Zeitschrift: Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 8 (1935-1936)

Artikel: Les rotations de l'espace euclidien à quatre dimensions, leur expression

au moyen des nombres de Clifford et leurs relations avec la théorie des

spineurs.

Autor: Juvet, Gustave

DOI: https://doi.org/10.5169/seals-9297

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 08.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Les rotations de l'espace euclidien à quatre dimensions, leur expression au moyen des nombres de Clifford et leurs relations avec la théorie des spineurs

Par Gustave Juvet, Lausanne

Introduction

1. Il est bien connu que les nombres hypercomplexes de Clifford permettent de trouver les expressions des substitutions linéaires orthogonales à n variables au moyen de paramètres, en général, surabondants. En considérant ces substitutions comme les expressions algébriques des rotations de l'espace euclidien à n dimensions autour d'un point fixe, il est possible de donner une interprétation géométrique de ces paramètres; d'autre part, l'algorithme cliffordien permet de faire des simplifications appréciables dans le maniement des notions géométriques relatives à ces rotations, de sorte que, le calcul algébrique et l'intuition géométrique se soutenant, on peut, avec la plus grande rapidité, établir la théorie des rotations de l'espace à n dimensions autour d'un point fixe.

Nous essayerons de montrer, dans ce mémoire, ce que donnent ces méthodes pour le cas, très intéressant dans les applications, où n vaut quatre. En supposant connues simplement les propriétés des variétés linéaires orthogonales entre elles, nous démontrerons rapidement, et par voie géométrique, un théorème sur les déplacements dans l'espace euclidien à quatre dimensions; nous suivrons pour cela la Thèse de M. van Oss¹). Puis appliquant la théorie des nombres de Clifford, brièvement rappelée, nous montrerons que toute rotation revient au produit de deux rotations autour de deux plans absolument perpendiculaires. Cette décomposition est, en général, unique; les cas exceptionnels seront étudiés et l'on montrera qu'ils permettent de démontrer que le groupe G_6 des rotations autour d'un point est le produit direct de deux sous-groupes invariants G_3 et G_3' ; ce résultat est bien classique, mais on verra que la méthode utilisée permet d'obtenir, sans recourir à la théorie générale des groupes, les invariants de chacun des sous-groupes en question et les

¹⁾ S. L. van Oss, Die Bewegungsgruppen der Regelmäßigen Gebilde von vier Dimensionen, Inaugural-Dissertation, Gießen, 1894.

propriétés des grandeurs, nommées par les physiciens semi-vecteurs de première et de seconde espèces, et spineurs²). Grâce à ces dernières, nous retrouverons les isomorphies entre le groupe de la forme réelle $x_1^2 + x_2^2 + x_3^2 + x_4^2$ et le groupe linéaire formé du groupe linéaire de la forme d'Hermite $\xi_1 \bar{\xi}_1 + \xi_2 \bar{\xi}_2$ et du groupe linéaire de la forme d'Hermite $\xi_3 \bar{\xi}_3 + \xi_4 \bar{\xi}_4$; en passant, grâce à une transformation facile, nous constaterons encore l'isomorphie entre le groupe linéaire spécial à deux variables complexes ξ_1 et ξ_2 et le groupe linéaire de la forme quadratique réelle $x_1^2 + x_2^2 + x_3^2 - x_4^2$. Ces résultats, obtenus par M. Cartan comme cas particuliers d'une théorie générale des groupes continus, finis, réels³) sont importants dans la théorie de Dirac. Nous les utiliserons dans un autre mémoire pour résoudre un problème que M. A. Proca⁴) avait posé en 1930 sur la forme des solutions de l'équation de Dirac⁵).

Chapitre premier

Le théorème de van Oss

2. Deux figures congruentes de l'espace euclidien à quatre dimensions E_4 peuvent être amenées en coïncidence par deux rotations successives autour de deux plans ayant un point commun.

La démonstration qui, nous le répétons, est empruntée à la Thèse de M. van Oss, précisera la notion de rotation autour d'un plan.

Soient F et F' deux figures congruentes de E_4 . On peut imaginer qu'elles appartiennent à deux espaces R_4 et R'_4 plongés dans E_4 (et confondus avec lui). Soient H_3 et H'_3 deux hyperplans homologues de R_4 et R'_4 respectivement; ils se coupent suivant un plan de E_4 qu'on peut appeler $\tilde{\omega}_2$ si on le considère dans R_4 et σ'_2 si on le considère dans R'_4 . Désignons les homologues de $\tilde{\omega}_2$ dans R'_4 par $\tilde{\omega}'_2$ et de σ'_2 dans R_4 par σ_2 . $\tilde{\omega}_2$ et σ_2 se coupent — ce sont deux plans de H_3 — suivant une droite

²) Einstein et Mayer, Sitzungsberichte der Preußischen Akademie der Wissenschaften. 1932 (XXXII); et J. Ullmo, J. de Phys. (VII) tome V, p. 230; cf. aussi le mémoire où M. W. Scherrer utilise la théorie des quaternions pour la représentation des transformations de Lorentz, Comm. Math. Helv. vol. VII, p. 141.

³⁾ E. Cartan, Ann. Ec. Norm. Sup. (3ème série), vol. XXXI, p. 263.

⁴⁾ C. R. Acad. Sc. Paris, vol. 190, p. 1377, vol. 191, p. 26, J. de Phys. (VII) vol. I, p. 235.

⁵) D'autres auteurs se sont occupés des spineurs du point de vue analytique et géométrique: cf. le livre de M. van der Waerden, Die gruppentheoretische Methode in der Quantenmechanik, et les mémoires de M. Schouten, Proc. Akad. Wet. Amsterdam, vol. XXXIII, p. 189; Zs. f. Phys. vol. LXXXIV, p. 92.

 δ_1 , $\tilde{\omega}_2'$ et σ_2' se coupent suivant la droite δ_1' homologue de δ_1 . Comme δ_1 et δ_1' sont dans un même plan, il existe une rotation dans ce plan qui amènera δ_1 sur δ_1' , tous les points homologues de δ_1 et δ_1' coïncidant; soit O le centre de cette rotation.

Considérons alors le déplacement de l'espace R_4 obtenu ainsi: on décompose tout vecteur de R_4 , issu de O, en deux parties $V^{(1)} + V^{(2)}$, $V^{(1)}$ étant dans $\tilde{\omega}_2$, et $V^{(2)}$ étant situé dans un plan π_2 absolument perpendiculaire à $\tilde{\omega}_2$; cette décomposition, toujours possible, est évidemment unique. Dans la rotation de $\tilde{\omega}_2$, $V^{(1)}$ arrive en $\overline{V}^{(1)}$; dès lors, considérons la correspondance entre les extrémités de V et \overline{V} , où

$$\overline{V} = \overline{V}^{(1)} + V^{(2)};$$

c'est évidemment un déplacement, car les longueurs des vecteurs V et \overline{V} sont égales et, si W est un second vecteur auquel correspond \overline{W} , on aura pour les produits scalaires

$$V \cdot W = (V^{(1)} + V^{(2)}) \cdot (W^{(1)} + W^{(2)}) = V^{(1)} \cdot W^{(1)} + V^{(2)} \cdot W^{(2)} =$$

$$= \overline{V}^{(1)} \cdot \overline{W}^{(1)} + V^{(2)} \cdot W^{(2)} = (\overline{V}^{(2)} + V^{(2)}) \cdot (\overline{W}^{(1)} + W^{(2)}) = \overline{V} \cdot \overline{W}.$$

Ce déplacement est appelé une rotation de R_4 autour de π_2 ; tous les plans parallèles à $\tilde{\omega}_2$ sont invariants, ils tournent du même angle et tous les plans qui leur sont absolument perpendiculaires, donc parallèles à π_2 s'échangent sauf π_2 qui reste non-seulement invariant, mais invariable. Cette rotation amène R_4 en \overline{R}_4 , F en \overline{F} . Les deux figures F et \overline{F} ont une droite homologue commune, δ_1' précisément.

On mène l'hyperplan K_3 perpendiculairement à δ_1' en un de ses points. Cet hyperplan coupe l'ensemble $\overline{\mathcal{G}}$ des plans de R_4 passant par δ_1' suivant une gerbe de droites \overline{g} , il coupe de même l'ensemble \mathcal{G} des plans de R_4' passant par δ_1' suivant une gerbe de droites g'. \overline{g} et g' sont deux gerbes de droites, ayant même sommet S, homologues deux à deux, et situées dans un même espace tridimensionnel.

Il est dès lors facile de terminer le déplacement qui amènera F sur F', il suffit de passer de \overline{F} à F', soit de \overline{R}_4 à R'_4 . Dans ce dernier déplacement, δ'_1 reste invariable et K_3 reste invariant, g vient en g'; or le passage de g en g' est une rotation de K_3 autour du sommet commun des deux gerbes. Il y a donc une droite Δ commune à \overline{g} et à g' qui se correspond à elle-même dans cette rotation, c'est l'axe de la rotation. Un vecteur de \overline{R}_4 , issu de S, peut se décomposer univoquement en une somme de deux vecteurs dont l'un est dans le plan déterminé par δ'_1 et Δ , l'autre dans le

plan absolument perpendiculaire, qui est d'ailleurs situé dans K_3 ; soit $\overline{V} = {}^{(1)}\overline{V} + {}^{(2)}\overline{V}$; la rotation de K_3 amène ${}^{(2)}\overline{V}$ en ${}^{(2)}V'$ et laisse ${}^{(1)}\overline{V}$ invariant, c'est donc une rotation de R_4 autour du plan $\pi_2^* = (\delta_1', \Delta)$. Le plan π_2 a au moins un point commun avec π_2^* . Le théorème de van Oss est donc complètement démontré.

Une rotation autour d'un plan π_2 sera désignée autrement dans la suite; on dira qu'elle est parallèle au plan $\tilde{\omega}_2$, absolument perpendiculaire à π_2 , et sa grandeur sera mesurée par l'angle dont les plans parallèles à $\tilde{\omega}_2$ tournent sur eux-mêmes.

On voit, par la démonstration, que la décomposition d'un déplacement de E_4 en deux rotations n'est pas unique; elle dépend du choix du couple des hyperplans correspondants H_3 et H_3' de F et F'⁶).

D'autre part, il y aurait à examiner si l'on voulait être complet, le cas où le point commun à π_2 et à π_2^* serait à l'infini; on aurait affaire alors à une translation; mais pour notre but, cette étude n'est pas nécessaire.

Les nombres de Clifford vont permettre de préciser grandement les correspondances entre les plans de rotation lorsque l'on sait déjà que F et F' ont un point homologue commun. Il est manifeste que, dans ce cas, les plans π_2 et π_2^* passent par ce point.

Chapitre II

Les rotations de E_4 et les nombres de Clifford

3. Un nombre de Clifford, pour n=4, est un nombre hypercomplexe de la forme⁷):

$$C = a + a_1 \, \Gamma_1 + a_2 \, \Gamma_2 + a_3 \, \Gamma_3 + a_4 \, \Gamma_4 + a_{12} \, \Gamma_{12} + a_{13} \, \Gamma_{13} + a_{14} \, \Gamma_{14} + a_{23} \, \Gamma_{23} + a_{34} \, \Gamma_{34} + a_{42} \, \Gamma_{42} + a_{123} \, \Gamma_{123} + a_{234} \, \Gamma_{234} + a_{341} \, \Gamma_{341} + a_{412} \, \Gamma_{412} + b \, \Gamma_{1234},$$

où l'on a posé

$$\Gamma_{ij} = \Gamma_i \Gamma_j$$
, $\Gamma_{ijk} = \Gamma_i \Gamma_j \Gamma_k$, $\Gamma_{1234} = \Gamma_1 \Gamma_2 \Gamma_3 \Gamma_4$ (qu'on écrira souvent Γ_5),

les unités Γ_i étant "définies" par les relations

$$\Gamma_{i}^{2} = 1, \ \Gamma_{i}\Gamma_{j} = -\Gamma_{j}\Gamma_{i}; \qquad (i \neq j) \ (i, j = 1, 2, 3, 4)$$

on voit qu'on a aussi

$$\varGamma_5^2 = 1, \ \varGamma_5\varGamma_i = -\varGamma_i\varGamma_5 \qquad (i \neq 5).$$

⁶⁾ Mais π_2 et π_2^* sont réels si F et F' sont réelles et si H_3 est réel.

⁷⁾ Cf. ce journal, vol. II, p. 225.

On sait que les diverses parties d'un nombre de Clifford sont susceptibles d'admettre une interprétation géométrique. On peut écrire:

$$C = I + V + T + \Gamma_5(W + J),$$

où I et J sont des grandeurs scalaires, V et W des vecteurs et T un tenseur antisymétrique.

4. Pour commencer, nous ne nous occuperons que des nombres qui représentent des vecteurs ou des produits de vecteurs. Soient deux vecteurs⁸)

$$V = v_i \Gamma_i, \quad W = w_i \Gamma_i;$$

on a

$$VW = v_i w_i + (v_i w_k - v_k w_i) \Gamma_{ik}$$
;

 $v_i w_i = V \cdot W$ est le produit scalaire des deux vecteurs et $(v_i w_k - v_k w_i) \Gamma_{ik}$ en est le produit vectoriel $V \times W$, c'est un bivecteur de la forme $b_{ik} \Gamma_{ik}$, et l'on a, comme un calcul simple le montre:

$$b_{12} b_{34} + b_{13} b_{42} + b_{14} b_{23} = 0;$$
⁹)

de plus, si φ est l'angle de V et W, on a

$$egin{aligned} v_i w_i &= |V| \mid W \mid \cos \varphi \ \sum b_{ik}^2 &= |V|^2 \mid W \mid^2 \sin^2 \varphi \end{aligned} ;$$

cette dernière expression est le carré de la mesure du bivecteur.

Soit A un vecteur $a_i\Gamma_i$ de longueur unité, $\Sigma a_i^2=1$. L'inverse A^{-1} du nombre de Clifford A, est le même vecteur A, car

$$A^2 = \Sigma a_i^2 = 1.$$

Le nombre

$$V' = A V A^{-1}$$

représente un vecteur, comme le calcul le montre immédiatement. Puisque

$$AV' = V'A$$
, c'est-à-dire $A \cdot V' + A \times V' = V \cdot A + V \times A$,

ce vecteur V' a même longueur que V puisque son produit scalaire avec A

⁸⁾ On supprimera le signe Σ suivant la convention habituelle.

