.
er besitzt eine Komponente in Richtung der positiven x-Achse. Dies
mit Ausschlufl des Endpunktes.

Soll ein von rechts beriihrender Einheitskreis £ den Kreis %, schneiden,
so muB sein Mittelpunkt im Innern des zu %, konzentrischen Kreises K*
vom Radius 2 liegen. Da f(0) = — 1 ist, miillte es auf der Mittelpunkts-
kurve Punkte geben, welche in der rechten untern Viertelsebene inner-

halb von K* liegen. @ mit den Koordinaten (a, b) sei ein solcher, und es soll
N
sich weiterhin auf dem Bogen (0,—1), (ab) der Mittelpunkiskurve kein

Punkt in der abgeschlossenen oberen Halbebene befinden.

Der Einheitskreis k£ mit @ als Mittelpunkt schneidet &, in zwei Punkten,
@, und @,. Der Punkt (a + 1, b) = @, auf k liegt sicher auBlerhalb von k,,
und die Indizierung der Schnittpunkte soll so gewahlt sein, da man
zunichst @, trifft, wenn man % von ¢, aus in negativem Sinn durchlauft.

k beriihrt den Bogen OP, in einem ersten?) Punkte P’. Fiir die Abszisse
von P’, a’ gilt entweder 1. a < a’ <a -+ 1 oder 2. a, < a’ < a oder
3. a’ < a, wobei a, und a, die Abszissen von @, bzw. @, sind.

Zu 1. Dann existiert auf 0/35’ ein Punkt P,, mit maximaler Ordinate.
&, b, seien seine Koordinaten. Er liegt auBlerhalb k;,. Es ist a,, < a,
b,=0b-+ 1, was eine unmittelbare Folge des Hilfssatzes 1 bzw. des
Zusatzes 1 ist. P, liegt nach Voraussetzung in der unteren Halbebene.

Der Einheitskreis %,, mit (a,,, b,,—1) als Mittelpunkt beriihrt OP, in P.,

und schneidet k,. Der Bogen OIEm hat weder Punkte in k; noch in &,
und auch keine in der linken Halbebene und in der Halbebene = > a,,
(Hilfssatz 1). Er mull aber die Gerade durch (01) und (a,,b,,—1)
schneiden. Diese beiden Forderungen stehen in Widerspruch zueinander.

Zu 2. Hier tritt an Stelle von k,, der Kreis k. OP’ kann nirgends in &,
oder in k verlaufen, bleibt im Streifen 0 << 2 << a2’ und muB die Gerade

4) Bei Durchlaufung von OP von O aus.
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durch (0, 1) und (a, b) schneiden. Daraus folgt derselbe Widerspruch wie
unter 1.

Zu 3. Der Mittelpunkt des Einheitskreises &', der 6}1 in P’ von links
beriihrt, liegt in der linken Halbebene. Man konnte daher, indem man

OP' von P’ aus durch einen Bogen auf %’ fortsetzt, einen Kurvenbogen
konstruieren, der allen Voraussetzungen S. 9—10 geniigt und dessen erster
Punkt mit senkrechter Tangente links von der Geraden x = 1 lage. Das
steht im Widerspruch zu Hilfssatz 1. Damit ist Hilfssatz 2a bewiesen.

Den Bogen OP; denke man sich weiterhin iiber P; hinaus fortgesetzt,

und zwar unter Erhaltung der Stetigkeits- und Kriimmungseigen-
schaften, bis zum ersten Punkt P,, in welchem die Tangente wiederum
mit der x-Achse parallel ist.

Zusatzlich setzen wir zunachst ferner voraus, dal3 der ganze Bogen OP,
in der abgeschlossenen oberen Halbebene verlaufe.

a) Fallt dann der Tangentenvektor in P,;, welcher dem positiven
Durchlaufungssinn entspricht, mit der negativen y-Richtung zusammen,
so mufl P, auf der Geraden y =1 oder weiter oberhalb liegen, und der

Bogen OP,; trifft in mindestens einem Punkt die Gerade y = 2. Die
gegenteilige Annahme ergibt einen Widerspruch zu Hilfssatz 1 und der
zusatzlichen Voraussetzung.

b) Ist die Richtung des Tangentenvektors in P, die positive y-Richtung,
so gilt iiber die Lage von P, dasselbe wie eben. Wenn wir die zum Beweise
von Hilfssatz 2a durchgefiihrten Betrachtungen auf den in P, von links

beriihrenden Einheitskreis £* und die lings P, P, von rechts beriihrenden
Einheitskreise iibertragen, so erhalten wir das Resultat, daf} keiner unter

~

den lings O P, von rechts beriihrenden Einheitskreisen k, schneiden kann.

P, selbst liegt auf der Geraden, y = 2 oder oberhalb. Der Bogen QP, hat
aber mindestens eine Gesamtkriimmung = ; damit ist fiir diesen Spezial-
fall Hilfssatz 2 bewiesen.

N

Wenn aber keiner unter den OP, von rechts beriihrenden Einheits-
kreisen den Einheitskreis k£, schneiden darf, so liegt keiner der Be-
rithrungspunkte dieser Kreise mit dem Bogen, also kein Punkt des Bogens
selbst im Innern von £;.

Dieses spezielle Resultat wird fiir die spatere Anwendung geniigen.
Es sei als Hilfssatz 3 formuliert.
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Hilfssatz 3. Berithrt ein stetiger glatter Kurvenbogen, dessen Kriimmung
wm Sinne der Voraussetzung von Hulfssatz 1 existiert und beschrinkt ist, die
x-Achse eines rechtwinkligen Koordinatensystems im Ursprung O und weif3
man, dafy mindestens einer unter den ihn von rechis berithrenden Einheits-
kreisen den Einheitskreis schneidet, der in O von links berithrt, verlauft der
Bogen ferner ganz wn der oberen Halbebene, so besitzt er einen Punkt, in
welchem der Tangentenvektor mit der y- Richtung zusammenfdillt, und er hat
mandestens einen Punkt mit der Geraden y = 2 gemein, und das Bogenstiick
von O aus bis zum ersten Punkt auf diesen Geraden verlduft nirgends im
Innern von k.

Fir den vollstdndigen Beweis des Hilfssatzes 2 sind zwei Fille zu
unterscheiden: a) Der Tangentenvektor in P, fallt mit der positiven;
b) er fallt mit der negativen y-Richtung zusammen.

Zu a). P; mit den Koordinaten x, y, liegt dann nach Hilfssatz 1 in der
Halbebene = > 1 und der ihm entsprechende Punkt der Mittelpunkts-
kurve in der Halbebene x > 2. Sei k; der in P, von links berithrende

Einheitskreis und K] der zu ihm konzentrische, vom Radius 2. Ist P/ﬁ’z
ein Kurvenbogen, der allen Voraussetzungen des Hilfssatzes 1 beziiglich
Stetigkeit, Glattheit und Krimmung geniigt, und dessen Tangenten-
vektor in P,, sonst nirgends, parallel zur «x-Achse ist, so besitzt der ihm
entsprechende Bogen der Mittelpunktskurve nach Hilfssatz 2a) nirgends
einen Punkt im Innern von K; und seine Tangente hat iiberall da, wo sie
existiert, eine Komponente in der Richtung der positiven y-Achse.

Liegt P; in der Halbebene y > 1, so folgt hieraus unmittelbar die
Behauptung des Hilfssatzes 2.

Sei daher y,< 1, dann ist z; > 1. K* und K besitzen eine gemeinsame
Tangente 7', die beide Kreise auf ihren oberen Hélften in den Punkten

B* und Bj beriihrt. Soll die Mittelpunktskurve, die dem Bogen 151}2 ent-
spricht, einen Punkt in K* haben, so muf} auf ihr mindestens ein Punkt ¢
liegen, in welchem der Tangentenvektor mit dem FEinheitsvektor in der
positiven y-Richtung einen gleichen oder groBeren Winkel einschliet als

—_ ~—~
der Vektor B;B*. Dem Punkt @ entspricht ein Punkt R auf OP, als
Berithrungspunkt mit dem Einheitskreis um @ als Mittelpunkt. Die
Tangentenvektoren in @ und R sind parallel.

Nach Voraussetzung schneidet 0/1;1 den Kreis k; nicht. Er schneidet
auch %, nicht (b)S. 13). Die beiden Kreise haben eine gemeinsame Tan-
gente ¢, die sie beide auf der unteren Hilfte in den Punkten b, und b,
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beriihrt. ¢ ist parallel zu 7'. Der Vektor E;Z ist entgegengesetzt gerichtet
zum Vektor ﬁ* Aut 51\31 muf} es mindestens einen Punkt R, geben, in
welchem der Tangentenvektor parallel und gleichgerichtet zu b:g; ist.
Langs des Bogens 151\ R dreht sich daher die Tangente mindestens um s,

d. h. die Gesamtkriimmung ist mindestens .

Zu b). Falls die Ordinate y, von P; nicht grofer ist als — 1, ist die
Behauptung trivial. Andernfalls ziehe man die Tangente an K* in P,
wenn dieser Punkt auf K* liegt, oder man lege diejenige Tangente von P?
an K*, welche K* auf der unteren Halfte beriihrt. (P ist der Punkt auf der
Mittelpunktskurve, welcher P, — eventuell einem ganzen von P, be-
grenzten Bogen — entspricht.) Liegt P{ in der Halbebene y < 1, so ist es
klar, daBl es immer eine solche Tangente gibt. Ist dagegen y, > 1, so

mull x; > 2 sein, da sonst 0/131 entweder k, oder den in P; von rechts
berithrenden Einheitskreis k; schneiden oder in mindestens zwei inneren
Punkten Tangentenvektoren in Richtung der positiven y-Richtung haben
miiBte, woraus wiederum die Existenz der Tangente folgt.

Von hierab verlaufen die Schliisse genau wie im Fall a), nur dal an
Stelle des von links in P; beriihrenden Einheitskreises der von rechts
beriihrende tritt.

Was fiir k; gilt, ist um so mehr fiir alle andern liangs OP von links
berithrenden Einheitskreise wahr. Damit ist Hilfssatz 2 bewiesen.

/T~

Ein Bogen OP von der Gesamtkrimmung z hat mindestens die
Lange m. Da keiner der von rechts berithrenden Einheitskreise einen
Punkt in %, hat, kann das auch fiir den Bogen selbst nicht der Fall sein.

Es gilt daher

Hilfssatz 4. Kein Bogen einer Kurve, die den Voraussetzungen beziiglich
Stetigkeit, Qlattheit und Kriommung in den vorangehenden Hilfssitzen
geniigt, und der micht linger ist als n, kann einen Punkt im Innern eines
der Einheitskreise haben, die thn berithren.

Ohne weiteres folgt, dafl man in den Hilfssatzen 2a und 3 die Kreise
in den Endpunkten durch jeden andern im Innern von derselben Seite
berithrenden Einheitskreis ersetzen darf.

n ist iibrigens sowohl fir die Gesamtkriimmung, als auch fiir die
Bogenlinge die genaue obere Schranke, fiir welche diese Sitze gelten.
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§ 2.
In diesem Paragraphen werden zunichst die Voraussetzungen be-
ziiglich der Kurven C prézisiert, die wir bisher ungenau

1. als ,,eben, einfach und geschlossen®‘, 2. als ,,glatt und von beschrinkter
Krimmung‘ bezeichnet haben. Daran anschlieBend lassen sich dann
unmittelbar zwei Kigenschaften solcher Kurven ableiten, von welchen
die eine die Rektifizierbarkeit, die andere das von der Kurve begrenzte
Gebiet betrifft.

