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Les rotations de l'espace euclidien
â quatre dimensions, leur expression au moyen
des nombres de Clifford et leurs relations avec
la théorie des spineurs

Par Gustave Jtjvet, Lausanne

Introduction

1. Il est bien connu que les nombres hypercomplexes de Clifford
permettent de trouver les expressions des substitutions linéaires
orthogonales à n variables au moyen de paramètres, en général, surabondants.
En considérant ces substitutions comme les expressions algébriques des

rotations de l'espace euclidien à n dimensions autour d'un point fixe,
il est possible de donner une interprétation géométrique de ces
paramètres; d'autre part, l'algorithme cliffordien permet de faire des

simplifications appréciables dans le maniement des notions géométriques
relatives à ces rotations, de sorte que, le calcul algébrique et l'intuition
géométrique se soutenant, on peut, avec la plus grande rapidité, établir
la théorie des rotations de l'espace à n dimensions autour d'un point fixe.

Nous essayerons de montrer, dans ce mémoire, ce que donnent ces

méthodes pour le cas, très intéressant dans les applications, où n vaut
quatre. En supposant connues simplement les propriétés des variétés
linéaires orthogonales entre elles, nous démontrerons rapidement, et

par voie géométrique, un théorème sur les déplacements dans l'espace
euclidien à quatre dimensions; nous suivrons pour cela la Thèse de

M. van Oss1). Puis appliquant la théorie des nombres de Clifford, brièvement

rappelée, nous montrerons que toute rotation revient au produit de

deux rotations autour de deux plans absolument perpendiculaires. Cette
décomposition est, en général, unique; les cas exceptionnels seront
étudiés et l'on montrera qu'ils permettent de démontrer que le groupe 6?6

des rotations autour d'un point est le produit direct de deux sous-groupes
invariants Oz et G'z ; ce résultat est bien classique, mais on verra que la
méthode utilisée permet d'obtenir, sans recourir à la théorie générale des

groupes, les invariants de chacun des sous-groupes en question et les

1) S. L. van Oss, Die Bewegungsgruppen der Regelmâûigen Gebilde von
vier Dimensionen, Inaugural-Dissertation, Gieûen, 1894.
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propriétés des grandeurs, nommées par les physiciens semi-vecteurs de

première et de seconde espèces, et spineurs2). Grâce à ces dernières, nous
retrouverons les isomorphies entre le groupe de la forme réelle #î + #2 +
#3 +#4 et le groupe linéaire formé du groupe linéaire de la forme
d'Hermite £ili + £2|2 e^ du groupe linéaire de la forme d'Hermite
^3|3+|4|4; en passant, grâce à une transformation facile, nous
constaterons encore l'isomorphie entre le groupe linéaire spécial à deux
variables complexes ^ et £2 et le groupe linéaire de la forme quadratique
réelle x\ + x\ + xl — x\ • Ces résultats, obtenus par M. Cartan comme cas

particuliers d'une théorie générale des groupes continus, finis, réels3) sont
importants dans la théorie de Dirac. Nous les utiliserons dans un autre
mémoire pour résoudre un problème que M. A. Proca4) avait posé en
1930 sur la forme des solutions de l'équation de Dirac5).

Chapitre premier

Le théorème de van Oss

2. Deux figures congruentes de Vespace euclidien à quatre dimensions E4
peuvent être amenées en coïncidence par deux rotations successives autour
de deux plans ayant un point commun.

La démonstration qui, nous le répétons, est empruntée à la Thèse de
M. van Oss, précisera la notion de rotation autour d'un plan.

Soient F et F' deux figures congruentes de i?4. On peut imaginer
qu'elles appartiennent à deux espaces J?4 et R\ plongés dans i?4 (et
confondus avec lui). Soient H3 et H'z deux hyperplans homologues de

i?4 et iî4 respectivement; ils se coupent suivant un plan de E4 qu'on
peut appeler co2 si on le considère dans JS4 et o'2 si on le considère dans i?4.

Désignons les homologues de a>2 dans i?4 par c52 et decr2 dans J24 par or2.

ô>2 et a 2 se coupent — ce sont deux plans de Hz — suivant une droite

2) Einstein et Mayer, Sitzungsberichte der Preufîischen Akademie der Wissenschaften.
1932 (XXXII); et J. Ullmo, J. de Phys. (VII) tome V, p. 230; cf. aussi le mémoire où
M. W. Scherrer utilise la théorie des quaternions pour la représentation des transformations
de Lorentz, Comm. Math. Helv. vol. VIT, p. 141.

3) E. Cartan, Ann. Ec. Norm. Sup. (3ème série), vol. XXXI, p. 263.

4) C. R. Acad. Se. Paris, vol. 190, p. 1377, vol. 191, p. 26, J. de Phys. (VII) vol. I, p. 235.

5) D'autres auteurs se sont occupés des spineurs du point de vue analytique et
géométrique: cf. le livre de M. van der Waerden, Die gruppentheoretische Méthode
in der Quantenmechanik, et les mémoires de M. Schouten, Proc. Akad. Wet. Amsterdam,

vol. XXXIII, p. 189; Zs. f. Phys. vol. LXXXIV, p. 92.
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dl9œ2 et a2 se coupent suivant la droite d[ homologue de ôx. Comme
ô± et ô^ sont dans un même plan, il existe une rotation dans ce plan qui
amènera ôt sur ô'lf tous les points homologues de ôx et â[ coïncidant;
soit O le centre de cette rotation.

Considérons alors le déplacement de l'espace 2?4 obtenu ainsi: on
décompose tout vecteur de iî4, issu de 0, en deux parties F(1) + F(2),
F(1) étant dans c52, et F(2) étant situé dans un plan n2 absolument
perpendiculaire à c52; cette décomposition, toujours possible, est évidemment
unique. Dans la rotation de ô>2, F(1) arrive en F(1); dès lors, considérons
la correspondance entre les extrémités de F et F, où

c'est évidemment un déplacement, car les longueurs des vecteurs F et F
sont égales et, si W est un second vecteur auquel correspond W, on aura
pour les produits scalaires

y jy (F(1) + F(2)) • (W{1) + W(2)) F(1) • W{1) + F(2) • W{2)

— yn). wil}+ F(2) • W{2) F(2) + F(2)) • (~W(1) + W{2)) V -W.

Ce déplacement est appelé une rotation de JB4 autour de n%\ tous les plans
parallèles à œ2 sont invariants, ils tournent du même angle et tous les

plans qui leur sont absolument perpendiculaires, donc parallèles à n2
s'échangent sauf n2 qui reste non-seulement invariant, mais invariable.
Cette rotation amène Bé en S4, F en F. Les deux figures F et F ont une
droite homologue commune, ô[ précisément.

On mène Fhyperplan Ks perpendiculairement à ô^ en un de ses points.
Cet hyperplan coupe l'ensemble ^ des plans de i24 passant par ô[ suivant
une gerbe de droites g, il coupe de même l'ensemble ^ des plans de B4

passant par ô[ suivant une gerbe de droites g'. g et g' sont deux gerbes
de droites, ayant même sommet S, homologues deux à deux, et situées
dans un même espace tridimensionnel.

Il est dès lors facile de terminer le déplacement qui amènera F sur F',
il suffit de passer de F à F', soit de i?4 à J?4. Dans ce dernier déplacement,
<5i reste invariable et Ks reste invariant, g vient en gr ; or le passage de

g en g' est une rotation de Kz autour du sommet commun des deux
gerbes. Il y a donc une droite A commune à g et à g' qui se correspond à

elle-même dans cette rotation, c'est l'axe de la rotation. Un vecteur de
J?4, issu de 8, peut se décomposer univoquement en une somme de deux
vecteurs dont l'un est dans le plan déterminé par ô^etA, l'autre dans le
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plan absolument perpendiculaire, qui est d'ailleurs situé dans Kz\ soit
F (»f + {2)V; la rotation de K3 amène (2)F en <2)F' et laisse <*>?

invariant, c'est donc une rotation de i?4 autour du plan ni (d'19 A). Le
plan n2 a au moins un point commun avec n*2. Le théorème de van Oss

est donc complètement démontré.
Une rotation autour d'un plan n2 sera désignée autrement dans la suite ;

on dira qu'elle est parallèle au plan a>2, absolument perpendiculaire à

n2, ©t sa grandeur sera mesurée par Fangle dont les plans parallèles à

œ2 tournent sur eux-mêmes.
On voit, par la démonstration, que la décomposition d'un déplacement

de EA en deux rotations n'est pas unique ; elle dépend du choix du couple
des hyperplans correspondants H3 et H'3 de F et jF'6).