⁹⁾ Cette relation est caractéristique des tenseurs qui sont des bivecteurs.

est égal à $V \cdot A$. Le bivecteur $A \times V'$ définit le même plan que $V \times A$, il a, dans ce plan, la même mesure au signe près. Donc V' est le symétrique de V relativement à A.

Si on repère chaque point P de E_4 par le vecteur V = OP, la correspondance $P \to P'$, (où on a posé OP' = V') définit la symétrie de E_4 par rapport au support du vecteur A, ou comme nous dirons, par rapport à A.

Soit B un second vecteur unité,

$$B = b_i \Gamma_i, \qquad \Sigma b_i^2 = 1 ;$$

le vecteur

$$V'' = B V' B^{-1}$$

est le symétrique de V' relativement à B. Soit Π_2 le plan déterminé par les vecteurs A et B; on peut décomposer tout vecteur V en $\overline{V} + \overline{V}$, d'une seule manière: \overline{V} étant Π_2 et \overline{V} dans le plan Π_2^* absolument perpendiculaire à Π_2 . On aura:

$$V'' = BA VA^{-1} B^{-1} = (BA) V(BA)^{-1} = (BA)(\overline{V} + \overline{V})(BA)^{-1} =$$

$$= (BA)\overline{V}(BA)^{-1} + (BA)\overline{V}(BA)^{-1},$$

à cause de la distributivité de la multiplication cliffordienne relativement à l'addition. $\overline{\overline{V}}$, perpendiculaire à Π_2 , subit deux symétries relativement à deux vecteurs situés dans Π_2 , dès lors

$$(BA)\overline{V}(BA)^{-1} = \overline{V}$$

ce que le calcul montre aussi. De plus \overline{V} , qui est dans Π_2 , subit deux symétries relativement à deux vecteurs de ce plan,

$$\overline{V}^{\prime\prime} = (BA)\overline{V}(BA)^{-1}$$

est donc obtenu par une rotation de \overline{V} dans Π_2 d'un angle 2 Φ , Φ étant l'angle que A fait avec B.

$$V^{\prime\prime} = \overline{V}^{\prime\prime} + \overline{\overline{V}}$$

définit une correspondance $P \to P''$, qui est donc une rotation de E_4 autour de Π_2^* , ou parallèle à Π_2 , d'angle 2 Φ , l'origine O étant fixe.

Comme toute rotation autour de l'origine est le produit de deux

rotations parallèles à deux plans passant par O, le déplacement le plus général qui laisse fixe l'origine sera donc exprimé analytiquement par l'égalité:

$$V^* = DCABVABCD = (DCAB)V(DCBA)^{-1}$$

où C et D sont deux vecteurs unités du plan auquel est parallèle la seconde rotation et le déplacement des points de E_4 est défini par la correspondance

$$P \rightarrow P^*$$
, avec $V^* = OP^*$.

On peut écrire

$$BA = \cos \Phi - \lambda \sin \Phi$$

où λ est le bivecteur unité du plan (A, B) orienté de façon que la mesure de l'angle dont il faut tourner A pour l'amener en B soit précisément Φ (à un multiple de 2π près). Il est manifeste que si l'on choisit, au lieu de A et B, deux vecteurs A' et B' du même plan, formant le même angle Φ , on aura:

$$BA = B'A'$$

de sorte que la représentation de la rotation $P \rightarrow P''$ n'est pas unique si l'on a égard aux symétries en lesquelles elle peut se décomposer.

On sait, d'autre part, que le plan de la première rotation ayant été fixé, celui de la seconde s'en déduit univoquement; donc, en posant:

$$DC = \cos \Psi - \mu \sin \Psi,$$

 Ψ et μ sont déterminés lorsque λ est fixé. Les deux plans λ et μ peuvent être dits *conjugués* dans la rotation considérée de E_4 . Nous allons voir qu'on peut choisir les plans conjugués de facon qu'ils soient absolument perpendiculaires. On a le théorème:

5. Toute rotation de E_4 est le produit de deux rotations parallèles à deux plans absolument perpendiculaires.

Ce théorème, bien classique, se démontre habituellement par l'analyse des valeurs propres de la matrice orthogonale qui représente la rotation de E_4 autour de l'origine. L'algorithme cliffordien permet d'en donner une démonstration rapide, qui, d'ailleurs, conduit aux conséquences les plus intéressantes.

Cette démonstration fait état des propriétés des bivecteurs supplémentaires. Soit un bivecteur unité, $\beta = \beta_{ik} \Gamma_{ik}$, le bivecteur unité $\beta^* = \beta_{ik}^* \Gamma_{ik}$

en est le *supplémentaire*, si les deux plans qu'ils définissent sont absolument perpendiculaires et si les quatre vecteurs unités V, W, X, Y, et deux à deux perpendiculaires, tels que:

$$\beta = V \times W, \quad \beta^* = X \times Y,$$

forment un tétraèdre dont l'orientation est celle du tétraèdre des coordonnées. On voit aisément que

$$\beta \beta^* = \Gamma_5$$

car on peut toujours faire une rotation de E_4 qui amène β à être Γ_{12} et β^* à être Γ_{34} , donc, en faisant la rotation inverse, on aura

$$\beta \beta^* = O \Gamma_{12} \Gamma_{34} O^{-1} = \Gamma_5 O O^{-1} = \Gamma_5.$$
 (0 = produit de 4 vecteurs)

On a

$$\begin{split} \beta^2 &= (\beta_{ik} \Gamma_{ik}) \; (\beta_{rs} \Gamma_{rs}) = - \varSigma \beta_{ik}^2 + (\beta_{12} \beta_{23} - \beta_{23} \beta_{12} + \\ &+ \beta_{14} \beta_{43} - \beta_{43} \beta_{14}) \varGamma_{13} + \cdots + 2 \; (\beta_{12} \beta_{34} + \beta_{13} \beta_{42} + \beta_{14} \beta_{23}) \; \varGamma_{5} = - \varSigma \beta_{ik}^2 = - 1, \end{split}$$

donc, l'inverse du bivecteur unité β est — β .

D'autre part,

$$\beta \beta^* = -\sum \beta_{ik} \beta_{ik}^* + (\beta_{12} \beta_{23}^* - \beta_{23} \beta_{12}^* + \beta_{14} \beta_{43}^* - \beta_{43} \beta_{14}^*) \Gamma_{13} + \cdots + (\beta_{12} \beta_{34}^* + \beta_{34} \beta_{12}^* + \beta_{13} \beta_{42}^* + \beta_{42} \beta_{13}^* + \beta_{14} \beta_{23}^* + \beta_{23} \beta_{14}^*) \Gamma_5,$$

on doit done avoir

$$\sum \beta_{ik} \, \beta_{ik}^* = 0 \,, \, \beta_{12} \beta_{23}^* - \beta_{23} \beta_{12}^* + \beta_{14} \beta_{43}^* - \beta_{43} \beta_{14}^* = 0 \,, \dots$$
$$\beta_{12} \, \beta_{34}^* \, + \beta_{34} \beta_{12}^* + \beta_{13} \beta_{42}^* + \beta_{42} \beta_{13}^* + \beta_{14} \beta_{23}^* + \beta_{23} \beta_{14}^* = 1$$

et l'on satisfera à ces équations en posant

$$\beta_{12}^{\ \star}=\beta_{34}\,,\;\beta_{13}^{\ \star}=\beta_{42}\,,\;\beta_{14}^{\ \star}=\beta_{23}\,,\;\beta_{34}^{\ \star}=\beta_{12}\,,\;\beta_{42}^{\ \star}=\beta_{13}\,,\;\beta_{23}^{\ \star}=\beta_{42}\,;$$

ce qu'on voit aussi immédiatement en remarquant que

$$\beta \beta^* = \Gamma_5$$
,

d'où

$$\beta^* = -\beta \Gamma_5 \text{ car } \beta^{-1} = -\beta.$$

6. Cherchons dès lors à mettre la rotation¹⁰)

DCBA V A BCD

sous la forme

dcba V abcd

où le bivecteur $b \times a$ est absolument perpendiculaire à $d \times c$. Nous écrirons

$$ba = \cos \varphi - \alpha \sin \varphi,$$

 $dc = \cos \psi - \beta \sin \psi,$

et nous chercherons à déterminer φ , ψ , α et β de facon que

$$(\cos \varphi - \alpha \sin \varphi) (\cos \psi - \beta \sin \psi) = (\cos \Phi - \lambda \sin \Phi) (\cos \Psi - \mu \sin \Psi)$$

et que

$$\beta = -\Gamma_5 \alpha$$
.

Si

$$\lambda = \lambda_{ik} \Gamma_{ik}, \quad \mu = \mu_{ik} \Gamma_{ik},$$

on aura

$$(\cos \Phi - \lambda \sin \Phi) (\cos \Psi - \mu \sin \Psi) = \cos \Phi \cos \Psi +$$

$$+\sin\varPhi\sin\varPsi[-\varSigma\lambda_{ik}\mu_{ik}+(\lambda_{12}\mu_{34}+\lambda_{34}\mu_{12}+\lambda_{13}\mu_{42}+\lambda_{42}\mu_{13}+\lambda_{14}\mu_{23}+\lambda_{23}\mu_{14})\varGamma_{5}+\\+(\lambda_{12}\mu_{23}-\lambda_{23}\mu_{12}+\lambda_{14}\mu_{43}-\lambda_{43}\mu_{14})\varGamma_{13}+\cdots+(\cdots)\varGamma_{34}]-\lambda\sin\varPhi\cos\varPsi-\mu\cos\varPhi\sin\varPsi,$$

qu'on écrira

$$= I + J \Gamma_5 - C_{ik} \Gamma_{ik},$$

et l'on aura à résoudre le système

$$egin{aligned} \cos arphi & \cos arphi & \sin arphi & \sin arphi & = J, \ --- lpha_{ik} & \sin arphi & \cos arphi --- eta_{ik} & \cos arphi & \sin arphi & = -- C_{ik}. \end{aligned}$$

 \mathbf{Or}

 $eta_{12}=lpha_{34},\ldots,eta_{ij}=lpha_{rs},\quad (ijrs)= ext{permutation paire de 1, 2, 3, 4,}$ done

(1)
$$\cos \varphi \cos \psi = I, \\ \sin \varphi \sin \psi = J,$$

(2)
$$\begin{array}{c} a_{12}\sin\varphi\cos\psi + a_{34}\cos\varphi\sin\psi = C_{12}, \\ a_{12}\cos\varphi\sin\psi + a_{34}\sin\varphi\cos\psi = C_{34}, \end{array}$$

¹⁰) Le calcul est fait pour des A, B, C, D réels, et l'on recherche des plans absolument perpendiculaires réels. Mais la démonstration est valable pour une rotation quelconque, quitte à laisser tomber les conditions exigées pour la réalité.

et deux systèmes analogues à (2) pour déterminer respectivement a_{13} , a_{42} et a_{14} , a_{23} .

Le système (1) donne φ et ψ pourvu que

$$|I| \leqslant 1$$
, $|J| \leqslant 1$.

Les systèmes du type (2) donnent les a_{ik} pourvu que

$$D = \begin{vmatrix} \sin \varphi \cos \psi & \cos \varphi \sin \psi \\ \cos \varphi \sin \psi & \sin \varphi \cos \psi \end{vmatrix} = \sin^2 \varphi - \sin^2 \psi \neq 0.$$

Enfin le problème sera résolu si l'on est assuré que

(2')
$$\sum a_{ik}^2 = 1, \quad a_{12}a_{34} + a_{13}a_{42} + a_{14}a_{23} = 0.$$

On vérifiera qu'il en est bien ainsi après avoir démontré le lemme suivant.

7. Soient deux bivecteurs unités λ et μ ; on peut toujours orienter les axes de coordonnées de manière que

$$\lambda = \Gamma_{12}, \quad \mu = \mu_{12}\Gamma_{12} + \mu_{34}\Gamma_{34} + \mu_{13}\Gamma_{13} + \mu_{42}\Gamma_{42},$$

où bien entendu

(3)
$$\mu_{12}^2 + \mu_{34}^2 + \mu_{13}^2 + \mu_{42}^2 = 1, \quad \mu_{12}\mu_{34} + \mu_{13}\mu_{42} = 0.$$

En effet, il suffit de mettre les axes des x_1 , x_2 dans le plan de λ pour assurer la première condition. On a encore à sa disposition l'orientation de l'axe x_1 dans le plan de λ et l'orientation de l'axe x_3 dans le plan absolument perpendiculaire. En changeant cette orientation, l'expression de λ ne change pas, celle de μ change et devient:

$$(\cos \sigma - \sin \sigma \Gamma_{12}) (\cos \tau - \sin \tau \Gamma_{34}) \mu (\cos \tau + \sin \tau \Gamma_{34}) (\cos \sigma + \sin \sigma \Gamma_{12})$$

$$= \mu_{12} \Gamma_{12} + \mu_{34} \Gamma_{34} + \mu'_{13} \Gamma_{13} + \mu'_{14} \Gamma_{14} + \mu'_{23} \Gamma_{23} + \mu'_{42} \Gamma_{42},$$

avec

 $\begin{array}{l} \mu_{13}^{'} = \mu_{13}\cos\sigma\cos\tau - \mu_{14}\cos\sigma\sin\tau + \mu_{23}\sin\sigma\cos\tau - \mu_{42}\sin\sigma\sin\tau, \\ \mu_{14}^{'} = \mu_{13}\cos\sigma\sin\tau + \mu_{14}\cos\sigma\cos\tau - \mu_{23}\sin\sigma\sin\tau + \mu_{42}\sin\sigma\cos\tau, \\ \mu_{23}^{'} = \mu_{13}\sin\sigma\cos\tau - \mu_{14}\sin\sigma\sin\tau + \mu_{23}\cos\sigma\cos\tau + \mu_{42}\cos\sigma\sin\tau, \\ \mu_{24}^{'} = \mu_{13}\sin\sigma\sin\tau + \mu_{14}\sin\sigma\cos\tau + \mu_{23}\cos\sigma\sin\tau - \mu_{42}\cos\sigma\cos\tau, \end{array}$

et il est manifeste qu'on peut déterminer les angles σ et τ de manière que

$$\mu'_{14} = \mu'_{23} = 0$$
;

il suffit que

$$\frac{\mu_{14} \cot \sigma - \mu_{24}}{\mu_{23} \cot \sigma + \mu_{13}} = \frac{\mu_{23} - \mu_{13} \cot \sigma}{\mu_{14} + \mu_{24} \cot \sigma},$$

puis

$$\cot \ \psi = \frac{\mu_{23} - \mu_{13} \cot \ \varphi}{\mu_{14} \cot \ \varphi - \mu_{24}} \ ;$$

c'est-à-dire que cot σ est racine de l'équation du second degré:

$$(\mu_{14}\mu_{24} + \mu_{14}\mu_{23}) x^2 + (\mu_{14}^2 - \mu_{24}^2 + \mu_{13}^2 - \mu_{23}^2) x - (\mu_{14}\mu_{24} + \mu_{13}\mu_{23}) = 0$$

qui admet deux racines réelles. Le lemme est démontré.