Unter ,,eben, einfach und geschlossen‘ ist das in der Literatur iibliche
zu verstehen®). Eine Kurve mit diesen Eigenschaften kann immer in
unendlich vielfacher Art eineindeutig und stetig auf die Peripherie eines
Einheitskreises abgebildet werden. Eine beliebige unter diesen Abbil-
dungen werde herausgegriffen. Dabei entspreche dem Punkte P, auf C
der Punkt w, auf dem Einheitskreis (w bedeutet die von einem beliebigen
Punkte aus gemessene Bogenlinge auf dem Einheitskreis). Dann ver-

stehe ich unter einer ¢ = Umgebung von P, denjenigen Bogen auf C, der

———
auf den abgeschlossenen Bogen (w,— ¢), (wy + &) mit w, als Mittel-

punkt abgebildet wird. (¢ > 0, klein.)
Die Eigenschaften ,,glatt und von beschriankter Kriimmung‘ werden
jetzt folgendermallen definiert:

1. Es gibt zu jedem Punkt P, auf C eine von P, abhéngige e-Umge-
bung und zu ihr einen Parameter ¢, so dafl jeder Punkt dieser Umgebung
in einem rechtwinkligen Koordinatensystem in der Form

v=1=2xo+ §@1); Yy=yo+n) —L<I<Y

darstellbar ist, wobei z,, y, die Koordinaten von P, bedeuten. &(¢),
n(t), @), n(¢) sind dabei im ganzen abgeschlossenen Intervall (—i,, ¢,)
stetig. Ferner existiere

2. Die Kriimmung K (?) fiir das ganze Intervall (— ¢, ¢;) mit Ausnahme
einer Menge von Punkten, die in eine Anzah! von Teilintervallen mit
beliebig kleiner Gesamtlange eingeschlossen werden konnen. K (¢) sei
iiberall da stetig, wo es existiert und | K (¢)| < 1. Wahlt man dann K (t)
positiv, wenn der Normalenvektor nach dem Kriimmungsmittelpunkt
hin beziiglich des positiven Umlaufssinns nach links weist, im anderen
Fall negativ und setzt man den Wert der Funktion iiberall da, wo sie

5) Vergl. z. B.: Kerékjarté: Vorl. iber Topologie, Berlin 1923 8.59; 79.
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t

nicht definiertist, gleich Null, dann existieren die Integrale ¢ (t)= [ K (r)d,
t 0

@) | = [| K@) |dr| fir alle ¢ des Intervalls (— ¢, ¢;) .
0

o g
Aus 1. folgt, daB | ]/52 + n? dv existiert, d. h. der Bogen P~P+ auf C
=i

hat eine Bogenlinge. P- ist dabei der Punkt mit den Koordinaten
x+ E(—1t), y+n(—t,), P+ derjenige mit den Koordinaten x 4- £(¢,),
y+ n(t,). Nach dem Heine-Borelschen Satz geniigen endlich viele von
den e-Bogen auf dem Einheitskreis, um diesen ganz zu bedecken. Darum
gilt:

Satz 1: Jede Kurve C hat eine endliche Linge.

Es hatte fir diesen Satz geniigt, die Kurve C in jeder e-Umgebung
rektifizierbar vorauszusetzen. Diese Voraussetzung ist dann aber auch
notwendig.

Um den AnschluBl an die Hilfssatze des vorigen Paragraphen zu er-
halten, bemerken wir, da man nach Satz 1 eine beliebige Kurve C in
einem beliebigen rechtwinkligen Koordinatensystem in der Form

x=2x(s), y=y(s)

darstellen kann. Dabei ist s die von einem beliebigen Punkt auf C aus-
gemessene Bogenlinge und S Gesamtlinge von C, so daB} also fiir s
0 <s <8 gilt. Es ist z(o) = «(S); y(0o) = y(8S); ferner sind beide
Funktionen und ihre Derivierten fiir das ganze Intervall stetig und
K (s) geniigt ebenfalls fiir das ganze Intervall genau den S. 9 und 10
aufgestellten Voraussetzungen.

Es folgen jetzt einige, das von einer beliebigen Kurve C eingeschlossene
Gebiet g betrefiende Feststellungen.

Sei @ ein beliebiger innerer Punkt von g. Um ihn schlage ich den
groBten Kreis K (@), der noch in C liegt. Beriihrt er C nur in einem einzigen
Punkt P, dann wird der gréfte unter allen Kreisen gewihlt, die die
Kurve im selben Punkt von innen beriihren und der ganz im Innern der
Kurve liegt. Dieser Kreis heille Berihrungskreis in P. Andernfalls ist
schon K () Beriihrungskreis fiir jeden seiner Beriihrungspunkte mit C.

Nun seien zu allen Punkten von C die Beriihrungskreise konstruiert.
Ihr Radius r ist, wie man aus den Stetigkeitseigenschaften der Kurve
bzw. ihrer Tangente leicht folgert, eine stetige positive Funktion r(s)
s = Bogenlinge). Sie nimmt im abgeschlossenen Intervall (o 8) ihren
kleinsten Wert an. Dieser ist groBer als Null. Wire er nidmlich in einem
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Punkte R(s,) gleich Null, so gibe es zu R(s,) eine Umgebung auf C,
fiir die alle Beriihrungskreisradien kleiner als ¢, eine beliebig kleine
positive Konstante waren. Es miite dann wegen des durch Hilfssatz 1
charakterisierten Kurvenverlaufs fiir die Umgebung eines beliebigen
Punktes auf C, zwei Werte s, und s; (s,+s;) geben (Null und S gelten
hier als ein Wert), so dall der Punkt P(s) fiir s — s, und auch @ (s) fiir
s — 8, gegen R(s,) ginge. C wire also nicht einfach. Aus der Stetigkeit
von r(s) folgt weiterhin, dall es grifite Berithrungskreise gibt.

Nun gebe es auf C einen Punkt P(s’) mit dem Berithrungsradius
r(s’)<< 1. Durchlaufe ich den Berithrungskreis K (s’) von P’ = P(s’) aus
in positivem Sinn, so sei @’ der erste weitere Beriihrungspunkt auf C, den
ich treffe. (Es gibt ihrer, wie man leicht sieht, héchstens fiinf.) Jetzt fasse
man die einfache geschlossene Kurve ¢’ ins Auge, die von P’ aus im

~

positiven Sinn durchlaufen, successive aus den Bogen P’ Q" auf C (p)®) und
QT?” auf K (s’) (p) besteht. Beziiglich ¢’ gilt:

Hilfssatz 5. ¢’ enthdlt mindestens einen Einheitskreis ganz im Innern.
C werde von P’ aus in positivem Sinn durchlaufen, bis zum Punkte

P ( 8’ +—723-) und dort der Beriithrungskreis K (8' —l——-;—) konstruiert. Ist sein
Radius 1 oder groBer, so ist man fertig. Ist er kleiner, so beachtet man,

daB P"= P(s' —{——%) auflerhalb von K (s”) liegen muB (Hilfssatz 1), daB sich

also auf dem Beriihrungskreis K (s’ +—g—> kein Punkt des abgeschlossenen

Kreisbogens Qf?” befinden kann. Beziiglich K (s’ +i2z—> , P’ und C kon-

struiere man genau analog zu ¢’ die geschlossene Kurve ¢’’. Das von ihr
umschlossene Gebiet g'’ ist ein Teil des von ¢’ umschlossenen, g’. Der ihr

zugehorige Bogen von C ist um mehr als -g— kiirzer als P’ Q’. Von P’’ aus-

gehend, wende man ein zweites Mal das eben beschriebene Verfahren an,
und so fort. Man kommt derart entweder nach endlich vielen, n Schritten
zu einem Beriihrungskreis, der ein Einheitskreis ist oder grofler und der
in einer geschlossenen Kurve ¢(™ liegt, deren Inneres selbst einen Teil des
Inneren von g’ ausmacht, oder man endet bei einem Beriihrungskreis,
der einen Radius 7 < 1 hat und den ein Bogen auf C von hgchstens der
Lange —g— in zwei Punkten beriihrt. Das Letztere steht im Widerspruch zu
Hilfssatz 1. Damit ist Hilfssatz 5 bewiesen. Unmittelbar erhalt man jetzt:

8) Vergl. 8. 10.
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Satz 2. Jede Kurve C enthdlt mindestens einen Einheitskreis ganz.

Hat der gréfte Beriihrungskreis von C einen Radius r > 1, so ist nichts
zu beweisen. Die gegenteilige Annahme aber wird durch Hilfssatz 5
widerlegt, da man mit Hilfe eines Beriihrungskreises und eines Bogens auf
C eine Kurve ¢’ konstruieren kann.

Dieselben Uberlegungen fiihren zu

Satz 3: Jede Kurve C, deren Durchmesser mindestens 4 1ist, enthdlt
mandestens zwes getrennt liegende Einheitskreise ganz.

Unter dem Durchmesser einer Kurve C, wird, wie iiblich, das Maximum
des Abstandes zweier Punkte auf C verstanden. Da@ dieses existiert folgt
daraus, dafl das Maximum des Abstandes eines festen Punktes P von allen
anderen Punkten auf C existiert und eine stetige Funktion der Bogen-
lange ist.

Auf der Kurve C vom Durchmesser d gibt es mindestens zwei Punkte
P, und P, mit diesem Durchmesser als Abstand. Diese beiden Punkte

sollen mit den Punkten -———621 und—;l— der z-Achse eines rechtwinkligen

Koordinatensystems zusammenfallen. C liegt dann im Streifen g zwischen

den Geraden x = — —g—und & = % . K, sei der Beriihrungskreis in P,

K, derjenige in P,. Sind beide Einheitskreise oder groBer, oder hat der
eine von ihnen den Durchmesser > 4, so ist die Richtigkeit der Be-
hauptung evident.

Es sei der Radius von K, r; < 1. Ich denke mir C von P, d4us zuerst
im positiven Sinne bis P, durchlaufen. Den durchlaufenen Bogen be-
zeichne ich mit 8,. Entsprechend sei 8, der im negativen Sinn von P,
bis P, durchlaufene Bogen. Mindestens der eine von ihnen mufl K, auler
in P, in mindestens einem weiteren Punkte berithren. Ohne Beschrankung
der Allgemeinheit kann man annehmen, B, tue dies. Der erste Berithrungs-
punkt mit K,, den man bei der Durchlaufung des Bogens 8, von P, aus

trifft, sei P;. Der Bogen P/l}’l werde mit f; bezeichnet. Auf 8, liegt kein
Punkt von K,. Es sei namlich @ der erste gemeinsame Punkt von g, und
K,, beziiglich derselben Durchlaufung von 8,. Dann mufl der Tangenten-
vektor an 8, in @ mit dem positiven Tangentenvektor an K, in  zu-
sammenfallen. Andernfalls miiite ein auf §, in positivem Sinn laufender
Punkt die x-Achse in P, in der Richtung von der oberen zur unteren
Halbebene durchqueren, was gegen die Voraussetzungen geht. Wiirden
P’ und Q zusammenfallen, so miite der Tangentenvektor in diesem
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Punkt gerade die nicht erlaubte Richtung haben. Wire ¢ ein innerer
Punkt von f;, so konnte f; iiberhaupt keinen Beruhrungspunkt mit K,

haben. Die Kurve, bestehend aus den Bogen PlQ und QP auf K, (p)
zerlegte namlich den Streifen g in zwei Gebiete ¢; und ¢,. Wiahrend K,
bis auf den Punkt P, ganz im Innern des oberen, g, liegt, miilte §; von
@) aus im Innern oder auf dem Rande des unteren, g, verlaufen.