D'autre part, il y aurait à examiner si l'on voulait être complet, le
cas où le point commun à n2 et à n*2 serait à l'infini; on aurait affaire alors
à une translation ; mais pour notre but, cette étude n'est pas nécessaire.

Les nombres de Clifford vont permettre de préciser grandement les

correspondances entre les plans de rotation lorsque l'on sait déjà que
F et F' ont un point homologue commun. Il est manifeste que, dans ce cas,
les plans n2 et n2 passent par ce point.

Chapitre II
Les rotations de EA et les nombres de Clifford

3. Un nombre de Clifford, pour n= 4, est un nombre hypercomplexe
de la forme7) :

C a + ax rt + a2 r2 + a3 T3 + % T4 + a12

~t~ a34 1 34 -f- a42 i 42 ~h %23 "* 123 "T a234 ¦* 234 "T" a341 * 341 i a412 * 412 I *¦* 1234 >

où l'on a posé

ru r^, rm r^r^ r1234 rxr2rzr^ (qu'on écrira souvent r5),

les unités r{ étant ,,définies" par les relations

ri î, /y1, - — r,r<; (i # y) (», 1,2,3,4)

on voit qu'on a aussi

n i, r,r, - rtrf (i * s).
6) Mais ti2 et n\ sont réels si jP et Ff sont réelles et si Hz est réel.
7) Cf. ce journal, vol. II, p. 225.
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On sait que les diverses parties d'un nombre de Clifford sont susceptibles
d'admettre une interprétation géométrique. On peut écrire:

où / et J sont des grandeurs scalaires, F et W des vecteurs et T un tenseur

antisymétrique.

4. Pour commencer, nous ne nous occuperons que des nombres qui
représentent des vecteurs ou des produits de vecteurs. Soient deux
vecteurs8)

F t>,r<, w wiri-i
on a

Y W viwi + (viw]t — v^i) rik ;

v^ V • W est le produit scalaire des deux vecteurs et {viwk —
en est le produit vectoriel F X TF, c'est un bivecteur de la forme bikrik,
et l'on a, comme un calcul simple le montre :

64

de plus, si (p est l'angle de V et W, on a

| V\ | W\ CO8Ç)

cette dernière expression est le carré de la mesure du bivecteur.

Soit A un vecteur OiTi de longueur unité, 27af 1. L'inverse A~x du
nombre de Clifford A, est le même vecteur A, car

Le nombre
F

représente un vecteur, comme le calcul le montre immédiatement.
Puisque

4f TA, c'est-à-dire A - V+A x V V • A + V xA,

ce vecteur T a même longueur que F puisque son produit scalaire avec A

8) On supprimera le signe 2 suivant la convention habituelle.
9) Cette relation est caractéristique des tenseurs qui sont des bivecteurs.
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est égal à F • A. Le bivecteur A X F' définit le même plan que F X A, il a,
dans ce plan, la même mesure au signe près. Donc F' est le symétrique de
F relativement à A.

Si on repère chaque point P de 2J4 par le vecteur F OP, la
correspondance P->P', (où on a posé OP' F') définit la symétrie de 1?4

par rapport au support du vecteur A, ou comme nous dirons, par rapport
kA.

Soit B un second vecteur unité,

le vecteur
V" BV'B-1

est le symétrique de F' relativement à B. Soit 772 le plan déterminé par
les vecteurs A et B ; on peut décomposer tout vecteur F en V -\-V, d'une
seule manière: F étant i72 et F dans le plan /72 absolument perpendiculaire

à II2. On aura :

F" BA VA-1 B-1 (BA) V(BA)-1

à cause de la distributivité de la multiplication clifïordienne relativement
à l'addition. F, perpendiculaire à IT2, subit deux symétries relativement
à deux vecteurs situés dans J72, dès lors

(BA)V(BA)-1= V

ce que le calcul montre aussi. De plus F, qui est dans 772, subit deux

symétries relativement à deux vecteurs de ce plan,

est donc obtenu par une rotation de V dans i72 d'un angle 2 0, 0 étant
l'angle que A fait avec B.

V" V" + f
définit une correspondance P->P", qui est donc une rotation de E4

autour de/7^, ou parallèle ài72, d'angle 2 0, l'origine O étant fixe.
Comme toute rotation autour de l'origine est le produit de deux
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rotations parallèles à deux plans passant par 0, le déplacement le plus
général qui laisse fixe l'origine sera donc exprimé analytiquement par
l'égalité:

V* DCABVABCD (DCAB)V(DCBA)-1

ohCetD sont deux vecteurs unités du plan auquel est parallèle la seconde

rotation et le déplacement des points de E4 est défini par la correspondance

P-+P*, avec V* =0P*.
On peut écrire

BA cos 0 — k sin 0

où A est le bivecteur unité du plan (A, B) orienté de façon que la mesure
de l'angle dont il faut tourner A pour l'amener en B soit précisément 0
(à un multiple de 2n près). Il est manifeste que si l'on choisit, au lieu
de A et B, deux vecteurs Af et B' du même plan, formant le même angle
0, on aura:

BA B' A'

de sorte que la représentation de la rotation P-^P" n'est pas unique si

l'on a égard aux symétries en lesquelles elle peut se décomposer.
On sait, d'autre part, que le plan de la première rotation ayant été

fixé, celui de la seconde s'en déduit univoquement; donc, en posant:

DC cosîP — //sin 3*,

W et [i sont déterminés lorsque A est fixé. Les deux plans X et [i peuvent
être dits conjugués dans la rotation considérée de 2?4. Nous allons voir
qu'on peut choisir les plans conjugués de façon qu'ils soient absolument
perpendiculaires. On a le théorème :

5. Toute rotation de EA est le produit de deux rotations parallèles à deux

plans absolument perpendiculaires.

Ce théorème, bien classique, se démontre habituellement par l'analyse
des valeurs propres de la matrice orthogonale qui représente la rotation
de JB4 autour de l'origine. L'algorithme eliffordien permet d'en donner
une démonstration rapide, qui, d'ailleurs, conduit aux conséquences les

plus intéressantes.
Cette démonstration fait état des propriétés des bivecteurs supplémentaires.

Soit un bivecteur unité, f} f}ikrik, le bivecteur unité (}*
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en est le supplémentaire, si les deux plans qu'ils définissent sont absolument

perpendiculaires et si les quatre vecteurs unités V, W, X, F, et
deux à deux perpendiculaires, tels que:

fi F X W, p* XxY,

forment un tétraèdre dont l'orientation est celle du tétraèdre des
coordonnées. On voit aisément que

car on peut toujours faire une rotation de 1?4 qui amène p à être F12 et P*
à être Fu, donc, en faisant la rotation inverse, on aura

00* Ori2ruChl r^OO-1 r5. (O produit de 4 vecteurs)

On a
02 (0«A*) (0rs rrs) —27/S& + (j8iaj8M - i5

donc, l'inverse du bivecteur unité jS est — /3.

D'autre part,

00* 2 PikPik + (012 023 023 0!2 + 014 043 043 014^13 + h

+ (012 034 + 034 012 + 013 042 + 042 013 + 014 023 + 023 0lÎ) A

on doit donc avoir

2 0t* 0i#fc O
9 012 023 023 012 + 014 043 043 014 ° » —

012 034 + 034 012 + 013 042 + 042 013 + 014 023 + 023 014 1

et Ton satisfera à ces équations en posant

012 034 5 013 042 5 014 023 > 034 012 > 042 013 > 023 042 •

ce qu'on voit aussi immédiatement en remarquant que

/r r6)
d'où

p» — prs car fi-i —p.
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6, Cherchons dès lors à mettre la rotation10)

DCBA V ABCD
sous la forme

dcba V abcd

où le bivecteur b xa est absolument perpendiculaire à dxc. Nous
écrirons

ba cos <p — a sin 99,

de cos y) — j8 sin ip,

et nous chercherons à déterminer y, tp, a et p de façon que

(cos (p — a sin q>) (cos y) — ft sin ip) (cos 0 — A sin 0) (cos W — p sin W)

et que

Si

on aura
(cos <?—A sin 0) (cos S7—ju sin ï/)=cos 0 cos

A14^43-A48/I14)ri3+-+ (-) AJ-A SUl (P COS ï7-^ COS * Mil !P,

qu'on écrira

et l'on aura à résoudre le système

cos (p cos f I,
sin 9? sin %p J,

— a<fc sin 9? cos y — /J<fc cos 9? sin y — Cik.
Or

P12 «34j ##, fiy ar8y (ijrs) permutation paire de 1, 2, 3, 4,

donc

m cos (p cosip /,
sin ç? sin ^ J,

,gv «12 si11 ^ cos V + «34 cos Ç3 sin y C12,

a12 cos (p sin y> + a34 sin (p cos y — (734,

10) Le calcul est fait pour des A, B, C, D réels, et l'on recherche des plans absolument
perpendiculaires réels. Mais la démonstration est valable pour une rotation quelconque,
quitte à laisser tomber les conditions exigées pour la réalité.
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et deux systèmes analogues à (2) pour déterminer respectivement
«135 «42 e* «14» «23-

Le système (1) donne ç? et y> pourvu que

Les systèmes du type (2) donnent les aik pourvu que

~ sin cp cos y> cos (p sin y)

cos (p sin ip sin ç> cos y>

Enfin le problème sera résolu si l'on est assuré que

(2') J£ «I* 1> «12«34 + «13«42 + «14«23 ° •

On vérifiera qu'il en est bien ainsi après avoir démontré le lemme suivant.

