Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 8 (1935-1936)

Artikel: Uber die Dirichlet'schen Reihen fir ...(s), L...(S).
Autor: Kienast, Alfred

DOl: https://doi.org/10.5169/seals-9300

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-9300
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Uber die Dirichlet'schen Reihen fiir (), L)

Von AvrrED KiEnasT, Kiisnacht (Ziirich)

Unter den gewohnlichen Dirichlet’schen Reihen zeichnen sich die-
jenigen fiir {¢(s), Le(s) und analoge in dhnlicher Weise aus, wie unter
den Potenzreihen die binomische. Wahrend man die Eigenschaften der
letzteren sehr eingehend studiert hat, sind die ersteren wenig beachtet
worden, indem sich hier das Interesse vorwiegend der Approximation der
summatorischen Funktionen von {-!, L~! usw. zuwandte. Im vorliegen-
den Aufsatze leite ich auf elementarem Wege einige fundamentale
Ergebnisse iiber die Reihen (¢(1 4-42), Le(1 4 4t) ab. DaB} diese Ergebnisse
unabhingig von der Theorie der Funktionen einer komplexen Variabeln
bewiesen werden konnen, beruht darauf, daBl dies fiir die Tatsache
lim (14 e+1t) £ 0, t=0 moglich ist, wie ich in dem Aufsatze: ,,Uber

>0
die Unabhingigkeit des Beweises des Primzahlsatzes vom Begriff der

analytischen Funktion einer komplexen Variabeln‘, Com. Math. Helv. 8
(1935), 130, gezeigt habe. Ich verweise auf diesen Aufsatz durch I.

Zweitens wird ein Satz verwendet, analog zu einem Landau’schen
Grenzwertsatze: E. Landau, Rend. Palermo 34 (1912), 121—31; A.Kienast,
Math. Ann. 95 (1925), 427—445, § 1.

Die Form des ,,Fehlergliedes, die in nachstehenden Formeln auftritt,
habe ich zunutze gezogen in dem Aufsatz: , Die Umkehrung eines
Cesaro’schen Satzes iiber die Multiplikation von Reihen, Journal
London Math. Soc. 9 (1934), 254—258.

Um Wiederholungen, die die Formulierung von Séatzen mit sich
bringen wiirde, zu sparen, hebe ich die Ergebnisse in § 2 und § 3 hervor
durch fetten Druck.

§ 1.

Es sei k eine ganze positive Zahl. Dann erhalt man durch Multiplikation
k(s) = (X n)* = X a(k,n)n™?,

wo a(k,n) eine ganze positive Zahl ist und die Reihe fiir E(s) > 1 absolut
konvergiert, da sie das Produkt im gleichen Gebiet absolut konvergieren-
der Reihen ist. Bildet man das Produkt (¢{® = {¢t', wo g, T ganze
positive Zahlen sind, so ergibt sich die Relation

> a(Q’ k) a(z, i) = a(9+7s n) (1)

keA=n
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" Hieraus folgt

a(e, ») a(p, m) = a(g, m * »), wenn (n, m) = 1. (2)

Der Beweis verlauft ebenso, wie im Spezialfalle = = 1, also a(r, 1) = 1.
Letzterer ist ausgefiihrt in E. Landau, Handbuch der Primzahlen,
S. 427—428,

Die Eigenschaft (2) ergibt, wenn n = p;! py? ... p.”
a(e,m) = a(e, p1) -+~ ale, p,") - (3)
Es bleibt also iibrig, a(g, p*) zu bestimmen. Nach (1) hat man
a(9+1, pa) = a(@: 1) + a(g’ p) R a(e’ pa) .

Hieraus folgt fiir a = 1,
1+ a(e,p) =a(e+1,p).

Diese Differenzengleichung in p hat die Losung

ae.0) = (%) + P(@)

wo P(g) eine periodische Funktion von ¢ mit der Periode 1 ist. p = 1
gibt P(1) = 0, also P(n) = 0.