Der Bogen B; auf C' (p) zusammen mit P”\P1 auf K, (p) bildet eine
einfache geschlossene Kurve ¢; vom Charakter der im Hilfssatz 5 be-
trachteten. Sie liegt vollig auBerhalb des C in P, beriihrenden Einheits-
kreises wenn r3 = 1, und, wenn 7, der Radius von K, kleiner ist als 1,
vollig auBerhalb von K,. Auch enthilt sie keinen Bogen von C in ihrem
Innern.

Ist auch 7,< 1, kann man beziiglich K, und C eine entsprechende be-
schlossene Kurve ¢, konstruieren. ¢, und ¢, liegen vollig getrennt, und
keine befindet sich im Innern der anderen. Sie umschlieBen nur innere
Punkte von C. Nach Hilfssatz 5 enthilt jede mindestens einen Einheits-
kreis vollstandig. Diese Einheitskreise liegen in C und sind getrennt.
Ist 7, > 1, so sind der in ¢, enthaltene und der C in P, berithrende Ein-
heitskreis Kreise der behaupteten Art.

§ 3.
Zuerst soll jetzt das in der Kinleitung angedeutete Aufwicklungs-
verfahren einer Kurve C exakt beschrieben werden. Mit anderen Worten :
Es soll durch ein Beispiel Satz 4 bewiesen werden.

: 2
Satz 4: Es gibt im Innern jedes Kreises vom Radius r>1 —I—V——é: und zu

jedem Durchmesser d > 4 Kurven C, deren Linge jede beliebige Grofie M
iibertrifft.

Um die Punkte M, = (—1—4¢,0); e> 0 und M, = (1 + ¢, 0) der
#-Achse werden die beiden Kreise K; und K, vom Radius r = 1 + ¢ ge-
schlagen, desgleichen um den Punkt M;= (0, (1+ &) J/3) der Kreis K,

1
vom selben Radius. Der Kreis K ,, mit (0, (1 + &) V_? als Mittelpunkt und
2
mw=1+(1+¢) —ﬁ als Radius, beriihrt K,, K, und K,;und enthalt sie

in seinem Innern. K, K,, K, beriihren sich paarweise gegenseitig. Um
M; +=1, 2, 3 konstruiere man hierauf die Kreise K,; mit den Radien

8‘7.’5:1,7.:'__]-3132}374 8'?. . ’
e e dr;= — =3; =——1’1:2’3’
iy PR S O Ak AL R
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ferner, um den Punkt (—— 1—e¢, —;—) die Kreise K,; mit den Radien

r; =1 ————841—7; j=1,2,3,4 und um (1 e 575, O) den Kreis K,; mit dem
Radius r——:—. SchlieBlich werde um den Punkt (O, (1 4 ¢) ]/§ + —i—)

der Kreis K; vom Radius 7, = r ——Ti— und um M, der Kreis K vom
Radius 3 (1 + &) geschlagen.

/

MY

Fig. 1

K beriihrt K, bzw. K, in den Punkten (— 2 (1 + ¢), 0) bzw. P, dessen
Koordinaten uns nicht interessieren.

K; beriihrt die Kreise K;; bzw. K,;j = 1, 2,3 und K; _; den Kreis
K, _,.

Es ist nun leicht an Hand der Fig. 1 die Entstehungsweise der Kurve C
aus Bogen der Kreise K,;, K;;, K;, K und Strecken auf den gemeinsamen
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Tangenten an sie zu iiberblicken und nachzupriifen, da3 sie allen Vor-
aussetzungen geniigt. Natiirlich hatte man ¢ ebenso gut in 2 n gleiche Teile
teilen kénnen statt in 4, wobei » eine beliebige ganze Zahl ist. Es wére
dann eine n mal gewundene Kurve C statt der zweimal gewundenen ent-
standen. Da n beliebig grof3 sein kann, ist die Lange der so in K ,, kon-
struierten Kurven nicht beschrankt. Der Radius r,, ist fiir geniigend

2
kleines ¢ beliebig wenig groBer als 1 4 V——z—é— und ebenso der Durchmesser d
beliebig wenig groler als 4.

Um die in der Einleitung genannte Schranke S, (r,,) fir die Lingen
aller in einem bestimmten Kreis eingeschlossenen Kurven C bzw. die
Schranke 8, (d) fiir die Langen aller Kurven C vom festen Durchmesser d
herzuleiten, definiere ich zunidchst den Begriff des Umbkreises einer
solchen Kurve und leite einige seiner Eigenschaften ab.

Definition: Unter dem Umbkreis einer Kurve C ist der kleinste Kreis zu
verstehen, in welchem sie liegt.

Hilfssatz 6: Es gibt zu jeder Kurve C genaw einen Umkreis. Dafl es zu
jedem Punkt P im Innern und auf C als Mittelpunkt einen kleinsten
Kreis gibt, in welchem C liegt, ist evident. Die Radien r (P) dieser Kreise
stellen eine stetige Funktion iiber dem durch C abgeschlossenen Bereich
dar. Eine stetige Funktion nimmt iiber einem abgeschlossenen Bereich
einen kleinsten Wert an. Gabe es zwei Punkte des Bereiches, fiir welche die
zugehorigen Radien gleich diesem kleinsten Wert wiren, so miifite C in
dem von beiden gleichzeitig bedeckten Bereich liegen. Das hétte zur
Folge, daB es sicher einen Kreis mit noch kleinerem Radius gibe, der C
einschlosse.

Hilfssatz 7: Jede Kurve C beriihrt ihren Umkreis entweder in den End-
punkten eines Durchmessers oder dann in drei Punkten, welche die Ecken
eines spitzwinkligen Dreiecks sind.

Lagen namlich alle Beriihrungspunkte zwischen dem Umkreis K,
und C auf ein und demselben offenen Halbkreis von K ,,, so konnte man
letzteren sicher senkrecht zur groften Sehne zwischen zwei Beriihrungs-
punkten um einen kleinen Betrag verschieben, so dafl er in der neuen
Lage keinen Punkt mit C' gemeinsam hatte. Es gédbe also noch einen
kleineren Kreis, in dem C lage.

Anderseits ist der Umkreis eines spitzwinkligen Dreiecks der kleinste,
in welchem es liegen kann, und der Durchmesser eines Kreises kann nicht
Sehne oder Teil einer Sehne eines kleineren Kreises sein.
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Hilfssatz 8: Der Radius r,, des Umkrez'ses K, einer Kurve C, die einen

V 3

Seien @,@,@; drei unter den Beriihrungspunkten von C und K ,, die
ein spitzwinkliges Dreieck bilden. Die Mittelpunkte M,, M,, M, der
Einheitskreise, die C in ,, @, und @; von innen beriihren, liegen auf der
Peripherie eines zu K ,, konzentrischen Kreises K* vom Radius r, — 1
und sind gleichfalls Ecken eines spitzwinkligen Dreiecks. Jede der drei
Geraden durch je zwei der Mittelpunkte schneidet C' auBerhalb der zu-

Durchmesser d < 4 hat, ist hochstens 1 + ——

2
gehorigen Kreise und auBerhalb von K* (Hilfssatz 1). Warer,, > 1 + i/~:3-:

2
also der Radius von K* grofer als —== V 5 80 wéare mindestens eine Seite des

Dreiecks M, M, M, grofler als 27), und C hatte dann einen Durch-
messer > 4.
Im Zusammenhang mit dem Umkreis werden in den folgenden Be-

trachtungen die Eigenschaften der konvexen Hiille einer Kurve C
wesentlich verwendet.

Unter der konvexen Hiille ¢ der Kurve C wird wee iblich die Einhiillende
derjenigen Tangenten an C verstanden, die C ganz auf der etnen Seite lassen.

Die konvexe Hiille ¢ einer Kurve C liegt in ihrem Umkreis K ,, und es
gilt daher nach der Theorie der konvexen Kurven

Hilfssatz 9: Die Linge der konvexen Hiille ¢ einer Kurve C ist kleiner als
der Umfang ihres Umkreises.

Dasselbe gilt natiirlich von C selbst, falls es konvex ist und nicht mit
K, zusammenfallt. Es wird daher fiir das Folgende stets vorausgesetzt:
C sei nicht konvex. Bezv:lglick der von jetzt ab betrachteten Kurven C gelte

iiberdies immer r, <1+ = bzw.d <

Das in der Einleitung erwahnte Symmetrisierungsverfahren kann nun
folgendermafBen beschrieben werden: ¢ sei die konvexe Hiille von ' und

P, P, eine ihrer Strecken. Durchlauft man C von P, aus im positiven

Sinn, so soll man auBler eventuellen Punkten der Strecke P, P, keine
anderen Punkte von c¢ treffen, ehe man P, erreicht. Der durchlaufene

Bogen Pfl}’z werde nun an P, P, gespiegelt. Dasselbe geschehe mit allen
im selben Sinne einer Strecke P, P, der konvexen Hiille zugeordneten

) Vergl. auch 8. 31.
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Teilbégen von C. Man erhélt durch diesen Prozefl eine neue Kurve. Von
dieser weill man:

1. daf sie stetig und glatt ist und den Seite 16—17 formulierten
Voraussetzungen iiber die Krimmung geniigt;

2. daB sie die gleiche Lange hat wie C.
Waire man aullerdem sicher, daf} sie

3. ebenfalls einfach wire und

4. denselben Umkreis K,, hiatte wie C, so hitte man nach der Spiege-
lung eine neue vergleichsfahige Kurve C; vor sich. Auf diese wiirde man
das Spiegelungsverfahren von neuem anwenden. Man wiirde also die
konvexe Hiille ¢, von C; konstruieren und die ihren Strecken auf die eben
charakterisierte Weise zugeordneten Bogen an den Strecken spiegeln.

Setzen wir einen Augenblick als bewiesen voraus, daB aus jeder ver-
gleichsfahigen Kurve durch die Spiegelung wiederum eine vergleichs-
tahige Kurve hervorgeht, so kénnen wir durch eine nicht abbrechende
Folge von Spiegelungen eine Folge von Kurven C, C,, C, ... mit folgenden
Eigenschaften erzeugen:

a) Sie sind alle vergleichsfahig, d. h. sie haben denselben Umkreis, sind
einfach, geschlossen, glatt und von beschrankter Kriimmung.

b) Sie haben alle dieselbe Lange.

¢) In der Folge der ihnen entsprechenden konvexen Hiillen ¢, ¢, ¢5, €5.e0
enthalt jede mindestens einen Teilbogen der vorhergehenden im Innern
und keinen im AuBern.

d) Die Differenz zwischen der Lange von C, und derjenigen von ¢, wird
mit wachsendem » beliebig klein.

e) Die Lange von c, ist fiir jedes » kleiner als der Umfang von K ,,.

Aus diesen Punkten folgt unmittelbar

Satz 5: Die Linge einer Kurve C ist nicht grifer als der Umfang ihres
2
Umkreises K ,,, wenn dessen Radiusr,, <1+ NEY ist.

