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Les rotations de I'espace euclidien

a quatre dimensions, leur expression au moyen
des nombres de Clifford et leurs relations avec
la théorie des spineurs

Par GusTavE JUVET, Lausanne

Introduction

1. Il est bien connu que les nombres hypercomplexes de Clifford
permettent de trouver les expressions des substitutions linéaires ortho-
gonales & n variables au moyen de paramétres, en général, surabondants.
En considérant ces substitutions comme les expressions algébriques des
rotations de l’espace euclidien & n dimensions autour d’un point fixe,
il est possible de donner une interprétation géométrique de ces para-
métres; d’autre part, I’algorithme cliffordien permet de faire des sim-
plifications appréciables dans le maniement des notions géométriques
relatives & ces rotations, de sorte que, le calcul algébrique et 1’'intuition
géométrique se soutenant, on peut, avec la plus grande rapidité, établir
la théorie des rotations de I’espace & » dimensions autour d’un point fixe,

Nous essayerons de montrer, dans ce mémoire, ce que donnent ces
méthodes pour le cas, trés intéressant dans les applications, o n vaut
quatre. En supposant connues simplement les propriétés des variétés
linéaires orthogonales entre elles, nous démontrerons rapidement, et
par voie géométrique, un théoréme sur les déplacements dans l’espace
euclidien & quatre dimensions; nous suivrons poui‘ cela la Thése de
M. van Oss!). Puis appliquant la théorie des nombres de Clifford, briéve-
ment rappelée, nous montrerons que toute rotation revient au produit de
deux rotations autour de deux plans absolument perpendiculaires. Cette
décomposition est, en général, unique; les cas exceptionnels seront
étudiés et I’on montrera qu’ils permettent de démontrer que le groupe G,
des rotations autour d’un point est le produit direct de deux sous-groupes
invariants G, et G,; ce résultat est bien classique, mais on verra que la
méthode utilisée permet d’obtenir, sans recourir & la théorie générale des
groupes, les invariants de chacun des sous-groupes en question et les

1) 8. L.van Oss, Die Bewegungsgruppen der RegelmaBigen Gebilde von
vier Dimensionen, Inaugural-Dissertation, GieBen, 1894.
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propriétés des grandeurs, nommées par les physiciens semi-vecteurs de
premiére et de seconde espéces, et spineurs?). Grice & ces derniéres, nous
retrouverons les isomorphies entre le groupe de la forme réelle «f + 2 4
a4 x; et le groupe linéaire formé du groupe linéaire de la forme
d’Hermite & £, + &,&, et du groupe lindaire de la forme d’Hermite
£, &+ &,&,; en passant, grice & une transformation facile, nous cons-
taterons encore 1’isomorphie entre le groupe linéaire spécial & deux
variables complexes &, et &, et le groupe linéaire de la forme quadratique
réelle 22 + x5 + a2 — 2. Ces résultats, obtenus par M. Cartan comme cas
particuliers d’une théorie générale des groupes continus, finis, réels®) sont
importants dans la théorie de Dirac. Nous les utiliserons dans un autre
mémoire pour résoudre un probléme que M. A. Proca*) avait posé en
1930 sur la forme des solutions de 1’équation de Dirac?).

Chapitre premier
Le théoréme de van Oss

2. Deux figures congruentes de l'espace euclidien a quatre dimensions E ,
peuvent étre amenées en coincidence par deux rotations successives autour
de deux plans ayant un potnt commun.

La démonstration qui, nous le répétons, est empruntée & la Thése de
M. van Oss, précisera la notion de rotation autour d’un plan.

Soient F et F’ deux figures congruentes de £,. On peut imaginer
qu'elles appartiennent 4 deux espaces R, et R, plongés dans E, (et
confondus avec lui). Soient H, et H, deux hyperplans homologues de
R, et R, respectivement; ils se coupent suivant un plan de K, qu'on
peut appeler @, si on le considére dans R, et o, si on le considére dans R,.
Désignons les homologues de &, dans R, par &, et de o, dans R, par g,.
@, et o, se coupent — ce sont deux plans de H, — suivant une droite

%) Hinstein ot Mayer, Sitzungsberichte der PreuBischen Akademie der Wissenschaften.
1932 (XXXII); et J. Ullmo, J. de Phys. (VII) tome V, p. 230; cf. aussi le mémoire o1
M. W. Scherrer utilise la théorie des quaternions pour la représentation des transformations
de Lorentz, Comm. Math. Helv. vol. VII, p. 141.

3) K. Cartan, Ann. Ec. Norm. Sup. (3éme série), vol. XXXT, p. 263.

4) C. R. Acad. Sc. Paris, vol. 190, p. 1377, vol. 191, p. 26, J. de Phys. (VII) vol. I, p. 235.

§) D’autres auteurs se sont occupés des spineurs du point de vue analytique et géo-
métrique: cf. le livre de M. van der Waerden, Die gruppentheoretische Methode
in der Quantenmechanik, et les mémoires de M. Schouten, Proc. Akad. Wet. Amster-
dam, vol. XXXIII, p. 189; Zs. f. Phys. vol. LXXXIV, p. 92.
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d,, @, et o, se coupent suivant la droite 4; homologue de 8,. Comme
d, et 8, sont dans un méme plan, il existe une rotation dans ce plan qui
aménera J, sur §;, tous les points homologues de &, et 4 ‘coincidant;
soit O le centre de cette rotation.

Considérons alors le déplacement de ’espace R, obtenu ainsi: on
décompose tout vecteur de R,, issu de O, en deux parties V1) 4 V(@)
V@) étant dans @,, et V® étant situé dans un plan z, absolument per-
pendiculaire & @,; cette décomposition, toujours possible, est évidemment
unique. Dans la rotation de @,, V¥ arrive en V¥); dés lors, considérons
la correspondance entre les extrémités de V et ¥, ot

V=7vwyye,

c’est évidemment un déplacement, car les longueurs des vecteurs V et V
sont égales et, si W est un second vecteur auquel correspond W, on aura
pour les produits scalaires

V-W=(VO LV (WOL W)= T . FO L@ J@ —
= VO . WOLY@D . @ = (VDLP@). (WOLWD) =T -W.

Ce déplacement est appelé une rotation de R, autour de m,; tous les plans
paralléles & @, sont invariants, ils tournent du méme angle et tous les
plans qui leur sont absolument perpendiculaires, donc paralléles & =,
s’échangent sauf =, qui reste non-seulement invariant, mais invariable.
Cette rotation améne B, en R,, F en F. Les deux figures F et F ont une
droite homologue commune, §, précisément.

On méne ’hyperplan K, perpendiculairement & J; en un de ses points.
Cet hyperplan coupe I’ensemble & des plans de R, passant par d, suivant
une gerbe de droites g, il coupe de méme I’ensemble & des plans de R,
passant par d; suivant une gerbe de droites g’. g et ¢ sont deux gerbes
de droites, ayant méme sommet S, homologues deux & deux, et situées
dans un méme espace tridimensionnel.

Il est dés lors facile de terminer le déplacement qui aménera F sur F’,
il suffit de passer de ¥ & F”, soit de B, & R,. Dans ce dernier déplacement,
d, reste invariable et K, reste invariant, g vient en g’ ; or le passage de
g en g’ est une rotation de K, autour du sommet commun des deux
gerbes. Il y a donc une droite 4 commune & g et & ¢’ qui se correspond &
elle-méme dans cette rotation, c’est 1’axe de la rotation. Un vecteur de
R,, issu de 8, peut se décomposer univoquement en une somme de deux
vecteurs dont I'un est dans le plan déterminé par 9§, et 4, Pautre dans le
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plan absolument perpendiculaire, qui est d’ailleurs situé dans K,; soit
V = O L @7F; la rotation de K, améne @V en 2V’ et laisse V7V in-
variant, c’est donc une rotation de R, autour du plan n, = (4,, 4). Le
plan @, a au moins un point commun avec n,. Le théoréme de van Oss
est donc complétement démontré.

Une rotation autour d’un plan s, sera désignée autrement dans la suite;
on dira qu’elle est paralléle au plan @&, absolument perpendiculaire
7y, et sa grandeur sera mesurée par I’angle dont les plans paralléles
@, tournent sur eux-mémes.

On voit, par la démonstration, que la décomposition d’un déplacement
de E, en deux rotations n’est pas unique; elle dépend du choix du couple
des hyperplans correspondants H, et H, de F et F'S).

D’autre part, il y aurait & examiner si ’on voulait étre complet, le
cas ot le point commun & 7, et & 7, serait & U'infini; on aurait affaire alors
4 une translation; mais pour notre but, cette étude n’est pas nécessaire.

Les nombres de Clifford vont permettre de préciser grandement les
correspondances entre les plans de rotation lorsque I'on sait déja que
F et F’ ont un point homologue commun. Il est manifeste que, dans ce cas,
les plans 7, et 7, passent par ce point.

a
a

Chapitre II

Les rotations de I, et les nombres de Clifford

3. Un nombre de Clifford, pour n=4, est un nombre hypercomplexe
de la forme?):

C=a+a lN+a,l+als+aly+ap Lo+ a Iy +ay, Iy +ay Dyt
+ agy Dy + @45 Tgp+ 3193 Lh3+ o3a Doas + amn Lsay + 22 e +0155,

ol I’on a posé
I'y=1TIT;,Tyy= I, ey = I, (qu’on écrira souvent 1),
les unités I'; étant ,,définies‘‘ par les relations
ré:=1, 1,\Iy=—I;I; (t#£9) (0,7 =1,2,3, 4)
on voit qu’on a aussi

I’52=1,I'5['i:——-11i115 (7:#5).
§) Mais 7, et 2%, sont réels si I’ et F'/ sont réelles et si H, est réel.
) Cf. ce journal, vol. II, p. 225.
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On sait que les diverses parties d’'un nombre de Clifford sont susceptibles
d’admettre une interprétation géométrique. On peut écrire:

C=I1+V+T+I(W+J),

ou I et J sont des grandeurs scalaires, V et W des vecteurs et 7' un tenseur
antisymétrique.