7. Soient deux bivecteurs unités A et ju; on peut toujours orienter les

axes de coordonnées de manière que

où bien entendu

0.

En effet, il suffit de mettre les axes des xx, x2 dans le plan de A pour
assurer la première condition. On a encore à sa disposition l'orientation
de l'axe xx dans le plan de A et l'orientation de l'axe xs dans le plan
absolument perpendiculaire. En changeant cette orientation, l'expression
de A ne change pas, celle de fi change et devient :

(cos a— sin or J\2) (cos r — sin t Fm) jh (cos t + sin r FM) (cos a -f sin aF12)

fl12ri2 + ^34^34 + ^13^13 + ^14^14 + ^23^23 + ^42^42

avec

fxlz ^13 cos a cos t — fiu cos a sin r + ^23 sin a cos t — /j42 sin a sin r,
^u fhz cos o1 sin T + /*i4 cos a cos T — /^23 s^n o* sin r + /*42 sin cr cos t,

^ — ^13 sin a cos r — ^14 sin a sin r + /*23 cos ^ cos T + A*42 cos ^ ^ r>

Pu ~ thz gîn a gin T + ^14 s*n a cos T + /% cos o* sin r — /i42 cos a cos r,
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et il est manifeste qu'on peut déterminer les angles a et t de manière que

/h* ^ /4 ° î

il suffit que
/uu cot a—^24^ /%—ftia cot 0
/u2z cot a + /% pu + ^24 cot a '

puis
u2z— u13 cot œ

cot y ——P5 — ;
^14 cot ç? —^24

c'est-à-dire que cot a est racine de l'équation du second degré :

C"l4/*24 + thlVn) %* + (/4 — /4 + /*13 — /4) » — (^14^24 + ^13^23) 0

qui admet deux racines réelles. Le lemme est démontré.

8. Nous pouvons reprendre alors la démonstration de notre théorème.
On fera désormais

A F12, [1 ^12^12 + ^34-T34 +^13^13+ ^42^42 »

et les équations (1) s'écrivent

cos (p cos y) ¦=¦ cos 0 cos S7 — /j12 sin 0 sin S7

sin ç) sin \p //34 sin 0 sin W.
Puisque

I/Kial < ^ l/*84l < !»

les seconds membres sont inférieurs ou égaux à l'unité en valeur absolue
et ce système est dès lors résoluble par rapport à q> et y). Sans nous
préoccuper des diverses solutions possibles11), supposons que D ^ 0, ce qui
est le cas général. Il faut montrer que les conditions (2') sont vérifiées.
Or les systèmes (2) et analogues donnent, en faisant la somme des carrés
et la somme des produits membre à membre des équations de chaque
système :

BS1-\-A82 C12 (734 + C13 C42

où l'on a
8X Zalk, 82 a12 a34 + ctis «42 + au a23

et
u) II est facile de voir que toutes les solutions possibles pour cp et \p donnent effectivement

les mêmes rotations dans les mêmes plans ; par exemple, en changeant cp en — cp,

\\j en — \p, les a changent de signe, la rotation reste la même dans le même bivecteur, etc.
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A — sin 2<p cos 2y> -f- cos 2ç> sin 2y) sin 2ç? + cos 2y — cos 29? cos 2ip — sin 2q> sin %\p

1—J2 —J2,

5 sin ç> cos ç? sin ^ cos ^ IJ.

D'autre part, avec le choix particulier des axes :

C12 sin 0 cos W + ju12 cos 0 sin ï7,
C34 ^34 cos 0 sin W,
C13 — fxlz cos 0 sin y,
C42 ^42 cos 0 sin ÎF,
C23 ^13 sin 0 sin ÎP,
(714 ^42 sin 0 sin W,

d'où, en tenant compte de (1) et de la forme de A et de ju :

rc& 1 — 12 — j2 a,
^12^34 + ^13^42 + ^14^23 ~ U -^>

et dès lors

4^ + 4^85, il
c'est-à-dire

S1=l9 «2-O,
pour autant que l'on n'ait pas

A2 — iB2 0,
ou

(cos 2cp sin2^ + sin 2<p cos 2y»)2 — 4 sin 2ç> sin 2\p cos 2ç? cos 2y; 0,

ou encore
D2 0,

ce qui s'écrit aussi

(1— I2 — J2)2 — 4/2J2 0.
Donc si

on est assuré que

Ea2k 1, a12 a34 + «13 «42 + «u <*23 ° •

9. Le théorème peut donc être en défaut si
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dans ce cas, il y a éventuellement impossibilité ou indétermination. Nous
allons voir qu'il y a indétermination, car D 0 signifie

ou
(1— I2 — J2 — 2/J)(l— J2 — J2+2/J) 0,

soit
(I + eJ)2=l (e= ±1)

ce qui semble établir une relation entre A et p où figurent les projections
de X sur fx et sur le plan absolument perpendiculaire à A, ainsi que les

deux angles de rotation 2 0 et 2 ÎP. Or on peut montrer que D 0

entraîne

gL2==gL3 gL4=t|| ||= ± (guivantquesin)?= ±giny)j
O34 O42 O23 tg ^ tg ç?

c'est-à-dire que les systèmes des équations (2) et analogues sont indéterminés.

Pour le faire voir, prenons le cas

sin cp sin ip, cos (p cos \p ;

sin2<p /,
cos2ç> J,

c'est-à-dire
cos 0 cos W — (ju12 — /j34) sin 0 sin W 0.

Comme on peut évidemment écrire, puisque Z1/^ 1,

ju12 cos a sin /?, //34 sin a cos y
/*13 cos a cos /?, ^42 sin a sin y

et comme

on doit avoir
cos a sin a sin (/? + 7) 0

>

ce qui entraîne (en laissant les cas banals cos a 0 ou sin a 0)

car on peut toujours fixer le quadrant de a pour qu'il en soit ainsi.
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Dès lors

cos 0 cos W — (cos a sin fi — sin a cos /?) sin 0 sin ï* 1

ou encore

IL _|_ p — a ] sin 0 sin ÎP 1

/

ce que la trigonométrie sphérique nous oblige d'interpréter par les égalités

0 W, cos — + /?— a j 1 soit (}= a — -^-

et, par suite,
//12 — cos2a ^34 sin2a
//23 cos a sin a ^42 sin a cos a

d'où

"n 7i ' 1h~ ' T^~ '^34 A^34 ^42 ^23

ce qui entraîne bien l'indétermination des systèmes (2).

Il conviendrait de voir les autres cas:

sin <p sin y), cos <p — cos \p, ou sin q> — sin \p, cos 99 cos y>

ou encore
sin <p — — sin ip, cos y — — cos y),

mais des calculs faciles redonnent les mêmes conclusions12).
Ainsi donc le théorème énoncé est démontré. La décomposition en un

produit de deux rotations autour de deux plans absolument perpendiculaires

est possible d'une seule manière, ou bien elle est possible d'une
infinité de manières (oo2).

12) Remarquons cependant que si

sin cp sin \}j cos cp — cos \p

on devra interpréter l'égalité

cos <P cos V + cos j-^- -f- a -f- P) sin * sin *P — 1 ;

elle implique évidemment a r »/ _ a —
%

et l'on trouve cu GlB Clt
/i /*i /tC'34 C/42 °*3
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Chapitre III
Plans conjugués dans un déplacement donné

10. Le théorème précédent qui nous apprend que tout déplacement de
JS?4 se décompose en un produit de deux rotations autour de deux plans
absolument perpendiculaires, que nous appellerons les plans fondamentaux
de la rotation, va nous permettre de trouver les relations entre les plans
conjugués dont il est question dans le théorème de van Oss.

