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Ùber das Euler'sche Verfahren

zur Auflôsung numerischer Gleichungen

Von E. Bodewig, Basel

Im 9. Kapitel des 2. Teiles seiner Differentialrechnung (Opéra omnia,
Ser. I, Vol. X, p. 422—55) entwickelt Euler eine Méthode zur Auflôsung
numerischer — und, wie er angibt, auch litteraler — Gleichungen, die
eine wesentliche Verallgemeinerung des Newton'schen Verfahrens dar-
stellt.

Ist nàmlich y y(x) und y(X) 0, so setzt er bei beliebigem a die

Entwicklung an

0 y(X) y (a) + (X-a)y'(a) + J(Z — a)V'(») + -
Bricht man mit Newton nach dem linearen Gliede ab, so folgt, daB

X — a proportional zu b y (a) ist. Eine nochmalige Newton'sche

Approximation gibt X — a als lineare Kombination von b und 62. Euler
setzt daher gleich allgemein: X — a Ab + Bb2 + C63 + •••. Durch
Koeffizientenvergleichung erhâlt er die bisher unbestimmten A, B, C, •••.
Da ihm aber ihr Bildungsgesetz nicht klar ist, verfàhrt er noch nach einer
zweiten Méthode. Er denkt sich die Umkehrung der Funktion y y(x)
gebildet: x x(y). Dann ist x(0) die gesuchte Wurzel X. Er geht also

wieder von einem beliebigen a aus und erhàlt wegen x(b) a:

X x(0) x(b — b) a — b • x' (b) + J b*x"(b) — i bzx" '(6) + —.

Allgemein ftihrt er jetzt die Rechnung nicht mehr durch, sondern verweist
darauf, daB man in jedem numerischen Falle die Ableitungen x', x", •••

bilden kann, weil x' bekannt ist. (Bezeichnet man yin) kurz mit yn, so ist

x'

\ — io y, y,, ys -\ y\ y,) ¦ y]7 2

xv (îoôy^—îosy^ly3 -f- ioy11 yl~\-15 y\ y3y^—y\y$):v\u»s»w.

mit dem, von Euler nicht erkannten, rekurrenten Bildungsgesetz

wo Yn definiert ist durch a?<n> (— l)^-1 Yn: y\n'1)
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Da der Ausgangswert a beliebig ist, also kein ,,Nàherungswert" zu sein
braucht, so glaubt Euler damit die Wurzel einer Gleichung in eine Reihe
entwickelt zu haben. Allerdings weist er andererseits schon darauf hin,
daB er kein Mittel kennt, um zu entscheiden, welche der verschiedenen
Wurzeln X er, von a ausgehend, erhâlt. Wir kommen darauf und auf die
Konvergenzfrage zuruck.

Jedenfalls ist zunàchst klar, welche Vorteile das Euler'sehe Verfahren
hat : Geht man von einem Nâherungswert aus und bricht die Reihe hinter
bn~x ab, so ist der begangene Fehler proportional zu bn (bei Newton also

proportional zu 62). Grob gesprochen: Ist a bis auf m Dezimalen richtig,
so liefert die hinter bn~x abgebrochene Entwicklung die Wurzel bis auf
etwa mn Dezimalen genau. Man kann also, ohne wie bei Newton und
andern Methoden das Verfahren zu wiederholen, gleich einen
Nâherungswert bis auf die verlangte Dezimalenzahl berechnen. Freilich gilt
dièse Bemerkung nur theoretiseh; denn schlieBlich werden die hôheren
Ableitungen von x{y) meist so kompliziert, daB man praktischer das
Verfahren wiederholt. Indessen wird man Eulers Méthode mit besserem

Erfolg als die andern Methoden anwenden, wenn die Berechnung von
y(x), zumal fur mehrstelliges x, besonders umstândlich ist; auch wenn
z. B. y(x) nur fur Argumente mit wenigen Dezimalen tabuliert ist und bei
mehr Dezimalen interpoliert werden mûBte. Ferner wird man das
Verfahren anwenden, wenn — was ôfter vorkommt — die Ableitungen
xf', x'\ ••• wenigstens im Anfang sich leicht bilden lassen, z. B. bei
xx c oder, wie man besser schreibt, x • l x k. Bei tabulierten Funk-
tionen lassen sich ferner dièse Ableitungen leicht numerisch durch
Differenzenreihen bestimmen, wenn es sich um Tafelargumente handelt.
Im ûbiigen wird man bei tabulierten Funktionen das Verfahren meist
wiederholen, indem man beim ersten Mâle so viele Stellen bestimmt, daB
die Nàherungswurzel als Argument in der Tafel gerade noch aufschlagbar
ist, und dann beim zweiten Mâle die Genauigkeit so weit treibt, wie die
Stellenzahl der tabulierten Funktionswerte es gestattet. — Wenn hin-
gegen die hôheren Ableitungen umstândlich zu berechnen sind, so wird
man auf die Newton'sche Méthode oder gar die Régula Falsi zuruck-
kommen.