8. Nous pouvons reprendre alors la démonstration de notre théorème. On fera désormais

$$\lambda = \Gamma_{12}, \; \mu = \mu_{12}\Gamma_{12} + \mu_{34}\Gamma_{34} + \mu_{13}\Gamma_{13} + \mu_{42}\Gamma_{42},$$

et les équations (1) s'écrivent

$$\cos \varphi \cos \psi = \cos \Phi \cos \Psi - \mu_{12} \sin \Phi \sin \Psi$$
,
 $\sin \varphi \sin \psi = \mu_{34} \sin \Phi \sin \Psi$.

Puisque

$$|\mu_{12}| \leqslant 1, \qquad |\mu_{34}| \leqslant 1,$$

les seconds membres sont inférieurs ou égaux à l'unité en valeur absolue et ce système est dès lors résoluble par rapport à φ et ψ . Sans nous préoccuper des diverses solutions possibles¹¹), supposons que $D \neq 0$, ce qui est le cas général. Il faut montrer que les conditions (2') sont vérifiées. Or les systèmes (2) et analogues donnent, en faisant la somme des carrés et la somme des produits membre à membre des équations de chaque système:

$$egin{align} A\,S_1 + 4\,\,B\,S_2 &= \varSigma\,C_{ik}^2\,, \ B\,S_1 + A\,S_2 &= C_{12}\,C_{34} + C_{13}\,C_{42} + C_{14}\,C_{23}\,, \ \end{array}$$

où l'on a

$$S_1 = \Sigma a_{ik}^2$$
, $S_2 = a_{12}a_{34} + a_{13}a_{42} + a_{14}a_{23}$,

et

¹¹⁾ Il est facile de voir que toutes les solutions possibles pour φ et ψ donnent effectivement les mêmes rotations dans les mêmes plans; par exemple, en changeant φ en $-\varphi$, ψ en $-\psi$, les α changent de signe, la rotation reste la même dans le même bivecteur, etc.

 $A = \sin^2 \varphi \cos^2 \psi + \cos^2 \varphi \sin^2 \psi = \sin^2 \varphi + \cos^2 \varphi - \cos^2 \varphi \cos^2 \psi - \sin^2 \varphi \sin^2 \psi = 1 - I^2 - J^2,$

 $B = \sin \varphi \cos \varphi \sin \psi \cos \psi = IJ.$

D'autre part, avec le choix particulier des axes:

 $egin{aligned} C_{12} &= \sin arPhi \cos arPsi + \mu_{12} \cos arPhi \sin arPsi \,, \ C_{34} &= \mu_{34} \cos arPhi \sin arPsi \,, \ C_{13} &= \mu_{13} \cos arPhi \sin arPsi \,, \ C_{42} &= \mu_{42} \cos arPhi \sin arPsi \,, \ C_{23} &= \mu_{13} \sin arPhi \sin arPsi \,, \ C_{14} &= \mu_{42} \sin arPhi \sin arPsi \,, \end{aligned}$

d'où, en tenant compte de (1) et de la forme de λ et de μ :

$$\begin{split} \Sigma C_{ik}^2 &= 1 - I^2 - J^2 = A \,, \\ C_{12}C_{34} + C_{13}C_{42} + C_{14}C_{23} &= IJ = B , \end{split}$$

et dès lors

(4)
$$AS_1 + 4BS_2 = A BS_1 + AS_2 = B$$

c'est-à-dire

$$S_1 = 1, \quad S_2 = 0,$$

pour autant que l'on n'ait pas

$$A^2 - 4 B^2 = 0$$

ou

 $(\cos^2\varphi\,\sin^2\psi+\sin^2\varphi\,\cos^2\psi)^2$ — $4\,\sin^2\varphi\,\sin^2\psi\,\cos^2\varphi\,\cos^2\psi=0$,

ou encore

$$D^2=0$$
.

ce qui s'écrit aussi

$$(1 - I^2 - J^2)^2 - 4 I^2 J^2 = 0.$$

Done si

$$D \neq 0$$
,

on est assuré que

$$\Sigma a_{ik}^2 = 1$$
, $a_{12}a_{34} + a_{13}a_{42} + a_{14}a_{23} = 0$.

9. Le théorème peut donc être en défaut si

$$D=0$$
;

dans ce cas, il y a éventuellement impossibilité ou indétermination. Nous allons voir qu'il y a indétermination, car D=0 signifie

$$\sin^2\varphi = \sin^2\psi$$

ou

$$(1 - I^2 - J^2 - 2IJ) (1 - I^2 - J^2 + 2IJ) = 0,$$

soit

$$(I + \varepsilon J)^2 = 1$$
 $(\varepsilon = \pm 1)$

ce qui semble établir une relation entre λ et μ où figurent les projections de λ sur μ et sur le plan absolument perpendiculaire à λ , ainsi que les deux angles de rotation 2Φ et 2Ψ . Or on peut montrer que D=0 entraîne

$$\frac{C_{12}}{C_{34}} = \frac{C_{13}}{C_{42}} = \frac{C_{14}}{C_{23}} = \frac{\text{tg } \varphi}{\text{tg } \psi} = \frac{\text{tg } \psi}{\text{tg } \varphi} = \pm 1 \text{ (suivant que sin } \varphi = \pm \sin \psi \text{)},$$

c'est-à-dire que les systèmes des équations (2) et analogues sont indéterminés. Pour le faire voir, prenons le cas

$$\sin arphi = \sin arphi, \quad \cos arphi = \cos arphi; \ \sin^2 \! arphi = I, \ \cos^2 \! arphi = J, \ I+J=+1,$$

c'est-à-dire

$$\cos \varPhi \cos \varPsi - (\mu_{12} - \mu_{34}) \sin \varPhi \sin \varPsi = 0.$$

Comme on peut évidemment écrire, puisque $\Sigma \mu_{ik}^2 = 1$,

$$\begin{array}{ll} \mu_{12} = \cos\,\alpha\,\sin\,\beta\;, & \quad \mu_{34} = \sin\,\alpha\,\cos\,\gamma\;, \\ \mu_{13} = \cos\,\alpha\,\cos\,\beta\;, & \quad \mu_{42} = \sin\,\alpha\,\sin\,\gamma\;, \end{array}$$

et comme

$$\mu_{12}\mu_{34} + \mu_{13}\mu_{42} = 0$$
,

on doit avoir

$$\cos a \sin a \sin (\beta + \gamma) = 0$$
,

ce qui entraîne (en laissant les cas banals cos a = 0 ou sin a = 0)

$$\gamma = -\beta$$
,

car on peut toujours fixer le quadrant de a pour qu'il en soit ainsi.

Dès lors

$$\cos \Phi \cos \Psi - (\cos \alpha \sin \beta - \sin \alpha \cos \beta) \sin \Phi \sin \Psi = 1$$

ou encore

$$\cos \Phi \cos \Psi + \cos \left(\frac{\pi}{2} + \beta - a\right) \sin \Phi \sin \Psi = 1$$

ce que la trigonométrie sphérique nous oblige d'interpréter par les égalités

$$oldsymbol{arPhi} = arPsi$$
 , $\cos\left(rac{\pi}{2} + eta - a
ight) = 1$, soit $eta = a - rac{\pi}{2}$,

et, par suite,

$$\mu_{12} = -\cos^2 a \; , \qquad \qquad \mu_{34} = \sin^2 a \; , \qquad \qquad \mu_{23} = \cos a \sin a \; , \qquad \qquad \mu_{42} = \sin a \cos a \; ,$$

d'où

$$rac{C_{12}}{C_{34}} = rac{1 + \mu_{12}}{\mu_{34}} = 1$$
 , $rac{C_{13}}{C_{42}} = 1$, $rac{C_{14}}{C_{23}} = 1$,

ce qui entraîne bien l'indétermination des systèmes (2).

Il conviendrait de voir les autres cas:

 $\sin \varphi = \sin \psi, \quad \cos \varphi = -\cos \psi, \quad \text{ou} \quad \sin \varphi = -\sin \psi, \quad \cos \varphi = \cos \psi$ ou encore

$$\sin \varphi = -\sin \psi$$
, $\cos \varphi = -\cos \psi$,

mais des calculs faciles redonnent les mêmes conclusions¹²).

Ainsi donc le théorème énoncé est démontré. La décomposition en un produit de deux rotations autour de deux plans absolument perpendiculaires est possible d'une seule manière, ou bien elle est possible d'une infinité de manières (∞^2).

$$\sin \varphi = \sin \psi$$
, $\cos \varphi = -\cos \psi$,

on devra interpréter l'égalité

$$\cos \Phi \cos \Psi + \cos \left(\frac{\pi}{2} + \alpha + \beta\right) \sin \Phi \sin \Psi = -1$$
;

elle implique évidemment

$$\Phi + \Psi = \pi , \ \alpha + \beta = \frac{\pi}{2}$$

et l'on trouve

$$\frac{C_{12}}{C_{34}} = \frac{C_{13}}{C_{42}} = \frac{C_{14}}{C_{23}} = -1 \ .$$

¹²⁾ Remarquons cependant que si

Plans conjugués dans un déplacement donné

10. Le théorème précédent qui nous apprend que tout déplacement de E_4 se décompose en un produit de deux rotations autour de deux plans absolument perpendiculaires, que nous appellerons les plans fondamentaux de la rotation, va nous permettre de trouver les relations entre les plans conjugués dont il est question dans le théorème de van Oss.

Soit un déplacement dont les plans fondamentaux sont, ce qui ne restreint pas la généralité, les plans des x_1 , x_2 et des x_3 , x_4 , 2φ et 2ψ étant les angles de rotation. On écrira donc, pour le produit des quatre vecteurs qui représente le déplacement:

$$(\cos \varphi - \sin \varphi \Gamma_{12}) (\cos \psi - \sin \psi \Gamma_{34}).$$

Nous allons chercher les plans conjugués, définis par les bivecteurs unités λ et μ et les angles 2 Φ et 2 Ψ de rotation dans ces plans tels que

$$(\cos \varphi - \sin \varphi \Gamma_{12}) (\cos \psi - \sin \psi \Gamma_{34}) = (\cos \Phi - \lambda \sin \Phi) (\cos \Psi - \mu \sin \Psi),$$
d'où

$$(\cos \varPhi + \lambda \sin \varPhi) (\cos \varphi - \sin \varphi \Gamma_{12}) = (\cos \Psi - \lambda \sin \Psi) (\cos \psi + \sin \psi \Gamma_{34})$$

ce qui est la relation entre λ et μ , relation qui doit définir en plus Φ et Ψ . On tire de là huit équations en identifiant les différents termes des nombres de Clifford qui figurent aux deux membres. En posant

$$\lambda = \lambda_{ik} \Gamma_{ik}, \quad \mu = \mu_{ik} \Gamma_{ik},$$

il vient

$$(4) \begin{cases} \cos \Phi \cos \varphi + \lambda_{12} \sin \Phi \sin \varphi &=& \cos \Psi \cos \psi + \mu_{34} \sin \Psi \sin \psi \\ \lambda_{34} \sin \Phi \sin \varphi &=& \mu_{12} \sin \Psi \sin \psi, \\ \cos \Phi \sin \varphi - \lambda_{12} \sin \Phi \cos \varphi &=& \mu_{12} \sin \Psi \cos \psi, \\ \lambda_{34} \sin \Phi \cos \varphi &=& \cos \Psi \sin \psi - \mu_{34} \sin \Psi \cos \psi, \\ \lambda_{13} \sin \Phi \cos \varphi + \lambda_{23} \sin \Phi \sin \varphi &=& -\mu_{13} \sin \Psi \cos \psi + \mu_{14} \sin \Psi \sin \psi, \\ -\lambda_{13} \sin \Phi \sin \varphi + \lambda_{23} \sin \Phi \cos \varphi &=& -\mu_{23} \sin \Psi \cos \psi - \mu_{42} \sin \Psi \sin \psi, \\ \lambda_{14} \sin \Phi \cos \varphi - \lambda_{42} \sin \Phi \sin \varphi &=& -\mu_{13} \sin \Psi \sin \psi - \mu_{14} \sin \Psi \cos \psi, \\ \lambda_{14} \sin \Phi \sin \varphi + \lambda_{42} \sin \Phi \cos \varphi &=& \mu_{23} \sin \Psi \sin \psi - \mu_{42} \sin \Psi \cos \psi. \end{cases}$$