DaB dann 2 r, z fiir die Langen aller in K, liegenden C die genaue obere
Schranke ist, bedarf keiner weiteren Erorterung; denn es ist leicht,
Kurven C anzugeben, die Punkte im Innern von K,, haben und deren
Lange vom Umfang dieses Kreises beliebig wenig abweicht. Offen bleibt
noch die Frage, ob es aufler K, selbst Kurven C von der Linge 2 r,x in
K, gibt. Von den Punkten a, b, ¢, d, e ist einzig der Punkt d eines Be-
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weises bediirftig. Dieser ergibt sich am einfachsten aus dem Beweis fiir
Punkt 3 S. 19. Letzterer soll jetzt gefiihrt werden.

P, und P, seien die Endpunkte einer Strecke, der einer Kurve C
zugehorigen konvexen Hiille ¢. Sie sollen in die Punkte — a und a (a > 0)
der x-Achse eines rechtwinkligen Koordinatensystems fallen und C selbst
liege in der abgeschlossenen oberen Halbebene. Unter k, und k, werden
die beiden Einheitskreise verstanden, welche die z-Achse in — a bzw. a
beriihren und die in der oberen Halbebene liegen. &, ist derjenige Einheits-
kreis, der sowohl %k, als k, beriihrt und dessen Mittelpunkt auf der nega-
tiven y-Achse liegt. Dafl es immer ein k; gibt, folgt durch eine leichte
Rechnung aus der Tatsache, dafl a < V%: sein mufl. Diese letzte Tat-
sache folgt aus Hilfssatz 1, Zusatz 1, wenn man C von P, aus in negativer
und von P, aus in positiver Richtung bis zu den Punkten verfolgt, in
denen die Tangente zum erstenmal parallel zur y-Achse ist. Aus Hilfs-
satz 2a folgt weiterhin, daBl man, bei diesen Durchlaufungen iiber die
letztgenannten Punkte hinaus fortschreitend, nicht ins Innere von k,;
bzw. k, gelangen kann, ehe man die Gerade y = 2 erreicht hat. Man muBl
aber diese auf beiden Wegen erreichen, da C geschlossen ist. Daraus folgt,
daB k, und %, in K, liegen.

k, beriihre k, bzw. k, in den Punkten P, bzw. P,. y,, sei der Kurven-

bogen, der sich zusammensetzt aus P/l\P1 auf k, (p) P/;\P2 auf %, (n), P’g’z
auf &, (p) und @ sei die geschlossene Kurve aus y;, und P, P,. Dann gilt der

Hilfssatz 10: Kein Punkt des Bogens P:I’z auf C liegt auperhalb von D.

Beweis: Man denke sich P:;’z von P, durchlaufen. Nach Hilfssatz 3
kann keiner unter den von rechts den Bogen berithrenden Einheits-
kreisen den Kreis %, schneiden, ehe der Bogen die Gerade y = 2 erreicht

hat. Nun schneide P, P, y,, zum erstenmal im Punkte P auf Pfl}é Der
dort von rechts beriihrende Einheitskreis k& schneidet k,. Der Mittelpunkt
von k liegt ndmlich, wie man leicht erkennt, innerhalb des zu &, konzen-
trischen Kreises vom Radius 2. Dasselbe wire a fortiori der Fall, wenn der

erste Schnittpunkt P auf P/ﬁ’z lage.
Zweigt P, P, in einem Punkte P’ von P, P, beriihrend von y,, nach

auflen ab, dann gibt es beliebig nahe an P’ auf P:?’z Punkte P, fiir welche
der von rechts beriihrende Einheitskreis k, schneidet. In allen diesen
Fillen muf3 man nach Hilfssatz 3 auf dem von P, aus im negativen Sinn

durchlaufenen Bogen P:I\’ einmal die Gerade y = 2 erreicht haben, ehe
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man zum Punkt P gelangt. Erreicht man aber von P, aus in negativem
Sinn die Gerade y = 2, so mul} das auch bei der Durchlaufung in posi-
tivem Sinn von P; aus der Fall sein. Bei der Durchlaufung von P, aus
kann man aber nicht ins Innere von k, gelangen, ehe man die Gerade

= 2 erreicht hat, und bei der Durchlaufung von P, aus bleibt man auf
oder aullerhalb von k,, so lange man im Streifen 0 << y < 2 bleibt
(Hilfssatz 3).

Schneiden oder beriihren sich %, und k,, so ist es leicht einzusehen, da@}
den obigen Forderungen nicht geniigt werden kann, ohne dafl der Bogen

P,er mindestens einen Doppelpunkt hat. Liegen %k, und k, getrennt, so

denke ich mir P, P, von P; aus bis zum ersten Schnittpunkt mit y = 1
durchlaufen. Dort sei unter den C von rechts beriihrenden Kreisen der

groBte, K, geschlagenen, der keinen Punkt von P/:P2 enthalt. Dal
es einen solchen gibt, folgt ebenso wie die Existenz des Beriihrungs-
kreises (S. 22). Sein Radius ist sicher kleiner als 1.

Aus einem Bogen auf K, und einem Teilbogen von PI—];2, 148t sich eine
den Voraussetzungen des Hilfssatzes 5 geniigende geschlossene Kurve ¢’
konstruieren. Sie liegt ganz in K,, und enthalt nach Hilfssatz 5 einen
Einheitskreis £” ganz in ihrem Innern. Dieser liegt auflerhalb von C. Da
aber C bei dieser Lage von k, und k, einen Durchmesser hat, der grofler ist
als 4, so liegen in ihrem Innern zwei getrennte Einheitskreise £’ und £'*’.
Die Kreise k', k', k'’ liegen alle in K,, und sind getrennt Das ist sicher
nicht moglich, wenn », <1 4 V23 ist. Fir r,,=1-+4 = aber miiBten
die beiden in C liegenden Einheitskreise sich beriihren, wenn aufler ihnen
noch ein dritter Einheitskreis in K, liegen soll, d. h. keine Strecke der

konvexen Hiille kann dann gréBer sein als -— . Diese Konfiguration ist

R
aber bereits im vorigen Abschnitt behandelt.

Aus dem eben bewiesenen Hilfssatz folgt, dal alle Punkte des Bogens

N

P, P, auf den inneren Normalen der Strecken P, P, der konvexen Hiille c
liegen. Die Punkte des aus P;P, durch Spiegelung hervorgehenden

Bogens P:-}} liegen daher auf den &uBeren Normalen zu P, P,. Es kann
aber die duBere Normale in einem beliebigen Punkte einer komvexen
Kurve weder diese selbst in einem zweiten Punkt noch irgendeine andere
dulBere Normale schneiden. Daraus folgt, dal die durch die Spiegelungen
aus C entstehende Kurve C; einfach ist, d. h. Punkt 3 ist bewiesen.
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Die den verschiedenen Strecken P, P, von ¢ entsprechenden Bogen vy,
bilden mit den der konvexen Hiille ¢ angehorigen Bogen von C ebenfalls
eine einfache geschlossene Kurve C’. Die aus dieser durch die Spiegelun-
gen der y,;, hervorgehende Kurve C* hat dieselben Eigenschaften. Kein
Punkt C, liegt aullerhalb von C'*. Wir brauchen also, um Punkt 4 S. 24
zu beweisen, nur zu zeigen, dafl auch C* in K, liegt.

Im Hinblick auf spatere Betrachtungen wird etwas mehr bewiesen.

Um die Punkte — z, und z, (0<z,<{2) der z-Achse werden die
Einheitskreise k; und k, geschlagen. Sie beriihren die Gerade ¥y = — 1 in
den Punkten (— x,, — 1) bzw. (z,, — 1). K, sei der Kreis vom Radius 3,
dessen Mittelpunkt auf der positiven y-Achse (inkl. Null) liegt und der
k, und k, im Innern enthalt und beriithrt. Mit k; bezeichne ich den Ein-
heitskreis der &, und k, beriihrt und dessen Mittelpunkt auf der negativen
y-Achse liegt.

p1o Sei der aus Bogen von ky, k, und k; auf die gleiche Weise wie der
S. 25 mit demselben Buchstaben bezeichnete Kurvenbogen zusammen-
gesetzte Bogen. Dann gilt

Hilfssatz 11a. Der durch Spiegelung an der Geraden y = — 1 aus yi,
hervorgehende Bogen v, liegt in K.

Ich beweise, daBl der durch diese Spiegelung aus k; hervorgehende
Kreis k, in K, liegt. Das ist der Fall, wenn sein Mittelpunkt nicht auBer-
halb des zu K, konzentrischen Kreises K* vom Radius 2 liegt. Die
Ordinate des Mittelpunktes von k&, ist — ]/4———x§ . Durch Spiegelung an
y = — 1 geht dieser Punkt iiber in den Punkt — 2 4 ]/4—:3‘3 auf der
negativen y-Achse. Das ist aber auch die Ordinate des Schnittpunktes
von K* mit der negativen y-Achse.

Jeder andere Kreis von kleinerem Radius als 3, der ebenfalls %, und %,
enthilt und beriihrt und dessen Mittelpunkt auf der positiven y-Achse
(inkl. Null) liegt, enthalt denjenigen Bogen auf K,, der in der unteren
Halbebene zwischen den Beriihrungspunkten von K, mit k, und k, liegt
in seinem Innern. Also enthilt er auch den Bogen v,,.

Nun sei K; ein Kreis vom Radius 3 mit dem Mittelpunkt in der oberen
Halbebene, der weder &, noch k, beriihrt und sie enthilt.

Dann gibt es einen zu K, konzentrischen Kreis K’ von kleinerem
Radius, der sie beide enthilt und wenigstens den einen von ihnen beriihrt.
Obue Beschrinkung der Allgemeinheit kann man annehmen, k; sei der
beriihrte und zwar werde er im Punkt B = (z,¥,) beriihrt (y, > — 1).
Alsdann gibt es einen weiteren Kreis K'', dessen Mittelpunkt auf der

Strecke B M (M = Mittelpunkt von K;) und auf der y-Achse liegt, der
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durch B geht und der auch %, beriihrt. K’’ liegt in K;. Spiegeln wir
die Kurve y;, an der Geraden y = — 1, so liegt das Spiegelbild ganz
in K”, also auch in K;. Lige der Mittelpunkt von K; in der unteren
Halbebene, so wiirde dies um so mehr der Fall sein. Es gilt also allgemein :

Hilfssatz 11. Geniiglen 3 Einheitskreise k,, ky, kg den 8. 25 Zeile 6—10
genannten Voraussetzungen, st ferner y,, die dort definierte Kurve und
enthdilt ein Kreis K vom Radwus r < 3 dive Kreise ky und ky, vm Innern,
so liegt das Spiegelbild von p,, beziiglich der gemeinsamen Tangente an k,
und ky, die y,, 1n den Endpunkten berithrt, ganz in K.

Die unter 4 S. 24 aufgestellte Behauptung ist also richtig.

Um Punkt d der Seite 22 sicherzustellen, und dann zu zeigen, daf der
Umbkreis linger ist als jede unter den von ihm eingeschlossenen Kurven,
beweise ich

Hilfssatz 12: Der Bogen P, P, aus Hilfssatz 10 ist kiirzer als der Bogen
Y12, wenn er nicht mit diesem zusammenfillt.

Ich denke mir le\’z in der Form

Y=fe(x), —a <z <a; f1,(2) >0
dargestellt.

Die Léange 1,5, von P:?’Z ist
vay /7
112=J- Vl + fi2(2) d .
—a

Der Bogen y,, sei dargestellt durch die Gleichung

Y=y, —a<z<a.