Soit un déplacement dont les plans fondamentaux sont, ce qui ne
restreint pas la généralité, les plans des xl9 x2 et des #3, #4, 2ç? et 2y>

étant les angles de rotation. On écrira donc, pour le produit des quatre
vecteurs qui représente le déplacement:

(cos 9?— sinç?jT12) (cos^j — sin^jP34).

Nous allons chercher les plans conjugués, définis par les bivecteurs
unités A et n et les angles 2 0 et 2 W de rotation dans ces plans tels que

(cos cp—sin cpF12) (cos xp— sin xpFZ4) (cos ®— ^ ^n ®) (cos ^—P sinï7),

d'où

(cos 0 + A sin 0) (cos 99 — sin 9? jT12) — (cos S7 — A sin ¥*) (cos y> + sin xp Jï34)

ce qui est la relation entre A et ju, relation qui doit définir en plus 0 etW.
On tire de là huit équations en identifiant les différents termes des nombres

de Clifford qui figurent aux deux membres. En posant

A Âik iik, fx [xik iik,
il vient

cos 0 cos cp -f- A12 sin 0 sin cp cos W cos \p + ^34 sin S7 sin \p

A34 sin 0 sin 9? ju12 sin ï7 sin xp,

cos 0 sin cp — A^ sin 0 cos cp ^12 sin S7 cos ^?,

.v A34 sin <P cos cp cos ï7 sin y — /W34 sin S7 cos \p,
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A ces équations doivent s'ajouter les conditions

(6) X12 X

qui ne sont d'ailleurs pas incompatibles avec le système précédent. En
supposant connus 0 et W, on tire les valeurs des Xik en fonction des tiik:

sin W sin xp 1 f 1
^34 A*i2 ——7K—=— ~—zz °os îr sm w— a** sin !r cos w

sm <Z> sm cp sm <P cos <p |_ JIf. 1
* 12 ~~ sin 0 cos 99

L ^ ^12 S n os VJ —

ir 1
_—___— I qqq *p (>os w — cos 0 cos 9? + uM sin ÎP sin w I.
sm <P sm <p L J

sinîPr 1
A13 =-;—-^ -/^cos ^cos9? + ^14 sin ^cosç? + ^23cos ^sin9?+//42sin y) sin 9?

sin^r .isin 0 L J

A14 ——-= -^^ sin ^ cos <p-i*u cos ^ cos 9? + /*23 sin ^ sin 99 -//42 cos y sin 9?

sinFr 1
X42 -;—-^ ju13 sin ^ sin 9? + [tu cos ^ sm <p + ju23 sm y; cos 9? -/-e42 cos y cos 9? I

sm Q>\_ J

L'élimination de A34 et X12 donne deux relations entre [x12, ^34, 0 et W

qu'on peut écrire:

/^a sin y; cos <p + /^34 cos y sin 9? cot ÎP" sin ip sin 9?

x 17T C0S ^
^12 cos ip sm 9? + ^34 sin V cos 9^ — c0^ -^ cos V cos 9^ + "~=—m •

sin x

Le déterminant de ce système est sin2y — sin29?; nous le supposerons
différent de zéro, ce qui est le cas lorsque les deux plans fondamentaux
du déplacement sont univoquement déterminés. On voit donc que si l'on
se donne arbitrairement les angles de rotation dans les plans, inconnus
encore, X et p, on pourra déterminer les projections des bivecteurs fi et X

sur les plans fondamentaux, soient les nombres iWi2,/w34, X12, A34. Puis
choisissant arbitrairement ^13, ^14, /z23, //34, à cela près qu'on tient
compte de (4) et (5), on trouvera A12, A23, Xlà, A42. Il est aisé de voir que
les valeurs ainsi trouvées vérifient (5) et (6). Dès lors la solution du
problème comporte quatre arbitraires.
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Mais on peut procéder d'une autre manière. On peut se donner le plan fi.
On trouve alors cos W, d'où W (avec l'ambiguïté W ou W-\-n) et ensuite
cos 0 est déterminé; on a

cos 0 (fj,12 cos xp sin xp + /uu cos ç> sin y) sin • >

et, en élevant au carré, puis remplaçant sin2^ par —-—~^, dans

quoi l'on substitue la valeur trouvée pour cot W, il vient

/ COS \fj COS Cp\ 2

2 \^i+^COS2 0 —
1 + (/*i2 cot <p + ju,u cot xp)2

Le second membre est inférieur à un si fi est réel13).

Dès lors, on peut se donner arbitrairement jbt, ce qui est faisable de oo4

manières différentes car un plan passant par l'origine dépend de quatre
paramètres; 0 et W sont déterminés et le plan X aussi14).

11. Les relations entre A et jut peuvent s'interpréter du point de vue de

la géométrie réglée. Un bivecteur coupe, en effet, l'hyperplan de l'infini
de i?4 suivant une droite dont les coordonnées plùckériennes dans cet
hyperplan sont les nombres Xilc (ou leurs rapports) ; la relation entre les

deux droites X et pt est évidemment une relation linéaire, comme on peut
l'imaginer en évoquant la théorie des déplacements cayleyens, c'est-à-dire
des transformations projectives de l'hyperplan de l'infini qui conservent
la sphère de l'infini. En transformant les quatre équations du système (4),
on trouve:

_ sin W sin (p 3 _ sin W sin xp

sin W
et par conséquent en supprimant le facteur -—-=¦ qui se trouve partout, la

relation linéaire entre les deux droites ,,conjuguées" A et ju, s'écrira:

sin ç>
1 r 4 sin tp

__
sin xp

ls) En posant ^2 cos a sin /?, //84=cos a cos /?, ce qui est toujours possible avec
a et /? réels, si jj. est réel, la démonstration de cos2 <P < 1 est très facile.

u) De nouveau les ambiguïtés sur <P et *F redonnent les mêmes rotations dans les
mêmes plans.
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A13 —f*13 cos y) cos <p + Pu sin xp cos ç? + ^23 cos y> sin ç? -f /*42 ^ V sm 9>>

^23 ~ —/fi3 cos W sin 9^ "+" /^i4 ^ V sm 9^—/^23 cos ^ cos 9>—^42 sîn V cos ^»

A14 —ju1z sin ^ cos 9?—/lcu cos ^ cos 9? -f- ^23 sîn ^ sîn V—^42 cos W 8^n Ç9»

A42 faz sin ^ sin 9? + ju,u cos ^ sin <p -f- //23 sin ^ cos ç?—/^42 cos y> cos 99,

ce qui exprime, moyennant des notations convenables, la conjugaison
dans un espace à trois dimensions de deux droites A et A' relativement à

une sphère dont l'équation homogène peut se mettre sous la forme

Un tel résultat était évident a priori.

Chapitre IV

Décomposition du groupe des rotations de ~E4 autour d'un point
en un produit direct de deux sous-groupes

12. Il convient d'étudier plus particulièrement les rotations pour
lesquelles les plans fondamentaux a et fi absolument perpendiculaires sont
indéterminés. On a vu que cela se produit si

(1 — 72 — J2)2 — 4 J2 J2 0 ;

et alors

Voyons donc ce qui caractérise les transformations

V' (cos q> — sin cp F12) (cos cp — sin q> FM) V (cos <p +
+ sin <p JT34) (cos (p + sin y F12),

où l'on a posé rp (p. Décomposons F suivant les deux plans F12 et FM,

V ^ + F,
alors

r - f; + f;
où V[ est Vx tourné dans le plan F12 de 2 tp, F2 est F2 tourné de 2 y dans

le planr34. Or
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vv
c'est-à-dire :

et si F est un vecteur unité, on aura, en désignant par a l'angle de V

avec F'

cos a V\ cos 2 9? + V\ cos 2 9? V\ + Fg) cos 2 9? cos 2 ç?,

car
1= F2= 1.

Donc, dans un déplacement du type considéré, tous les vecteurs font un
angle égal avec leur transformé. Cet angle est, en valeur absolue, — la
seule qu'on puisse considérer ici —

g 2 cp.

Les rotations pour lesquelles les plans fondamentaux sont indéterminés

seront appelées rotations singulières.
Réciproquement, si, dans une rotation, l'angle que fait un vecteur F

avec son transformé F' est constant, cette rotation est singulière, car si

l'on considère les deux plans fondamentaux de la rotation (qui existent
toujours, on en prend un couple quelconque s'ils sont indéterminés) et si
2 <p et 2 rp sont les angles de rotation dans ces plans, on aura, en décomposant

F et F' suivant ces plans :

lco82f= F2cos<r V\ + V\) cos a,
d'où

VI (cos 2 (p — cos a) + V\ (cos 2 \p — cos a) 0 ;

si
V V2, cos 2 ip cos or, et si V V2, cos 2 <p cos a ;

si donc a est constant
cos 2 tp cos 2 tp cos cr.