Fiir a = 2 entsteht die Differenzengleichung
1+ (‘1') +a(e, p*) = a(e + 1,97
und diese hat die Losung

a(e,p®) = (Q _g 1) + P(o)

wo P(p) wieder eine periodische Funktion mit der Periode 1 ist. p = 1
gibt P(1) = 0, also P(n) = 0.

So gelangt man Schritt um Schritt zu

eta=i). | (4

a

a(e,p?) = (
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Durch (3) und (4) ist a(p, ») fiir beliebige ganze positive » und g er-
mittelt. Dieser Ausdruck behalt seine Bedeutung: 1. wenn n nicht eine
Zahl, sondern ein Ideal ist; 2. wenn g eine beliebige komplexe GroBe ist.
Spezialfalle, z. B. wenn ¢ = — 1, wenn fiir » ein Ideal a genommen
wird, sind von E. Landau definiert worden.
Es werde nun die Reihe

(e, 8) = %a(e, n) ne

betrachtet, wenn ¢ = b 4 ic komplex ist. Um eine Aussage iiber die
Konvergenz zu gewinnen, wird eine Majorante gebildet. a(p,n) ist das
Produkt von Faktoren

(b+ic+a,—~1)=b+icmb+ic-}-a—l

a 1 a
Nun ist
b4v—1  .c|_ ((b+r—1\? c)z‘/z _1( v w— 1) -
l » +zv -—(< v )+(; ) R A R
denn

b2t (v— 124+ 2(r—1) b4t < b2 c2+2(y — 1) (B24¢2) %4 (v — 1)%.

Bezeichnet man jetzt die groBte ganze Zahl kleiner als | o | = (6% ¢?)%
mit r — 1, so ist

b+v—1+4+ ¢ §r+v—-—l
) y
und daher .
abs.(b-}-zc—{—a,—l)é(r—i-a——l)
a , a
und

abs. a(b+ic, p*) < a(r,p?) .
Dies zeigt, daB die Reihe mit nur positiven Termen
X a(r,n) n~* = {7(8)
1

eine Majorante von f(p,s) ist. Letztere Reihe konvergiert daher ebenfalls

fiir R(s) > 1 absolut.
Die Identitit (1) besteht auch wenn g, v komplexe GroBen bedeuten;

denn die beiden Seiten sind Polynome in g und 7.
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Somit besteht die aus den Untersuchungen iiber die binomische Reihe
geldufige Funktionalgleichung

f(e:8) f(z.8) = f(e+7,9)

fiir jedes Paar komplexer p,7. Hieraus schlieBt man fiir reelle p und
in der seit Euler und Cauchy bekannten Weise

f(Q,S) = (f(l,s)&’ = (e(s),

wobei unter (¢ der Hauptwert zu verstehen ist.

Zum selben Resultat gelangt man fiir komplexes p, indem man ein
Verfahren anwendet, das fiir die binomische Reihe ausgearbeitet worden
ist; vergleiche Goursat, Cours d’Analyse Math. § 275; Bromwich,
Infinite series, Art. 89. Dabei verwendet man die mittels (4) zu ge-
winnende Formel

Ig £(8) = lim g™ 1{{e(8) — 1} = EA (m) n-¢
¢->0

Ton ’ (5)

wo A (n) die in der Primzahltheorie iibliche Bedeutung hat.

Bezeichnet y(n) einen Charakter mod. ¥, und geht man von der
Reihe aus

g(0,8) = % x(n) a(o,n) n=*

so folgt
g(e,8) 9(v,8) = g(e+7,9)

fiir jedes Paar komplexer g, r und R(s) > 1. Die erwiahnte Methode von
Bromwich und die hier (5) entsprechende Formel geben

g(0,8) = (9(L,8))¢ = Le(s,7)
Analog findet man fiir die Reihe
h(e,8) = X a(e,a) Na~*
wo a alle Ideale eines algebraischen Koérpers durchliuft
h(g,8) = (h(1,8))¢ = L{(8),

wo (,(s) die zum algebraischen Korper gehorende Zetafunktion be-
deutet.
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§ 2.
Es sei 0 < p; dann ist a(g,n) > 0 und