Das Maximum von f,,(z) in (—a, a) sei 2 b, dasjenige von y,,(x) sei 2 b,.
Es ist b; = b. Im Falle des Gleichheitszeichens ist f;5(x) = ya(%).
Um den Punkt (0, — 1 4 b) werde ein Einheitskreis % geschlagen.

Er schneide die z-Achse in den Punkten —d und d. Es ist d < —;—' . Der

Differentialquotient der Funktion, welche den in der oberen Halbebene
verlaufenden Bogen von k darstellt, hat in den Punkten der z-Achse
absolut genommen seinen groB3ten Wert. Wir bezeichnen diesen mit m (b).

fi2(x) nehme sein Maximum 2 b fiir x = z, an. Nach den Unglei-
chungen, die zum Beweis fiir Hilfssatz 1 fiithren, gilt dann fiir die Intervalle
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(—a,—a-+d)und (a—d,a) @) |fa(®)]| <|via(x)] (" bedeutet hier
Derivierte). Ferner

B) | falwg—d + &) | <|yp(—d+ &) fir 0 <E<L24d.

Fiir das ganze Intervall (— a, a) ist

¥) | frz(2) | < m (D)

da sonst nach Hilfssatz 1 entweder fiir ein z; f,,(x,) < 0 oder fiir ein
%y f12(Z2) > 2 b sein miilBte.

Fir —a 4+ d<zx<—dund d <z < a—d gilt aber anderseits
0) | p1z(2) | >m(d).
Aus a, 8, y, d folgt fir f,,(2) & y15()

ay/ T2~ ay) 2
lg = fj/l + fio(x) dx<f]/1 + v () dx = Linge von vy, .

Wenn max | fi,(2) | = 2 b, ist, folgt aus Hilfssatz 1 und Zusatz 1
weiterhin, dafl die Fliache des von €, umschlossenen Bereichs um mehr
als 4 b7 groBer sein muf als die des von C begrenzten Bereiches. Es kann

/N

demnach unter den C, nur endlich viele geben, welche Bégen P, P, be-
sitzen, auf denen Punkte mit einem Abstand D > 2 b,; (b, >0 fest) von

der zugehorigen Geraden P,P, der konvexen Hiille ¢ besitzen. Sonst

gabe es ein N, so daB fiir alle » > N die C, Flache einschlossen, welche
T2

grofer wire als 72, . Wegen y ist ferner ,, < 2 al 1+m (b;), und diese
GroBe geht mit b; —0 gegen 2 a. Damit ist auch Punkt d S. 24 bewiesen.

2
Jetzt kann man auch die Frage nach den langsten in K, (rm <1 —J—V*—:—g—)

eingeschlossenen Kurven C entscheiden. Es gilt

Satz 5a. Jede von K, verschiedene in K, eingeschlossene Kurve C' st
kiirzer als 2 r, 7.

Die den successiven Spiegelungen entsprechende Folge der konvexen
Hiillen ¢, ¢, ¢; ... konvergiert gegen eine konvexe Kurve ¢, Die Lange
von C ist gleich der Lange dieser Grenzkurve. Hat ¢, Punkte im Innern
von K, ist ihre Lange kleiner als 2 r,,z. Das heiflt aber: daf jeder Punkt
von C im Innern von K nach einer endlichen Anzahl u, von Spiegelungen
im Innern von ¢, liegen muB, falls die Liange von C gleich 2 r,, 7 sein soll.
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Sei P:E’z ein Bogen auf C, der im Innern der konvexen Hiille ¢ verlauft.
Fallt er nicht mit dem S. 25 definierten Bogen y,, zusammen, so kann er
durch diesen nach Hilfssatz 12 langeren Bogen ersetzt werden, und man
erhalt wieder eine vergleichsfahige Kurve. Diese ware aber langer als
2 r, n, falls O selbst diese Lange besitzt, was nicht moglich ist.

Sei P:;’l irgendein Bogen auf ¢ zwischen zwei aufeinanderfolgenden
Strecken. Den nachfolgenden konvexen Hiillen c¢,, ¢y, ¢ ... konnen

~ —~
bestenfalls Teilbogen P P{; » = 1, 2, 3 ... von P, P, angehéren, und

es gibt nach Voraussetzung ein letztes v = y — 1 derart, daf3 P@P‘;“ n
noch Bogen der konvexen Hiille ¢, ist, und so, da3 er nur Punkte im
Innern von ¢, hat. Damit sind wir auf den eben behandelten Fall zuriick-
gekommen, d. h. man kénnte aus C, eine langere vergleichsfahige Kurve
C,, gewinnen. €, und damit C kann also nicht die Lénge 2 r,, = haben.

Eine vorlaufige, wenn auch ungenaue Antwort auf die Frage nach der
genauen oberen Schranke (eventuell dem Maximum) der Lange aller
Kurven C vom festen Durchmesser d < 4 enthalt bereits das im vorigen
Abschnitt abgeleitete Resultat iiber das Maximum der Lange aller C mit

2
festem Umkreisradius r,, <1 -+ ]7——5 . Der Umkreis, welcher zu irgend
einer Kurve vom Durchmesser gehort, hat ja nach Hilfssatz 8 einen
) 2
Radius r,, <1 +”T“3— :

Es handelt sich nun zuerst darum, festzustellen, in welchem Intervall
die Radien der Umkreise aller C' mit festem Durchmesser d liegen konnen.
Beriihrt O den Umkreis K,, in den Endpunkten eines Durchmessers, so

ist r,, = _02l_ Sind dagegen drei Beriihrungspunkte @Q,,@,, 5 vorhanden,

welche ein spitzwinkliges Dreieck bilden, so miissen die Mittelpunkte M,
der dort von innen beriihrenden Einheitskreise k,(¢ = 1, 2, 3) Ecken
eines spitzwinkligen Dreiecks sein und auf dem zu K,, konzentrischen
Kreise K* vom Radius r,,— 1 liegen. Die Lingen der Seitenl,(; = 1, 2, 3)
dieses Dreiecks sind gegeben durch die Gleichung

l,=2(r,—1) sin a;
wobei 2 a; der zur Sehne I, gehorige Zentriwinkel in K* ist. Fiir einen

unter ihnen — es sei a, — gilt sicher a; > —g— , woraus folgt:
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Nach Hilfssatz1 S.11 trifft die Gerade, auf der /, liegt, C auBlerhalb oder
auf den Einheitskreisen, deren Mittelpunkte sie verbindet und auch
auBerhalb von K*, so daB es auf C mindestens zwei Punkte mit der

Entfernung
dy = (r,— 1Y 3+ 2
geben mul.

Aus d, < d folgt dann

d—2 ) 2
L—— 1<fur d=4 ist r, i/-——)

insgesamt also

d d—2
I 5 <rw <7 +1.

Die genaue obere Schranke S,(d) der Lange aller Kurven vom Durch-
messer d ist darum der Ungleichung

2d <8,(d) < <1+V 2)

unterworfen. Wird diese obere Schranke von einer der Kurven ange-
d—
nommen, so ist sicher, dafl sie kleiner ist als 2 :n;( 14 W) denn der

Kreis mit diesem Umfang, in dessen Inneres jede der betrachteten Kurven
eingebettet werden kann, gehort selbst nicht zu den Vergleichskurven.

Zur genauen Bestimmung von §,(d) kann man wiederum versuchen,
sich des Spiegelungsverfahrens zu bedienen, d. h. also: an Stelle einer
beliebigen Kurve C eine Folge von konvexen Kurven zu betrachten,
deren Lingen monoton wachsend gegen diejenige von C streben. Die eben
festgestellten Resultate iiber den Radius des kleinsten Umkreises geben
Gewihr dafiir, daB die durch die Spiegelungen entstehenden Kurven
im Umkreis K,, von C bleiben. Achtet man auf die Durchmesser der
successiven konvexen Kurven, so bemerkt man, dafl sie eine monoton
nicht abnehmende, beschrinkte Folge bilden. Diese hat einen Limes.
Gelingt es diesen zu bestimmen und zu zeigen, daB er fiir festes d unab-
hingig von der speziell gewahlten Kurve C ist, so kann man erwarten,
auf Grund von bekannten Sitzen iiber konvexe Kurven, die Funktion
8, (d) genau bestimmen zu kénnen.

Das im vorigen Abschnitt verwandte Spiegelungsverfahren erweist sich
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indes in jener Form als unzweckmiBig. Es ware namlich unter anderem
festzustellen, welchen maximalen Abstand die Punkte zweier Bogen
haben konnen, die aus zwei Bogen von C durch Spiegelung hervorgehen,
was weitlaufige Betrachtungen erfordert. Eine leichte Modifikation fiithrt
jedoch sofort zum Ziel. Anstatt an allen Strecken der konvexen Hiille auf
einmal zu spiegeln, kann man sich mit der Spiegelung an einer einzigen
begniigen. Die Kurve C,, welche mit ihr langengleich und ebenfalls ver-
gleichsfahig ist, geht also aus C durch diese einzige Spiegelung hervor.
Zu ihr konstruiert man die konvexe Hiille ¢; und nimmt wiederum eine
Spiegelung um eine ihrer Strecken vor usf. Beziiglich des Anschmiegens
der C, an die konvexen Hiillen c, gilt das auf S. 29 Festgestellte, da sich
an den dortigen Uberlegungen gar nichts #ndert. Dasselbe ist fiir die
Konvergenz der Langen der ¢, gegen die Lange von C der Fall.

Man hat also nur festzustellen, wie grol der Abstand irgendeines

~\

Punktes eines Bogens, P, P;, der aus einem Bogen P,P, von C durch

Spiegelung hervorgeht, von irgend einem Punkte auf C hochstens sein
kann.

Statt diese Feststellungen fiir C selbst zu machen, betrachte ich die
konvexe Hiille ¢ mit AusschluBl der Strecke, um die umgeklappt wird.
O sei irgendein Punkt auf ihr. Er falle in den Ursprung eines rechtwink-
ligen Koordinatensystems, die x-Achse sei Tangente an ¢ in O und c liege
in der oberen Halbebene. k sei der in der oberen Halbebene liegende
Einheitskreis, der die z-Achse im Ursprung beriihrt, und K der zu k&
konzentrische Kreis vom Radius d — 1. Aus d << 4 folgt d — 1 3.
Ferner folgt aus den Hilfssdtzen 2aund 3 S. 11; 14, daB kein Punkt von ¢
auperhalb des Kreises K liegen kann. Da man namlich von O aus in posi-
tivem und in negativem Sinn laufend auf C' die Gerade y = 2 erreichen
muf}, indem man auBerhalb oder auf k bleibt, liegt einerseits sicher
kein Punkt von ¢ in k, anderseits schneidet jede Gerade durch den Mittel-
punkt von k£ ¢ genau in zwei Punkten. Lége der eine der beiden aulerhalb
von K, so miilte er vom anderen einen Abstand haben, der groer ware
als d. Aber der Durchmesser von c ist gleich dem von (. Wenn aber ¢ in

K liegt, dann muB nach dem Hilfssatz 12 das Spiegelbild B, P, eines
Bogens P, P, beziglich der Strecke P,P, der konvexen Hiille ¢ auch

noch innerhalb von K liegen. Darum ist kein Punkt des Bogens Pf:}k von
O um mehr als d entfernt. Was fiir die Punkte der konvexen Hiille gilt,
gilt natiirlich um so mehr fiir die in ihrem Inneren gelegenen Punkte
auf O, die in Betracht fallen. Man hat also
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Hilfssatz 13: Der Durchmesser der Kurve C,, die aus C dadurch ent-

steht, daf3 esn Bogen P, P, der letzteren an der thm im Sinne von Hilfssaiz 10

zugeordneten Strecke P, P, der konvexen Hiille ¢ gespiegelt wird, hat den-
selben Durchmesser wie C selbst.