13. La condition
sin2y sin2ç?,

qui caractérise les rotations singulières, implique que les deux angles de
rotation dans les deux plans fondamentaux ont le même cosinus; ces

angles de rotation sont égaux en valeur absolue; de plus, bien que les

paires de plans fondamentaux soient indéterminées, les angles de rotation
ont le même cosinus quelle que soit la paire considérée.
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On voit donc qu'on pourra définir deux espèces de rotations singulières.
Supposons, en effet, que F12 et FM soient les plans fondamentaux; leur
représentation par F12 et T34 leur assigne à chacun un sens positif de

rotation, celui qui, dans F12 amène Ox1 sur 0x2 après rotation de — et
2

celui qui, dans F3A, amène Oxs sur 0xA après rotation de — La relation

cos 2 tp cos 2 y),
veut dire que

2(p 2y> ou 2ç? — 2 y>.

Donc, les angles de rotation, dans deux plans fondamentaux accouplés,
a et p, d'une rotation singulière, sont égaux ou opposés. La mesure
algébrique de ces angles de rotation se fait en assignant à chacun des plans un
sens positif de rotation tel que si un déplacement amène a sur F12 et fi sur
7^4, les deux sens positifs se confondent avec ceux qu'on a définis par les

bivecteurs F12 et JT34.

Une rotation singulière sera dite de première espèce si l'on a :

elle sera dite de seconde espèce, si l'on a:

2<p —2y>,

naturellement à un multiple de 2 n près.

14. Soit, dès lors, a l'un des plans fondamentaux d'une rotation
singulière de première espèce, /S —F5a sera le second. Désignons par
2 <p l'angle commun des rotations dans ces deux plans, l'opérateur O tel
que le déplacement s'écrive15)

y OVO-1

sera
O cos2<p —

On peut le mettre d'une infinité de manières sous cette forme car

a + P («12 + «34) (A2 + A4) + («13 + «42) (Aa + A2) + («14 + «23) (A4 + As) >

et si

w) Dorénavant nous donnerons le même nom à la rotation et à l'opérateur: nous dirons
la rotation O.
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«12 + «34 «12 + «34

«13 + «42 «13 + «42 aTOC «I2 <hà + «13 «42 + «14 «23 ° »

«14 + «23 «14 + «23

on peut écrire 0 sous la forme

0 — cos2? — (a' + P') cos sin + sin2?JT6
où

4 et — !>'.
Il y a donc oo2 couples de plans fondamentaux pour une rotation singulière

de première espèce. Il en est de même pour la seconde espèce, où :

0* cos2 ?* — (a — /?) cos?* sin<p* — sin2<p* JP5.

On peut poser

(7) o cos v-cos sin? [r12(r12+r34)+yi3(r13+r42) +

7i > 72 > y3 étant trois nombres tels que yl + yl + yl 1, qui sont
déterminés par la donnée de a et /? et qui, à leur tour, permettent de choisir
a' et /?'.

15. Considérons un second opérateur définissant une rotation singulière
de première espèce:

0' cosy — cos ^ sin 9/ [yf12(r12+ru)+yt13(rls+r,2) +

Formons le produit O'O, et démontrons que ce produit est du même type;
remarquons qu'on peut choisir les axes de façon que

y'l2=1> 713 0> 714 0.
Il vient, dès lors:

O'O cos2? cos2ç/ + sin2ç? sin2?' — 2 y12 sin <p cos 9? sin 9/ cos <p' +
+ (cos 2q> sin 2ç/ -f sin 2ç> cos 2ç/ -f- 2 y12 sin cp cos sin 9/ cos 9/ jT6 +
+ \ (cos 2 <p sin 2 9/ + y12 cos 2 99' sin 2 9?) (/\2 + r34) +
+ \ (r13 sin 2 9? cos 2 9?' + yu sin 2 99 sin 2 9/) (P13 +T42) +
+ I (7i4 sin 2 99 cos 2 9?' — ylz sin 2 97 sin 2 <p') (F14+r23)

et cela peut s'écrire
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O'O eos2A + sin2Ar5 —cos Asin A [y'12 (F

où
cos2 A cos 2ç9 cos 29?' + sin 2ç? sin 2ç/ —2 y12 sin 99 cos ç> sin ç>' cos y
sin2 A cos 2ç) sin 2y -f sin 2ç> cos 2y + 2 y12 sin y cos ç? sin g/ cos <p

équations parfaitement compatibles, puis

— (cos 2 <p sin 2 99' + 7i2 c^s 2 99' sin 2 ç?)2 + (y13 cos 2 9?' +

+ 714 sin 2 y )2 sin2 29? + (y14 cos 2 9/ — y13 sin 2 ç/ )2 sin2 2 <p
1

sin2 A cos2 A (cos2 cp cos29/ + sin2ç? sin29/ - 2 y12 sin y cos9? sin <p' cosç>')

(cos299 sin29/ + sin2<p cos29/ + 2 y12 sin 9? cos 99 sin ç/ cos 99')

ce qui est exact, car le premier membre est identique au troisième en
tenant compte de

Le produit 00' est donc un opérateur relatif à une rotation singulière
de première espèce, et l'on peut énoncer le théorème:

Les rotations singulières de première espèce forment un groupe. Il en est

de même des rotations singulières de seconde espèce.

Il est manifeste que, si Ox et 02 sont des rotations d'espèces différentes
ayant un couple de plans fondamentaux communs,

0,02 O2OX

car ces déplacements sont évidemment permutables.
11 faut trouver le nombre de paramètres de chacun des groupes dont on

vient de démontrer l'existence. Les y ne sont pas indépendants, la somme
de leurs carrés vaut un, il y a donc deux paramètres pour fixer les y, 9? en
est un troisième qui achève de déterminer la rotation de première espèce.
Ces trois paramètres sont essentiels. Chaque rotation de seconde espèce
dépend aussi de trois paramètres. Je dis que:

16, Toute rotation de EA autour d'un point est le produit de deux rotations
singulières, Vune de première espèce, Vautre de seconde espèce, qui sont
d'ailleurs permutables.

Soient, en effet, n2 et n2 les deux plans fondamentaux de la rotation
considérée, et 2 y, 2 %p les angles de rotation dans ces plans. La rotation
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singulière de première espèce ayant 7t2 et tz\ comme plans fondamentaux et
d'angle <p-\-y) et la rotation singulière de seconde espèce, de mêmes plans
fondamentaux, mais d'angle cp — y), sont évidemment permutables et
leur produit est la rotation considérée, car ce produit revient à la suite
de deux rotations, l'une parallèle à tz2 d'angle

l'autre parallèle à n2 d'angle

<p+y>— (y —y) 2

Si cette rotation donnée a pour symbole R,

on aura V RVR~\

R [cos 2 (y + y>)—(^2 + ^2)cos (^ + V) s^n (9 + V) + sin VA 1 tcos 2

— (^2 — ^2) sin (<p—V) cos (<P —V) — sin2^ —\p) r5].

Réciproquement, le produit de deux rotations singulières d'espèces
différentes est une rotation non-singulière.

En effet, on peut écrire les opérateurs des deux espèces différentes :

o2 cos y—cosç/ainç/ [y[ (A2—r84)+y; (r18—r42)+7; (r14—r23)]—

— sin2^r5,
où Fon a

Je dis qu'on peut trouver des paramètres aifc tels que :

«12 + «34 7l > «12 «34 7l
«13 + «42 72 > «13 — «42 7% »

«14 + «23 73 «14 — «^>3 73 »

et tels que atk Ftk soit un bivecteur unité, définissant, dès lors, un plan
fondamental commun à Ox et à O2 ; il suffit de poser
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a -yi + vi
«12 — 2 '

«34— 2 ' "*
et l'on a bien

^«l& > «12 «34+ «13 «42+ «14 «23 ° 5

on aura, dès lors:

#! - cos V — cos (p sin 9? [(a12 + a34) (ri2 + rs4) + (a13 + a42) (ri8 + A2) +
+ («14 + «23) (A

O2 cos V— cos 9/sin 9/ [(a12— a34) (ria— r34) + (a13— a42) (ri3— r42) +
+ («m — «23) (A4—A3) ] — «my r5,

ces deux rotations d'espèces différentes sont ainsi rapportées à deux plans
fondamentaux communs, qui sont les deux plans fondamentaux de la
rotation résultante.