A ces équations doivent s'ajouter les conditions

(5)
$$\Sigma \lambda_{ik}^2 = 1, \qquad \Sigma \mu_{ik}^2 = 1,$$

(6)
$$\lambda_{12}\lambda_{34} + \lambda_{13}\lambda_{42} + \lambda_{14}\lambda_{23} = 0$$
, $\mu_{12}\mu_{34} + \mu_{13}\mu_{42} + \mu_{14}\mu_{23} = 0$,

qui ne sont d'ailleurs pas incompatibles avec le système précédent. En supposant connus Φ et Ψ , on tire les valeurs des λ_{ik} en fonction des μ_{ik} :

$$\left\langle \lambda_{34} = \mu_{12} \frac{\sin \Psi \sin \psi}{\sin \Phi \sin \varphi} = \frac{1}{\sin \Phi \cos \varphi} \left[\cos \Psi \sin \psi - \mu_{34} \sin \Psi \cos \psi \right], \right.$$

$$\left\langle \lambda_{12} = \frac{1}{\sin \Phi \cos \varphi} \left[\cos \Phi \sin \varphi - \mu_{12} \sin \Psi \cos \psi \right] = \frac{1}{\sin \Phi \sin \varphi} \left[\cos \Psi \cos \psi - \cos \Phi \cos \varphi + \mu_{34} \sin \Psi \sin \psi \right].$$

$$\lambda_{13} = \frac{\sin \Psi}{\sin \Phi} \left[-\mu_{13} \cos \psi \cos \varphi + \mu_{14} \sin \psi \cos \varphi + \mu_{23} \cos \psi \sin \varphi + \mu_{42} \sin \psi \sin \varphi \right],$$

$$\lambda_{23} = \frac{\sin \Psi}{\sin \Phi} \left[-\mu_{13} \cos \psi \sin \varphi + \mu_{14} \sin \psi \sin \varphi - \mu_{23} \cos \psi \cos \varphi - \mu_{42} \sin \psi \cos \varphi \right],$$

$$\lambda_{14} = \frac{\sin \Psi}{\sin \Phi} \left[-\mu_{13} \sin \psi \cos \varphi - \mu_{14} \cos \psi \cos \varphi + \mu_{23} \sin \psi \sin \varphi - \mu_{42} \cos \psi \sin \varphi \right],$$

$$\lambda_{42} = \frac{\sin \Psi}{\sin \Phi} \left[\mu_{13} \sin \psi \sin \varphi + \mu_{14} \cos \psi \sin \varphi + \mu_{23} \sin \psi \cos \varphi - \mu_{42} \cos \psi \cos \varphi \right].$$

L'élimination de λ_{34} et λ_{12} donne deux relations entre μ_{12} , μ_{34} , Φ et Ψ qu'on peut écrire:

$$\begin{split} &\mu_{12}\sin\psi\cos\varphi + \mu_{34}\cos\psi\sin\varphi = &\cot\varPsi\sin\psi\sin\varphi \\ &\mu_{12}\cos\psi\sin\varphi + \mu_{34}\sin\psi\cos\varphi = &-\cot\varPsi\cos\psi\cos\varphi + \frac{\cos\varPhi}{\sin\varPsi} \;. \end{split}$$

Le déterminant de ce système est $\sin^2 \psi - \sin^2 \varphi$; nous le supposerons différent de zéro, ce qui est le cas lorsque les deux plans fondamentaux du déplacement sont univoquement déterminés. On voit donc que si l'on se donne arbitrairement les angles de rotation dans les plans, inconnus encore, λ et μ , on pourra déterminer les projections des bivecteurs μ et λ sur les plans fondamentaux, soient les nombres μ_{12} , μ_{34} , λ_{12} , λ_{34} . Puis choisissant arbitrairement μ_{13} , μ_{14} , μ_{23} , μ_{34} , à cela près qu'on tient compte de (4) et (5), on trouvera λ_{12} , λ_{23} , λ_{14} , λ_{42} . Il est aisé de voir que les valeurs ainsi trouvées vérifient (5) et (6). Dès lors la solution du problème comporte quatre arbitraires.

Mais on peut procéder d'une autre manière. On peut se donner le plan μ . On trouve alors $\cos \Psi$, d'où Ψ (avec l'ambiguïté Ψ ou $\Psi + \pi$) et ensuite $\cos \Phi$ est déterminé; on a

$$\cos \Phi = (\mu_{12} \cos \psi \sin \psi + \mu_{34} \cos \varphi \sin \varphi) \frac{\sin \Psi}{\sin \varphi \sin \psi},$$

et, en élevant au carré, puis remplaçant $\sin^2 \Psi$ par $\frac{1}{1+\cot^2 \Psi}$, dans quoi l'on substitue la valeur trouvée pour $\cot \Psi$, il vient

$$\cos^2 \Phi = rac{\left(\mu_{12} rac{\cos \psi}{\sin \varphi} + \mu_{34} rac{\cos \varphi}{\sin \psi}\right)^2}{1 + (\mu_{12} \cot \varphi + \mu_{34} \cot \psi)^2}.$$

Le second membre est inférieur à un si μ est réel¹³).

Dès lors, on peut se donner arbitrairement μ , ce qui est faisable de ∞^4 manières différentes car un plan passant par l'origine dépend de quatre paramètres; Φ et Ψ sont déterminés et le plan λ aussi¹⁴).

11. Les relations entre λ et μ peuvent s'interpréter du point de vue de la géométrie réglée. Un bivecteur coupe, en effet, l'hyperplan de l'infini de E_4 suivant une droite dont les coordonnées plückériennes dans cet hyperplan sont les nombres λ_{ik} (ou leurs rapports); la relation entre les deux droites λ et μ est évidemment une relation linéaire, comme on peut l'imaginer en évoquant la théorie des déplacements cayleyens, c'est-à-dire des transformations projectives de l'hyperplan de l'infini qui conservent la sphère de l'infini. En transformant les quatre équations du système (4), on trouve:

$$\lambda_{12} = \mu_{34} \frac{\sin \Psi}{\sin \Phi} \frac{\sin \varphi}{\sin \psi} ; \qquad \lambda_{34} = \mu_{12} \frac{\sin \Psi}{\sin \Phi} \frac{\sin \psi}{\sin \varphi} ;$$

et par conséquent en supprimant le facteur $\frac{\sin \Psi}{\sin \Phi}$ qui se trouve partout, la relation linéaire entre les deux droites "conjuguées" λ et μ s'écrira:

$$\lambda_{12} = \mu_{24} \; rac{\sin \varphi}{\sin \, \psi}
onumber \ \lambda_{34} = \mu_{12} \; rac{\sin \, \psi}{\sin \, \varphi}
onumber$$

¹³) En posant $\mu_{12} = \cos \alpha \sin \beta$, $\mu_{34} = \cos \alpha \cos \beta$, ce qui est toujours possible avec α et β réels, si μ est réel, la démonstration de $\cos^2 \Phi \leq 1$ est très facile.

 $^{^{14}}$) De nouveau les ambiguïtés sur Φ et Ψ redonnent les mêmes rotations dans les mêmes plans.

$$\begin{split} \lambda_{13} &= -\mu_{13}\cos\psi\cos\varphi + \mu_{14}\sin\psi\cos\varphi + \mu_{23}\cos\psi\sin\varphi + \mu_{42}\sin\psi\sin\varphi, \\ \lambda_{23} &= -\mu_{13}\cos\psi\sin\varphi + \mu_{14}\sin\psi\sin\varphi - \mu_{23}\cos\psi\cos\varphi - \mu_{42}\sin\psi\cos\varphi, \\ \lambda_{14} &= -\mu_{13}\sin\psi\cos\varphi - \mu_{14}\cos\psi\cos\varphi + \mu_{23}\sin\psi\sin\varphi - \mu_{42}\cos\psi\sin\varphi, \\ \lambda_{42} &= -\mu_{13}\sin\psi\sin\varphi + \mu_{14}\cos\psi\sin\varphi + \mu_{23}\sin\psi\cos\varphi - \mu_{42}\cos\psi\cos\varphi, \end{split}$$

ce qui exprime, moyennant des notations convenables, la conjugaison dans un espace à trois dimensions de deux droites Δ et Δ' relativement à une sphère dont l'équation homogène peut se mettre sous la forme

$$\xi_1^2 + \xi_2^2 + \xi_3^2 + \xi_4^2 = 0.$$

Un tel résultat était évident a priori.

Chapitre IV

Décomposition du groupe des rotations de E_4 autour d'un point en un produit direct de deux sous-groupes

12. Il convient d'étudier plus particulièrement les rotations pour lesquelles les plans fondamentaux α et β absolument perpendiculaires sont indéterminés. On a vu que cela se produit si

 $(1 - I^2 - J^2)^2 - 4 I^2 J^2 = 0;$

 $\sin^2 \psi = \sin^2 \varphi$.

Voyons donc ce qui caractérise les transformations

$$V' = (\cos \varphi - \sin \varphi \Gamma_{12}) (\cos \varphi - \sin \varphi \Gamma_{34}) V (\cos \varphi + \sin \varphi \Gamma_{34}) (\cos \varphi + \sin \varphi \Gamma_{12}),$$

où l'on a posé $\psi=\varphi$. Décomposons V suivant les deux plans \varGamma_{12} et \varGamma_{34} ,

 $V = V_1 + V_2$

alors

et alors

$$V' = V_1' + V_2'$$

où V_1' est V_1 tourné dans le plan Γ_{12} de 2 φ , V_2' est V_2 tourné de 2 φ dans le plan Γ_{34} . Or

$$VV' + V'V = V_1V_1' + V_2V_2' + V_1'V_1 + V_2'V_2$$

c'est-à-dire:

$$V \cdot V' = V_1 \cdot V_1' + V_2 \cdot V_2'$$

et si V est un vecteur unité, on aura, en désignant par σ l'angle de V avec V'

 $\cos\sigma = V_1^2\cos 2\,\varphi + V_2^2\cos 2\,\varphi = (V_1^2 + V_2^2)\cos 2\,\varphi = \cos 2\,\varphi\,,$ car

$$V_1^2 + V_2^2 = V_2^2 = 1$$
.

Donc, dans un déplacement du type considéré, tous les vecteurs font un angle égal avec leur transformé. Cet angle est, en valeur absolue, — la seule qu'on puisse considérer ici —

$$\sigma=2\,\varphi$$
.

Les rotations pour lesquelles les plans fondamentaux sont indéterminés seront appelées rotations singulières.

Réciproquement, si, dans une rotation, l'angle que fait un vecteur V avec son transformé V' est constant, cette rotation est singulière, car si l'on considère les deux plans fondamentaux de la rotation (qui existent toujours, on en prend un couple quelconque s'ils sont indéterminés) et si 2φ et 2ψ sont les angles de rotation dans ces plans, on aura, en décomposant V et V' suivant ces plans:

$$V_1^2 \cos 2 \varphi + V_2^2 \cos 2 \psi = V_1^2 \cos \sigma = (V_1^2 + V_2^2) \cos \sigma$$

d'où

$$V_1^2 (\cos 2 \varphi - \cos \sigma) + V_2^2 (\cos 2 \psi - \cos \sigma) = 0$$
;

si

$$V=V_2$$
, $\cos 2 \psi = \cos \sigma$, et si $V=V_2$, $\cos 2 \varphi = \cos \sigma$;

si donc σ est constant

$$\cos 2 \psi = \cos 2 \varphi = \cos \sigma.$$

13. La condition

$$\sin^2\!\psi = \sin^2\!\varphi,$$

qui caractérise les rotations singulières, implique que les deux angles de rotation dans les deux plans fondamentaux ont le même cosinus; ces angles de rotation sont égaux en valeur absolue; de plus, bien que les paires de plans fondamentaux soient indéterminées, les angles de rotation ont le même cosinus quelle que soit la paire considérée.

On voit donc qu'on pourra définir deux espèces de rotations singulières. Supposons, en effet, que Γ_{12} et Γ_{34} soient les plans fondamentaux; leur représentation par Γ_{12} et Γ_{34} leur assigne à chacun un sens positif de rotation, celui qui, dans Γ_{12} , amène Ox_1 sur Ox_2 après rotation de $\frac{\pi}{2}$ et celui qui, dans Γ_{34} , amène Ox_3 sur Ox_4 après rotation de $\frac{\pi}{2}$. La relation

$$\cos 2 \varphi = \cos 2 \psi$$
,

veut dire que

$$2 \varphi = 2 \psi$$
 ou $2 \varphi = -2 \psi$.

Donc, les angles de rotation, dans deux plans fondamentaux accouplés, a et β , d'une rotation singulière, sont égaux ou opposés. La mesure algébrique de ces angles de rotation se fait en assignant à chacun des plans un sens positif de rotation tel que si un déplacement amène a sur Γ_{12} et β sur Γ_{34} , les deux sens positifs se confondent avec ceux qu'on a définis par les bivecteurs Γ_{12} et Γ_{34} .

Une rotation singulière sera dite de première espèce si l'on a:

$$2 \varphi = 2 \psi$$
;

elle sera dite de seconde espèce, si l'on a:

$$2 \varphi = -2 \psi$$

naturellement à un multiple de 2π près.

14. Soit, dès lors, a l'un des plans fondamentaux d'une rotation singulière de première espèce, $\beta = -\Gamma_5 a$ sera le second. Désignons par 2φ l'angle commun des rotations dans ces deux plans, l'opérateur O tel que le déplacement s'écrive¹⁵)

$$V' = OVO^{-1}$$

sera

$$O = \cos^2 \varphi - (\alpha + \beta) \cos \varphi \sin \varphi + \sin^2 \varphi \Gamma_5.$$

On peut le mettre d'une infinité de manières sous cette forme car

$$a+\beta=(a_{12}+a_{34})\ (\varGamma_{12}+\varGamma_{34})+(a_{13}+a_{42})\ (\varGamma_{13}+\varGamma_{42})+(a_{14}+a_{23})\ (\varGamma_{14}+\varGamma_{23}),$$
 et si

¹⁵⁾ Dorénavant nous donnerons le même nom à la rotation et à l'opérateur: nous dirons la rotation O.

$$\begin{array}{l} a_{12}^{'}+a_{34}^{'}=a_{12}+a_{34}\\ a_{13}^{'}+a_{42}^{'}=a_{13}+a_{42}\\ a_{14}^{'}+a_{23}^{'}=a_{14}+a_{23} \end{array} \text{ avec } \quad a_{12}^{'}a_{34}^{'}+a_{13}^{'}a_{42}^{'}+a_{14}^{'}a_{23}^{'}=0 \ ,$$

on peut écrire O sous la forme

 $O = \cos^2 \varphi - (\alpha' + \beta') \cos \varphi \sin \varphi + \sin^2 \varphi \Gamma_5$

où $a' = a'_{ik} \Gamma_{ik} \quad ext{et} \quad eta' = - \Gamma_5 a' \,.$

Il y a donc ∞² couples de plans fondamentaux pour une rotation singulière de première espèce. Il en est de même pour la seconde espèce, où:

$$O^* = \cos^2 \varphi^* - (\alpha - \beta) \cos \varphi^* \sin \varphi^* - \sin^2 \varphi^* \Gamma_5$$
.