Man erhilt also durch die successiven Spiegelungen eine Folge von
gleichlangen Kurven €, und damit eine Folge von konvexen Hiillen ¢,
die alle den Durchmesser d besitzen und so, dafl die Langen der konvexen
Hiillen die Lange von C als Grenzwert besitzen. Nun ist aber nach be-
kannten Satzen®) die Léange einer konvexen Kurve vom Durchmesser
d hochstens gleich d z. Daraus folgt mit Hilfe der Ungleichung IIT:

S, (d) :Sl(%l—>= d-m.

\

Es gilt also Satz 6. Jede Kurve C, deren Durchmesser d < 4 1ist, ist hioch-
stens gleich lang wie der Kreis mat dem Durchmesser—czi. Es ist aber in diesem

Fall nicht mehr so, daB nur der Kreis allein unter allen Vergleichskurven
diese Lange wirklich hat. Sie wird von allen konvexen Vergleichskurven
vom konstanten Durchmesser d angenommen. Die Bezeichnung ,.kon-
stanter Durchmesser* bedeutet dabei, dafl es zu jedem Punkt auf C
mindestens einen weiteren gibt, der von ihm den Abstand d hat.

§ 4.

Auf S. 19 stellten wir fest, daB jede Kurve C mindestens einen Einheits-
kreis ganz enthalten muB und, wenn ihr Durchmesser mindestens 4 ist,
deren zwei sich nicht schneidende. Durch diese Feststellungen sind untere
Schranken fiir die GroBe der von einer Kurve C eingeschlossenen Fliache
gegeben. Dal} eine solche Flache immer quadrierbar ist, folgt iibrigens
leicht aus den Stetigkeitsvoraussetzungen beziiglich x(s), y(s) S. 16 und
deren Derivierten. Das Ziel dieses Paragraphen ist, die genaue untere
Schranke fiir die von einer Kurve C eingeschlossene Fliche als Funktion
des Radius r,, des Umkreises bzw. des Durchmessers d zu bestimmen,
also zwei Funktionen F, (r,,) und F,(d) zu ermitteln, so daB fiir die Flache
F(C) des Bereiches, welcher von irgendeiner Kurve C vom Umkreis-
radius r,, berandet wird, gilt

F(C) = Fy(r,)

8) Vergl.: A. Rosental u. O. Szdsz, Jahresbericht d. deutschen Math. Ver. Bd. 25
(1917), 8. 278 — 282.
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und analog fiir den Inhalt F (C) irgendeines Bereiches, der von einer be-
liebigen Kurve C mit festem Durchmesser d begrenzt wird :

F(C) = F,(d).

2
Zundchst sev r,, < 1 4+ = bzw. d < 4. Die Funktion F, (d) wird sich

unmittelbar aus der Funktlon F,(r,) ableiten. Nach Seite 31 des vorigen
Abschnittes geniigt ja der Radius r,, des Umkreises einer Kurve C vom

Durchmesser d der Umgleichung —g— <7, < —-]—/:3—: + 1, und es ist auller-

dem zu erwarten, dafl F,(r,,) mit wachsendem r, nicht abnimmt. Be-
statigt sich diese Vermutung, so ist

r = r, (%)

Ich beweise zuerst drei Hilfssitze. Uber die Kurven C und ihre Lage
werden genau dieselben Voraussetzungen gemacht wie bei Hilfssatz 10
S.25. PPy, ki, ky, ky und y;, haben dieselbe Bedeutung wie dort
(Fig. 2, S. 35). Der Mittelpunkt des Umkreises K,, liege in der oberen
Halbebene, und er beriihre mindestens den einen der beiden Kreise k,
oder k, nicht. Nun werden %, und k, oder nur k,, wenn k, berithrt wird,
bzw. k,, wenn k, beriihrt wird, langs der x-Achse nach auflen verschoben,
bis es zur Beriihrung mit K,, kommt. In dieser neuen Lage sollen sie mit
k] bzw. k, bezeichnet werden. P; bzw. @, seien die Beriihrungspunkte
von k; mit der z-Achse bzw. mit dem Kreise K,,, und P, bzw. @] haben
die analoge Bedeutung fiir k,. Ferner seien k; und ), die Analoga zu k,
und y,;, oben. Nun betrachte ich folgende zwei Kurven C':

1. C,, die von P; aus im positiven Sinn durchlaufen sukzessive aus

den folgenden Bogen besteht: p,,, P Pz: P2Q2 auf ks, (p) Q/;a; auf K,,(p),
QlP auf &k (p) und P P;.
_:

2. 07 von P] aus in positivem Sinn durchlaufen aus y;, und von P, aus

wie (. Nach Hilfssatz 10 hat P:?’z auf C keinen Punkt in €, und C, nach
dem gleichen Hilfssatz keinen Punkt in C7]. Darum gilt

Hilfssatz 14: Der Bogen P; P, auf C schneidet den Bogen Q;Q, auf C]
(von Q] aus auf C] in positivem Sinn durchlaufen) nirgends und liegt teil-
weise auferhalb von C7.
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Jetzt gehe man von @ aus im positiven Sinn auf K, zu einem Punkt

@, iiber, der so liege, daB der Bogen QI/@;* nicht langer als r,, 7 sei.
Sei &k, der K,, in ;" von innen beriihrende Einheitskreis, und k;° der-
jenige Einheitskreis, welcher k; und k," in analoger Weise beriihrt, wie
k; &y und k;. Hierauf werde aus Bogen von &, k3", k;" und K die C] ent-
sprechende Kurve C}" konstruiert. Es gilt

/]

Fig. 2
Hilfssatz 15: Kein Punkt von O} liegt im Innern von C) . Dann liegt

auch kein Punkt von C, und keiner von P:E’z (Hilfssatz 14) in C7 .

Seien B] bzw. B; die Beriihrungspunkte von k; und k; bzw. von k; und
ks, B;" bzw. BS" diejenigen von k; und k;" bzw. von k;" und k;". C}" fallt
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N
mit Ausnahme des in positivem Sinn durchlaufenden Bogens B;@," mit
C; zusammen. B} B]" liegt im Innern von (7. Der Kreis k;" schneidet

sowohl k] als k;, wenn schon, dann innerhalb von C] und k; iiberhaupt

nicht; also miiBte der Bogen B}" B;" auf k;" O] zweimal schneiden, wenn
Hilfssatz 15 nicht wahr wire. Aber der erste Schnittpunkt von k3" mit
k; wird bei Durchlaufung des Kreises k; von B;" aus in negativem Sinn

erst nach Bj getroffen. Wiirde andererseits B;" B, auf k;" (p) k, zweimal
schneiden und zwischen den Schnittpunkten im Aussern von k;, ver-
laufen, so miiite der Bogen linger sein als &, was nicht moglich ist.

/f\y

Fig. 3

TN
Ist der Bogen Q;Q,Q;" nicht gleich 7,7, so kann man weiterhin von

Q; auf K,, im negativen Sinn zu Punkten ;" gelangen, so daB Q}" @} Q;Q5"
immer noch hochstens gleich r,, 7 ist. Man konstruiere dann analog zum
Vorhergehenden den Kreis ;" und zu k" und k;" k&;", ferner aus ihnen
und K,, die Kurve C}"*. Es folgt wie eben

Hilfssatz 16: Kein Punkt von C', C}, C, und somit von P/l?’,a des
Hilfssatzes 14 kann im Innern von C" liegen.
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Auf Grund dieser Hilfssdtze wird jetzt in zwei Schritten die genaue
untere Schranke F,(r,) bestimmt, und diejenige Kurve C,, ermittelt,
welche genau die Flache mit dieser Schranke als Inhalt begrenzt.

Um die Punkte — r,, + 1 und r,, — 1 der z-Achse werden die Einheits-
kreise k, und k, geschlagen (Fig. 3). K, hat dann seinen Mittelpunkt im
Ursprung und geht durch die Punkte ¢, = (—r,,, 0) und @, = (r,,, 0).
ks und k4 seien die Einheitskreise, welche &, und k, gleichzeitig beriihren,
und der Mittelpunkt von %, liege auf der negativen, derjenige von k, auf
der positiven y-Achse. B;; und B, seien die Beriithrungspunkte von %,
mit &, und k,; B;, und B,, die entsprechenden Beriihrungspunkte
zwischen k, und k; bzw. k,. Die geschlossene Kurve C,, setze sich von
B3 aus in positivem Sinn durchlaufen successive aus den folgenden Bogen

zusammen: By B, auf k; (n) Byy By, auf k, (p) By, By, auf k, (n) und
schlieBlich B,, B,, auf &, (p).

Sei C eine beliebige Vergleichskurve, die durch @, und @, geht. Da sie
von ¢, und von ¢, aus in beiderlei Sinn durchlaufen nach Hilfssatz 1 C,,
nicht schneiden kann, ehe sie die Geraden x = —r,, 4+ 1 erreicht, liegt

C,,im Innern der konvexen Hiille ¢ von C. P, P, sei eine beliebige Strecke

™~

von ¢, und P, P, der ihr im Sinne von Hilfssatz 10 entsprechende Bogen

auf C. Dann kann man in den Hilfssdtzen 14, 15 und 16 Q7" bzw. ;" durch
Q, bzw. @, ersetzen, und die vier Kurven C; O] C]" und C;** konstruieren,

die alle C,, enthalten, so daB also der Bogen P/ﬁ’k keinen Punkt in C,,
haben kann. Da die konvexe Hiille ¢ keine Punkte in C,, hat, ist es auch
nicht moglich, da3 ein Bogen von C, der der konvexen Hiille ¢ angehort,
ganz oder teilweise in C,, liegt. Damit ist

Satz 7a: Kein Punkt auf irgendeiner durch @, und Q, gehenden Ver-
gleichskurve C liegt im Innern von C,, bewiesen.

@, @y, @5 (Fig. 4) seien drei Punkte auf K, die in dieser Reihenfolge
in positivem Sinn aufeinander folgen, und Ecken eines spitzwinkligen
Dreiecks sind. k,, k, und k; seien die dort K,, von innen beriihrenden
Einheitskreise, ¢,, ,, t; die gemeinsamen Tangenten an k,, k, und ks,
welche ein Dreieck D, bestimmen, das die drei Kreise im Innern ent-
hilt. Dabei ist ¢, die Tangente an k, und k, usf, ki, k,, k; seien die
Einheitskreise, welche gleichzeitig &, und k,, &k, und %;, k; und %, in den
Punkten Bj, B,; B;, B;; B;, B, beriihren, und deren Mittelpunkte
auBerhalb des Dreiecks D, liegen. Die geschlossene Kurve (" setze sich
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von Bj aus im positiven Sinn durchlaufen aus den Bogen B/igz auf k; (n),
B, B; auf k, (p), B;B; auf k, (n), By B; auf k; (p), B; B, auf k; (n) und

B:}I auf k; (p) zusammen.
C sei eine beliebige durch @, @, und @, gehende Vergleichskurve und ¢
ihre konvexe Hiille. ¢ enthilt C’; denn nach Hilfssatz 1 muf3 C bis zu den

Fig. 4

ersten Schnittpunkten mit den von den Mittelpunkten der k;(s = 1 2 3
nach den Berithrungspunkten B, B;, gezogenen Strahlen auf den Kreisen
oder auBerhalb verlaufen. Daher kann kein Bogen von U, welcher der
konvexen Hiille ¢ angehort, Punkte innerhalb von € haben.