(e—1)Z@))e=(s— 1) X a(g,n)n*® —1 fiir s — 1.
Der Satz von G.H.Hardy und J.E. Littlewood iiber Reihen mit

positiven Termen, z. B. Acta Mat. 41 (1918), Lemma 2.113, p. 128,
folgert hieraus die asymptotische Beziehung

zxj(g,n) nt ~ I'"Y(1+ p) 1gex fiir 2 — oo . (6)
1
Das Produkt (e = (et! ergibt
Yerr(@) = Sale+1,n) = Sae,n)| 2] )
=zXale,n)n + Xa(e,n) O(1) .
Da fir 0<p< 1, 0<a(p,n)< 1, so folgt
Yor1(2) ~ I'Y1 + p) z 1gex (0<p<]1) . (8)
Jetzt benutzt man die von E. Landau eingefiihrte Funktion

u(8) = ¢’(8) + {*(8) — 2H{(s) = Xe,m?,

wo E die Euler’sche Konstante ist; fiir ihre summatorische Funktion gilt
x
I E en‘ = 5z% .
1

Bildet man ¢e1u(s) fiir 0 < ¢ <1 und beachtet, | a(o —1,7)| < 1,
80 erhdlt man

et Xa(e,v)logy =¥, ,,(2) + O(2)
1
also, mit (8), fiir # - oo
‘{‘ a(o,v) gy ~I(g)xlgex, 0<p<1.
1
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Partielle Summation ergibt fiir # — oo

z

V() = X a(o,v) ~TIYo)xlgtlxe, 0<p<l1. (9)
1

(7) und (9) ergeben nun Schritt um Schritt, daBl (9) fiir alle 0 <p
Giiltigkeit besitzt.

Schlieflich folgt aus (7) und (9)

Xa(o,n)nt ~I'Y1+4p)lgex fir —3<p<O (10)
1
= 0(lg—*z) fir —1<p=—1.

Die asymptotische Beziehung (10) zeigt, dafl (6) auch gilt fiir — § < .

Man kann hier noch die Bemerkung anfiigen, da8 (10) das bestmogliche
ist, was sich heute elementar beweisen 1af3t. Denn aus (10) fiir — { < p < 0
folgt die Konvergenz dieser Reihe fiir — 1 < g << 0. Wiirde somit (10)
mit dem Aquivalenz-Zeichen auch fiir p = — } gelten, so entstiande ein
elementarer Beweis fiir die Konvergenz von ¥ u(n) n~! und ein solcher
scheint mit so einfachen Mitteln nicht moglich zu sein.

Analoge Resultate bestehen fiir die entsprechenden Reihen, in denen
11 (n) (der Hauptcharakter mod k) enthalten ist und fiir diejenigen, die
mit {,(s) zusammenhéingen.

§ 3.

Das Ziel dieses Paragraphen ist, die Konvergenz der Reihe > a(o,n)n 1%,
— 1< p< 1, zu beweisen. Hierzu geht man aus von der Formel

x
3 b = (—at)y e 4 f(E) + O(x?) , (11)
1
worin ¢ eine reelle von null verschiedene Grof3e ist. Man kann sie aus der
Euler-Maclaurin’schen Formel ableiten. Sie ist auch in einer fiir die
Zetafunktion fundamental verwendeten Formel enthalten, aus der sich
ergibt:
f(t) = lim £(14e+it) ,
&>0
wobei man bloB die Definition ((8) = X n° s = o1 fir > 1,
braucht.
Eine fundamentale REigenschaft der Zetafunktion ist f(f) % 0 fiir
t= 0 und ich habe in I gezeigt, daB man dies Resultat ohne Funktionen-
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theorie beweisen kann und ohne die Zetafunktion iiber den Bereich ¢ > 1
hinaus fortzusetzen.