4. Pour commencer, nous ne nous occuperons que des nombres qui
représentent des vecteurs ou des produits de vecteurs. Soient deux
vecteurs?®)

V=uvl;,, W=uwly
on a
VW = vw,+ (v,w,, — v,w;) I';;

vaw; = V - W est le produit scalaire des deux vecteurs et (vw;, — v, w,)[
en est le produit vectoriel ¥ X W, c’est un bivecteur de la forme b,,1";;,
et 'on a, comme un calcul simple le montre:

b1y bya +by3 bys + by by = 05 )
de plus, si ¢ est 'angle de V et W, on a
vw; = |V]||W]|cosg
by =|V[*|W|*sin®g ;
cette derniére expression est le carré de la mesure du bivecteur.

Soit A un vecteur a;I; de longueur unité, Xa} = 1. L’inverse 4-1 du
nombre de Clifford 4, est le méme vecteur A4, car

42 = Xal = 1.
Le nombre
V' = AV A

représente un vecteur, comme le calcul le montre immédiatement.
Puisque

AV' =V'A, cest-a-dire 4 - V' +AXV' =V-A+V XA,

ce vecteur V' a méme longueur que ¥V puisque son produit scalaire avec 4

8) On supprimera le signe ¥ suivant la convention habituelle.
%) Cette relation est caractéristique des tenseurs qui sont des bivecteurs.
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est égal & V - 4. Le bivecteur A X V' définit le méme plan que ¥V x 4, il a,
dans ce plan, la méme mesure au signe prés. Donc V' est le symétrique de
V relativement & 4.

Si on repére chaque point P de E, par le vecteur V = OP, la cor-
respondance P — P’, (ou on a posé OP’' = V’) définit la symétrie de E,
par rapport au support du vecteur A, ou comme nous dirons, par rapport

a A.

Soit B un second vecteur unité,

le vecteur

V'=BV’'B™!

est le symétrique de V' relativement & B. Soit I7, le plan déterminé par
les vecteurs 4 et B; on peut décomposer tout vecteur V en V —I—T’, d’une
seule maniére: V étant IT, et V dans le plan IT; absolument perpendi-
culaire & I7,. On aura:

V"' = BAVA- B = (BA)V(BA)" = (BA)(V+V)(BA)! =
= (BA)V (BA)™ +(BA)V (BA),

a cause de la distributivité de la multiplication cliffordienne relativement

a ’addition. 7, perpendiculaire & I7,, subit deux symétries relativement
a deux vecteurs situés dans /7,, dés lors

(BA)V(BAY =V

ce que le calcul montre aussi. De plus V, qui est dans IT,, subit deux
symétries relativement & deux vecteurs de ce plan,

V''= (BA)V (BA)!

est donc obtenu par une rotation de ¥ dans I7, d’un angle 2 @, @ étant
I'angle que 4 fait avec B.

V' = I_/H + 7
définit une correspondance P —P’’, qui est donc une rotation de E,

autour de IT;, ou paralléle & IT,, d’angle 2 @, I'origine O étant fixe.
Comme toute rotation autour de l’origine est le produit de deux
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rotations paralléles & deux plans passant par O, le déplacement le plus
général qui laisse fixe l'origine sera donc exprimé analytiquement par
I’égalité:

V¥ =DCABVABCD = (DCAB)V(DCBA)™

ou C et D sont deux vecteurs unités du plan auquel est paralléle la seconde
rotation et le déplacement des points de E, est défini par la correspondance

P — P* avec V* = OP*.
On peut écrire
BA = cos ® — Asin @

ou 4 est le bivecteur unité du plan (4, B) orienté de fagon que la mesure
de I’angle dont il faut tourner A pour I’amener en B soit précisément &
(& un multiple de 2z prés). Il est manifeste que si ’on choisit, au lieu
de 4 et B, deux vecteurs 4’ et B’ du méme plan, formant le méme angle

®, on aura:
BA =B A’

de sorte que la représentation de la rotation P—P’’ n’est pas unique si
I'on a égard aux symétries en lesquelles elle peut se décomposer.

On sait, d’autre part, que le plan de la premiére rotation ayant été
fixé, celui de la seconde s’en déduit univoquement; donc, en posant:

DC =cos ¥ — pusin¥,

¥ et u sont déterminés lorsque 4 est fixé. Les deux plans 1 et u peuvent
étre dits conjugués dans la rotation considérée de ,. Nous allons voir
qu’on peut choisir les plans conjugués de facon qu’ils soient absolument
perpendiculaires. On a le théoréme:

8. Toute rotation de E, est le produit de deux rotations paralléles a deux
plans absolument perpendiculaires.

Ce théoréme, bien classique, se démontre habituellement par I’analyse
des valeurs propres de la matrice orthogonale qui représente la rotation
de E, autour de 'origine. L’algorithme cliffordien permet d’en donner
une démonstration rapide, qui, d’ailleurs, conduit aux conséquences les
plus intéressantes.

Cette démonstration fait état des propriétés des bivecteurs supplémen-
tasres. Soit un bivecteur unité, f = ;. I, le bivecteur unité f* = g 'y
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en est le supplémentaire, si les deux plans qu’ils définissent sont absolu-
ment perpendiculaires et si les quatre vecteurs unités V,W,X,Y, et
deux & deux perpendiculaires, tels que:

p=VXxXW, p*=Xx1Y,

forment un tétraédre dont ’orientation est celle du tétraédre des coor-
données. On voit aisément que

ﬂﬁ* =I‘5’

car on peut toujours faire une rotation de £, qui améne § a étre I, et f*
a étre I';,, donc, en faisant la rotation inverse, on aura

pp* = O0I,,I,,0 =TI,00 =1T;. (O = produit de 4 vecteurs)

On a

ﬂz = (ﬂikrik) (ﬂrsrrs) = Zﬂ«?k + (ﬁlzﬂza - ﬂzaﬁm 1=
+ BraBas— BusPra) [ia+ * + 2 (By2Paa+ BraPas+ BraBas) Is = — Zﬁizk = — 1,

dongc, l'inverse du bivecteur unité f est — f.

D’autre part,

ﬁﬂ. = E ﬂikﬁi;c =h (ﬂlzﬁzg ’_‘523 ﬂI; + ﬂu ,34; "‘ﬂ43 ﬁlZ)I‘m + -+
+ (Brz Boa + BaaBiz + BraBaz + BuzBrs + BraBas + BasPra) I

on doit donc avoir

Eﬂik ﬁc;c =0, ﬂ12ﬂ2; _ﬁza 131; -+= 61454; - ﬂ43ﬂ12 =0, ..
ﬂlz ﬂa; + /334ﬁ1; + ﬂ13ﬂ4; + 1342 ﬂ1; -+ ﬁuﬂzg + ﬂ23ﬂ1; =1

et ’on satisfera a ces équations en posant

.31; = ﬂ34 > )61; = ﬂaz s 51; = .323 > ﬂal = B2, 54; = ﬂls ) ﬂag = 542 '

ce qu’on voit aussi immédiatement en remarquant que
pp* = I,

B* = — BT car p = —B.

d’ou
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6. Cherchons dés lors & mettre la rotation!?)

DCBAV ABCD
sous la forme

dcba V abed

ou le bivecteur b Xa est absolument perpendiculaire & d Xc¢. Nous
écrirons

ba = cosp —asing,

dc = cosp — B sin y,

et nous chercherons & déterminer ¢, y, a et § de facon que

(cos ¢ — a sin @) (cos p — f sin ) = (cos @ — 1 sin D) (cos ¥ — u sin P)

et que
ﬂ == 5(1.
Si
A= Ayl v = puly,
on aura

(cos @— A sin D) (cos ¥ — u sin ¥)=cos D cos ¥+

+-sin P sin V[-2 A pisy + (Arz fastAzatss +Arshas +Aaattas +Arapios+ Aogtia) I's+
+ (Aattas—Aasthia+ Ayafas—Rasphra) [13+ -+ () I'yg]-Asin @ cos ¥ — u cos Psin ¥,

qu’on écrira
= I+JF5"‘0ikrik,

et ’on aura & résoudre le systéme

cosp cosy = I,
sin @ sin y = J,
— a;8in@cosy — B cospsiny = —C.
Or
Bra = @34, wevs By = @y, (1j78) = permutation paire de 1, 2, 3, 4,
done

(1) cospcosy = I,
sin ¢ sin p = J,
2) a5 SIN @ cOS P + 0y, cOs @ 8in p = Oy,

0y COS @ 8in y + 0y, 8in @ cos p = Oy,

10) Le calcul est fait pour des A4, B, C, D réels, et I'on recherche des plans absolument
perpendiculaires réels. Mais la démonstration est valable pour une rotation quelconque,
quitte & laisser tomber les conditions exigées pour la réalité.
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et deux systémes analogues & (2) pour déterminer respectivement
Oy3, gy €6 G4, Qg3

Le systéme (1) donne ¢ et y pourvu que
1l <1, |J]<1.
Les systémes du type (2) donnent les a,;, pourvu que

sin pcosy  cosgsin gy

D = . .
cospsiny  sin ¢ cosy

= gin%p — sin?yp #0,

Enfin le probléme sera résolu si ’on est assuré que
(27) Yag =1 05,0+ 03054040, =0.
On vérifiera qu’il en est bien ainsi aprés avoir démontré le lemme suivant.