On peut poser

(7)
$$O = \cos^2 \varphi - \cos \varphi \sin \varphi \left[\gamma_{12} (\Gamma_{12} + \Gamma_{34}) + \gamma_{13} (\Gamma_{13} + \Gamma_{42}) + \gamma_{14} (\Gamma_{14} + \Gamma_{23}) \right] + \sin^2 \varphi \Gamma_5,$$

 γ_1 , γ_2 , γ_3 étant trois nombres tels que $\gamma_1^2 + \gamma_2^2 + \gamma_3^2 = 1$, qui sont déterminés par la donnée de α et β et qui, à leur tour, permettent de choisir α' et β' .

15. Considérons un second opérateur définissant une rotation singulière de première espèce:

$$O' = \cos^2 \varphi' - \cos \varphi' \sin \varphi' \left[\gamma_{12}' (\Gamma_{12} + \Gamma_{34}) + \gamma_{13}' (\Gamma_{13} + \Gamma_{42}) + \gamma_{14}' (\Gamma_{14} + \Gamma_{23}) \right] + \sin^2 \varphi' \Gamma_5.$$

Formons le produit O'O, et démontrons que ce produit est du même type; remarquons qu'on peut choisir les axes de façon que

$$\gamma'_{12} = 1$$
, $\gamma'_{13} = 0$, $\gamma'_{14} = 0$.

Il vient, dès lors:

$$\begin{split} O'O &= \cos^2\!\varphi \cos^2\!\varphi' + \sin^2\!\varphi \sin^2\!\varphi' - 2\; \gamma_{12} \sin\varphi \cos\varphi \sin\varphi' \cos\varphi' + \\ &+ (\cos^2\!\varphi \sin^2\!\varphi' + \sin^2\!\varphi \cos^2\!\varphi' + 2\; \gamma_{12} \sin\varphi \cos\varphi \sin\varphi' \cos\varphi')\; \varGamma_5 + \\ &+ \frac{1}{2} \left(\cos 2\;\varphi \sin 2\;\varphi' + \gamma_{12} \cos 2\;\varphi' \sin 2\;\varphi\right) \left(\varGamma_{12} + \varGamma_{34}\right) + \\ &+ \frac{1}{2} \left(\gamma_{13} \sin 2\;\varphi \cos 2\;\varphi' + \gamma_{14} \sin 2\;\varphi \sin 2\;\varphi'\right) \left(\varGamma_{13} + \varGamma_{42}\right) + \\ &+ \frac{1}{2} \left(\gamma_{14} \sin 2\;\varphi \cos 2\;\varphi' - \gamma_{13} \sin 2\;\varphi \sin 2\;\varphi'\right) \left(\varGamma_{14} + \varGamma_{23}\right), \end{split}$$

et cela peut s'écrire

$$O'O = \cos^2 \lambda + \sin^2 \lambda \Gamma_5 - \cos \lambda \sin \lambda \left[\gamma_{12}^{''} (\Gamma_{12} + \Gamma_{34}) + \gamma_{13}^{''} (\Gamma_{13} + \Gamma_{42}) + \gamma_{14}^{''} (\Gamma_{14} + \Gamma_{23}) \right]$$

où

$$\cos^2\lambda = \cos^2\varphi \cos^2\varphi' + \sin^2\varphi \sin^2\varphi' - 2\gamma_{12}\sin\varphi \cos\varphi \sin\varphi' \cos\varphi',$$

$$\sin^2\lambda = \cos^2\varphi \sin^2\varphi' + \sin^2\varphi \cos^2\varphi' + 2\gamma_{12}\sin\varphi \cos\varphi \sin\varphi' \cos\varphi',$$

équations parfaitement compatibles, puis

$$\frac{1}{4} \left[(\cos 2 \varphi \sin 2 \varphi' + \gamma_{12} \cos 2 \varphi' \sin 2 \varphi)^2 + (\gamma_{13} \cos 2 \varphi' + \gamma_{14} \sin 2 \varphi')^2 \sin^2 2 \varphi + (\gamma_{14} \cos 2 \varphi' - \gamma_{13} \sin 2 \varphi')^2 \sin^2 2 \varphi \right]$$

$$= \sin^2\lambda \cos^2\lambda = (\cos^2\varphi \cos^2\varphi' + \sin^2\varphi \sin^2\varphi' - 2 \gamma_{12} \sin\varphi \cos\varphi \sin\varphi' \cos\varphi')$$

$$(\cos^2\varphi \sin^2\varphi' + \sin^2\varphi \cos^2\varphi' + 2 \gamma_{12} \sin\varphi \cos\varphi \sin\varphi' \cos\varphi'),$$

ce qui est exact, car le premier membre est identique au troisième en tenant compte de

$$\gamma_{12}^2 + \gamma_{13}^2 + \gamma_{14}^2 = 1.$$

Le produit OO' est donc un opérateur relatif à une rotation singulière de première espèce, et l'on peut énoncer le théorème:

Les rotations singulières de première espèce forment un groupe. Il en est de même des rotations singulières de seconde espèce.

Il est manifeste que, si O_1 et O_2 sont des rotations d'espèces différentes ayant un couple de plans fondamentaux communs,

$$O_1O_2=O_2O_1$$

car ces déplacements sont évidemment permutables.

Il faut trouver le nombre de paramètres de chacun des groupes dont on vient de démontrer l'existence. Les γ ne sont pas indépendants, la somme de leurs carrés vaut un, il y a donc deux paramètres pour fixer les γ , φ en est un troisième qui achève de déterminer la rotation de première espèce. Ces trois paramètres sont essentiels. Chaque rotation de seconde espèce dépend aussi de trois paramètres. Je dis que:

16. Toute rotation de E_4 autour d'un point est le produit de deux rotations singulières, l'une de première espèce, l'autre de seconde espèce, qui sont d'ailleurs permutables.

Soient, en effet, π_2 et π_2^* les deux plans fondamentaux de la rotation considérée, et 2φ , 2ψ les angles de rotation dans ces plans. La rotation

singulière de première espèce ayant π_2 et π_2^* comme plans fondamentaux et d'angle $\varphi + \psi$ et la rotation singulière de seconde espèce, de mêmes plans fondamentaux, mais d'angle $\varphi - \psi$, sont évidemment permutables et leur produit est la rotation considérée, car ce produit revient à la suite de deux rotations, l'une parallèle à π_2 d'angle

$$\varphi + \psi + \varphi - \psi = 2 \varphi,$$

l'autre parallèle à π_2^* d'angle

$$\varphi + \psi - (\varphi - \psi) = 2 \psi$$
.

Si cette rotation donnée a pour symbole R,

on aura

$$V' = R V R^{-1}.$$

$$\begin{split} R = & \left[\cos^2(\varphi + \psi) - (\pi_2 + \pi_2^*)\cos(\varphi + \psi)\sin(\varphi + \psi) + \sin^2\varphi \varGamma_5\right] \left[\cos^2(\varphi - \psi) - (\pi_2 - \pi_2^*)\sin(\varphi - \psi)\cos(\varphi - \psi) - \sin^2(\varphi - \psi)\varGamma_5\right]. \end{split}$$

Réciproquement, le produit de deux rotations singulières d'espèces différentes est une rotation non-singulière.

En effet, on peut écrire les opérateurs des deux espèces différentes:

$$\begin{split} O_{1} &= \cos^{2}\varphi - \cos\varphi\sin\varphi \, \left[\gamma_{1} \left(\Gamma_{12} + \Gamma_{34} \right) + \gamma_{2} \left(\Gamma_{13} + \Gamma_{42} \right) + \gamma_{3} \left(\Gamma_{14} + \Gamma_{23} \right) \, \right] + \\ &+ \sin^{2}\varphi \, \Gamma_{5} \, , \end{split}$$

où l'on a

$$\Sigma \gamma_i^2 = 1$$
, $\Sigma \gamma_i^{'2} = 1$.

Je dis qu'on peut trouver des paramètres a_{ik} tels que:

$$a_{12} + a_{34} = \gamma_1 , \qquad a_{12} - a_{34} = \gamma_1' , a_{13} + a_{42} = \gamma_2 , \qquad a_{13} - a_{42} = \gamma_2' , a_{14} + a_{23} = \gamma_3 , \qquad a_{14} - a_{23} = \gamma_3' ,$$

et tels que $a_{ik} \Gamma_{ik}$ soit un bivecteur unité, définissant, dès lors, un plan fondamental commun à O_1 et à O_2 ; il suffit de poser

$$a_{12}=rac{\gamma_{1}+\gamma_{1}^{'}}{2}\,,\,\cdots$$
 $a_{34}=rac{\gamma_{1}-\gamma_{1}^{'}}{2}\,,\,\cdots$

et l'on a bien

$$\Sigma a_{ik}^2 = 1$$
 , $a_{12}a_{34} + a_{13}a_{42} + a_{14}a_{23} = 0$;

on aura, dès lors:

$$\begin{split} O_1 &= \cos^2\!\varphi - \cos\varphi\sin\varphi \, \left[(a_{12} + a_{34}) \, \left(\varGamma_{12} + \varGamma_{34} \right) + (a_{13} + a_{42}) \, \left(\varGamma_{13} + \varGamma_{42} \right) + \\ &+ (a_{14} + a_{23}) \, \left(\varGamma_{14} + \varGamma_{23} \right) \right] + \sin^2\!\varphi \, \varGamma_5 \, , \end{split}$$

$$\begin{split} O_2 &= \cos^2\!\varphi' - \cos\varphi' \sin\varphi' \; [(a_{12} - a_{34}) \; (\varGamma_{12} - \varGamma_{34}) + (a_{13} - a_{42}) \; (\varGamma_{13} - \varGamma_{42}) + \\ &+ (a_{14} - a_{23}) \; (\varGamma_{14} - \varGamma_{23}) \;] - \sin^2\!\varphi' \; \varGamma_5 \; , \end{split}$$

ces deux rotations d'espèces différentes sont ainsi rapportées à deux plans fondamentaux communs, qui sont les deux plans fondamentaux de la rotation résultante.

On eût pu prévoir que deux rotations singulières d'espèces différentes ont toujours un couple de plans fondamentaux commun, car la rotation résultante R est le produit de deux rotations singulières O_1', O_2' permutables:

 $O_1O_2=R=O_1'O_2'=O_2'O_1'$,

d'où

$$O_1^{\prime -1}O_1 = O_2^{\prime}O_2^{-1} \,,$$

ce qui n'est possible que si le résultat commun de ces multiplications est l'unité, donc

$$O_1 = O_1^{'} \,, \quad O_2 = O_2^{'} \,,$$

et dès lors, O_1 et O_2 ont un couple de plans fondamentaux communs. On a donc encore

$$O_1 O_2 = O_2 O_1$$
.

17. Voici deux théorèmes presque évidents.

Le sous-groupe des rotations singulières de première espèce G_3 (et celui des rotations de seconde espèce G_3) est un sous-groupe invariant du groupe des rotations G_6 autour d'un point.

Car

$$O_1G_3O^{-1}=G_3$$
 ,

puis, si O_1 est dans G_3 et O_2 dans G_3' ,

$$O_2O_1O_2^{-1}=O_1O_2O_2^{-1}=O_1$$
 ,

donc

$$O_2G_3O_2^{-1}=G_3$$
 . (C. Q. F. D.)

 G_6 est le produit direct de G_3 par G'_3 :

$$G_6 = G_3 \times G_3'.$$

C'est ce qui résulte de la définition même du produit direct et des théorèmes précédents.

Toute la théorie précédente peut se transporter mutatis mutandis dans la géométrie elliptique à trois dimensions et l'on peut retrouver avec aisance les propriétés des translations de première espèce et de seconde espèce ainsi que la décomposition d'un déplacement elliptique en un produit de deux translations d'espèces différentes.