Jetzt liefert das Produkt
z z[k

Sa(e+1n)w % = Fa(g,k) k1% X A1t (12)

1 1

z

— (i) S a(ek) k1 +1(t) Salek) k40 (13| alo, k) |) .

Da f(¢) beschrinkt ist, folgt gleichméafBig im Intervall 0 < e <[|t| T

x

Sa(et+Ln)n " =0(ge), 0<pe<l. (13)

1

Zweitens betrachtet man das Produkt
(elu(s) =o' ((9)' + {1 — 2K (e = ("1 Xe,n .
Da u(s) fiir 0 > } konvergiert und da fiir 0 < p < 1
|a(o— Lk)| < a(l—p,k)< 1, so ist

a(o— L,k) e, z a(p— 1,k) % e,
kém AT A T R 51: JARRY, blv-11+u

’
/

- 0@ a(l1—o, k)k“l) — O(lg-ez) .

Somit folgt unter Benutzung von (13)

|

O(lgez) fir $ o<1 (14)
= O(lgl-ex) fir 0<p<$.

Xa(o,k)lghk k1%
1

Jetzt ergibt partielle Summation, wenn ¢ = ¢ fiir } S ¢ <1
=1—p fir 0o<po<i}

Sa (e, k) kit = 0(lge- (m~1)) -0 (1gw) (lgtv-1gt(»+1)) +O(lg+n).

Es folgt, daB die Reihe [¢(14-if), 0< o<1, konvergiert, gleichméBig
in o<exs|t]| =T.
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n-1 %
Da Yk 11ge—2k <f t11g2-2¢ dt = l_l_q(lgq—l (m + 1) — lga—1 n) ,
m m+1 —
8o kann man das Resultat, genauer, durch die Formel ausdriicken :

?M@Mkf“=ﬂu+dﬂ+0@rw) (15)

gleichmiissig fiir 0<e < |8| =T ;
0 <p<1; ¢ hat die oben angegebene Bedeutung.

Setzt man in (12) fiir p einen Wert, der zwischen —1 und 0 liegt, so
erhélt man

1) Sa(e,k) = X g+ 1,k) ki + 0 (lgex) +
1 1 (16)

+0(giz), —1<p<0.

Da f(t) # 0, so folgt, daBl auch f¢(1 + ¢¢), — 1< <0, konver-
giert, gleichmiiBig fir 0 << |2| S 7.

M. Riesz, C. R. 148 (1909), 1658—60, schlieBt die Konvergenz der
Reihen (¢, p < 1, auf der Geraden ¢ = 1 (mit Ausnahme von s = 1 fiir
0 < p) aus einem allgemeinen Satz. Unter den Voraussetzungen dieses
Satzes ist die Bedingung enthalten, daf3 die durch die Reihe dargestellte
Funktion F(s) fiir R(s) = 1 regular ist, mit Ausnahme isolierter Stellen
auf ¢ = 1. Die in den Formeln (15), (16) enthaltenen Aussagen sind be-
wiesen, ohne da3 man iiber die Eigenschaften der Funktion F(s) etwas
zu wissen braucht. Aulerdem enthalten sie eine Abschatzung der GroBen-
ordnung des Restes, iiber den der Riesz’sche Satz keine Angabe enthalt.

§ 4. Ein Grenzwertsatz.
1. Satz. Es sei

a) 0=c,; Xc, k= C konvergent; :Yc,c =0(xlg™ ) ;
1
b) |T(@)[=0(Fe) s

o) | E1m)|=0(Z1f()]) =0 lges)s 0<e

-

dann ist

?f(n) U(xn™) | =0 (xlg™ez) .
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Dieser Satz macht eine Aussage iiber eine Summe, wie sie als summa-
torische Funktion des Produktes zweier gewohnlicher Dirichletreihen
auftritt. Auf dieselbe Summe bezieht sich der in der Einleitung erwihnte
Grenzwertsatz von Landau. Es scheint nicht moglich, Satz 1 durch das
Landau’sche Verfahren zu beweisen.