7. Soient deux bivecteurs unités A et u; on peut toujours orienter les
axes de coordonnées de maniére que

A=1Ty, p=plg+ pgqlsq+ a3+ paglss,

ou bien entendu
(3) Moo+ P+ i+ 13 = 1,  Maatsa+ thstias = 0.

En effet, il suffit de mettre les axes des z,, z, dans le plan de A pour
assurer la premiére condition. On a encore & sa disposition 1’orientation
de I’axe z, dans le plan de A et l'orientation de 'axe z, dans le plan
absolument perpendiculaire. En changeant cette orientation, I’expression
de 4 ne change pas, celle de 4 change et devient:

(cos ¢— sin o I',) (cos T — sin v I'y,) u (cos T+ sin 7 I',) (cos o + sin o17,)

= :ulzplz + #34r34 + /‘13F13 . ,11;41114 -+ ﬂ;3F23 -+ H;zr«iz s
avec

P13 = fiy3 COS G COS T — i1, COS 0 8IN T ~+ 5 8iN 0 COS T — py, 8in o 8in 7,
B1a = Hyg COS 0 8IN T — piy, COS G COS T — Uyy SIN 0 8IN T + uy, sin o cos 7,
Pog = flyg SIN 0 COS T — f4;, 8N @ 8IN T + Uy, COS 6 COS T + py, COS 0 8iN T,
Pos = Hiyg S8iN 0 8IN T + i3, SIN G CO8 T + gy COS 0 8IN T — g, COS G COS T,
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et il est manifeste qu’on peut déterminer les angles ¢ et v de maniére que

H1a = flog = 0 ;
il suffit que
pag €O 0 — g __ M3 M3 cot ¢
o3 COL G + pr13  fiyy + pag cOt 0’

puis
Pag— g COb @
H1a COb @ — gy '

cot yp =

c’est-4-dire que cot ¢ est racine de 1’équation du second degré:

(M1afos + Pqathos) 22+ (.“34 — H§4 + l“fa — l‘ga) & — (Uyafog + tyathag) = O

qui admet deux racines réelles. Le lemme est démontré.

8. Nous pouvons reprendre alors la démonstration de notre théoréme.
On fera désormais

A= 1TI1,, n = pro Do+ prag g + pysl s+ oL as

et les équations (1) s’écrivent

cospcosy = coS Dcos ¥ — py,,sin Dsin ¥,
sin g 8in 9 = Uy, Sin Psin ¥ .
Puisque
[ < 1, |taal < 1,

les seconds membres sont inférieurs ou égaux & 'unité en valeur absolue
et ce systéme est dés lors résoluble par rapport a ¢ et y. Sans nous pré-
occuper des diverses solutions possibles!!), supposons que D s 0, ce qui
est le cas général. Il faut montrer que les conditions (2’) sont vérifiées.
Or les systémes (2) et analogues donnent, en faisant la somme des carrés
et la somme des produits membre &4 membre des équations de chaque
systéme:

A8, +4 BS, = XCL,

BS,+ A8, = C13034+C13C 5+ 0140,
ou 'on a

. 8y = Zajy, 8y = 12054+ 033045+ 01403,

e

11) 11 est facile de voir que toutes les solutions possibles pour ¢ et 1 donnent effective-
ment les mémes rotations dans les mémes plans; par exemple, en changeant ¢ en — ¢,
1 en — 1, les a changent de signe, la rotation reste la méme dans le méme bivecteur, etc.
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A = sin %@ cos®y - cos 2 sin >y = sin 2p + cos 2p — cos2p cos 2y — sin 2@ sin 2y
=1—12—J2,

B =singcospsiny cosy = IJ.

D’autre part, avec le choix particulier des axes:

Cy, = sin @ cos ¥ + py, cos Dsin P,
Csy = pzycos Dsin¥,
Cis = 3 cos Dsin 7,
Cy = pypcos Dsin'¥,
Cys = Y13 8in Dsin 7,
Cls = tge 8in P sin ¥,

d’ol1, en tenant compte de (1) et de la forme de A et de u:

20 =1—I!—J*= A,
012034+ 013042 + 014023 = 1J = B,
et dés lors
4 AS,+4BS, = A
) BS,+AS, — B
c’est-a-dire
S;=1, 8;,=0,
pour autant que ’on n’ait pas

A2 —4 B? =0,
ou
(cos 2 sin %y 4 sin 2p cos ?y) % — 4 8in 2@ sin %y cos 2p cos?y = 0,

ou encore

D? =0,
ce qui s’écrit aussi

(1—I12—J2)2—412J2 = 0.

Done si

D #0,
on est assuré que

Zag =1, @303+ 013045+ 01405 = 0.
9. Le théoréme peut donc étre en défaut si
D =0;
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dans ce cas, il y a éventuellement impossibilité ou indétermination. Nous
allons voir qu’il y a indétermination, car D = 0 signifie

sin?p = sin2y
ou
(1—I2—J2—2IJ)(1—It—Je421J) =0,
soit

I+ep=1 (s=+1)

ce qui semble établir une relation entre 4 et u ol figurent les projections
de A sur u et sur le plan absolument perpendiculaire & A, ainsi que les
deux angles de rotation 2® et 2¥. Or on peut montrer que D = 0
entraine

C, Oy Oy tgo tgy : ; i
i1z __ ¥13__ 14 __ — = 1 (smivant que sin ¢ = -+ sin p),
Co On On tgyp tgg + CUVERCQuosmng=cteiny)

c’est-a-dire que les systémes des équations (2) et analogues sont indéter-
minés. Pour le faire voir, prenons le cas

sing = siny, cosg = cosy;

sin 2¢p = 1,
cos?p = J,
I+J=+1,

c’est-a-dire
coS D cos ¥ — (typ — t34) SIN D SIN ¥ = 0.

Comme on peut évidemment écrire, puisque Zuj, = 1,

s = cOs @ sin g, U3y = Sin a cos y ,
s = cos a cos 8, Uys = Sin a sin y,
et comme
Pazthss +Hsttar = 0,

on doit avoir
cos asin asin (f+9y) = 0,
ce qui entraine (en laissant les cas banals cos a = 0 ou sin a = 0)

yz—-ﬂ’

car on peut toujours fixer le quadrant de a pour qu’il en soit ainsi.

276



Dés lors
cos P cos ¥ — (cos a sin f —sin a cos B) sin Psin P = 1

ou encore

cos @ cos ¥ cos<%——|—ﬂ-—a>sin(bsin v—1

ce que la trigonométrie sphérique nous oblige d’interpréter par les égalités

=Y, cos(—%+ﬂ—-a>= 1, soit ﬂ—_-a——g—,
et, par suite,
a3 = COS @ 8in a , Use = Sin a cos a ,

d’olr

Co_1+tme_ 1 G _ 1 Cus _ 1

Cs4 HM3q " Oy > Oy ’
ce qui entraine bien l'indétermination des systémes (2).

Il conviendrait de voir les autres cas:

sSingp =siny, cosp =-—cosy, ou sing = —siny, cosp = cosy

ou encore
singp = —siny, cosp = — cosy,

mais des calculs faciles redonnent les mémes conclusions!?).

Ainsi donc le théoréme énoncé est démontré. La décomposition en un
produit de deux rotations autour de deux plans absolument perpendicu-
laires est possible d’une seule maniére, ou bien elle est possible d’une
infinité de maniéres (oo?).

12) Remarquons cependant que si

sin ¢ = sin Y, cos @ = —cos8 Y,
on devra interpréter 1’égalité
cos P cos ¥ -4 cos (—'-21—-+a+ﬂ> gin ¢ sin ¥ =—1;

elle implique évidemment D+ W—x,a+8= b4
== s = —é-

et I'on trouve Cay OCn 0Oy



Chapitre III
Plans conjugués dans un déplacement donné

10. Le théoréme précédent qui nous apprend que tout déplacement de
E, se décompose en un produit de deux rotations autour de deux plans
absolument perpendiculaires, que nous appellerons les plans fondamentaux
de la rotation, va nous permettre de trouver les relations entre les plans
conjugués dont il est question dans le théoréme de van Oss.

Soit un déplacement dont les plans fondamentaux sont, ce qui ne
restreint pas la généralité, les plans des z,, z, et des x,, z,, 2¢ et 2y
étant les angles de rotation. On écrira done, pour le produit des quatre
vecteurs qui représente le déplacement:

(cosp —sin @ I,) (cosy —sinyp I,).