Dièses Verfahren, das Euler nach einer Mitteilung von Courtivron
(Académie des Sciences 1744) vor 1744 fand — die Differentialrechnung
erschien erst 1755 — und das nach Lagrange ,,zu der Zahl von Entdeckun-
gen zâhlt, mit denen er die Analysis bereichert hat", ist sonderbarerweise

vôllig vergessen, obwohl es in seiner Differentialrechnung ein ganzes
Kapitel mit zahlreichen SchluBfolgerungen einnimmt. Nur Lagrange> der



Eulers Erbe weiterfuhrte, hat sich noch einmal mit ihm beschaftigt1) ;

indessen sind seine theoretischen Ausfuhrungen nur Wiederholungen
Eulers. Nach ihm kannte die Méthode anscheinend niemand mehr, so da6
Theremin sie im Jahre 1855 von neuem entdecken konnte2), ohne Wider-
spruch zu finden, ohne aber andererseits die Méthode irgendwie praktisch
oder theoretisch auszuwerten. 1870 wurde die Méthode zum dritten Mâle
entdeckt von Schroder3), der sie auf ganz anderem Wege ableitete und
die Prioritat im ubrigen Theremin zuschrieb. Seitdem ist nirgends mehr
die Rede von ihr, auch nicht in Darstellungen uber numerisches Rechnen.
Eine Ausnahme bildet nur Willers4), der sie kurz erwahnt, sich aber weder
auf Theremin noch Schroder noch gar Euler bezieht.

Euler glaubte, wie gesagt, durch sein Verfahren die Wurzel einer be-

liebigen Gleichung in eine Reihe entwickelt zu haben. Heute hat man
naturlich die Konvergenz der obigen Reihe fur X zu untersuchen. Im
Falle einer beliebigen Gleichung stoBt dies auf zu groBe Schwierigkeiten.
Wir beschranken uns daher auf algebraische Oleichungen, und zwar solche
ohne mehrfache Wurzeln.

Die Gleichung f(x) xn + ^x71-1 + ••• -f- an 0 werde durch eine
Tschirnhausen-Transformation z y (x) a0 + ax x -f a2 x2 H 1- a^ xn~x

auf die Form zn 1 gebracht. Setzt man fur die neue Gleichung die
Euler'sche Entwicklung mit zunachst unbestimmtem a an, so ergibt sich
nichts anderes als die binomische Reihe (an — (an — l)1^. Letztere aber

konvergiert, wenn a die Bedingung erfullt | an — 1 | ^ | an \. Die Kurve
| yn — l | | yn | oder in Polarkoordinaten rn cos n& \ ertragt nun
die^elben Drehungen wie ein regulares w-Eck und besteht daher aus n kon-
gruenten, ins Unendliche gehenden Zugen mit n reellen Brennpunkten
(Schnittpunkten isotroper Tangenten), namlich den n Einheitswurzeln.
Damit also das Euler'sche Verfahren bei der Gleichung zn 1 konver-
gieit, ist notwendig und hinreichend, daB der ,,NaherungswertC£ a von z

innerhalb oder auf dem Rande eines solchen Zuges liegt, mag er auch
unendlich weit von dem Wurzelwert entfernt sein. Und zwar konvergiert das

Verfahren nach dem Abel'schen Satz gegen diejenige Wurzel zt, welche
in demselben Kurvenzug liegt wie a.

Von der Gleichung zn 1 kann man aber wieder zur ursprunglichen
Gleichung zuruckgehen. Dann ist jede Wurzel X% von f(x) 0 dar-

*) Oeuvres, 8, 262.
2) Recherches sur la Résolution des équations de tous les degrés.

Crelle's Journal, 49, 187—243.
3) Unendlich viele Algorithmen zur Auflosung der Gleichungen.

Mathematische Annalen, 2, 1870, 230.
4) Methoden der praktischen Analysis, p. 175.



stellbar durch Xi ft0 + $xZi + /?2z/ + ••• + ^-i^"1, wo z,-eine Wurzel
von zn 1 ist und die fik rationale Punktionen der av a2, •••, aw und
a0, a1? •••, a^-! sind. Die erwâhnte Kurve geht dann in eine andere iiber,
die zwar nieht wieder symmetrisch ist, die aber auch jetzt aus n Ztigen
besteht, welche wieder ins Unendliche reichen. In jedem dieser Zuge liegt
eine Wurzel X{. Wâhlt man irgendeinen Punkt im Innern oder auf dem
Rande eines solchen Zuges als ,,Nàherungswert" fur X{, so konvergiert
die Entwicklung, und zwar gegen die innerhalb des Zuges befindliche
Wurzel Xt.

Man hat also bei dem Euler'schen Verfahren einen wesentlich grôBeren
Spielraum bei der Wahl des Nâherungswertes, mit dem man die
Approximation an die Gleichungswurzel beginnen will. Und nach einer, aller-
dings unbekannten Richtung kann man den Ausgangswert beliebig weit
von dem Wurzelwert entfernt wàîilen. In Fàllen, in denen also andere

Nàherungsverfahren versagen, wird man mit dem gleichen Ausgangswert
bei dem Euler'schen Verfahren noch eine konvergente Entwicklung
bekommen.

(Eingegangen den 26. Februar 1935.)
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