Beweis. Es existiert, nach Voraussetzung (b), eine positive Konstante
C, so daf3

x

= f(m) U(zn™) <021f(n)|}30k—0 lf(k)lcx

z[g Vz x/k

Vo 1z
— 0S|/} Yo+ 050 If(k)l—C'Zlf(k TS
T, -+ T, — T,

Nun folgt

T1=0<xlg—1x)§|/(k) | k1

Va-1
=0 (a: lg—? x) S klgek (lc"l— (& + 1)“1) + 2¢lg=eg) =0 (xlg?x)
% 1

vz
T,=0 (x lg—ex }_} Cr Ic“1> =0 (z1g~°x)

Ty=0 (x*%lgex)0 (x%1g 1 x) = O (x g™ x) ,

woraus die Behauptung sich ergibt.

§ 5.

Es sei y nicht der Hauptcharakter mod. k. Die zu ihm gehérige L-Funk-
tion sei L (s), ohne Index, was hier keine Milverstdndnisse geben kann.
Ich beweise den Satz:

Die Reihe X y(m) a(o-+n,m) (Ig"m) m——% ist fir 0< o<1, t =0,
n=0,1, 2, ... konvergent.

Zu diesem Zwecke sind einige Hilfssitze notig.

. Die summatorische Funktion der Dirichlet’schen Reihe fiir

(— 1)» D2 (L(s+it) )e+at
sei R, (#:0) = Sx(m) alo+q— 1, m) m~lg'm .
1
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Lemma. Es sei 0< p< 1, ¢{= 0. Wenn dann

R, ,(z,0) =0(zlg),n=0,1,2,...,
so folgt
R, (x,0) =0 (x(lg x)~¢%*), k=0,1,... (¢ —1);
also mindestens R, ,(,0) = O (z(lg x)~¢?).
Dies folgt durch partielle Summation.
Die Reihe, 0 < r und ganzzahlig,
L(s+it) = X y(m) (— 1) lg"n =

ist fiir R(s) > 0 konvergent. Fiir ihre summatorische Funktion gilt

X x(n) nit lgrn = O (Ig™a) .
1

2. Satz. Fiir allen =0,1, 2, ... gilt
Rn,n(x: @) = O(x lg—ex) .
Beweis. Ich nehme an, die Behauptung gelte fir n = 0,1, 2, ..., ¢,
und zeige, daBl sie dann auch fiir » = ¢+ 1 richtig ist. Man hat
(Letd) @) = (o 4 q) (Lot 1L ) D = (9} q) I;V:'o( ch \) (Leta—1) (0 [la—k+1)

Die summatorische Funktion R, ,.,(,0) der linken Seite ergibt sich
hieraus als Summe der summatorischen Funktionen der Terme rechts.
Letztere sind Summen der Form des Satzes 1. Man erhalt die zum Index &
gehorende aus ihm, indem man fiir U (z) setzt

S 1 (n) nit (Ig n)e+-1 — O (lge-+z)

und fiir f(n) setzt
2(n) a(e+g—1,n) n~* Igtn

wobei nach Voraussetzung und Lemma
Rq,k(w,e) = X y(n) a(e +9—1,n) v 1gkn = O (x 1lg—¢2kzx) ,
1

Somit ergibt Satz 1 fiir die summatorische Funktion von (Let+e-1)k) [(g-k+1)
die Abschitzung: O(x lg-e9tkx) ; daher ist

*

q
Bosans(0) = @ +9) 3 (1) 0(@lg-ewtta) = 0 (algea)

und dies ist die Behauptung.
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Nun gilt diese Approximation fiir n = 0; denn nach (9) ist

z

Roo(@0)=Xz(k) ale— Lk) b = 0 (S a(l — o,k ) =O(z lg-2) .
1 1

Somit gilt sie fiir alle » = 0, 1, 2, .... Damit ist die Induktion voll-
standig.