Nous allons chercher les plans conjugués, définis par les bivecteurs
unités 4 et u et les angles 2 @ et 2 ¥ de rotation dans ces plans tels que

(cos p—sin ¢ I7,) (cos y—sin pI;,) = (cos D— A sin D) (cos P— u sin¥),
d’olr
(cos D+ Asin @) (cos p —sin@ I',) = (cos ¥ — A sin ) (cos y +sin g I'y,)

ce qui est la relation entre A et u, relation qui doit définir en plus @ et¥.
On tire de 14 huit équations en identifiant les différents termes des nom-
bres de Clifford qui figurent aux deux membres. En posant

A= Aie g ® = anpnu
il vient

cos Dcosp +4,5inPsing =  cos ¥ cos -+ u,, sin Fsiny
A3y 8In D sin @ s Sin ¥ sin p,
cos @ sin ¢ — 4, sin @ cos ¢ s SIn ¥ cos p,
234 8in D cos ¢ cos ¥ sin p — u,, sin ¥ cos p,
Ay38in D cosg + Ay, sinPsin @ — py58in P cosy + u,8in¥sin y,
— A38in Psin g + A,,8in D cosg — UasSINP cosy — p4psinWsin g,
A48In P cosp— A,,8in Psin ¢ — py38in¥sin p— u, ,sin ¥ cosy,
MSINDSin @ 4 A,8inPcosp = g 8inPsin p— py,sin¥ cosy.

|

|

|

(4)

|

|

|
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A ces équations doivent s’ajouter les conditions
(5) Zhg =1, Dy =1,
(6) hpdsa+ Az Aas+ Aados = 0, pyoptay +psigs + Paafthes = 0,

qui ne sont d’ailleurs pas incompatibles avec le systéme précédent. En
supposant connus @ et ¥, on tire les valeurs des 4, en fonction des p,;:

,}.34 = g :iﬁ g::z;: = ¢lcos p [cos Y sin y— u,, sin ¥ cos w] ,
(7) (Aye = m [cos D sin ¢ — pq5 sin ¥ cos 1;;] =
| =§ind51_s_ﬁ1?>[cos ¥ cos y—cos D cos ¢ + py, sin ¥sin 1/)].
15 == ::2 g :— [13 COS P COS @ + (U, SIN P COS @ + g3 COS Y SIN @ + 4 SIN P 8in <p: ,
Ay == :ig g :—— {13 COS Y SIN @ + ;4 SIN 9 Sin @ — p155 COS P COS @ — 14, 8IN Y COS (p: ,
u= :;3 g :— {13 SIN 9 COS @ — U1, COS P COS @ + Lhgs SIN P SiN @ — 1y, COS Y sin (p: s
12 = :i;l g _ 13 8IN 9 SN @ + Y4 COS Y Sin @ + gy SIN P COS @ — 1y COS zpcosqo: .

L’élimination de A, et 4,, donne deux relations entre u,,, us,, D et ¥
qu’on peut écrire:

Me SIDY COS @ + pg, cosysing =  cot Psinysing
. . cos @
13 COS Y Sin @ -+ g, Sin Y cos p = — cot ¥ cos yp cos ¢ + e/

Le déterminant de ce systéme est sin?p — sin?p ; nous le supposerons
différent de zéro, ce qui est le cas lorsque les deux plans fondamentaux
du déplacement sont univoquement déterminés. On voit donc que si ’on
se donne arbitrairement les angles de rotation dans les plans, inconnus
encore, A et u, on pourra déterminer les projections des bivecteurs u et 1
sur les plans fondamentaux, soient les nombres u,,, s, 4,5, 43,. Puis
choisissant arbitrairement f,,, f14, M3, Usa, & cela prés qu’on tient
compte de (4) et (5), on trouvera A,,, 4,5, A4, A4,. Il est aisé de voir que
les valeurs ainsi trouvées vérifient (5) et (6). Dés lors la solution du
probléme comporte quatre arbitraires.
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Mais on peut procéder d’une autre maniére. On peut se donner le plan .
On trouve alors cos ¥, d’ou ¥ (avec 'ambiguité ¥ ou ¥ -+ =) et ensuite
cos @ est déterminé; on a

. . sin ¥
cos @ = (u,, cos psin y -+ us, CO8 @ 8in @) TR
1
. -
et, en élevant au carré, puis remplagant sin?¥ par T oot P’ dans

quoi ’on substitue la valeur trouvée pour cot ¥, il vient

‘ cos Y cos @\2
('ulzsin @ + Haa sin 1,!))

1 + (12 cOt @ + gy cOb )2 °

cos2 @ =

Le second membre est inférieur & un si u est réel!?).

Dés lors, on peut se donner arbitrairement u, ce qui est faisable de oco*
maniéres différentes car un plan passant par l’origine dépend de quatre
paramétres; @ et ¥ sont déterminés et le plan A aussil?).

11. Les relations entre A et u peuvent s’interpréter du point de vue de
la géométrie réglée. Un bivecteur coupe, en effet, I’hyperplan de l'infini
de E, suivant une droite dont les coordonnées pliickériennes dans cet
hyperplan sont les nombres A;, (ou leurs rapports); la relation entre les
deux droites A et x4 est évidemment une relation linéaire, comme on peut
I'imaginer en évoquant la théorie des déplacements cayleyens, c’est-a-dire
des transformations projectives de I’hyperplan de l’infini qui conservent
la sphére de l’infini. En transformant les quatre équations du systéme (4),
on trouve:

1. — sin ¥ singp _ sin¥siny
B=Min G siny = M2 P sin g

sin ¥
sin @
relation linéaire entre les deux droites ,,conjuguées‘ A et u 8’écrira:

qui se trouve partout, la

et par conséquent en supprimant le facteur

. sin ¢
Mg = gy sin
. sin p
Agq = M2 sin @

1) En posant u,; = cos « sin 3, uy,=cos « cos 3, ce qui est toujours possible avec
a et (3 réels, si i est réel, la démonstration de cos® @ << 1 est trés facile.

14) De nouveau les ambiguités sur P et ¥ redonnent les mémes rotations dans les
mémes plans.
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Az = ——[l13 COS P COB @ + {4y, SiN P COS @ + U,y COS Y 8iN @ 4 4, 8in p sin @,

Agz = — i3 COS  SIN @ + 1, 8IN Y 8IN Q— Uyq COS P COS P— Ly, SIN P COS @,
Ayy = — i3 8IN P CO8 Q— i,y COS Y COS @ —+ iy SIN Y SIN P— 4, COS Y 8in @,
Ass = g SIN p 8in @ + py, COS P SIN @ -+ U,y SIN Y COS p— 4, COS P COB @,

ce qui exprime, moyennant des notations convenables, la conjugaison
dans un espace & trois dimensions de deux droites 4 et 4" relativement &
une sphére dont ’équation homogéne peut se mettre sous la forme

B4 484 8=0.

Un tel résultat était évident a priors.

Chapitre IV

Déeomposition du groupe des rotations de F, autour d’un point
en un produit direct de deux sous-groupes

12. 11 convient d’étudier plus particuliérement les rotations pour les-
quelles les plans fondamentaux a et § absolument perpendiculaires sont
indéterminés. On a vu que eela se produit si

(1—I2—J)2— 4122 =0;
et alors
sin 2y = sin?gp.

Voyons donc ce qui caractérise les transformations

V' = (cos ¢ — sin ¢ I'},) (cos ¢ —sin @ I'y,) V (cos ¢ +
+ sing I'y,) (cosp+singl},),

ol1 ’on a posé y = ¢. Décomposons V suivant les deux plans I, et I'y,,

V="V +V,
alors
V=V, +7V,

ou V; est V, tourné dans le plan I', de 2 ¢, V, est V, tourné de 2 ¢ dans
le plan I',,. Or
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VV' + V'V =V Vi+ V.V, + ViV + V.V,
c’est-a-dire:
VeV =V, VitV Vs,

et 8i V est un vecteur unité, on aura, en désignant par o I’angle de V
avec V’

coso = Vicos2¢p+ Vicos2¢ = (Vi+ Vi) cos2¢ = cos 2 ¢,
car

VigVi=Vi=1.

Donec, dans un déplacement du type considéré, tous les vecteurs font un
angle égal avec leur transformé. Cet angle est, en valeur absolue, — la
seule qu’on puisse considérer ici —

o=2¢p.

Les rotations pour lesquelles les plans fondamentaux sont indéter-
minés seront appelées rotations singuliéres.

Réciproquement, si, dans une rotation, ’angle que fait un vecteur V
avec son transformé V’ est constant, cette rotation est singuliére, car si
I’on considére les deux plans fondamentaux de la rotation (qui existent
toujours, on en prend un couple quelconque 8’ils sont indéterminés) et si
2 @ et 2 sont les angles de rotation dans ces plans, on aura, en décom-
posant V et V' suivant ces plans:

Vicos 2¢-+V2icos 2y = V2cos o = (V3+V2) cos o,
d’ou
V2 (cos 2@ — cos ¢) + V2 (cos 29 — cos 0) = O ;
si
V=V, cos2yp=coso,etsi V=1V, cos2¢=-coso;

si done ¢ est constant
cos 29 = cos 2¢ = cos 0.

13. La condition
sin %y = sin2p,

qui caractérise les rotations singuliéres, implique que les deux angles de
rotation dans les deux plans fondamentaux ont le méme cosinus; ces
angles de rotation sont égaux en valeur absolue; de plus, bien que les
paires de plans fondamentaux soient indéterminées, les angles de rotation
ont le méme cosinus quelle que soit la paire considérée.
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On voit donc qu’on pourra définir deux espéces de rotations singuliéres.
Supposons, en effet, que I, et I';, soient les plans fondamentaux; leur
représentation par I, et I';, leur assigne & chacun un sens positif de

. . \ . : 7t
rotation, celui qui, dans I},, améne Oz, sur Ox, aprés rotation de - et

.. \ . . 7 X
celui qui, dans I';,, améne Oz, sur Ox, aprés rotation de 5 - La relation

cos 2¢ = cos 2y,
veut dire que
29=2y9 ou 2¢=—29y.