Sei @2 der in positivem Sinn auf ¢ durchlaufene Bogen, P, P, irgend

eine seiner Strecken und P:?Jk der ihr in tblichem Sinn zugeordnete
Bogen auf C. Wieder kann man, indem man in den Hilfssatzen 14, 15
und 16 P; und P, durch P; und P, ersetzt, die Folge C,, C; C;", O}
konstruieren, so daf3 C]"" ¢’ enthilt (es ist dabei @;" =@, und @, = @;).
Damit kann aber nach den Hilfssitzen 14, 15 und 16 kein Punkt von

P/ﬁ’z auf C in (" liegen. Daraus folgt

Satz 7b: Jeder Punkt, der durch die Punkte Q,, @, und @5 gehenden
Vergleichskurve C liegt auf oder auferhalb von C’.
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Wir miissen also, um die Schranke F,(r,) zu bestimmen, nur den
Inhalt von (' fiir beliebige Lage der Punkte @, @,, @; ermitteln und
die untere Schranke dieses Inhaltes aufsuchen. Seien M., M,, M, die

Mittelpunkte von k,, ky, kg und M, M, =1, My M; =1, MM, = 1,.

Dann ergibt eine kurze Rechnung den Inhalt ¥ (C") des von ¢’ begrenztén
Bereiches als

3
qu—n+;§% %EL+AMMJI

Es ist aber fiir l,<2(r,—1) fir i=123

3
und N, >4 (r,—1)
1

denn Dreieck M, M,M, ist spitzwinklig und dem Kreis vom Radius
r,, — 1 einbeschrieben. Daraus folgt:

IV F(C)>a+ 2(r,—1))4—(r,—1)2.

Die rechte Seite dieser Ungleichung ist aber gerade der Inhalt des von
der Kurve C,, begrenzten Bereiches, wie man durch eine kurze Rechnung
feststellt. Damit gilt

2
Satz 7: Alle Kurven C vom festen Umkreisradius r,, <1+ 73— mat

Ausnalme der tm Vorangehenden als C,, bezeichneten begrenzen einen
Bereich, dessen Inhalt gréfler ist als mw+ 2 (r,,— 1) Y4 —(r,,—1)2; der
von C,, begrenzte Bereich hat genaw diesen Inhalt.

Die genaue untere Schranke F, (r,) =z + (r,, —1)-2}Y4—(r,,— 1)2
ist nach r,, differenzierbar, und der Differentialquotient ist

AP (rp) _ 4C— W=D _ g —q 2
ECE T

Die untere Schranke wichst mit wachsendem 7,,. Nach den Bemerkungen
S. 34 ist also die untere Schranke

Fy(d) =a+( ~4)V ﬂud<4

insbesondere Fy(4) == + 2) 3. Damit ist

Satz 8 bewiesen. Alle Kurven C vom festen Durchmesser d < 4 mit einer
emnzigen Ausnahme begrenzen einen Bereich, dessen Inhalt grofer ist als
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7w+ (d—2) V4—~((—%—E—2>2 . Diese Ausnahme ist die im vorigen Satz als

C,, bezeichnete Kurve.

eJetzt bleibt noch die untere Schranke F, (d) fiir alle diejenigen Bereiche
zu ermitteln, die von Kurven C mit festem Durchmesser d > 4 begrenzt

2
werden. Da jede Kurve C, deren Umkreisradius r,,>1 4+ ﬁ ist, einen

Durchmesser d > 4 hat, ist zu erwarten, da8 sich F,(r,,) firr, >1 + ﬁ
aus F,(d) bestimmen 14a03t.

Zu jedem d > 2 (1 4}/ 3 ) ist es leicht, Kurven C derart anzugeben, daB
der von ihnen begrenzte Bereich einen Flacheninhalt hat, der F,(4) =
7w+ 2 ]/A:BT beliebig wenig iibertrifit*). Ich werde jetzt beweisen, daB
Fod)=n+ 2} 3 ist fir alled > 4.

Nach Satz 3, S. 19 enthilt jede Kurve C mit d> 4 mindestens zwei
Einheitskreise, die sich nicht schneiden. Sei k; der eine von ihnen. Er
berithre C im Punkte O, der mit dem Ursprung eines rechtwinkligen
Koordinatensystems zusammenfalle. Die x-Achse sei Tangente an C in O,
und der Mittelpunkt von k, liege auf der positiven y-Achse. K* sei der zu
k; konzentrische Kreis vom Radius J/ 3 .

Ein beweglicher Punkt P durchlaufe ¢' von O aus in positivem Sinne

und treffe K* zum erstenmal in ¢,. Beziiglich des Bogens Ofél gilt

Hilfssatz 17: Kein vom Mittelpunkt M, = (0, 1) von K* ausgehender

—~

Strahl ist Tangente vn einem innern Punkte von OQ), .

Angenommen, dies wire fiir einen Punkt P’ der Fall. Dieser lige im
Innern des Kreisringes zwischen K* und k,. Aber die zwei Einheitskreise,
welche einen Radius von K* in einem inneren Punkt dieses Kreises
beiderseits beriihren, schneiden beide k,. Mit Hilfe von Hilfssatz 1

~~

schliet man sofort, da3 dies dann auch der Bogen 0@, tun miillte, was
der Voraussetzung widerspricht.

Denkt man sich also exnen vmmer durch M, gehenden Strahl vom beweg-
lichen Punkt maitgefithrt, so muf er sich stindig gegen den Uhrzeigersinn
um M, drehen, wihrend P den Bogen O/Q\1 durchlauft.

*) Vergl. Beisp. 1.
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Unter s, verstehe ich den Strahl von M, aus durch ¢, und der Vektor

JIZTQ—Z lege auf ihm die positive Richtung fest. Die s, in @, von rechts und
links beriihrenden Einheitskreise werden k; und %, genannt, und ibre
Beriihrungspunkte mit &k, @; und Q,". Es werde nun die geschlossene
Kurve @, ins Auge gefaBt, die von @; aus in positivem Sinn durchlaufen
successive aus den folgenden Bogen besteht:

Q;Q, aut ¥ (n) @@} aut &; (n) Q[Q; auf k, (p). Esgilt:

Hilfssatz 18: Die Kurve C hat keinen Punkt im Innern von @,. Ware das

~~ —~

Gegenteil wahr, so miiite C entweder lings @, @, oder lings @, @] ins

N

Innere von @, eindringen. Ich beweise zunichst, daB dies langs @@,
nicht moglich ist. Fallt die Tangente an C in ¢, mit s; zusammen, so

mufl nach Hilfssatz 1 und Zusatz 1 Q,@, auf 0@, liegen. Liegt die Tan-
gente anders, so schlieit die positive Richtung auf s; mit dem positiven
Tangentenvektor an C' in @, einen Winkel ein, der vom ersten zum

zweiten entgegen dem Uhrzeigersinn gemessen héchstens—g— ist. Jetzt

werde OQ); von @, aus im negativen Sinn durchlaufen. Trifft man den
Strahl s; von M, durch @;, ehe man den Bogen Q/{Q\l auf &, getroffen hat,

so kann 0/51 diesen Bogen iiberhaupt nicht schneiden und die Behauptung
des Hilfssatzes ist richtig. Andernfalls gibt es einen ersten Punkt R’ auf
dem Bogen, QZZ)I, den man erreicht. 022\1 mul} nach Hilfssatz 1 Q/i-él dort
schneiden. Die Tangente an C in R’ liegt nach Hilfssatz 17 im spitzen
Winkel zwischen dem Strahl von M, durch R und der Tangente an k; in
R’. Daher schneiden die beiden C in R’ beriihrenden Einheitskreise den

Kreis k,, und OQ, muB ins Innere von k, eintreten, was gegen die Vor-

VamnN

aussetzung ist. Der Bogen 0@, hat also keine Punkte innerhalb von @;.

Nun laufe P in positiver Richtung iiber @, hinaus weiter. Wiirde er

spater ins Innere von @, eintreten, so konnte das nur lings Q,Q; (ex-
klusive @,) der Fall sein. R” + Q) sei der erste gemeinsame Punkt von

C und Q/l-@'l', den man auf diesem Wege erreicht, s” der Strahl von M,
durch R”, " die Tangente an k) in R”. C muB wegen Hilfssatz 1

@:1Q; in R" schneiden. Daher liegt die Tangente an C in R” entweder
Im spitzen Winkelraum zwischen #” und s” — dann schneiden aber die
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rechts und links beriithrenden Einheitskreise beiden den Kreis k;, und
C hatte nach Hilfssatz 1 Punkte im Innern von k; — oder sie liegt im
stumpfen Winkelraum. Wenn auch in diesem Fall beide Beriihrungs-
kreise den Kreis k; schneiden, dann mufl es auch C tun. Andernfalls
konnte es s; aullerhalb von k; schneiden. Dann miilite die Kurve aber
den Uberlegungen fiir Hilfssatz 17 zufolge OQ; schneiden oder zum
zweitenmal durch O gehen, was gegen die Voraussetzung geht. Ginge C
durch @; so miiite die Kurve entweder auf k, weiterlaufend durch Q;

~~
gehen oder langs @,Q; ins Innere der geschlossenen Kurve g* eintreten,

die der Reihe nach aus den Bogen 56\21 auf C (p), é:Ql auf k; (p), Q/:O auf
k, (n) besteht (Hilfssatz 1). In beiden Fillen miilite sie dann aber nach
den Uberlegungen S. 41 entweder ein zweites Mal durch O gehen oder

0Q, oder @;0 schneiden, was gegen die Voraussetzungen ist.
Damit ist der Hilfssatz 18 bewiesen.

Analog entspricht einem von O aus im negativen Sinn laufenden
beweglichen Punkt eine geschlossene Kurve @;. &, und &, haben k,
gemeinsam. Die aufgesetzten Spitzen konnen entweder getrennt liegen
oder sich in einem Punkte schneiden.

Geht man beziiglich des zweiten in C liegenden Einheitskreises, k,
welcher C ebenfalls beriihren soll, genau so vor wie beziiglich %,, so erhalt
man zwei weitere @, und @, entsprechende zu ihnen kongruente ge-
schlossene Kurven @, und &,. Schneiden sich die Kreise K; und K
nicht (K, ist konzentrisch zum Einheitskreis &, und vom Radius }/ 3),
so liegen @, und @, von @, und @, getrennt. Schneiden sie sich jedoch,
so fassen wir @; und @, ins Auge. Die Mittelpunkte M, und M, von k; und
k, sollen alsdann symmetrisch zum TUrsprung eines rechtwinkligen
Koordinatensystems auf der x-Achse liegen, und zwar M, links. Es darf
weder die Spitze @, von @; in @,, noch die Spitze @, von @, in @, liegen
(Hilfssatz 18). Sollen @, und @, innere Punkte gemeinsam haben, so

’/-\ n I/‘\ n
miissen sich die Bogen @, @, @; und @, @, @, gegenseitig durchdringen.
Daraus folgt, da8 die Strecken M, @, und M, @, sich schneiden miissen,

@; kann alsdann nicht auf der x-Achse liegen. P, bezw. P, seien diejenigen
Punkte auf C, von welchen man bei der Konstruktion von @, und @,
bezw. @, und @, ausging; R sei derjenige Teil des Kreisringes zwischen
k; und K*, der von den Radien durch P; und @, abgeschlossen wird und

—~
auf dessen Rand oder in dessen Inneren P,@Q, von P, aus zunichst ver-
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lauft®). P,@, kann nach Hilfssatz 18 auBler @; keinen Punkt haben, der
den geradlinigen Begrenzungsstiicken oder dem Bogen auf K* angehort.