On eût pu prévoir que deux rotations singulières d'espèces différentes
ont toujours un couple de plans fondamentaux commun, car la rotation
résultante R est le produit de deux rotations singulières O[.O2 permutables :

oxo2 r o;o; o;o;,
d'où

o\-*ox o'to?,

ce qui n'est possible que si le résultat commun de ces multiplications
est l'unité, donc

o1 0;, o2 o'2,

et dès lors, Ox et O2 ont un couple de plans fondamentaux communs. On a
donc encore

Ofi2 O2OX

17. Voici deux théorèmes presque évidents.

Le sous-growpe des rotations singulières de première espèce Gs (et celui des

rotations de seconde espèce Q'z) est un sous-groupe invariant du groupe des

rotations Ge autour d'un point.
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Car

puis, si Ox est dans G3 et 02 dans #3

0<PM 0102O2i Ox,
donc

0tG9O? Gt. (C.Q.F.D.)

G% est le produit direct de GB par G'3 :

C'est ce qui résulte de la définition même du produit direct et des
théorèmes précédents.

Toute la théorie précédente peut se transporter mutatis mutandis dans
la géométrie elliptique à trois dimensions et l'on peut retrouver avec
aisance les propriétés des translations de première espèce et de seconde

espèce ainsi que la décomposition d'un déplacement elliptique en un
produit de deux translations d'espèces différentes.

18. Transformations infinitésimales de G3 et de G3. Il est manifeste

que, si dans les opérateurs 0x et O2, on donne à l'angle y ou à l'angle
<p' des valeurs infinitésimales dq> et ô(p', on aura, en négligeant sin2ç> et
sin2ç?' et en remplaçant sin cp par dtp, sinç/ par ô(p', les opérateurs
infinitésimaux :

9> (r14 + r23)],

0, i - Iy'i V (Ai-AJ + v't àv (Ab -A.) + v'z V (A4 -A.) ],

ou encore

ox i — (r12 + r34) an — (r18 + r42) ^2- (ru + r23) ^3,
o, î — (r12 ~ r34) d<p[ — (r18—r42) àv% — (r14 - r23) ^;.

Naturellement O71 et O^1 s'obtiennent en changeant dans Ox et O2
respectivement ôq){ par — (5ç?^., ôtpl par — <5^ En considérant le vecteur

on aura, pour Ox :

288



+r42) + <% {ru+r23) ] f
l (A2 + A4) + <ty2 (A, + A2) + ^3 (A4 + A3) ]

et si
ÔV te.f,,

on trouvera sans peine
«53 F,

où (5tF est la contribution à 6F due aux termes en ôq>t:

soit

ce qui définit une transformation infinitésimale de symbole :

V / /y» * /y. * l_ /y» » /y» '' 3x2 3^ 3x4 3*3

On trouvera de même

v 4 _ df 3/ 3/ 3/

Xf-x df x^- + x *l x
df

Le calcul analogue pour O2 donne :

df 3/ / 3/ 3/
Xl 3^ ~ ^â^ *

X\X
ce qui correspond exactement aux résultats que M. Ullmo a obtenus en
appliquant la théorie de M. Cartan sur la structure des groupes.
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Chapitre V

Recherche des invariants des sous-groupes 6r3 et Q'3

Semi-vecteurs et spineurs

19. Il est manifeste qu'il n'y a pas de vecteurs invariants par 6?3 ni par
(?3. Il se peut qu'il y ait des tenseurs antisymétriques qui le soient. Pour
cela, il faut et il suffit que

^1 \^ik •*¦ ik) ^1 ~ ^ik ¦* ik >

quels que soient yl9 y2, yB [cf. éq. (7) ]. On peut écrire cette équation sous
la forme du système suivant

4) »« rik (aikrik) (r12+r34),
(8) (r13+r42) aik rik (aik rik) (r13+A2),

(A4 + A3) âik^ik -" (aife Afc) (A

or ces relations ne sont possibles, outre le cas banal aik 0, comme on s'en
rend compte aisément, que si aik Fik est un diviseur de zéro16) et si chacun
des membres en est nul. Or

donc
r12 (î—r5) aik rik o (aik rik) r12 (i — r5),

mais

(i +r5) (i -A) - (i -A) (i + r5) - 0 ;

si donc, on a

aik *ik (1 +A) %& Afc >

où aik Fik est un tenseur quelconque, le tenseur aik Fik sera un tenseur
invariant pour Gs car les trois égalités (8) seront vérifiées en même temps.

D'autre part, on peut écrire

(1 +r5) 4 rik (a12 — au) (A2 - T34) + (als — a42) (r13 - A2) +
+ (ai4 a23) (-*14 A3) J

et, par suite, la forme générale des tenseurs invariants par (?3 est :

^•1 (¦* 12 * 34/ I ^2 (-» 13 ¦* 42/ ~T ^-3 (¦* 14 ¦* 23/

où A1? A2, A3 sont trois nombres arbitraires.

le) On sait qu'un nombre hypereomplexe, différent de zéro, est dit diviseur de zéro,
s'il existe un autre nombre hypercomplexe, non-nul aussi, dont le produit par le premier
est nul; de tels nombres n'ont pas d'inverse.
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De la même manière, les tenseurs invariants par G's se mettent sous la
forme :

^ (r12+r34) + a; (r13+r42) + r} (r]4+r23).

On dira que le tenseur — jT5 {alk Ftk) est duel du tenseur a,lk Ftk ; dès lors :

Les tenseurs antisymétriques du second ordre, invariants par 6?3, sont

opposés à leur duel, alors que ceux qui sont invariants par G'3 sont égaux
à leur duel.

Avant de chercher dans quelles circonstances un tel tenseur est un
bivecteur, on peut remarquer que l'expression

(i + r5) Fx w \ (i +rB) (vw — wv)

est un tenseur invariant par O3, de même

(i — rs) vx w -1 (i —r.) (vw—wv)
l'est par G'3, F et W étant deux vecteurs. Or chacun de ces invariants est

une somme de trois invariants de la forme :

a (rlt ±rs4) + b (r13 ±r42)+c (r14 ±r23).

Ainsi donc deux vecteurs F et W ont quatre invariants relativement
au groupe G3, leur produit scalaire

v1w1 + v2w2 + vzw% + v4w4

et les trois combinaisons

vxw% — v2wx — (v3u>t — v^w3)

v1w3 — vzw1 — (v^w2 — v2Wt)

vxw± — v^wx — (v2w3 — v3w2)

De même deux vecteurs V et W ont quatre invariants relativement à G'z :

vxwx + v2w2+ vzWz + v^Wt
vxw2 — v2wx + {vzw± — v^w3)

VxWt — V^WX + (V2WZ — VSW2)

Il ne faut pas oublier de mentionner les deux expressions

qui sont aussi bien invariantes par Gz que par G'3.
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20. MM. Einstein et Mayer ont introduit les notions de semi-vecteurs de

première et de seconde espèce. Un semi-vecteur de première espèce est une
grandeur à quatre composantes ; lorsque l'on fait subir à l'espace E± une
rotation quelconque se décomposant en

le semi-vecteur en question se transforme comme un vecteur de mêmes

composantes se transforme par la rotation singulière Ox. Il est de seconde

espèce s'il se transforme par O2. C'est dire que les semi-vecteurs sont des

grandeurs des groupes 6?3 ou 6r3. Deux semi-vecteurs d'une espèce ont
donc trois invariants en plus des trois qu'ils ont lorsqu'on les considère

comme des vecteurs.

21. II peut y avoir quelque intérêt à étudier les tenseurs invariants par
C?3 ou (?3 qui sont des bivecteurs. Bornons-nous à la première espèce,
c'est-à-dire à 6?3. Le tenseur

(9) "1 \l 12 -* 34/ T" "2 (•* 13 •* 42/ l *3 (¦* 14 ¦* 23/

est invariant par Gs ; ce sera un bivecteur, et il représentera un plan
invariant, si

Il y a donc oo1 plans invariants par (r317); ils sont déterminés par les

rapports Ax : A2 : A3 et par la condition (10).
Montrons que par chaque droite isotrope, on peut faire passer un

tel plan.
Choisissons les axes de telle façon que la droite isotrope considérée

porte le vecteur
F v^ + v^, avec v\ + v\ 0

Pour que
W - w.r,

forme avec F un bivecteur du type indiqué, il faut et il suffit que

\(VW— WV),
soit de la forme (9). Or

17) Cela veut dire qu'ils dépendent d'un paramètre complexe.
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le coefficient de F12 doit être opposé à celui de FM, celui de Fls à celui de
F±2, celui de Fu à celui de F2S, donc :

vtw2 — v2w1 0

vxwz— v2Wt 0,

d'où

donc

c'est-à-dire

ws ± iwA et w2 ± iw1

ce qui montre que W est aussi isotrope, mais ce n'est pas un vecteur
isotrope quelconque, il est de la forme

sx et s2 étant deux paramètres arbitraires, alors qu'un vecteur isotrope,

en général, dépend de trois paramètres. Plus précisément, la direction

isotrope de W dépend d'un paramètre, le rapport ~, tandis que la direc-

tion la plus générale d'une droite isotrope dépend de deux paramètres.