18. Transformations infinitésimales de G_3 et de G_3' . Il est manifeste que, si dans les opérateurs O_1 et O_2 , on donne à l'angle φ ou à l'angle φ' des valeurs infinitésimales $\delta \varphi$ et $\delta \varphi'$, on aura, en négligeant $\sin^2 \varphi$ et $\sin^2 \varphi'$ et en remplaçant $\sin \varphi$ par $\delta \varphi$, $\sin \varphi'$ par $\delta \varphi'$, les opérateurs infinitésimaux:

$$egin{aligned} O_1 &= 1 - \left[\gamma_1 \delta \varphi \ (arGamma_{12} + arGamma_{34}) + \gamma_2 \delta \varphi \ (arGamma_{13} + arGamma_{42}) + \gamma_3 \delta \varphi \ (arGamma_{14} + arGamma_{23}) \,
ight], \ O_2 &= 1 - \left[\gamma_1^{'} \delta \varphi^{'} \ (arGamma_{12} - arGamma_{34}) + \gamma_2^{'} \delta \varphi^{'} \ (arGamma_{13} - arGamma_{42}) + \gamma_3^{'} \delta \varphi^{'} \ (arGamma_{14} - arGamma_{23}) \,
ight], \end{aligned}$$

ou encore

$$egin{aligned} O_1 &= 1 - (arGamma_{12} + arGamma_{34}) \; \delta arphi_1 - (arGamma_{13} + arGamma_{42}) \; \delta arphi_2 - (arGamma_{14} + arGamma_{23}) \; \delta arphi_3 \; , \ O_2 &= 1 - (arGamma_{12} - arGamma_{34}) \; \delta arphi_1' - (arGamma_{13} - arGamma_{42}) \; \delta arphi_2 - (arGamma_{14} - arGamma_{23}) \; \delta arphi_3' \; . \end{aligned}$$

Naturellement O_1^{-1} et O_2^{-1} s'obtiennent en changeant dans O_1 et O_2 respectivement $\delta \varphi_i$ par — $\delta \varphi_i$, $\delta \varphi_i'$ par — $\delta \varphi_i'$. En considérant le vecteur

$$V = x_i \Gamma_i$$

on aura, pour O_1 :

$$\begin{split} \delta V &= - \left[\delta \varphi_1 \left(\Gamma_{12} + \Gamma_{34} \right) + \delta \varphi_2 \left(\Gamma_{13} + \Gamma_{42} \right) + \delta \varphi_3 \left(\Gamma_{14} + \Gamma_{23} \right) \right] V + \\ &+ V \left[\delta \varphi_1 \left(\Gamma_{12} + \Gamma_{34} \right) + \delta \varphi_2 \left(\Gamma_{13} + \Gamma_{42} \right) + \delta \varphi_3 \left(\Gamma_{14} + \Gamma_{23} \right) \right], \end{split}$$

et si

soit

$$\delta V = \delta x_i \, \Gamma_i \,,$$

on trouvera sans peine

$$\delta V = \delta_1 V + \delta_2 V + \delta_3 V,$$

où $\delta_i V$ est la contribution à δV due aux termes en $\delta \varphi_i$:

 $egin{align} \delta_1 V &= 2 \left(x_1 \, arGamma_2 - x_2 \, arGamma_1 + x_3 \, arGamma_4 - x_4 \, arGamma_3
ight) \, \delta arphi_1 \, , \ \delta_1 \, x_1 &= - \, 2 \, x_2 \, \delta arphi_1 \, , \ \delta_1 \, x_2 &= \, 2 \, x_1 \, \delta arphi_1 \, , \ \delta_1 \, x_3 &= - \, 2 \, x_4 \, \delta arphi_1 \, , \ \delta_1 \, x_4 &= \, 2 \, x_2 \, \delta arphi_1 \, . \end{array}$

ce qui définit une transformation infinitésimale de symbole:

$$X_1 f = x_1 \frac{\partial f}{\partial x_2} - x_2 \frac{\partial f}{\partial x_1} + x_3 \frac{\partial f}{\partial x_4} - x_4 \frac{\partial f}{\partial x_3}.$$

On trouvera de même

$$X_2 f = x_1 \frac{\partial f}{\partial x_3} - x_3 \frac{\partial f}{\partial x_1} + x_4 \frac{\partial f}{\partial x_2} - x_2 \frac{\partial f}{\partial x_4},$$
 $X_3 f = x_1 \frac{\partial f}{\partial x_4} - x_4 \frac{\partial f}{\partial x_1} + x_2 \frac{\partial f}{\partial x_3} - x_3 \frac{\partial f}{\partial x_2}.$

Le calcul analogue pour O_2 donne:

$$egin{aligned} X_1'f &= x_1rac{\partial f}{\partial x_2} - x_2rac{\partial f}{\partial x_1} - \left(x_3rac{\partial f}{\partial x_4} - x_4rac{\partial f}{\partial x_3}
ight), \ X_2'f &= x_1rac{\partial f}{\partial x_3} - x_3rac{\partial f}{\partial x_1} - \left(x_4rac{\partial f}{\partial x_2} - x_2rac{\partial f}{\partial x_4}
ight), \ X_3'f &= x_1rac{\partial f}{\partial x_4} - x_4rac{\partial f}{\partial x_1} - \left(x_2rac{\partial f}{\partial x_3} - x_3rac{\partial f}{\partial x_2}
ight), \end{aligned}$$

ce qui correspond exactement aux résultats que M. Ullmo a obtenus en appliquant la théorie de M. Cartan sur la structure des groupes.

Recherche des invariants des sous-groupes G_3 et G_3' Semi-vecteurs et spineurs

19. Il est manifeste qu'il n'y a pas de vecteurs invariants par G_3 ni par G_3 . Il se peut qu'il y ait des tenseurs antisymétriques qui le soient. Pour cela, il faut et il suffit que

$$O_1 \left(a_{ik} \, \varGamma_{ik} \right) O_1^{-1} = a_{ik} \, \varGamma_{ik}$$
 ,

quels que soient γ_1 , γ_2 , γ_3 [cf. éq. (7)]. On peut écrire cette équation sous la forme du système suivant

(8)
$$(\Gamma_{12} + \Gamma_{34}) a_{ik} \Gamma_{ik} = (a_{ik} \Gamma_{ik}) (\Gamma_{12} + \Gamma_{34}) ,$$

$$(\Gamma_{13} + \Gamma_{42}) a_{ik} \Gamma_{ik} = (a_{ik} \Gamma_{ik}) (\Gamma_{13} + \Gamma_{42}) ,$$

$$(\Gamma_{14} + \Gamma_{23}) a_{ik} \Gamma_{ik} = (a_{ik} \Gamma_{ik}) (\Gamma_{14} + \Gamma_{23}) ;$$

or ces relations ne sont possibles, outre le cas banal $a_{ik}=0$, comme on s'en rend compte aisément, que si $a_{ik} \Gamma_{ik}$ est un diviseur de zéro¹⁶) et si chacun des membres en est nul. Or

$$\Gamma_{12} + \Gamma_{34} = \Gamma_{12} (1 - \Gamma_5)$$
,

donc

$$\Gamma_{12} (1 - \Gamma_5) a_{ik} \Gamma_{ik} = 0 = (a_{ik} \Gamma_{ik}) \Gamma_{12} (1 - \Gamma_5)$$

mais

$$(1+\Gamma_5)(1-\Gamma_5) = (1-\Gamma_5)(1+\Gamma_5) = 0$$
;

si done, on a

$$a_{ik} \, \Gamma_{ik} = (1 + \Gamma_5) \, a_{ik}' \, \Gamma_{ik}$$
,

où $a'_{ik} \Gamma_{ik}$ est un tenseur quelconque, le tenseur $a_{ik} \Gamma_{ik}$ sera un tenseur invariant pour G_3 car les trois égalités (8) seront vérifiées en même temps.

D'autre part, on peut écrire

$$(1+arGamma_{5})\,a_{ik}^{'}\,arGamma_{ik}^{'}\,arGamma_{ik}^{'}\,arGamma_{ik}^{'}\,arGamma_{ik}^{'}\,arGamma_{34}^{'})\,(arGamma_{12}^{'}-arGamma_{34}^{'})\,(arGamma_{12}^{'}-arGamma_{34}^{'})\,(arGamma_{14}^{'}-arGamma_{23}^{'})\,(arGamma_{14}^{'}-arGam$$

et, par suite, la forme générale des tenseurs invariants par G_3 est:

$$\lambda_1 (\Gamma_{12} - \Gamma_{34}) + \lambda_2 (\Gamma_{13} - \Gamma_{42}) + \lambda_3 (\Gamma_{14} - \Gamma_{23})$$

où λ_1 , λ_2 , λ_3 sont trois nombres arbitraires.

¹⁶) On sait qu'un nombre hypercomplexe, différent de zéro, est dit *diviseur de zéro*, s'il existe un autre nombre hypercomplexe, non-nul aussi, dont le produit par le premier est nul; de tels nombres n'ont pas d'inverse.

De la même manière, les tenseurs invariants par G_3 se mettent sous la forme:

$$\lambda'_{1}(\Gamma_{12}+\Gamma_{34})+\lambda'_{2}(\Gamma_{13}+\Gamma_{42})+\lambda'_{3}(\Gamma_{14}+\Gamma_{23}).$$

On dira que le tenseur — Γ_5 $(a_{ik} \Gamma_{ik})$ est duel du tenseur $a_{ik} \Gamma_{ik}$; dès lors:

Les tenseurs antisymétriques du second ordre, invariants par G_3 , sont opposés à leur duel, alors que ceux qui sont invariants par G_3 sont égaux à leur duel.

Avant de chercher dans quelles circonstances un tel tenseur est un bivecteur, on peut remarquer que l'expression

$$(1 + \Gamma_5) V \times W = \frac{1}{2} (1 + \Gamma_5) (VW - WV)$$

est un tenseur invariant par G_3 , de même

$$(1 - \Gamma_5) V \times W = \frac{1}{2} (1 - \Gamma_5) (VW - WV)$$

l'est par G'_3 , V et W étant deux vecteurs. Or chacun de ces invariants est une somme de trois invariants de la forme:

$$A (\Gamma_{12} \pm \Gamma_{34}) + B (\Gamma_{13} \pm \Gamma_{42}) + C (\Gamma_{14} \pm \Gamma_{23}).$$

Ainsi donc deux vecteurs V et W ont quatre invariants relativement au groupe G_3 , leur produit scalaire

$$v_1w_1 + v_2w_2 + v_3w_3 + v_4w_4$$
,

et les trois combinaisons

$$egin{aligned} v_1w_2 &--v_2w_1 --- (v_3w_4 ---v_4w_3) \ , \ v_1w_3 &--- v_3w_1 --- (v_4w_2 --- v_2w_4) \ , \ v_1w_4 --- v_4w_1 --- (v_2w_3 --- v_3w_2) \ . \end{aligned}$$

De même deux vecteurs V et W ont quatre invariants relativement à G_3' :

$$egin{aligned} v_1w_1 &+ v_2w_2 + v_3w_3 + v_4w_4 \ v_1w_2 -- v_2w_1 + (v_3w_4 -- v_4w_3) \ v_1w_3 -- v_3w_1 + (v_4w_2 -- v_2w_4) \ v_1w_4 -- v_4w_1 + (v_2w_3 -- v_3w_2) \ . \end{aligned}$$

Il ne faut pas oublier de mentionner les deux expressions

$$\sum v_i^2$$
, $\sum w_i^2$,

qui sont aussi bien invariantes par G_3 que par G_3' .

20. MM. Einstein et Mayer ont introduit les notions de semi-vecteurs de première et de seconde espèce. Un semi-vecteur de première espèce est une grandeur à quatre composantes; lorsque l'on fait subir à l'espace E_4 une rotation quelconque se décomposant en

$$R = O_1 O_2$$

le semi-vecteur en question se transforme comme un vecteur de mêmes composantes se transforme par la rotation singulière O_1 . Il est de seconde espèce s'il se transforme par O_2 . C'est dire que les semi-vecteurs sont des grandeurs des groupes G_3 ou G_3' . Deux semi-vecteurs d'une espèce ont donc trois invariants en plus des trois qu'ils ont lorsqu'on les considère comme des vecteurs.

21. Il peut y avoir quelque intérêt à étudier les tenseurs invariants par G_3 ou G_3' qui sont des bivecteurs. Bornons-nous à la première espèce, c'est-à-dire à G_3 . Le tenseur

(9)
$$\lambda_{1}(\Gamma_{12} - \Gamma_{34}) + \lambda_{2}(\Gamma_{13} - \Gamma_{42}) + \lambda_{3}(\Gamma_{14} - \Gamma_{23})$$

est invariant par G_3 ; ce sera un bivecteur, et il représentera un plan invariant, si

(10)
$$\lambda_1^2 + \lambda_2^2 + \lambda_3^2 = 0.$$

Il y a donc ∞^1 plans invariants par G_3^{17}); ils sont déterminés par les rapports $\lambda_1 : \lambda_2 : \lambda_3$ et par la condition (10).

Montrons que par chaque droite isotrope, on peut faire passer un tel plan.

Choisissons les axes de telle façon que la droite isotrope considérée porte le vecteur

$$V = v_1 \Gamma_1 + v_2 \Gamma_2$$
, avec $v_1^2 + v_2^2 = 0$.

Pour que

$$W = w_i \Gamma_i$$

forme avec V un bivecteur du type indiqué, il faut et il suffit que

$$\frac{1}{2}(VW - WV)$$
,

soit de la forme (9). Or

$$\frac{1}{2} \left(VW - WV \right) = \left(v_1 w_2 - v_2 w_1 \right) \Gamma_{12} + v_1 w_3 \Gamma_{13} + v_1 w_4 \Gamma_{14} + v_2 w_3 \Gamma_{23} - v_2 w_4 \Gamma_{42} ,$$

¹⁷⁾ Cela veut dire qu'ils dépendent d'un paramètre complexe.

le coefficient de Γ_{12} doit être opposé à celui de Γ_{34} , celui de Γ_{13} à celui de Γ_{42} , celui de Γ_{14} à celui de Γ_{23} , donc:

$$egin{aligned} v_1 w_2 - v_2 w_1 &= 0 \;, \ v_1 w_3 - v_2 w_4 &= 0 \;, \ v_1 w_4 + v_2 w_3 &= 0 \;, \end{aligned}$$

d'où

$$\frac{v_2}{v_1} = \frac{w_2}{w_1} = \frac{w_3}{w_4} = -\frac{w_4}{w_3}$$

done

$$w_3^2 + w_4^2 = 0 ,$$

c'est-à-dire

$$w_3=\pm\,i\,w_4$$
 et $w_2=\pm\,i\,w_1$,

ce qui montre que W est aussi isotrope, mais ce n'est pas un vecteur isotrope quelconque, il est de la forme

$$W = s_1 \left(\Gamma_1 \pm i \Gamma_2 \right) + s_2 \left(\Gamma_3 \mp i \Gamma_4 \right),$$

 s_1 et s_2 étant deux paramètres arbitraires, alors qu'un vecteur isotrope, en général, dépend de trois paramètres. Plus précisément, la direction isotrope de W dépend d'un paramètre, le rapport $\frac{s_1}{s_2}$, tandis que la direction la plus générale d'une droite isotrope dépend de deux paramètres.

