Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 8 (1935-1936)

Artikel: Uber das Euler'sche Verfahren zur Auflosung numerischer
Gleichungen.

Autor: Bodewig, E.

DOl: https://doi.org/10.5169/seals-9284

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-9284
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Uber das Euler’sche Verfahren
zur Auflésung numerischer Gleichungen

Von E. BopEwia, Basel

Im 9. Kapitel des 2. Teiles seiner Differentialrechnung (Opera omnia,
Ser. I, Vol. X, p. 422—55) entwickelt Euler eine Methode zur Auflosung
numerischer — und, wie er angibt, auch litteraler — Gleichungen, die
eine wesentliche Verallgemeinerung des Newton’schen Verfahrens dar-
stellt.

Ist ndmlich ¥ = y(x) und y(X) = 0, so setzt er bei beliebigem a die
Entwicklung an

0=yX) =yl + X —2a)y (a + $(X—2a)y"(a) + -

Bricht man mit Newton nach dem linearen Gliede ab, so folgt, daB
X — a proportional zu b = y(a) ist. Eine nochmalige Newton’sche
Approximation gibt X — a als lineare Kombination von b und b2. Euler
setzt daher gleich allgemein: X — a = 4b + Bb% 4 Cb3 + ---. Durch
Koeffizientenvergleichung erhilt er die bisher unbestimmten 4, B, C, ---.
Da ihm aber ihr Bildungsgesetz nicht klar ist, verfahrt er noch nach einer
zweiten Methode. Er denkt sich die Umkehrung der Funktion y = y(x)
gebildet: x = z(y). Dann ist x(0) die gesuchte Wurzel X. Er geht also
wieder von einem beliebigen a aus und erhélt wegen x(b) = a:

X =2(0)=ax®b—b)=a—>b-a (b)+ Lb2a"(b) — 4 b3a" ' (b) + -

Allgemein fiihrt er jetzt die Rechnung nicht mehr durch, sondern verweist
darauf, da man in jedem numerischen Falle die Ableitungen ', z’’, ---
bilden kann, weil 2" bekannt ist. (Bezeichnet man (™ kurz mit y,, so ist

o =1lly,,2"=—y, ¥}, 2" =@y, —y,9,): 9,
"' =— 15y — 10y, ¥, 9y, -+ Y y,): ¥},
x” = (106y:— 105y y>y +10y? y:+ 15y y, y,—yiy,):y) ws.w.

mit dem, von Euler nicht erkannten, rekurrenten Bildungsgesetz
Y'n+1 = (2”’—_1) y2yn — W Y;z s

wo Y, definiert ist durch z™ = (— 1)»-1Y ,: yi"1).
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Da der Ausgangswert a beliebig ist, also kein ,,Naherungswert* zu sein
braucht, so glaubt Euler damit die Wurzel einer Gleichung in eine Reihe
entwickelt zu haben. Allerdings weist er andererseits schon darauf hin,
daB er kein Mittel kennt, um zu entscheiden, welche der verschiedenen
Wurzeln X er, von a ausgehend, erhilt. Wir kommen darauf und auf die
Konvergenzfrage zuriick.

Jedenfalls ist zunidchst klar, welche Vorteile das Euler’sche Verfahren
hat: Geht man von einem Ndherungswert aus und bricht die Reihe hinter
b™1 ab, =0 ist der begangene Fehler proportional zu 6" (bei Newton also
proportional zu b%). Grob gesprochen: Ist a bis auf m Dezimalen richtig,
so liefert die hinter "1 abgebrochene Entwicklung die Wurzel bis auf
etwa mn Dezimalen genau. Man kann also, ohne wie bei Newton und
andern Methoden das Verfahren zu wiederholen, gleich einen Nihe-
rungswert bis auf die verlangte Dezimalenzahl berechnen. Freilich gilt
diese Bemerkung nur theoretisch; denn schlieBlich werden die hoheren
Ableitungen von z(y) meist so kompliziert, dal man praktischer das
Verfahren wiederholt. Indessen wird man Eulers Methode mit besserem
Erfolg als die andern Methoden anwenden, wenn die Berechnung von
Y (x), zumal fiir mehrstelliges x, besonders umstandlich ist; auch wenn
z. B. y(z) nur fiir Argumente mit wenigen Dezimalen tabuliert ist und bei
mehr Dezimalen interpoliert werden miilte. Ferner wird man das
Verfahren anwenden, wenn — was ofter vorkommt — die Ableitungen
x', x’’, -~ wenigstens im Anfang sich leicht bilden lassen, z. B. bei
2* = ¢ oder, wie man besser schreibt, x - lx = k. Bei tabulierten Funk-
tionen lassen sich ferner diese Ableitungen leicht numerisch durch
Differenzenreihen bestimmen, wenn es sich um Tafelargumente handelt.
Im iibrigen wird man bei tabulierten Funktionen das Verfahren meist
wiederholen, indem man beim ersten Male so viele Stellen bestimmt, daB
die Naherungswurzel als Argument in der Tafel gerade noch aufschlagbar
ist, und dann beim zweiten Male die Genauigkeit so weit treibt, wie die
Stellenzahl der tabulierten Funktionswerte es gestattet. — Wenn hin-
gegen die hoheren Ableitungen umstédndlich zu berechnen sind, so wird
man auf die Newton’sche Methode oder gar die Regula Falsi zuriick-
kommen.