22. On peut retrouver les résultats précédents par une méthode plus
générale et plus rigoureuse18). Cherchons deux vecteurs V et W dont le

plan soit invariant par 6?3. On devra écrire :

vtw2 — VaWj — {vzwA — u4w3)

(11) v±w3

d'où après multiplication par vl9v29 v3 et addition,

soit
vxV- W—V2wt 0,

d'où, bien évidemment,
18) Dans la première méthode, F a une forme particulière, il se pourrait qu'on objectât

que la forme de W qu'on a trouvée provînt du choix particulier des axes.
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01=
wx V- W w2 ws w^ '

ce qui montre soit que F et W sont parallèles; c'est là une banalité qui
ne répond pas à notre problème, soit que

F2 0 et V-W O;

d'ailleurs, en multipliant par w2, ws, w±, et additionnant membre à

membre les équations (11), on eût trouvé

Les plans invariants sont donc déterminés par des paires de vecteurs

isotropes perpendiculaires Vun à Vautre.

23. Or les composantes d'un vecteur isotrope F, pour lequel on a donc

peuvent se représenter au moyen de trois paramètres sous la forme

v2= A(l +
Vz il (jil + V)

vA X (p — v) ;

soit pour W la représentation analogue :

Wl=iXf(l—/JL'v')9
w2 Xf (1 + p'v')
ws iX' (p' +v'),
w4= Xtf — v').

La condition Sviwi 0 donne

(jB_i«')(v_v') O,

et les conditions (11) donnent:

(ft—f*')(v+Vt) =0,
(^ —A*')(l + »'v') 0,
(/À-fi')(2-w') 0.

On tire de là

fi p' 0
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Remarquons maintenant que si V et W sont des solutions de notre
problème, qV + aW et q V + a' W en sont encore. On peut s'arranger, en
particulier, pour que les deux vecteurs définissant le plan invariant soient
chacun de la forme aU + pZ, U et Z étant deux vecteurs isotropes
orthogonaux déterminés du plan. En effet, fixons ju, v, /«' //. Posons
ensuite A X 1, puis

on tire de là
e(l— iuv) + a(l— fiv') Q(l+/Av) + o(l+
Q(fi + v) + a(ji + v') q(fi — v) + a(p — vr)

soit

^r+ c/ 0 donc q — v', a — v par exemple.

Puis, posons

d'où

soit

Ainsi donc, la paire des deux vecteurs — qu'on appellera encore V et W —
isotropes rectangulaires, qui soit la plus simple possible pour déterminer
un plan invariant est définie par les égalités

i)x i[vf — v) w1= i[i{v' — v)

v2 v — v w2 — (à {v — v)

v3 ip(y' — v) wz —i(vf — v)

V4 fi(yf v) W4 V V

et l'on peut poser, ce qui n'est pas contradictoire avec la première
méthode, mais plus précis :

F fi (A - »'A) + £* (A- <r4),

le bivecteur invariant est alors

2 »• ft f, (r12- r34) - (f * + ^) (r18 - r42) - » (g - #> (r14 - r23).
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On a donc formé des vecteurs isotropes ayant deux composantes"
distinctes. A chacun d'eux, F, on peut en associer un autre, F, par une
règle que les équations (12) expriment (si Ton fait jouer aux axes 0xx et
Ox2 un rôle particulier). Le produit VW est alors invariant par (?3.

Réciproquement, on peut se donner un bivecteur invariant par (?3 :

Vi (A2 — A4) + 72 (A3 — A2) + 7s (A4- A3)
avec

(13) yî+yî+r? o.

Comme on peut résoudre l'équation (13) par les formules bien connues:

Yl 2 i |x £2,
(14) y. -(£ + £),

?» -<(£—fï),
dépendent de deux paramètres, les formules (12) définissent un couple de
vecteurs isotropes perpendiculaires dans le bivecteur donné; ce couple
n'est évidemment pas unique, car si (Çl9 f2) en définit un, (— £l9 — f2)
en définit un autre, et l'on peut encore échanger le rôle des yi dans (13).

24. En partant des conditions relatives à 6?3 on eût obtenu les expressions

suivantes:

v vi (A - <A) + % (A+W,
w t}% (A+»A) — m (A — «A),

et le bivecteur invariant eût été :

2 » ih V2 (Ai+A4) — toî + rô) (A3+A.) + » (»?i - »?2) (A4+As) •

25. On peut résumer les résultats précédents dans les définitions et les

théorèmes suivants.

Considérons dans 2?4 deux plans réels absolument perpendiculaires,

passant par le point 0 et, dans ces plans, quatre axes de coordonnées.

Prenons dans chacun de ces plans deux vecteurs isotropes distincts

vx et vx pour le premier, v2 et v2 pour le second [dans les formules (12), on

a supposé que les deux plans sont les plans des xx, x% et des xz, #4].

Considérons les vecteurs isotropes à deux composantes
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nous les appellerons des spineurs, et, si nous les considérons comme des

semi-vecteurs de première espèce, nous les nommerons spineurs de

première espèce. A un spineur comme (15) correspond un spineur

(16) h^ — ^
qui lui est associé.

Un bivecteur invariant par 6?3 contient un et un seul spineur de la
forme (15) (au sens près): ce bivecteur est parfaitement déterminé par le

couple de vecteurs associés (15) et (16) et, réciproquement, tout bivecteur
invariant par 6?3 détermine un couple de spineurs associés de la forme
(15) et (16).

En formant les expressions :

(17) rilv1

(18)

on obtient des spineurs associés dans un bivecteur invariant par 6?3.

Remarquons que v±v2, ou vtv2 sont des bivecteurs invariants par G'z ;

d'une manière générale, le produit de deux spineurs comme (15) ou de
deux spineurs comme (16) sont des bivecteurs invariants par G'z et,
inversement, le produit de deux spineurs du type (17) ou de deux spineurs du
type (18) est un bivecteur invariant par 6?3.

26. On voit donc que, de même que les vecteurs de i?4 (ou les semi-

vecteurs) sont des grandeurs à quatre composantes rapportées aux
vecteurs de base Fl9 F2, JH3, F±, les spineurs sont des grandeurs à deux
composantes, associées deux à deux, chaque paire étant rapportée aux
spineurs de base

qu'on représentera dorénavant par les lettres

respectivement. Ayant ainsi fixé les spineurs de base, une paire de

spineurs associés par G3 est déterminée univoquement par un bivecteur
invariant dans Gz par des formules de la forme

%2Yi — Ç1Y2 ;
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une paire de spineurs associés par G'3 est déterminée univoquement par
un bivecteur invariant dans G'z par des formules de la forme

On peut prendre pour les spineurs de base quatre vecteurs isotropes
quelconques, situés deux à deux dans deux plans réels19) absolument
perpendiculaires. On les associe deux à deux et l'on obtient, par les
combinaisons (19) ou (20) des paires de spineurs associés par Cr3 ou par 0'3.

Chapitre VI

Expression des rotations de l'espace EA au moyen du groupe
unimodulaire de deux variables

27. On a vu que, parmi les vecteurs isotropes de i?4 les spineurs

?i rx—%r2, y2 r3—iré,
où

et leurs associés

jouent un rôle particulier. On pourrait d'ailleurs remplacer y1 et y2

respectivement par
rx — irz, r4 — ir2,

ou par
p ; p p »p

mais le système sus-indiqué suffira à notre propos.

On va considérer dorénavant les spineurs des formes suivantes :

(la) ^71 + ^272^ (Ha)

(Ib) r1y1 + r2y2, (IIb)
19) Cette association doit se faire de telle manière que si une rotation amène les deux

plans en question sur (a^, a?2), (aj3, x±), on ait amené les nouveaux spineurs de base

respectivement sur ylt ylf y2, y2.
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Le produit de deux spineurs (Ha) est un bivecteur invariant de
seconde espèce (c'est-à-dire invariant par G's):

(S1Y1 + S2Y2) (Ciri + C2y2) (fifa — £2Ci)

car
y; y; o et

Dès lors si l'on considère un spineur (Ha) comme un vecteur de i?4, une
rotation singulière de seconde espèce transforme linéairement ses

composantes (£1? f2) de telle manière que le produit de deux tels spineurs
reste invariant, c'est-à-dire, si l'on désigne par des accents les nouvelles
composantes (fl5 £2) et (£l5 £2) se transforment en (fj, £2) e^ (Ci» C2) e^

l'on a:

cela signifie que la rotation de seconde espèce induit sur Jes composantes
d'un spineur (Ha) une transformation linéaire de déterminant un, mais
cela prouve aussi que (Ha) est un spineur de seconde espèce; (IIb) aussi.