22. On peut retrouver les résultats précédents par une méthode plus générale et plus rigoureuse¹⁸). Cherchons deux vecteurs V et W dont le plan soit invariant par G_3 . On devra écrire:

(11)
$$\begin{aligned} v_1 w_2 - v_2 w_1 &= - (v_3 w_4 - v_4 w_3) , \\ v_1 w_3 - v_3 w_1 &= - (v_4 w_2 - v_2 w_4) , \\ v_1 w_4 - v_4 w_1 &= - (v_2 w_3 - v_3 w_2) , \end{aligned}$$

d'où après multiplication par v_1 , v_2 , v_3 et addition,

$$v_1 (v_2 w_2 + v_3 w_3 + v_4 w_4) - (v_2^2 + v_3^2 + v_3^2) w_1 = 0$$
,

soit

$$v_1 V \cdot W - V^2 w_1 = 0 ,$$

d'où, bien évidemment,

¹⁸⁾ Dans la première méthode, V a une forme particulière, il se pourrait qu'on objectât que la forme de W qu'on a trouvée provînt du choix particulier des axes.

$$\frac{v_1}{w_1} = \frac{V^2}{V \cdot W} = \frac{v_2}{w_2} = \frac{v_3}{w_2} = \frac{v_4}{w_4}$$

ce qui montre soit que V et W sont parallèles; c'est là une banalité qui ne répond pas à notre problème, soit que

$$V^2 = 0$$
 et $V \cdot W = 0$;

d'ailleurs, en multipliant par w_2, w_3, w_4 , et additionnant membre à membre les équations (11), on eût trouvé

$$W^2=0$$
.

Les plans invariants sont donc déterminés par des paires de vecteurs isotropes perpendiculaires l'un à l'autre.

23. Or les composantes d'un vecteur isotrope V, pour lequel on a donc

$$\Sigma v_i^2 = 0$$
 ,

peuvent se représenter au moyen de trois paramètres sous la forme

$$egin{aligned} v_1 &= i\,\lambda\,(1-\mu\,
u)\,, \ v_2 &= \,\lambda\,(1+\mu\,
u)\,, \ v_3 &= i\,\lambda\,(\mu+
u)\,, \ v_4 &= \,\lambda\,(\mu-
u)\,; \end{aligned}$$

soit pour W la représentation analogue:

$$egin{aligned} w_1 &= i\,\lambda'\; (1-\mu'\, v') \;, \ w_2 &= \;\lambda'\; (1+\mu'\, v') \;, \ w_3 &= i\,\lambda'\; (\mu'\, + \,v') \;, \ w_4 &= \;\lambda'\; (\mu'-v') \;. \end{aligned}$$

La condition $\Sigma v_i w_i = 0$ donne

$$(\mu - \mu') (\nu - \nu') = 0 ,$$

et les conditions (11) donnent:

$$(\mu - \mu') (\nu + \nu') = 0,$$

 $(\mu - \mu') (1 + \nu \nu') = 0,$
 $(\mu - \mu') (2 - \nu \nu') = 0.$

On tire de là

$$\mu=\mu'=0.$$

Remarquons maintenant que si V et W sont des solutions de notre problème, $\varrho V + \sigma W$ et $\varrho' V + \sigma' W$ en sont encore. On peut s'arranger, en particulier, pour que les deux vecteurs définissant le plan invariant soient chacun de la forme $aU + \beta Z$, U et Z étant deux vecteurs isotropes orthogonaux déterminés du plan. En effet, fixons μ , ν , $\mu' = \mu$. Posons ensuite $\lambda = \lambda' = 1$, puis

$$arrho v_1 + \sigma w_1 = i(arrho v_2 + \sigma w_2)$$
 , $arrho v_3 + \sigma w_3 = i(arrho v_4 + \sigma w_4)$;

on tire de là

$$\varrho (1 - \mu \nu) + \sigma (1 - \mu \nu') = \varrho (1 + \mu \nu) + \sigma (1 + \mu \nu'),$$

$$\varrho (\mu + \nu) + \sigma (\mu + \nu') = \varrho (\mu - \nu) + \sigma (\mu - \nu'),$$

soit

$$\varrho \, \nu + \sigma \, \nu' = 0$$
, donc $\varrho = \nu'$, $\sigma = -\nu$, par exemple.

Puis, posons

$$\begin{split} \varrho' \, v_1 + \sigma' \, w_1 &= -i \, (\varrho' \, v_2 + \sigma' \, w_2) \; , \\ \varrho' \, v_3 + \sigma' \, w_3 &= -i \, (\varrho' \, v_4 + \sigma' \, w_4) \; , \end{split}$$

d'où

$$\begin{array}{l} \varrho' \; (1 - \mu \, \nu) + \sigma' \; (1 - \mu \, \nu') = - \; \varrho' \; (1 + \mu \, \nu) - \sigma' \; (1 + \mu \, \nu') \; , \\ \varrho' \; (\mu \; + \; \; \nu) + \sigma' \; (\mu \; + \; \; \nu') = - \; \varrho' \; (\mu - \; \; \nu) - \sigma' \; (\mu - \; \; \nu') \; , \end{array}$$

soit

$$\varrho' + \sigma' = 0.$$

Ainsi donc, la paire des deux vecteurs — qu'on appellera encore V et W — isotropes rectangulaires, qui soit la plus simple possible pour déterminer un plan invariant est définie par les égalités

$$egin{align} v_1 &= i \, (
u' -
u) \,, & w_1 &= i \, \mu (
u' -
u) \,, & v_2 &=
u' -
u \,, & w_2 &= - \, \mu \, (
u' -
u) \,, & v_3 &= i \, \mu \, (
u' -
u) \,, & w_3 &= - \, i \, (
u' -
u) \,, & v_4 &=
u' -
u \,, & v_4 &=
u' -
u' -
u \,, & v_4 &=
u' -
u' -$$

et l'on peut poser, ce qui n'est pas contradictoire avec la première méthode, mais plus précis:

(12)
$$V = \xi_1 \left(\Gamma_1 - i\Gamma_2 \right) + \xi_2 \left(\Gamma_3 - i\Gamma_4 \right) ,$$

$$W = \xi_2 \left(\Gamma_1 + i\Gamma_2 \right) - \xi_1 \left(\Gamma_2 + i\Gamma_4 \right) ;$$

le bivecteur invariant est alors

$$2i\xi_1\xi_2(\Gamma_{12}-\Gamma_{34})-(\xi_1^2+\xi_2^2)(\Gamma_{13}-\Gamma_{42})-i(\xi_1^2-\xi_2^2)(\Gamma_{14}-\Gamma_{23})$$
.

On a donc formé des vecteurs isotropes ayant deux "composantes" distinctes. A chacun d'eux, V, on peut en associer un autre, V, par une règle que les équations (12) expriment (si l'on fait jouer aux axes Ox_1 et Ox_2 un rôle particulier). Le produit VW est alors invariant par G_3 .

Réciproquement, on peut se donner un bivecteur invariant par G_3 :

$$\gamma_1 (\Gamma_{12} - \Gamma_{34}) + \gamma_2 (\Gamma_{13} - \Gamma_{42}) + \gamma_3 (\Gamma_{14} - \Gamma_{23})$$
 ,

avec

(13)
$$\gamma_1^2 + \gamma_2^2 + \gamma_3^2 = 0.$$

Comme on peut résoudre l'équation (13) par les formules bien connues:

$$egin{align} \gamma_1 &= 2\,i\,\,\xi_1\,\,\xi_2\,, \ \gamma_2 &= -\,(\xi_1^2 + \xi_2^2)\,, \ \gamma_3 &= -\,i\,(\xi_1^2 - \xi_2^2)\,, \ \end{pmatrix}$$

dépendent de deux paramètres, les formules (12) définissent un couple de vecteurs isotropes perpendiculaires dans le bivecteur donné; ce couple n'est évidemment pas unique, car si (ξ_1, ξ_2) en définit un, $(-\xi_1, -\xi_2)$ en définit un autre, et l'on peut encore échanger le rôle des γ_i dans (13).

24. En partant des conditions relatives à G_3 on eût obtenu les expressions suivantes:

$$egin{aligned} V' &= \eta_1 \left(arGamma_1 - i arGamma_2
ight) + \eta_2 \left(arGamma_3 + i arGamma_4
ight), \ W' &= \eta_2 \left(arGamma_1 + i arGamma_2
ight) - \eta_1 \left(arGamma_3 - i arGamma_4
ight), \end{aligned}$$

et le bivecteur invariant eût été:

$$2 i \eta_1 \eta_2 (\Gamma_{12} + \Gamma_{34}) - (\eta_1^2 + \eta_2^2) (\Gamma_{13} + \Gamma_{42}) + i (\eta_1^2 - \eta_2^2) (\Gamma_{14} + \Gamma_{23})$$
.

25. On peut résumer les résultats précédents dans les définitions et les théorèmes suivants.

Considérons dans E_4 deux plans réels absolument perpendiculaires, passant par le point O et, dans ces plans, quatre axes de coordonnées. Prenons dans chacun de ces plans deux vecteurs isotropes distincts v_1 et $\tilde{v_1}$ pour le premier, v_2 et $\tilde{v_2}$ pour le second [dans les formules (12), on a supposé que les deux plans sont les plans des x_1 , x_2 et des x_3 , x_4]. Considérons les vecteurs isotropes à deux composantes

$$(15) \xi_1 v_1 + \xi_2 v_2$$

nous les appellerons des *spineurs*, et, si nous les considérons comme des semi-vecteurs de première espèce, nous les nommerons *spineurs de première espèce*. A un spineur comme (15) correspond un spineur

$$\xi_2 \widetilde{v}_1 - \xi_1 \widetilde{v}_2$$

qui lui est associé.

Un bivecteur invariant par G_3 contient un et un seul spineur de la forme (15) (au sens près): ce bivecteur est parfaitement déterminé par le couple de vecteurs associés (15) et (16) et, réciproquement, tout bivecteur invariant par G_3 détermine un couple de spineurs associés de la forme (15) et (16).

En formant les expressions:

$$\eta_1 v_1 + \eta_2 \widetilde{v_2} ,$$

$$\eta_2 \overset{\sim}{v_1} - \eta_1 v_2 ,$$

on obtient des spineurs associés dans un bivecteur invariant par G_3 .

Remarquons que v_1v_2 , ou v_1v_2 sont des bivecteurs invariants par G_3' ; d'une manière générale, le produit de deux spineurs comme (15) ou de deux spineurs comme (16) sont des bivecteurs invariants par G_3' et, inversement, le produit de deux spineurs du type (17) ou de deux spineurs du type (18) est un bivecteur invariant par G_3 .

26. On voit donc que, de même que les vecteurs de E_4 (ou les semivecteurs) sont des grandeurs à quatre composantes rapportées aux vecteurs de base Γ_1 , Γ_2 , Γ_3 , Γ_4 , les spineurs sont des grandeurs à deux composantes, associées deux à deux, chaque paire étant rapportée aux spineurs de base

$$\varGamma_1 = i\varGamma_2, \varGamma_1 + i\varGamma_2, \varGamma_3 = i\varGamma_4, \varGamma_3 + i\varGamma_4,$$

qu'on représentera dorénavant par les lettres

$$\gamma_1, \quad \tilde{\gamma}_1, \quad \gamma_2, \quad \tilde{\gamma}_2,$$

respectivement. Ayant ainsi fixé les spineurs de base, une paire de spineurs associés par G_3 est déterminée univoquement par un bivecteur invariant dans G_3 par des formules de la forme

(19)
$$s_{1}^{*} = \xi_{1}\gamma_{1} + \xi_{2}\gamma_{2}, \\ s_{1}^{**} = \xi_{2}\widetilde{\gamma}_{1} - \xi_{1}\widetilde{\gamma}_{2};$$

une paire de spineurs associés par $G_3^{'}$ est déterminée univoquement par un bivecteur invariant dans $G_3^{'}$ par des formules de la forme

(20)
$$s_{2}^{*} = \eta_{1}\gamma_{1} + \eta_{2}\widetilde{\gamma}_{2}, \\ s_{2}^{**} = \eta_{2}\widetilde{\gamma}_{1} - \eta_{1}\gamma_{2}.$$

On peut prendre pour les spineurs de base quatre vecteurs isotropes quelconques, situés deux à deux dans deux plans réels¹⁹) absolument perpendiculaires. On les associe deux à deux et l'on obtient, par les combinaisons (19) ou (20) des paires de spineurs associés par G_3 ou par G_3 .

Chapitre VI

Expression des rotations de l'espace E_4 au moyen du groupe unimodulaire de deux variables

27. On a vu que, parmi les vecteurs isotropes de \boldsymbol{E}_4 les spineurs

$$\begin{array}{ll} \xi_1\gamma_1+\xi_2\gamma_2\;, & \qquad \qquad \gamma_1=\Gamma_1-i\Gamma_2\;, \quad \gamma_2=\Gamma_3-i\Gamma_4\;, \\ \eta_1\gamma_1+\eta_2\widetilde{\gamma}_2\;, & \qquad \qquad \circ \grave{\mathsf{u}} & \qquad \widetilde{\gamma}_1=\Gamma_1+i\Gamma_2\;, \quad \widetilde{\gamma}_2=\Gamma_3+i\Gamma_4\;, \end{array}$$

et leurs associés

$$\xi_2 \widetilde{\gamma}_1 - \xi_1 \widetilde{\gamma}_2$$
,
 $\eta_2 \widetilde{\gamma}_1 - \eta_1 \gamma_2$,

jouent un rôle particulier. On pourrait d'ailleurs remplacer γ_1 et γ_2 respectivement par

$$\Gamma_1 - i\Gamma_3$$
, $\Gamma_4 - i\Gamma_2$,

ou par

$$\Gamma_1 - i\Gamma_4$$
 , $\Gamma_2 - i\Gamma_3$,

mais le système sus-indiqué suffira à notre propos.

On va considérer dorénavant les spineurs des formes suivantes:

(Ia)
$$\eta_1 \gamma_1 + \eta_2 \tilde{\gamma}_2$$
, (IIa) $\xi_1 \gamma_1 + \xi_2 \gamma_2$,
(Ib) $\tau_1 \tilde{\gamma}_1 + \tau_2 \gamma_2$, (IIb) $\sigma_1 \tilde{\gamma}_1 + \sigma_2 \tilde{\gamma}_2$.

¹⁹) Cette association doit se faire de telle manière que si une rotation amène les deux plans en question sur (x_1, x_2) , (x_3, x_4) , on ait amené les nouveaux spineurs de base respectivement sur $\gamma_1, \widetilde{\gamma}_1, \gamma_2, \widetilde{\gamma}_2$.