Donc, les angles de rotation, dans deux plans fondamentaux accouplés,
a et f, d’une rotation singuliére, sont égaux ou opposés. La mesure algé-
brique de ces angles de rotation se fait en assignant & chacun des plans un
sens positif de rotation tel que si un déplacement ameéne a sur I, et f sur
I';,, les deux sens positifs se confondent avec ceux qu’on a définis par les
bivecteurs I, et I';,.

Une rotation singuliére sera dite de premiére espéce sil’on a:
29 =2vy;
elle sera dite de seconde espéce, si 1’on a:
29 =—2vy,
naturellement & un multiple de 2 7 prés.
14. Soit, dés lors, a 'un des plans fondamentaux d’une rotation
singuliére de premiére espéce, § = — I;a sera le second. Désignons par

2 ¢ angle commun des rotations dans ces deux plans, ’opérateur O tel
que le déplacement s’écrive!s)
V' =0V0o?
sera
O = cos?p — (a+ f) cos @ sin ¢ + sin?¢T.

On peut le mettre d’une infinité de maniéres sous cette forme car

a+ B = (ag+ agq) (Iyo+ Isg) + (a3 + agp) (Dyz+ I'gg) + (aya+ agg) (Ig+ Tyg),

et si

15) Dorénavant nous donnerons le méme nom & la rotation et & I’opérateur: nous dirons
la rotation O.
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’ ?
Q15+ O34 = Qg+ Ay

’ ’ 1 4 ’ 2 ’ ? ’
a}s +a, = o3+ a4 AVeC a;,034+ G304, + a0, =0,
Oyg+ Gy = O34+ Qg

on peut écrire O sous la forme

O = cos?p — (a' + ') cos ¢ sin ¢ 4 sin2 @l
o =azly et B =—TIya .

Il y a donc oo? couples de plans fondamentaux pour une rotation singu-
liére de premiére espéce. 11 en est de méme pour la seconde espéce, ou:

0" = cos? @' — (a — B) cos ¢* sin ¢* — sin? ¢" I
On peut poser

(7) O = cos?p — cos @ sin @ [y, ([yo+15y) + 15 L1+ o) +
+ P1a(lha +To3) 14-sin 2T,

Y15 V2, VY3 6tant trois nombres tels que p3 492492 =1, qui sont déter-
minés par la donnée de a et et qui, & leur tour, permettent de choisir
a et g .

15. Considérons un second opérateur définissant une rotation singuliére
de premiére espéce:

O’ = cos2¢p’ — cos ¢’ sin ¢’ {'}’12 (I, +P34)+'}’13 (34 Ty) +
e '}’;4 (Ia+1y5) ] +sin? ¢’ I.

Formons le produit O’ O, et démontrons que ce produit est du méme type;
remarquons qu’on peut choisir les axes de fagon que

'}’12 = 1, 7’13 = 0, 7’14 = 0.
1l vient, dés lors:

0’0 = cos2p cos2p’ 4 sin2p sin2¢p’ — 2 y,, sin ¢ cos ¢ sin ¢’ cos ¢’ +
+ (cos2p sin2¢’ + sin2p cos?¢’ + 2 9, sin ¢ cos p sin ¢’ cos ¢’) I5+
+ % (cos 2¢sin 2 ¢ 4y, cos 2 ¢’ 8in 2 @) (I75+1%5,) +
+ 3 (y138in 2 cos 2¢" {1y, sin 2@ sin 2¢") (I3 + L) +
+ % (Vusin 2¢ cos 2¢" — pyy 8in 2 @ sin 2¢°) (I, + 1)

et cela peut s’écrire
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0’0 = cos?A+sin?A I'y — cos A sin A [y, (I}, + L) +vis Ty 4+ Tyo) +
+ v1a T+ 1) ]

ou
cos24 = cos 2 cos?¢’ +-sin2g sin2¢p’ —2 y,, sing cos @ sing’ cos ¢’

sin?4 = cos?p sin®p’ + sin2¢p cos2¢’ 4- 2 y,, 8sin @ cos ¢ sin @’ cos ¢’,
équations parfaitement compatibles, puis
—i— l‘(cos 2¢sin 29" +y;, cos 2 ¢’ sin 2 p)2+ (y;, cos 2 ¢ -+
491480 2 @")28in? 2 ¢ + (py, cos 2 ¢" — py, sin 2 ¢')2 sin2 2 (p]

=8in%1 cos? 4 = (cos? ¢ cos? ¢’ +sin2¢p sin?¢’ — 2 y;, sing cos ¢ sin ¢’ cosg’)
(cos?g@ sin?¢g’ +4sin2? ¢ cos2 ¢’ + 2 y;, sin ¢ cos ¢ sin ¢’ cos ¢’)

ce qui est exact, car le premier membre est identique au troisiéme en
tenant compte de

Vis Y+ Y= 1.

Le produit OO’ est donc un opérateur relatif & une rotation singuliére
de premiére espéce, et ’'on peut énoncer le théoréme:

Les rotations singuliéres de premiére espéce forment un groupe. Il en est
de méme des rotations singuliéres de seconde espéce.

Il est manifeste que, si O, et O, sont des rotations d’espéces différentes
ayant un couple de plans fondamentaux communs,

0102 = 0201

car ces déplacements sont évidemment permutables.

11 faut trouver le nombre de paramétres de chacun des groupes dont on
vient de démontrer I’existence. Les ¢ ne sont pas indépendants, la somme
de leurs carrés vaut un, il y a donc deux paramétres pour fixer les v, ¢ en
est un troisiéme qui achéve de déterminer la rotation de premiére espéce.
Ces trois paramétres sont essentiels. Chaque rotation de seconde espéce
dépend aussi de trois paramétres. Je dis que:

16. Toute rotation de E, autour d’un point est le produit de deux rotations
singuliéres, Uune de premiére espéce, Uautre de seconde espéce, qui sont
d’ailleurs permutables.

Soient, en effet, n, et m, les deux plans fondamentaux de la rotation
considérée, et 2 ¢, 2 v les angles de rotation dans ces plans. La rotation
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singuliére de premiére espéce ayant m, et 7, comme plans fondamentaux et
d’angle ¢ + vy et la rotation singuliére de seconde espéce, de mémes plans
fondamentaux, mais d’angle ¢ —yp, sont évidemment permutables et
leur produit est la rotation considérée, car ce produit revient & la suite
de deux rotations, I’'une paralléle & n, d’angle

¢+y+o—y=2¢,
Pautre paralléle & 7, d’angle
ey —@—y)=2y.
Si cette rotation donnée a pour symbole R,

on aura V' = RV R,

R =[cos?(p +p)—(m, + ;) cos (¢ +-v) sin (p +9) + sin 2@ ] [cos? (p—p)—
— (7, — ) sin (9 — ) cos (p —y) — sin(p —y) [5].

Réciproquement, le produit de deux rotations singuliéres d’espéces
différentes est une rotation non-singuliére.

En effet, on peut écrire les opérateurs des deux espéces différentes:

0, = cos?p —cos psing [y; ([o +13g) + ¥ Lis+L0e) + 5 L1a+ 1) 1+
+ sin?¢ Iy,

0, = cos?p’ —cos ¢’ sing’ [y; (Ig—1ss) + v, (N1s—Lae) + 75 T14—1s) —
—sin?¢’ I,

ou 'on a
Zyi=1, Zy*=1.

Je dis qu’on peut trouver des paramétres a,; tels que:

’,
Ao+ A3 = Yy 5 Qo — O34 = Y15
Q3+ Qg = Yy 5 Qg — Ay = Y 5

’
Qg+ Qo3 = Y35 Qg — Qog = Y3

et tels que a;; I';; soit un bivecteur unité, définissant, dés lors, un plan
fondamental commun & O, et & O, ; il suffit de poser
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__7’1+7";

ayg = b g "
Yi— "
Ogq == y oo
2
et I’on a bien
2 —_— .
Zaik =1, Q19034+ Ayg 04—+ CygGa3 = 0 ;

on aura, dés lors:

0, = cos?p — cos ¢ sin @ [(ayy + agy) (Do 4 Ts) + (045 + a40) (T35 +Tye) +
+-(atyq +ag3) Iy +155) ] +-sin2e [y,

0, = cos?p’ —cos ¢’ sin ¢’ [(o5—azy) (o—Tg0)+(t5—ays) [a—1L0) +
+ (a4 — @y3) (174 — I'yg) ] —sin2¢’ Iy,

ces deux rotations d’espéces différentes sont ainsi rapportées & deux plans
fondamentaux communs, qui sont les deux plans fondamentaux de la
rotation résultante.

On et pu prévoir que deux rotations singuliéres d’espéces différentes
ont toujours un couple de plans fondamentaux commun, car la rotation
résultante R est le produit de deux rotationssinguliéres O,,0, permutables:

0,0, = R = 010; = 0;01 ,
d’olt
0’141 1 0;0;1 ’

ce qui n’est possible que si le résultat commun de ces multiplications
est ’'unité, donc

0120;: 02:0;3

et dés lors, O, et O, ont un couple de plans fondamentaux communs. On a
done encore

0102 - 0201 .
1%. Voici deux théorémes presque évidents.