3. Satz. Wenn y nicht Hauptcharakter ist, 0 < o < 1, £==0, dann ist
die Reihe D} (L(1+14t))e, n =0,1,2,..., konvergent und genauer

x

> (k) alo+n,k) k- 1gnk = (— 1)* (Letn(14-4it) )™ 4O (Ig—ex)

1

Beweis. Man berechnet mit Hilfe von Satz 2, indem man zur Abkiirzung
schreibt R, , ,.,(v,0) = R,,

T

I

x () ale+n,A4)1gma 217

m

I

I VERE 1 %k

(R;\— .Rl_l) At1lg2

— — R, m~ g m 4 SR, (I lgm1h — (A4 1) g (A+ 1))

—0(lgem)+ Slg-eA (Ig—A-1g—t (A+1)) + X (A+ 1)t 1g—edlg-1(A+1)

=0{lg™*"em + E‘ AtlgT1mel}

m+1

Da S(k+ 1) (lg (k+1) ) e < [ vt (lgvyiedo =gt lg=em

3§18

8o folgt die Behauptung.

§ 6.
In der Identitit

z x/n

Xx(n)a(—o+1,n)n = Xy(n) a(— ¢ n) =" Xy (n) n-1-%
1 1 1

ist fiir 0 < p < 1 die linke Seite aus Satz 3 bekannt; die innere Summe auf
der rechten Seite ist Teilsumme einer fiir R(s) > 0 konvergierenden
Dirichletreihe; man erhalt somit
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L¢(1 + it) + O(lgez)
- ;Yx(n) a(— g,m) ¢ (L(1 4 i) + O(a-'n))

— L(14it) %x(n) a(— g,m) n-it + 0 (a1 X a(g,))

somit wegen (9)

z

3 4 (n) a(— g,n) - = L-e(1+it) +-0(Ige-1a) . (17)

1

Die Division mit L(14-42) ist zulédssig, da L(1-4t) £ 0, fir ¢ = 0.
Letzteres ist auf elementarem Wege, ohne Gebrauch der Funktionen-
theorie, bewiesen; vergleiche E. Landau, Handbuch der Primzahlen,
Seite 460—462. Somit

4. Satz. Der Satz 3 gilt, mit dem Fehlerglied der Formel (17), auch
firn=0 —1<p<0.

Aus dem am Schlusse von § 3 erwahnten Satz von Riesz ergeben sich,
wegen Satz 2, Satze 3 und 4 ohne das Fehlerglied, falls man weill, daB
DyLetr, = 0,1,2,...; 0<p<1lund L¢, —1<p< 0, fir R(s) =1
reguldr sind. Der hier auf den Grenzwertsatz 1 sowie auf L(1--14) £ 0
sich stiitzende Beweis erfordert geringere Kenntnisse und ergibt eine
durch das Fehlerglied genauere Aussage.

Aus der Tatsache, daB die Reihe fiir L—" (1 +4t), t == 0, konvergiert,
folgt nach dem Cesaro’schen Satze, daB fiir die Produktreihe

(LA +) = 3 ) p(m) n=

das logarithmische Mittel einem Grenzwert zustrebt. Ist w7 C?(w)
dieses Mittel, nach der Bezeichnungsweise, die die Herren Hardy und
Riesz in ihrem Cambridge Tract: ,,The general theory of Dirichlet’s
series‘‘ durchfiihren, so ergibt die Formel (1) S. 64 dieses ,,Tract‘‘, wenn
man obiges genauere Ergebnis (17) einsetzt:

w1 O () = L (1+it) 4 O (%)

wobei lg m = w. Dies ist aber weniger als die Umkehrung des Cesaro’schen
Satzes zu erschlieen gestattet. Denn letztere ergibt

Wt O (@) = L (14i) + 0w,

wie ich in dem am Schlusse der Einleitung erwahnten Aufsatze ange-
geben habe.

(Eingegangen den 21. Oktober 1935.)
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