Dieses Verfahren, das Euler nach einer Mitteilung von Courtivron
(Académie des Sciences 1744) vor 1744 fand — die Differentialrechnung
erschien erst 1755 — und das nach Lagrange ,,zu der Zahl von Entdeckun-
gen zahlt, mit denen er die Analysis bereichert hat®, ist sonderbarerweise
vollig vergessen, obwohl es in seiner Differentialrechnung ein ganzes
Kapitel mit zahlreichen SchluBfolgerungen einnimmt. Nur Lagrange, der
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Eulers Erbe weiterfiihrte, hat sich noch einmal mit ihm beschaftigt?);
indessen sind seine theoretischen Ausfithrungen nur Wiederholungen
Eulers. Nach ihm kannte die Methode anscheinend niemand mehr, so daf3
Theremin sie im Jahre 1855 von neuem entdecken konnte?), ohne Wider-
spruch zu finden, ohne aber andererseits die Methode irgendwie praktisch
oder theoretisch auszuwerten. 1870 wurde die Methode zum dritten Male
entdeckt von Schroder?), der sie auf ganz anderem Wege ableitete und
die Prioritat im iibrigen Theremin zuschrieb. Seitdem ist nirgends mehr
die Rede von ihr, auch nicht in Darstellungen iiber numerisches Rechnen.
Eine Ausnahme bildet nur Willers?), der sie kurz erwihnt, sich aber weder
auf Theremin noch Schroder noch gar Euler bezieht.

Euler glaubte, wie gesagt, durch sein Verfahren die Wurzel einer be-
liebigen Gleichung in eine Reihe entwickelt zu haben. Heute hat man
natiirlich die Konvergenz der obigen Reihe fiir X zu untersuchen. Im
Falle einer beliebigen Gleichung sto3t dies auf zu groBe Schwierigkeiten.
Wir beschrinken uns daher auf algebraische Qleichungen, und zwar solche
ohne mehrfache Wurzeln.

Die Gleichung f(z) = 2™ 4+ a,2® ! + -+ + a, = 0 werde durch eine
Tschirnhausen-Transformation z =¢ () = a5+ a; 2 + ag 2+ -+ + a, 7 21
auf die Form 2z® = 1 gebracht. Setzt man fiir die neue Gleichung die
Euler’sche Entwicklung mit zunachst unbestimmtem a an, so ergibt sich
nichts anderes als die binomische Reihe (a® — (a® — 1)1/», Letztere aber
konvergiert, wenn a die Bedingung erfiillt | a» — 1| < | a®|. Die Kurve
| y»— 1| = | y* | oder in Polarkoordinaten " cos n¥ = } ertrigt nun
dieselben Drehungen wie ein reguléres n-Eck und besteht daher aus » kon-
gruenten, ins Unendliche gehenden Ziigen mit = reellen Brennpunkten
(Schnittpunkten isotroper Tangenten), namlich den n Einheitswurzeln.
Damit also das Euler’sche Verfahren bei der Gleichung z* = 1 konver-
giert, ist notwendig und hinreichend, dal der ,,Naherungswert‘ a von 2
innerhalb oder auf dem Rande eines solchen Zuges liegt, mag er auch
unendlich weit von dem Wurzelwert entfernt sein. Und zwar konvergiert das
Verfahren nach dem Abel’schen Satz gegen diejenige Wurzel z;, welche
in demselben Kurvenzug liegt wie a.

Von der Gleichung z* = 1 kann man aber wieder zur urspriinglichen
Gleichung zuriickgehen. Dann ist jede Wurzel X, von f(x) = 0 dar-

1) Oeuvres, 8, 262.

?) Recherches sur la Résolution des équations de tous les degrés.
Crelle’s Journal, 49, 187—243.

3) Unendlich viele Algorithmen zur Auflésung der Gleichungen.
Mathematische Annalen, 2, 1870, 230.

4) Methoden der praktischen Analysis, p. 175.



stellbar durch X, = 8, + f12; + B222 + -+ + B.—12"1, Wo 2, eine Wurzel
von 2z"® = 1 ist und die f, rationale Funktionen der a,, a,, ***, 2, und
gy O, ***, 0, Sind. Die erwéhnte Kurve geht dann in eine andere iiber,
die zwar nicht wieder symmetrisch ist, die aber auch jetzt aus n Ziigen
besteht, welche wieder ins Unendliche reichen. In jedem dieser Ziige liegt
eine Wurzel X,;. Wahlt man irgendeinen Punkt im Innern oder auf dem
Rande eines solchen Zuges als ,,Naherungswert‘ fiir X,, so konvergiert
die Entwicklung, und zwar gegen die innerhalb des Zuges befindliche
Wurzel X,;.

Man hat also bei dem Kuler’schen Verfahren einen wesentlich grof8eren
Spielraum bei der Wahl des Naherungswertes, mit dem man die Appro-
ximation an die Gleichungswurzel beginnen will. Und nach einer, aller-
dings unbekannten Richtung kann man den Ausgangswert beliebig weit
von dem Wurzelwert entfernt wihlen. In Fallen, in denen also andere
Naherungsverfahren versagen, wird man mit dem gleichen Ausgangswert
bei dem FEuler’schen Verfahren noch eine konvergente Entwicklung

bekommen.

(Eingegangen den 26. Februar 1935.)
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