Le sous-groupe des rotations singuliéres de premiére espéce G, (et celui des
rotations de seconde espéce G.) est un sous-groupe invariant du groupe des
rotations Gg autour d’un point.
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Car
0,G,0 = @4, ,

puis, si O, est dans G, et 0, dans G, ,

0201051 = 0102051 - 01 ’
donc
0,6,0;1=@,. (C.Q.F.D)

G, est le produit direct de Gy par G, :
G, = Q%G

C’est ce qui résulte de la définition méme du produit direct et des théo-
rémes précédents.

Toute la théorie précédente peut se transporter mutatis mutandis dans
la géométrie elliptique & trois dimensions et 1’on peut retrouver avec
aisance les propriétés des translations de premiére espéce et de seconde
espéce ainsi que la décomposition d’un déplacement elliptique en un
produit de deux translations d’espéces différentes.

18. Transformations infinitésimales de G, et de G,. Il est manifeste
que, si dans les opérateurs O, et O,, on donne a I'angle ¢ ou a l'angle
¢’ des valeurs infinitésimales dp et d¢’, on aura, en négligeant sin?¢p et
sin2¢” et en remplagant sin ¢ par d¢, sin¢’ par d¢’, les opérateurs infini-
tésimaux:

O, =1—[y0p (I + I'y)+ 9,00 Iz + L'ae) + 309 (4 + I'ys) ],
0, =1— [')’;6‘1’, (F12“F34)+7’;6‘P' (Pla*‘“rzm)""}";a‘}?’ (Fa—1%) ],

ou encore

0, =1— Iy, + Iy) 0y — (I'yg + I'yp) 8y — (T4 + I'y3) 093,
O, =1— (I3 —1TIy) 599;““(1113”“1142) Oy — (I — I'y3) 6‘77:;-

Naturellement O7! et O;! s’obtiennent en changeant dans O, et O, respec-
tivement d¢, par — dg,, dp; par — d¢; . En considérant le vecteur

V = x._- ri,
on aura, pour O, :

&
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OV = — [0 (I'o+T') + O, (Ma+Tye) 4 0@ (Na+1T) 1V 4+
+ V [0 (To+Isy) + 09, (M +T'y) + 0 (Iy+ 1) ],

et si
on trouvera saus peine

0V = 6,V +46,V+4,V,
ol 9,V est la contribution & 6V due aux termes en dg; :

0,V =2, I'y—ay IN+x3 'y — 2, I%) do,

soit
0, & = — 2,00,
6y, = 209,
0, 3 = — 2 2,09, ,
6,2, = 22309,

ce qui définit une transformation infinitésimale de symbole:

of of

T s Py
3 dx, g

X, f °f 1 +

= Xy — ~— Lo —
122, 2w,

On trouvera de méme

of of of of

Xzf“%@;;—xag‘;lﬁ-%%;—“xzé—@,

3f of . of af

Xaf-——“%-a‘—@—‘%%:%- 2§?3—x3§_x—;'

Le calcul analogue pour O, donne:
vy Of of of af
X,f= x1“a“£—x2§};“(xsax4*x4ax3),
of of ( of 9!‘)

Xof=a, 7 — Xgz——(Ty5— — Ty
2 1dx, 3dx, da, 29x,)’

of ( af 3])

y of
X3i = & xzé—x:—} = x3§—5:; y

—— e x —— —
dx, 19,

ce qui correspond exactement aux résultats que M. Ullmo a obtenus en
appliquant la théorie de M. Cartan sur la structure des groupes.
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Chapitre V

Recherche des invariants des sous-groupes G, et G,
Semi-vecteurs et spineurs

19. 11 est manifeste qu’il n’y a pas de vecteurs invariants par G, ni par
@, . Il se peut qu’il y ait des tenseurs antisymétriques qui le soient. Pour
cela, il faut et il suffit que

O, (a3, I'yy) O = ay Iy,

quels que soient y,, v,, y, [cf. éq. (7)]. On peut écrire cette équation sous
la forme du systéme suivant

(Mo +T54) s Ui = (a4 L) U2+ 1)
(8) (Fs+Tyo) s Lo = (a4 L) i3+ 1) s
(a4 Tog) @ Ly = (2 Iip) U1a+ 1) 5

or ces relations ne sont possibles, outre le cas banal a,, = 0, comme on s’en
rend compte aisément, que si a,, I';; est un diviseur de zéro%) et si chacun
des membres en est nul. Or

F12+F3421112(1—F5):
done
Iy (1 —1Ty)a; Iy = 0= (a, I'y) I, (1 — 1),
mais
A+ 1—1I5) =1 —1T%) (1+15) =0;
si done, on a
3zkrk“‘(1+r5)a’zkrzk’

ou ay I';, est un tenseur quelconque, le tenseur a,; I';, sera un tenseur
invariant pour G, car les trois égalités (8) seront vérifiées en méme temps.
D’autre part, on peut écrire

(1+4T1%) &zk Iy (3’;2 - a’:;Al) (Lyg — Tyy) + (3'13 — 34’12) (I — I'yp) +
+(3'i4 — 3';3) (g —T'y) ,

et, par suite, la forme générale des tenseurs invariants par G; est:
A’l (FIZ—F34)+Z'2 (F13——F42)+}“3 (Fl4*— 23) H

ol 4, 4,, A3 sont trois nombres arbitraires.

16) On sait qu’'un nombre hypercomplexe, différent de zéro, est dit diviseur de zéro,
g'il existe un autre nombre hypercomplexe, non-nul aussi, dont le produit par le premier
est nul; de tels nombres n’ont pas d’inverse.
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De la méme maniére, les tenseurs invariants par G, se mettent sous la
forme:

Ay (Do +Taa) + &y (g + L) + 4 (Iya +Tys).
On dira que le tenseur — I'; (a4 I';;,) est duel du tenseur a,,, I';,, ; dés lors:

Les tenseurs antisymétriques du second ordre, invariants par G5, sont
opposés & leur duel, alors que ceux qui sont invariants par G, sont égaux
a leur duel.

Avant de chercher dans quelles circonstances un tel tenseur est un
bivecteur, on peut remarquer que l’expression

est un tenseur invariant par ¢;, de méme
I1—I5) VxW=30—TI)(VW—WYV)

Pest par @,, V et W étant deux vecteurs. Or chacun de ces invariants est
une somme de trois invariants de la forme:

‘A' (Fl2:tr34)+B(FIS:I:F42)+O(F14:1:F23) .

Ainsi donc deux vecteurs V et W ont quatre invariants relativement
au groupe G,, leur produit scalaire

Vy Wy + Va Wy + VW3 + VW, ,
et les trois combinaisons

VyWy — Vo Wy — (VaWy — V,W;) ,
Dy Wy — VgW; — (V Wy — VW)
VW, — VW; — (VW — VaW,) .

De méme deux vecteurs V et W ont quatre invariants relativement & G, :
MWy + VaWy+ VW3 +- VW,

’Dlw4 e ?)4’w1 + (’vzws — 'Us’w2) .

11 ne faut pas oublier de mentionner les deux expressions

2 Jw?

DR )

qui sont aussi bien invariantes par G, que par G,.
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20. MM. Einstein et Mayer ont introduit les notions de semi-vecteurs de
premiére et de seconde espéce. Un semi-vecteur de premiére espéce est une
grandeur & quatre composantes; lorsque ’on fait subir & I’espace £, une
rotation quelconque se décomposant en

R = 0,0,,

le semi-vecteur en question se transforme comme un vecteur de mémes
composantes se transforme par la rotation singuliére O, . Il est de seconde
espéce 8’il se transforme par 0,. C’est dire que les semi-vecteurs sont des
grandeurs des groupes G, ou G,. Deux semi-vecteurs d’une espéce ont
donc trois invariants en plus des trois qu’ils ont lorsqu’on les considére
comme des vecteurs.

21. Il peut y avoir quelque intérét & étudier les tenseurs invariants par
G, ou G, qui sont des bivecteurs. Bornons-nous & la premiére espéce,
c’est-a-dire a G;. Le tenseur

(9) )‘1(1112“1134)_*—12 (Fl3— 42)+Z3 (P14——]123)

est invariant par G,; ce sera un bivecteur, et il représentera un plan
invariant, si

(10) B4R+ =0,

Il y a donc oo' plans invariants par G,'7); ils sont déterminés par les
rapports 4, : 4,: A; et par la condition (10).

Montrons que par chaque droite isotrope, on peut faire passer un
tel plan.

Choisissons les axes de telle fagon que la droite isotrope considérée
porte le vecteur

V = v +v,l,, avec vi+v2 = 0.
Pour que
W =wlT};

forme avec V un bivecteur du type indiqué, il faut et il suffit que

VW —WV),
soit de la forme (9). Or

F (VW —WV) = (vyw,—w,w,) I'otv,wy Tgt v,w, Dyt 0,03 o3 —v,w, Iyy
17) Cela veut dire qu’ils dépendent d’un parameétre complexe.
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le coefficient de I, doit étre opposé a celui de I',,, celui de I, & celui de
I'y,, celui de I'}, a celui de I',;, donec:

LWy — VW, = 0,
vywy + VW = 0,

d’ou
Vg Wy Wy W,
v, W, wy ws ’
done
2 2 0
w;+wy =0,
¢’est-a-dire

wy, = 41w, et w,= 4 tw,,

ce qui montre que W est aussi isotrope, mais ce n’est pas un vecteur
isotrope quelconque, il est de la forme

W:‘:Sl (I’liifz)—}—sz(nﬂ: oIy,

s, et s, étant deux paramétres arbitraires, alors qu’un vecteur isotrope,

en général, dépend de trois paramétres. Plus précisément, la direction

2 rd \ 8 . .

isotrope de W dépend d’un parameétre, le rapport El , tandis que la direc-
2

tion la plus générale d’une droite isotrope dépend de deux parameétres.