On peut montrer plus rigoureusement ce fait au moyen des
transformations infinitésimales de (?'. Si

on a

F+aF=[i-(rlt-r,4)«ft-(ru^
+ (r12 — r34) an + (rJ3—ri2) ôcp2 + (r14—r23) sVz ],

et l'on trouve

les Sa, dp, ôy étant des combinaisons linéaires des d<pl9 ô(p2, ô(ps et l'on
a bien ainsi une transformation infinitésimale du groupe unimodulaire sur
(fi> £2)- On trouve aussi, en prenant la forme finie des transformations
de <?g, que yx et y2 sont des combinaisons linéaires de déterminant un de

leurs transformés. Enfin on voit sans peine que

se transforme en un spineur du même type, de manière que les (f1? |2)

subissent une transformation unimodulaire.
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Remarquons que le produit scalaire de V par V est 2 (4^ +£2^2)»

comme il est invariant, on voit que toute transformation de G3 induit sur
(£1, f2) e^ sur (?i> £2) des transformations unimodulaires contragrédientes.

On trouve une propriété analogue pour les spineurs (la) et (Ib)
transformés par les transformations de G3, on peut donc formuler le théorème
suivant :

Un spineur (la) ou (Ib) se transforme par les transformations de Gz en

un spineur analogue) de tels spineurs sont dits de première espèce; les

composantes d'un spineur de première espèce se transforment par le groupe
linéaire spécial (à deux variables); deux spineurs de première espèce, des

formes (la) et (Ib) respectivement, se transforment en deux spineurs des

mêmes formes, mais leurs composantes respectives subissent des transformations

unimodulaires contragrédientes.

On a une proposition analogue pour les spineurs (Ha) et (IIb) qui sont
de seconde espèce et cela pour les transformations du groupe G'z.

Remarquons qu'un spineur de seconde espèce [(lia), par exemple]
a un associé [(IIb), où at= £2, c2 — — £J, avec lequel il forme un
bivecteur invariant de première espèce (c'est-à-dire invariant dans G3).

28. Tout vecteur de Eé se met évidemment d'une seule manière sous
la forme

et si F est réel,

çt imaginaire conjugué de Çiy (i — 1,2).

Soit, dès lors, une rotation de E± dont les facteurs dans G3 et G'3 sont
O1 et O2. Formons

o1vo~1 ox (*lYl + f,yi) 0?+o, dy± + iy2) 0?

+*i2 f.) n+(hi ii+h* h) y2 + &1Î1+L n+(tu ii+ht Ê) y«,

où
rp __

t t112
et T hi >

sont deux matrices unimodulaires et contragrédientes.
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Ensuite

(23)

OU

+
+
+

[«llfalfl
L %i (*n si
[«1161 11

[«2i(<"n?i

C7

¦

+ *!.£«

+ «l.f|

+ «»*«

«11

«21

[011*1 + ^1

-f- u12 (t211

+ '^22 (^211

)+^22(^21^

» %2

> ^22
>

2^2) ri-
l + Llï
\ + ^22 I
14~ ^22 f s

h Calî +^^yalOg

*)]y.

«21.

«12

«22

sont aussi deux matrices unimodulaires et contragrédientes.

Le dernier membre de (23) représente le vecteur V provenant de V par
la rotation considérée de E±: O — OXO2.

T dépend de trois paramètres complexes, T est déterminée lorsque T
l'est; U dépend aussi de trois paramètres complexes et Û se déduit de U.
On a ainsi obtenu par (23) une représentation du groupe GQ à six
paramètres complexes. On dit, dans la théorie de la représentation linéaire des

groupes, que la représentation de R ainsi obtenue est le produit de deux
représentations linéaires unimodulaires.

Cherchons la forme des transformations unimodulaires précédentes
dans le cas où les rotations sont réelles. Soit F un vecteur réel, alors

]1, est réel, et comme

il faut que

donc
soit conjugué de tik£k

Cela revient à dire que T est une transformation unimodulaire dont la
conjuguée lui est contragrédiente. Il en est de même pour U.

Voyons à exprimer ces conditions pour avoir les tik ou les uik. Ecrivons
plutôt

4, 5
(7, D

A, B

C, D
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et à cause de la contragrédience

1

AB + CD 0,
et puisque T est unimodulaire

AD—BC - 1

On voit facilement que
D A C — 520).

Si donc
A a-\-ib, B

a -\- ib c -f- id'

avec a2 + 62 + c2 + d2 1 ;
— c + irf a — *6

de même pour £7; T et U dépendent donc chacune de trois paramètre
réels.

On peut dire, comme M. E. Cartan Fa montré d'un point de vue très
général dans sa théorie des groupes réels21) :

II y a isomorphie entre:

Le groupe linéaire formé du groupe linéaire, — spécial, — de la forme
d'Hermite x1 x1 -f- x2 x2 et du groupe linéaire, — spécial, — de la forme
d'HerwÀte x3x3-\-xéx4)

le groupe linéaire de la forme quadratique réelle x\ + x\ -\-x\ + x\.

Chapitre VII
Examen du groupe de Lorentz

29. On peut facilement transformer les résultats des chapitres précédents

de manière à les appliquer au groupe linéaire qui conserve la forme
quadratique de Minkowski

II suffirait de considérer des unités i^ avec

r»2 i
20) D'ailleurs T étant contragrédiente à T qui est unimodulaire» on a toujours tu t21t

n) Cartan, loo. cit. p. 354.
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les autres carrés étant toujours égaux à un. Il est préférable, pour aller
plus vite, de faire correspondre à tout point de l'espace ordinaire à

quatre dimensions (xx, x2, xz, xé) le point de l'univers de Minkowski
(xl9 x2, x3, ix4) et réciproquement.

On trouve encore que le groupe ^6 de Lorentz est le produit direct de
deux sous-groupes ^3 et ^3 mais alors que les transformations au produit
desquelles est égale une rotation de l'espace E± à quatre dimensions sont
réelles si la rotation totale est réelle, il n'en est plus ainsi pour le groupe de

Lorentz. Les conditions dans lesquelles les transformations correspondantes

de ^3 et de ^ déterminent une transformation de Lorentz réelle
sont toutes différentes, alors que pour le groupe complexe de Lorentz,
elles sont tout à fait analogues (cf. éq. 23).

Un vecteur réel de l'univers de Minkowski correspondra au vecteur

(où les vk sont réels) de l'espace i?4. Si on écrit

y £iYi + £2^2 + ëiYi + Ç2Y2 >

£, et ^ sont imaginaires conjugués, £2 et £2 sont réels.

Dans la formule (23) on doit avoir, en utilisant les remarques de la note
de la page 302, et en posant:

A, B
G D C U

V
[C'(AS1+BS2)

Pour que la transformation de Lorentz soit réelle, il faut que les

coefficients de y2 et de y2 soient réels, ceux de y1 et yt, imaginaires

conjugués, si £2 et la sont réels et fî conjugué de f1# On voit que ces

conditions impliquent que

C'A — D'B] AA'=DD', A Bf — CD' (réels)

B'D=* A'C; BB' ^CC' A' B -— C D (réels)

CJ5, D'A, B'C, AfD réels.
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On tire de là

B' —C, C'=—B, A'=D, D'=Â.

Les transformations T et U ont alors les matrices :

m __
A B
C D

£7 D, —C
B A

et U est déterminée lorsque T l'est. On voit qu'à une transformation de
Lorentz réelle est associée une transformation unimodulaire à trois
paramètres complexes. U est la conjuguée de la contragrédiente de T.

II y a donc isomorphie entre22) :

Le groupe linéaire spécial à deux variables complexes xx, x2, le groupe
linéaire de la forme quadratique réelle #j + #2 + ^3 — x\.

a2) Cartan, loc. cit. p. 353.

(Reçu le 25 décembre 1935.)

304


	Les rotations de l'espace euclidien à quatre dimensions, leur expression au moyen des nombres de Clifford et leurs relations avec la théorie des spineurs.