Nun liege ¢, in der oberen Halbebene und M, @), schneide M,Q,. Dann

miillte auch der Bogen P,@), M,Q, schneiden, d. h. er drange ins Innere

von @, ein. Das ist nach Hilfssatz 18 nicht erlaubt.

Lage @, in unterer Halbebene und schnitten sich M;¢, und M,Q,, so

wiirde man analog schlieen, daf PZZ)Z Punkte im Innern von @, haben
miilte. @, und @, kénnen also keine inneren Punkte gemeinsam haben.
Genau so folgt, daB @; und @, keine innern Punkte gemeinsam haben.
Alle innern Punkte von @,, @;, @, und @, sind auch innere Punkte von C.
Es gilt aber fiir die Flachen ¥, und ¥, der von @, und @, begrenzten
Bereiche

ﬂ:&:%+ﬁi

Da auch @; und @, aus den gleichen Griinden getrennt liegen, und weder
@, mit @, noch @, mit @, zusammenfallen kann, da sonst Doppelpunkte
vorhanden wéren, gilt fiir die Flache F (C') des von C begrenzten Bereiches

F(O)>n+2V)3.

Im iibrigen ist es einfach, zu jedem Durchmesser d > 4 oder zu jedem

2
Umkreis, vom Radius r,, > 1 + V—g: Kurven C anzugeben, so daB3 der

Inhalt des von ihnen begrenzten Bereiches dieser Schranke beliebig nahe
kommt.

Beispiel 1: Es seid > 2 + 2 ‘/—3' oder r,, > 1 + }/ 3. Dann schligt man
um die Punkte — d+ 1 und d —1 auf der z-Achse eines rechtwinkligen
Koordinatensystems die Einheitskreise k; und k, und zieht die Geraden
y=¢und y = —¢ (0< e<1). Die Einheitskreise ¥, und %, sollen
gleichzeitig &, auf der rechten Halfte in P; bzw. P] und y = — ¢ bzw.
Yy = 4 ¢ in den Punkten @, bzw. @] beriihren. Entsprechende Beriih-
rungen sollen die Einheitskreise k, und %, mit k, und denselben Geraden

®) Ein durch M, gehender Strahl, der bei der positiven Durchlaufung von P, @, von
einem beweglichen Punkt P mitgefithrt wird, iberstreicht einen Winkelraum, dessen

Offnung « kleiner ist als}—lf . Die gegenteilige Annahme hat die Existenz von Doppel-
g 6 geg g

punkten zur Folge, was man nach S. 41 einsieht, wenn man C von P; aus in nega-
tivem Sinn durchlauft.
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haben, nur mit dem Unterschied, daB k, auf der.-linken Halfte beriihrt
wird. Die Kurve C, welche die behaupteten Eigenschaften besitzt, setzt
sich von @; aus in positivem Sinne durchlaufen sukzessive aus den
folgenden Teilbogen zusammen:

Q1Q:; QP aut &, (n); P, P, auf ky (p); PyQ; auf ky(n); Q5Q); Q) P
— — —~ -
auf ky (n); P{P; auf k,(p); P,Q; auf k] (n). Der Inhalt der Fliche,

welche von einer derartigen Kurve begrenzt wird, geht mit ¢ — 0 gegen

n+2ﬁ.

Beispiel 2. Der Umkreis K,, habe einen Radius r,,<1 -+ 3. Um die
Punkte My, M,, Mg, M, seien Einheitskreise geschlagen, um M,, M,, M,

Fig. 5

ebenfalls und dazu solche vom Radius 14 ¢ (¢>0, klein), Fig. 5. Die
Entstehung von C' aus Bogen dieser Kreise und gemeinsamen Tangenten
ist leicht zu iiberblicken. Auch sieht man unmittelbar, da8 der Inhalt,
des von C begrenzten Bereiches mit ¢ — 0 gegen = 4 2 ]/? geht.
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Es gilt also Satz 9: Unter allen Kurven C vom festen Durchmesser

2
r,>1-+ 7—? oder vom kleinsten Umkreisradius d > 4 ¢gibt es keine mit der

Eigenschaft, daf der Inhalt des von ihr begrenzten Bereiches ein Minimum
iwst. Far diesen Inhalt existiert aber eine genaue untere Schranke, und diese
ist fiir alle d und alle r,, % + 23

§ 5.
Die Frage nach der kiirzesten unter allen Kurven C mit festem Um-

kreis vom Radius 7,, oder mit festem Durchmesser d ist leicht zu be-
antworten. Es gilt namlich:

Satz 10: Es gibt unter allen Kurven C mat festem Umkreis vom Radius r,,
ewne kiirzeste, und diese hat die Linge 2 w + 4 (r,, — 1).

Ebenso existiert unter allen Kurven C vom festen Durchmesser d genau
evne kiirzeste. Ihre Linge ist 2 w + 2 d — 4.

Es geniigt, wiederum den Beweis fiir festes 7,, zu fiihren. Der Umkreis-
radius fiir Kurven mit festem Durchmesser durch die Ungleichungen ITI
S. 31 festgelegt. Ferner ist, falls die obige Behauptung richtig ist, das
Langenminimum fiir Kurven mit festem Umkreis eine mit r,, wachsende
Funktion von r,,. Also hat man fiir ein festes d nur das Minimum fiir die
Kurvenlange im kleinstmoglichen Umkreis in Betracht zu ziehen, woraus
sich dann sofort die Behauptung des Satzes 10 beziiglich des Durch-
messers ergibt.

Der Beweis fiir die erste Behauptung des Satzes 10 vollzieht sich in
zwei Schritten.

1. Ich setze voraus, C beriihre den Umkreis K,, in den Endpunkten
eines Durchmessers. Dieser liege mit dem Mittelpunkt im Ursprung auf
der z-Achse eines rechtwinkligen Koordinatensystems. Um die Punkte
—7,,+ 1 und r,, — 1 werden die Einheitskreise %, und %, geschlagen, und
hierauf die Geraden y = + 1 und ¥y = — 1 als gemeinsame Tangenten
gezogen (Fig. 3, S. 36). Diese beriihren k, und %, in den Punkten P; und
P], k, in den Punkten P, und P,. Die gesuchte kiirzeste Kurve C,, setzt
sich von P; aus in positivem Sinn durchlaufen successive aus den folgenden

Bogen zusammen : PTP; auf k, (p), PiP;; P/;;:\P2 auf &, (p), P, P;.

s —
C,, hat die Lange 2 + 4 (r,, — 1). Jede durch (—7,,, 0) und (r,,, 0)
laufende Kurve C verlauft von diesen Punkten aus im positiven und im
negativen Sinn bis zu ihren ersten Schnittpunkten @] und @; bzw. @, und
@, mit den Geraden # = — r,,+ 1 bzw. = r,, — 1 auf oder auBerhalb
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von k, bzw. k, (Zusatz 1). Das Linienelement jedes der Bogen Q/?Q:
(¢ = 1, 2) lautet in Polarkoordinaten von den Punkten (—r, -+ 1, 0)
bzw. (r,, — 1, 0) aus dargestellt:

ds? =dp?>+ ®dw?® (o= 1);

dasjenige auf den entsprechenden Kreisbogen do = dw.
s Iy

Also ist [ds>= [do = x;
0 0

gleich nur, wenn die Bogen von €' auf den Kreisen liegen. Die Lénge der

Bogen Q':'@; und Q;?)l auf C ist einzeln genommen, sicher nicht kleiner
als 2 (r,, — 1) und gleich nur, wenn sie zur x-Achse parallele Strecken
sind, also ist die Lange jeder Kurve C durch (— r,,, 0) und (r,, 0) sicher
groBer als 2w 4 4 (r,, — 1), wenn sie nicht mit der Kurve O}, zusammen-
fallt.

2. Die drei Punkte @, @5, @5 sollen bei positivem Umlauf auf K, von
@, aus in dieser Reihenfolge aufeinander folgen und Ecken eines spitz-
winkligen Dreiecks sein (Fig. 4, S. 38). k, k,, k3 mit den Mittelpunkten
M,, M, M, seien die drei Einheitskreise, die K, in @,, @,, @3 beriihren
und gleichzeitig in K, liegen. M,, M,, M, sind dann ebenfalls Ecken
eines spitzwinkligen Dreiecks; und dieses ist dem zu K,, konzentrischen
Kreise K* vom Radius r,,— 1 einbeschrieben. Die drei gemeinsamen
Tangenten ¢,, {,, {; an je zwei der Kreise k,, k,, k5 sollen der Reihe nach

den Strecken M, M,, M, M,, M, M, parallel laufen und ein Dreieck
bestimmen, das die drei Kreise enthélt. Thre Beriihrungspunkte mit k;
sollen mit @; und @ in dem Sinn bezeichnet werden, daB der Umlauf
um jeden der Kreise von @; aus iiber @, nach @ positiv ist. Man betrach-
tet alsdann die geschlossene Kurve C,,, deren Teilbogen bei positivem

Umlauf von ¢, aus der Reihe nach die folgenden sind: Q:@; auf k, (p),
Q1@ auf t;, Q.Q, auf &, (p), Q2Q; auf by, Q;Q5 auf k; (p), Q5@ auf ¢4
—_> — —

und Q,Q, auf k, (p). Diese Kurve C, ist kiirzer als irgendeine andere
Vergleichskurve C durch @, @,, @5;. Das erkennt man analog wie unter 1.,
indem man von M, aus die Strahlen s; und s; nach den @; und @Q; zieht
(t+ = 1, 2, 3). Die Bogen von ¢, aus nach den beiden Richtungen bis zu
den ersten Schnittpunkten mit s; und s; sind fiir jedes ¢ zusammen nicht
kleiner als = — a;, wobei a; der Winkel des Dreiecks M; M, M, in der
Ecke M, ist, und sicher groBler, wenn die Bogen nicht auf den Kreisen
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k; ¢+ = 1, 2, 3) liegen. Die iibrigen Bogen auf C' sind zusammen nicht
kleiner als der Umfang des Dreiecks M, M, M,, also ist die Lange einer
jeden von C,, verschiedenen Kurve C, die durch @, , @, und @, geht, groBer
als 27+ Umfang von Dreieck M, M, M. Letzterer aber ist grofler als der
doppelte Durchmesser von K*. Somit ist die Lange einer jeden Vergleichs-
kurve C' auch diejenige von C groBer als 2z + 4 (r, — 1), was zu
beweisen war.

Zum Schlusse sei noch bemerkt, dafl man etliche von den fiir die ge-
schlossenen Kurven C abgeleiteten Resultate ohne Miihe auf einfache
geschlossene Flachen iibertragen kann. Man hat dabei beziiglich der
Stetigkeit und Glattheit dieselben Voraussetzungen zu machen und ent-
weder die beiden Hauptkriimmungen als stiickweise stetig und gleich-
artig beschrankt vorauszusetzen, oder der Gaul’schen Kriimmung
entsprechende Voraussetzungen aufzuerlegen.

(Eingegangen den 6. Marz 1935.)
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