22. On peut retrouver les résultats précédents par une méthode plus
générale et plus rigoureuse'8). Cherchons deux vecteurs V et W dont le
plan soit invariant par ¢;. On devra écrire:

V Wy — Wy = — (V304 — V,W,)
(11) YWy — VW = — (Vy Wy — VW),
VW, — VW = — (V Wy — VW) ,

d’ou aprés multiplication par v,, v,, v; et addition,

vy (Vo Wy + VW3 -+ VyWy) — (v34v;+v5)wy =0,
soit
nV -W—"Vw =0,
d’ol, bien évidemment,

18) Dans la premiére méthode, ¥V a une forme particuliére, il se pourrait qu’on objectat
que la forme de W qu’on a trouvée provint du choix particulier des axes.
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v, | & v, v, Vg

o VW e e,
ce qui montre soit que V et W sont paralléles; c’est 14 une banalité qui
ne répond pas & notre probléme, soit que

V2=0 e V- -W=0;

d’ailleurs, en multipliant par w,, w,;, w,, et additionnant membre a
membre les équations (11), on elit trouvé

W2=0.

Les plans invariants sont donc déterminés par des paires de vecteurs iso-
tropes perpendiculaires Uun o Uaulre.
23. Or les composantes d’un vecteur isotrope V, pour lequel on a donec
2v2 =0,

1

peuvent se représenter au moyen de trois paramétres sous la forme

(%1 :i}'(]'_“lu’”)i

Uy = 2(1—!_”"))7
vy =1l (u+ ),
v, = A(u—v);

soit pour W la représentation analogue:

w, =tA (1 —u'v'),

wy, = A" (1 +«u"vl) )

Wy = ’I/A, (M’ ) ’

wy = A (0 —).
La condition Xv,w; = 0 donne

(v —u)(r—2") =0,
et les conditions (11) donnent:

(p—u)(»+7v) =0

(e —u')A+w)=0,

(e —p') (2—w')=0
On tire de la
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Remarquons maintenant que si ¥V et W sont des solutions de notre
probléme, oV + oW et o'V 4o’ W en sont encore. On peut s’arranger, en
particulier, pour que les deux vecteurs définissant le plan invariant soient
chacun de la forme aU 4 BZ, U et Z étant deux vecteurs isotropes
orthogonaux déterminés du plan. En effet, fixons u, », u’ = u. Posons
ensuite 4 = A’ = 1, puis

oV, +ow, = 1(pv,+ow,),

0V; +owy; = (v, 4 ow,) ;
on tire de la

e(I—pv)+o(l—puv)=red+ur)+o(l+p),

e (u+v)+o(p+) =g u—7r)+o(u—r),
soit

ov-+ocv =0, donc o =17, o= —v», par cxemple.

Puis, posons

' ntow =—1u(evy+o w),
o' v+ o' wy = — (0 v+ 0" wy),
d’olu
O (1—pv)+od (I —uv')=—0 (1+pv)—d (14+puv),
' (u+ Mto(u+ V)=—9¢ (u— v)—0o (u— ),
soit
o'+ =0.

Ainsi donc, la paire des deux vecteurs — qu’on appellera encore V et W —
isotropes rectangulaires, qui soit la plus simple possible pour déterminer
un plan invariant est définie par les égalités

vy =1t(v —»), wy =pu(v —),
'02:?)’"——1’7 w2:———,u(v'—v),
vy =1pu(v —7), wy = —1(v' —),
v, = u(» —v), wy,=1v —w,

et 'on peut poser, ce qui n’est pas contradictoire avec la premiére
méthode, mais plus précis :

V=¢§ I1—1ly) + & L5—l),

(12) . .
W =§& (I, + ) — & (I + 3T ;

le bivecteur invariant est alors
20 & & (I —Tgg) — (E1+83) (g — Iyp) —3(&] — &5) (Ia — I'sy) -
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On a donc formé des vecteurs isotropes ayant deux ,,composantes‘
distinctes. A chacun d’eux, V, on peut en associer un autre, V, par une
régle que les équations (12) expriment (si ’on fait jouer aux axes Ox, et
Oz, un role particulier). Le produit VW est alors invariant par G,.

Réciproquement, on peut se donner un bivecteur invariant par Gy:

Y1 (D — I'gy) + 7, (Pla—P42)‘|'7’3 (I —Ty3)

avec

(13) yi+yi+tv:=0.
Comme on peut résoudre 1’équation (13) par les formules bien connues:

n=21§%&,,
(14) vy = — (6 + &),

dépendent de deux paramétres, les formules (12) définissent un couple de
vecteurs isotropes perpendiculaires dans le bivecteur donné; ce couple
n’est évidemment pas unique, car si (&, &) en définit un, (— &, — &,)
en définit un autre, et ’on peut encore échanger le rdle des y, dans (13).

24. En partant des conditions relatives 4 G on efit obtenu les expres-
sions suivantes:

V =y — i)+, T5+121Y),
W = 772(111+?:F2)“‘-7]1(Fgmir4)’

et le bivecteur invariant elit été:
20 my np (D4 Tyy) — (77%4‘ 773) (Fis+Ty) +7:(77§ —— 7]3) I+ 1) .

26. On peut résumer les résultats précédents dans les définitions et les
théorémes suivants.

Considérons dans #, deux plans réels absolument perpendiculaires,
passant par le point O et, dans ces plans, quatre axes de coordonnées.
Prenons dans chacun de ces plans deux vecteurs isotropes distincts
v, et 771 pour le premier, v, et 172 pour le second [dans les formules (12), on
a supposé que les deux plans sont les plans des z,, =, et des z;, z,].
Considérons les vecteurs isotropes & deux composantes

(15) &1+ &30,
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nous les appellerons des spineurs, et, si nous les considérons comme des
semi-vecteurs de premiére espéce, nous les nommerons spineurs de
premiére espéce. A un spineur comme (15) correspond un spineur

(16) &0, — &0,
qui lui est associé.

Un bivecteur invariant par G; contient un et un seul spineur de la
forme (15) (au sens prés): ce bivecteur est parfaitement déterminé par le
couple de vecteurs associés (15) et (16) et, réciproquement, tout bivecteur
invariant par G; détermine un couple de spineurs associés de la forme
(15) et (16).

En formant les expressions:

(17) N1V1 + 02,
(18) NV — MNPy
on obtient des spineurs associés dans un bivecteur invariant par G,.

Remarquons que v,v,, ou ‘1}1?;2 sont des bivecteurs invariants par @, ;
d’'une maniére générale, le produit de deux spineurs comme (15) ou de
deux spineurs comme (16) sont des bivecteurs invariants par G, et, inver-
sement, le produit de deux spineurs du type (17) ou de deux spineurs du
type (18) est un bivecteur invariant par ;.

26. On voit donc que, de méme que les vecteurs de £, (ou les semi-
vecteurs) sont des grandeurs a quatre composantes rapportées aux vec-
teurs de base I, Iy, I';, I'y, les spineurs sont des grandeurs & deux com-
posantes, associées deux a deux, chaque paire étant rapportée aux

spineurs de base
' I — il I+, Iy —oly, Iy 411,

qu’on représentera dorénavant par les lettres

Y15 771, Y2, Voo

respectivement. Ayant ainsi fixé les spineurs de base, une paire de
spineurs associés par G, est déterminée univoquement par un bivecteur
invariant dans @G, par des formules de la forme

3; = &n + &7,

(19) *% ~ ~
8; = Eay1 — &172 5
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une paire de spineurs associés par @, est déterminée univoquement par
un bivecteur invariant dans @, par des formules de la forme

8y = My + N2 Vs

(20) "
8 = MaeY1— MYz -

On peut prendre pour les spineurs de base quatre vecteurs isotropes
quelconques, situés deux & deux dans deux plans réels!®) absolument
perpendiculaires. On les associe deux & deux et 1’on obtient, par les com-
binaisons (19) ou (20) des paires de spineurs associés par G, ou par G;.

Chapitre VI

Expression des rotations de I’espace J, au moyen du groupe
unimodulaire de deux variables

2'7. On a vu que, parmi les vecteurs isotropes de E, les spineurs

§1V1+§z?:2: ol ):}:Fl_irzf ?izzra—"ipu
MmY1T 272 5 n=I1+ily, y,=1I:+1l,,
et leurs associés
E— &
‘772?71 — 72>

jouent un role particulier. On pourrait d’ailleurs remplacer y, et y,
respectivement par

I—air,, I's—:l,,
ou par

rN—:«r,, I'y—:il}y,

mais le systéme sus-indiqué suffira & notre propos.

On va considérer dorénavant les spineurs des formes suivantes:

(Ia) mpy+ 772772 > (ILa) &y +&ye,
Ib) 7y 4727, (ILb) oy, + 02y, -

1%) Cette association doit se faire de telle maniére que si une rotation améne les deux
plans en question sur (z;, «,), (3, ,), on ait amené les nouveaux spineurs de base

3 ~ ~
respectivement sur y;, y1, Y, ¥2.
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Le produit de deux spineurs (ITa) est un bivecteur invariant de
seconde espéce (c’est-a-dire invariant par @;):

(&1y1+ &ay2) (G + Eoye) = (5.8, — &,8y) Y1¥2

car
7’% =y; =0 et Viye = g+ Ty — i (I +1yg) -

Dés lors si 'on considére un spineur (ITa) comme un vecteur de E,, une
rotation singuliére de seconde espéce transforme linéairement ses com-
posantes (&, &) de telle maniére que le produit de deux tels spineurs
reste invariant, c’est-a-dire, si ’on désigne par des accents les nouvelles
composantes (£, &) et (¢, {,) se transforment en (&, £,) et (£, &) et
I’on a:

Ely— &0 =&C— &

cela signifie que la rotation de seconde espéce induit sur Jes composantes
d’un spineur (IIa) une transformation linéaire de déterminant un, mais
cela prouve aussi que (I1Ia) est un spineur de seconde espéce; (ILb) aussi.

On peut montrer plus rigoureusement ce fait au moyen des trans-
formations infinitésimales de G,. Si

V=_§vy-+&Ys,
on a
VA0V = [1— Ty — 1) 0y — (I3 —I'yy) 0@y — (I14—1I'y) 03 JV[1 4
+ (g — Tyy) 0+ (Iyg — I'y,) 0y + (173 — I'y3) 0951,
et 'on trouve
651 = (1+(3a) Et‘f“aﬂfz s
08, = 0y&+(1—9da)é,,

les da, 88, 0y étant des combinaisons linéaires des d¢,, d¢,, dp,; et I'on
a bien ainsi une transformation infinitésimale du groupe unimodulaire sur
(&, &,). On trouve aussi, en prenant la forme finie des transformations
de G, que y, et y, sont des combinaisons linéaires de déterminant un de

leurs transformés. Enfin on voit sans peine que
V=¢ 11+ &2

se transforme en un spineur du méme type, de maniére que les (&, &,)
subissent une transformation unimodulaire.
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Remarquons que le produit scalaire de V par V est 2 (515—{—52 5~2),
comme il est invariant, on voit que toute transformation de G, induit sur
(&, &,) et sur (&, Zig) des transformations unimodulaires contragrédientes.

On trouve une propriété analogue pour les spineurs (Ia) et (Ib) trans-
formés par les transformations de G5, on peut donc formuler le théoréme
suivant:

Un spineur (Ia) ou (Ib) se transforme par les transformations de G4 en
un spineur analogue; de tels spineurs sont dits de premiére espéce; les
composantes d’'un spineur de premiére espéce se transforment par le groupe
linéaire spécial (@ deux variables); deux spineurs de premiére espéce, des
formes (Ia) et (Ib) respectivement, se transforment en deux spineurs des
mémes formes, mais leurs composantes respectives subissent des transforma-
tions unimodulaires contragrédientes.

On a une proposition analogue pour les spineurs (ILa) et (IIb) qui sont
de seconde espéce et cela pour les transformations du groupe G,.

Remarquons qu'un spineur de seconde espéce [(ILa), par exemple]
a un associé [(ILb), ol o, = &,, 0, == — ], avec lequel il forme un
bivecteur invariant de premiére espece (c’est-a-dire invariant dans G,).

28. Tout vecteur de £, se met évidemment d’une seule maniére sous
la forme

V=>_§y+ &y + 5771 + 52772 ’
et si V est réel,

£, = &, = imaginaire conjugué de &,, (i =1, 2).

Soit, dés lors, une rotation de E, dont les facteurs dans G, et G, sont
0, et O0,. Formons

0, V07" = Oy (5,7, + &72) O7 +0, (&7, + £:7,) 07 =
= (b & 442 &,) Y1+ (o &+ 120 &s) Yo 1+ (‘anl + ;122':2) 7’~1 -+ (t;x 5: + gz 5;) ')72,

ol to, N 1., &
o || s b2 ot T | ol
t21 3 t22 t21 ’ t22

sont deux matrices unimodulaires et contragrédientes.
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Ensuite

0,0,V07 07! = 0, [(tn & + b2 &) 71+ (B &+ Do &) 7] O3 +
+0,[ (’311 g1 +'~tl222) ;’1 + (& + 122 &2) y2 ] 07 =

= [ Uy (b & + 110 &s) + Uy (t~21 Zl =t 2;222) In+

[t (b &1+ tan £9) + Uog @ &+ 122.55) ] 72+

+ [;611 (?11 g1 +Z]2:é2) + ‘;512 (t21 ‘fl —}' t22 52) ] ;1 +

o [y (g By F1a E3) + Ung (b &1+ 10 £2) ] 75

(23)

Uyp > Ug2
ol U= ’

| a1, Usge

sont aussi deux matrices unimodulaires et contragrédientes.

Le dernier membre de (23) représente le vecteur ¥’ provenant de V par
la rotation considérée de E,: O = 0,0,.

T dépend de trois paramétres complexes, 7' est déterminée lorsque 7'
I’est; U dépend aussi de trois paramétres complexes et U se déduit de U.
On a ainsi obtenu par (23) une représentation du groupe G; & six para-
meétres complexes. On dit, dans la théorie de la représentation linéaire des
groupes, que lareprésentation de R ainsi obtenue est le produit de deux
représentations linéaires unimodulaires.

Cherchons la forme des transformations unimodulaires précédentes
dans le cas ou les rotations sont réelles. Soit ¥V un vecteur réel, alors
0,707, est réel, et comme

il faut que

donce

Cela revient & dire que 7' est une transformation unimodulaire dont la
conjuguée lui est contragrédiente. Il en est de méme pour U.
Voyons & exprimer ces conditions pour avoir les ¢,; ou les u,; . Ecrivons

plutot
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et & cause de la contragrédience

AA+BB =1,
BB+DD =1,
AB+CD =0,

et puisque 7' est unimodulaire

AD—BC =1.
On voit facilement que
D=4, C = — B,

Si done
A=a-}1ib, B=c+41d,
a4 1b, ¢+ id R
—— b2 2 2.._~1-
T = ¢+ id . a—ib avec a® +b%24-c24+d2=1;

de méme pour U; T et U dépendent donc chacune de trois paramétr. s

réels.
On peut dire, comme M. E. Cartan I’a montré d’un point de vue trés

général dans sa théorie des groupes réels?!):

Il y a vsomorphie entre :

Le groupe linéaire formé du groupe linéaire, — spécial, — de la forme
d’ Hermite x,2, -+ x,%, et du groupe linéaire, — spécial, — de la forme
d’Hermite x, %, %, 2,,

le groupe linéaire de la forme quadratique réelle 3+ a3 +x2 + 3.

Chapitre VII
Examen du groupe de Lorentz

%29. On peut facilement transformer les résultats des chapitres précé-
dents de maniére & les appliquer au groupe linéaire qui conserve la forme
quadratique de Minkowski

2 2 2 2
Il suffirait de considérer des unités I'; avec
2
P 4 e S 1 9
20) D’ailleurs T étant contragrédiente & T' qui est unimodulaire, on & toujours?n = f39,

big = g, lgg = —lyy, 3y = ty.
31) Cartan, loc. cit. p. 354.
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les autres carrés étant toujours égaux a un. Il est préférable, pour aller
plus vite, de faire correspondre & tout point de l'espace ordinaire &
quatre dimensions (z,, ,, z;, ,) le point de 1'univers de Minkowski
(2, 5, 25, 12,) €t Téciproquement.

On trouve encore que le groupe &, de Lorentz est le produit direct de
deux sous-groupes &, et &, mais alors que les transformations au produit
desquelles est égale une rotation de l'espace ¥, & quatre dimensions sont
réelles si la rotation totale est réelle, il n’en est plus ainsi pour le groupe de
Lorentz. Les conditions dans lesquelles les transformations correspon-
dantes de G, et de &, déterminent une transformation de Lorentz réelle
sont toutes différentes, alors que pour le groupe complexe de Lorentz,
elles sont tout & fait analogues (cf. éq. 23).

Un vecteur réel de I'univers de Minkowski correspondra au vecteur

V=uol|+v,ly+v, 5+, 0,
(ou les v, sont réels) de 1’espace E,. Si on écrit

V e &+ &y + 51;1 = 52;2 ’

£, et & sont imaginaires conjugués, &, et E, sont réels.
Dans la formule (23) on doit avoir, en utilisant les remarques de la note
de la page 302, et en posant:
_|| 4.8 _
e, p “ B !
V' =[A’' (A& +B&,) + B (—BE+AE)]In+
F[C (A& +BE) + D' (—BE+AE) ]y +
+[D' (D& —0&) —C (C&E+DE) 7+
+[—B (DE—CE)+ 4 (C&+D&) 17,
Pour que la transformation de Lorentz soit réelle, il faut que les

coefficients de y, et de ;72 soient réels, ceux de y, et )7, , imaginaires con-
jugués, si &, et £, sont réels et £, conjugué de &,. On voit que ces con-

c,D

AI’BI’

ditions impliquent que
('A=—DB; AA'=DD', AB =—CD’ (réels)
BD= A4'C; BB =CC', A B=—CD (réels)
C'B, DA, BC, A’ D réels.
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On tire de la

B =—0C, C=—B, A =D, D =A4.
Les transformations 7' et U ont alors les matrices:

43

C,D

-] 3

et U est déterminée lorsque 7' I’est. On voit qu’a une transformation de
Lorentz réelle est associée une transformation unimodulaire & trois
paramétres complexes. U est la conjuguée de la contragrédiente de 7.

Il y a donc isom(;rphie entre??):

Le groupe linéaire spécial @ deux variables complexes x,, x,, le groupe
linéaire de la forme quadratique réelle x2 -+ x% + x2 — a2,

32) Cartan, loc. cit. p. 353.

(Regu le 25 décembre 1935.)
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