Le produit de deux spineurs (IIa) est un bivecteur invariant de seconde espèce (c'est-à-dire invariant par G'_3):

$$(\xi_1\gamma_1+\xi_2\gamma_2)\,(\zeta_1\gamma_1+\zeta_2\gamma_2)=(\xi_1\zeta_2-\xi_2\zeta_1)\,\gamma_1\gamma_2$$
 ,

car

$$\gamma_1^2 = \gamma_2^2 = 0$$
 et $\gamma_1 \gamma_2 = \Gamma_{13} + \Gamma_{42} - i(\Gamma_{14} + \Gamma_{23})$.

Dès lors si l'on considère un spineur (II a) comme un vecteur de E_4 , une rotation singulière de seconde espèce transforme linéairement ses composantes (ξ_1, ξ_2) de telle manière que le produit de deux tels spineurs reste invariant, c'est-à-dire, si l'on désigne par des accents les nouvelles composantes (ξ_1, ξ_2) et (ζ_1, ζ_2) se transforment en (ξ_1', ξ_2') et (ζ_1', ζ_2') et l'on a:

$$\xi_1 \zeta_2 - \xi_2 \zeta_1 = \xi_1' \zeta_2' - \xi_2' \zeta_1'$$
;

cela signifie que la rotation de seconde espèce induit sur les composantes d'un spineur (IIa) une transformation linéaire de déterminant un, mais cela prouve aussi que (IIa) est un spineur de seconde espèce; (IIb) aussi.

On peut montrer plus rigoureusement ce fait au moyen des transformations infinitésimales de G_3 . Si

$$V = \xi_1 \gamma_1 + \xi_2 \gamma_2 ,$$

on a

$$\begin{split} V + \, \delta \, V &= \, [\, 1 \, - \, (\Gamma_{12} \, - \, \Gamma_{34}) \, \delta \varphi_1 \, - \, (\Gamma_{13} \, - \, \Gamma_{42}) \, \, \delta \varphi_2 \, - \, (\Gamma_{14} \, - \, \Gamma_{23}) \, \, \delta \varphi_3 \,] \, V [\, 1 \, + \, \\ &+ \, (\Gamma_{12} \, - \, \Gamma_{34}) \, \, \delta \varphi_1 \, + \, (\Gamma_{13} \, - \, \Gamma_{42}) \, \, \delta \varphi_2 \, + \, (\Gamma_{14} \, - \, \Gamma_{23}) \, \, \delta \varphi_3 \,] \, , \end{split}$$

et l'on trouve

$$\delta \xi_1 = (1 + \delta a) \xi_1 + \delta \beta \xi_2,$$

 $\delta \xi_2 = \delta \gamma \xi_1 + (1 - \delta a) \xi_2,$

les $\delta \alpha$, $\delta \beta$, $\delta \gamma$ étant des combinaisons linéaires des $\delta \varphi_1$, $\delta \varphi_2$, $\delta \varphi_3$ et l'on a bien ainsi une transformation infinitésimale du groupe unimodulaire sur (ξ_1, ξ_2) . On trouve aussi, en prenant la forme finie des transformations de G'_3 , que γ_1 et γ_2 sont des combinaisons linéaires de déterminant un de leurs transformés. Enfin on voit sans peine que

$$\widetilde{V} = \widetilde{\xi_1}\widetilde{\gamma_1} + \widetilde{\xi_2}\widetilde{\gamma_2}$$

se transforme en un spineur du même type, de manière que les $(\tilde{\xi}_1, \tilde{\xi}_2)$ subissent une transformation unimodulaire.

Remarquons que le produit scalaire de V par \tilde{V} est $2(\xi_1 \tilde{\xi_1} + \xi_2 \tilde{\xi_2})$, comme il est invariant, on voit que toute transformation de G_3 induit sur (ξ_1, ξ_2) et sur $(\tilde{\xi}_1, \tilde{\xi}_2)$ des transformations unimodulaires contragrédientes.

On trouve une propriété analogue pour les spineurs (Ia) et (Ib) transformés par les transformations de G_3 , on peut donc formuler le théorème suivant:

Un spineur (Ia) ou (Ib) se transforme par les transformations de G_3 en un spineur analogue; de tels spineurs sont dits de première espèce; les composantes d'un spineur de première espèce se transforment par le groupe linéaire spécial (à deux variables); deux spineurs de première espèce, des formes (Ia) et (Ib) respectivement, se transforment en deux spineurs des mêmes formes, mais leurs composantes respectives subissent des transformations unimodulaires contragrédientes.

On a une proposition analogue pour les spineurs (II a) et (II b) qui sont de seconde espèce et cela pour les transformations du groupe G_3' .

Remarquons qu'un spineur de seconde espèce [(IIa), par exemple] a un associé [(IIb), où $\sigma_1 = \xi_2$, $\sigma_2 = -\xi_1$], avec lequel il forme un bivecteur invariant de *première* espèce (c'est-à-dire invariant dans G_3).

28. Tout vecteur de E_4 se met évidemment d'une seule manière sous la forme

$$V = \xi_1 \gamma_1 + \xi_2 \gamma_2 + \widetilde{\xi_1} \widetilde{\gamma_1} + \widetilde{\xi_2} \widetilde{\gamma_2}$$
,

et si V est réel,

$$\widetilde{\xi}_i = \overline{\xi}_i = \text{imaginaire conjugué de } \xi_i, \quad (i = 1, 2).$$

Soit, dès lors, une rotation de E_4 dont les facteurs dans G_3 et G_3' sont O_1 et O_2 . Formons

sont deux matrices unimodulaires et contragrédientes.

Ensuite

$$O_{2} O_{1} V O_{1}^{-1} O_{2}^{-1} = O_{2} \left[(t_{11} \xi_{1} + t_{12} \xi_{2}) \gamma_{1} + (\widetilde{t}_{21} \widetilde{\xi}_{1} + \widetilde{t}_{22} \widetilde{\xi}_{2}) \widetilde{\gamma}_{2} \right] O_{2}^{-1} + \\ + O_{2} \left[(\widetilde{t}_{11} \widetilde{\xi}_{1} + \widetilde{t}_{12} \widetilde{\xi}_{2}) \widetilde{\gamma}_{1} + (t_{21} \xi_{1} + \widetilde{t}_{22} \xi_{2}) \gamma_{2} \right] O_{2}^{-1} = \\ = \left[u_{11} (t_{11} \xi_{1} + t_{12} \xi_{2}) + u_{12} (\widetilde{t}_{21} \widetilde{\xi}_{1} + \widetilde{t}_{22} \widetilde{\xi}_{2}) \right] \gamma_{1} + \\ + \left[u_{21} (t_{11} \xi_{1} + t_{12} \xi_{2}) + u_{22} (\widetilde{t}_{21} \widetilde{\xi}_{1} + \widetilde{t}_{22} \widetilde{\xi}_{2}) \right] \gamma_{2} + \\ + \left[\widetilde{u}_{11} (\widetilde{t}_{11} \widetilde{\xi}_{1} + \widetilde{t}_{12} \widetilde{\xi}_{2}) + \widetilde{u}_{12} (t_{21} \xi_{1} + t_{22} \xi_{2}) \right] \widetilde{\gamma}_{1} + \\ + \left[\widetilde{u}_{21} (\widetilde{t}_{11} \widetilde{\xi}_{1} + \widetilde{t}_{12} \widetilde{\xi}_{2}) + \widetilde{u}_{22} (t_{21} \xi_{1} + t_{22} \xi_{2}) \right] \widetilde{\gamma}_{2} ,$$
où
$$U = \begin{bmatrix} u_{11}, u_{12} \\ u_{21}, u_{22} \end{bmatrix}, \quad \widetilde{U} = \begin{bmatrix} \widetilde{u}_{11}, \widetilde{u}_{12} \\ \widetilde{u}_{21}, \widetilde{u}_{22} \end{bmatrix}$$

sont aussi deux matrices unimodulaires et contragrédientes.

Le dernier membre de (23) représente le vecteur V' provenant de V par la rotation considérée de $E_4\colon O=O_1O_2$.

T dépend de trois paramètres complexes, \widetilde{T} est déterminée lorsque T l'est; U dépend aussi de trois paramètres complexes et \widetilde{U} se déduit de U. On a ainsi obtenu par (23) une représentation du groupe G_6 à six paramètres complexes. On dit, dans la théorie de la représentation linéaire des groupes, que la représentation de R ainsi obtenue est le produit de deux représentations linéaires unimodulaires.

Cherchons la forme des transformations unimodulaires précédentes dans le cas où les rotations sont réelles. Soit V un vecteur réel, alors $O_1VO_1^{-1}$, est réel, et comme

$$\tilde{\xi}_i = \bar{\xi}_i$$

il faut que

 $\widetilde{t}_{ik}\widetilde{\xi}_k$ soit conjugué de $t_{ik}\xi_k$

donc

$$\tilde{t}_{ik} = \overline{t}_{ik}$$
.

Cela revient à dire que T est une transformation unimodulaire dont la conjuguée lui est contragrédiente. Il en est de même pour U.

Voyons à exprimer ces conditions pour avoir les t_{ik} ou les u_{ik} . Ecrivons plutôt

$$T=\left\|egin{array}{ccc}A\;,\;B\\C\;,\;D\end{array}
ight\|\;,\qquad ar{T}=\left\|egin{array}{ccc}ar{A}\;,\;ar{B}\\ar{C}\;,\;ar{D}\end{array}
ight\|\;,$$

et à cause de la contragrédience

$$A\overline{A} + B\overline{B} = 1$$
,
 $B\overline{B} + D\overline{D} = 1$,
 $A\overline{B} + C\overline{D} = 0$,

et puisque T est unimodulaire

$$AD-BC=1$$
.

On voit facilement que

$$D=\overline{A}$$
, $C=-\overline{B}^{20}$).

Si done

$$A = a + ib$$
, $B = c + id$,

$$T = \left\| egin{array}{ccc} a + ib \; , \; c + id \ -c + id \; , \; a - ib \end{array}
ight\| ext{avec } a^2 + b^2 + c^2 + d^2 = 1 \; ;$$

de même pour U; T et U dépendent donc chacune de trois paramètres réels.

On peut dire, comme M. E. Cartan l'a montré d'un point de vue très général dans sa théorie des groupes réels²¹):

Il y a isomorphie entre:

Le groupe linéaire formé du groupe linéaire, — spécial, — de la forme d'Hermite $x_1\overline{x}_1 + x_2\overline{x}_2$ et du groupe linéaire, — spécial, — de la forme d'Hermite $x_3\overline{x}_3 + x_4\overline{x}_4$,

le groupe linéaire de la forme quadratique réelle $x_1^2 + x_2^2 + x_3^2 + x_4^2$.

Chapitre VII

Examen du groupe de Lorentz

29. On peut facilement transformer les résultats des chapitres précédents de manière à les appliquer au groupe linéaire qui conserve la forme quadratique de Minkowski

$$x_1^2 + x_2^2 + x_3^2 - x_4^2$$
.

Il suffirait de considérer des unités Γ_i avec

$$\Gamma_A^2 = -1,$$

 $[\]widetilde{t_{12}} = -t_{21}$, $\widetilde{t_{21}} = -t_{12}$, $\widetilde{t_{22}} = t_{11}$.

²¹⁾ Cartan, loc. cit. p. 354.

les autres carrés étant toujours égaux à un. Il est préférable, pour aller plus vite, de faire correspondre à tout point de l'espace ordinaire à quatre dimensions (x_1, x_2, x_3, x_4) le point de l'univers de Minkowski (x_1, x_2, x_3, ix_4) et réciproquement.

On trouve encore que le groupe \mathcal{G}_6 de Lorentz est le produit direct de deux sous-groupes \mathcal{G}_3 et \mathcal{G}_3' mais alors que les transformations au produit desquelles est égale une rotation de l'espace E_4 à quatre dimensions sont réelles si la rotation totale est réelle, il n'en est plus ainsi pour le groupe de Lorentz. Les conditions dans lesquelles les transformations correspondantes de \mathcal{G}_3 et de \mathcal{G}_3' déterminent une transformation de Lorentz réelle sont toutes différentes, alors que pour le groupe complexe de Lorentz, elles sont tout à fait analogues (cf. éq. 23).

Un vecteur réel de l'univers de Minkowski correspondra au vecteur

$$V = v_1 \Gamma_1 + v_2 \Gamma_2 + v_3 \Gamma_3 + i v_4 \Gamma_4$$
,

(où les v_k sont réels) de l'espace E_4 . Si on écrit

$$V = \xi_1 \gamma_1 + \xi_2 \gamma_2 + \widetilde{\xi}_1 \widetilde{\gamma}_1 + \widetilde{\xi}_2 \widetilde{\gamma}_2$$
,

 ξ_1 et $\widetilde{\xi}_1$ sont imaginaires conjugués, ξ_2 et $\widetilde{\xi}_2$ sont réels.

Dans la formule (23) on doit avoir, en utilisant les remarques de la note de la page 302, et en posant:

$$T = \left\| egin{aligned} A \ , \ B \ C \ , \ D \end{aligned}
ight\| \ , \qquad U = \left\| egin{aligned} A' \ , \ B' \ C' \ , \ D' \end{aligned}
ight\| \ , \ V' = \left[A' \ (A \xi_1 + B \xi_2) \ + \ B' \ (- B \widetilde{\xi}_1 + A \widetilde{\xi}_2) \ \right] \gamma_1 + \ + \left[C' \ (A \xi_1 + B \xi_2) \ + \ D' \ (- B \widetilde{\xi}_1 + A \widetilde{\xi}_2) \ \right] \gamma_2 + \ + \left[D' \ (D \widetilde{\xi}_1 - C \xi_2) \ - \ C' \ (C \xi_1 + D \xi_2) \ \right] \widetilde{\gamma}_1 + \ + \left[- B' \ (D \widetilde{\xi}_1 - C \widetilde{\xi}_2) + \ A' \ (C \xi_1 + D \xi_2) \ \right] \widetilde{\gamma}_2 \ . \end{aligned}$$

Pour que la transformation de Lorentz soit réelle, il faut que les coefficients de γ_2 et de $\widetilde{\gamma}_2$ soient réels, ceux de γ_1 et $\widetilde{\gamma}_1$, imaginaires conjugués, si ξ_2 et $\widetilde{\xi}_2$ sont réels et $\widetilde{\xi}_1$ conjugué de ξ_1 . On voit que ces conditions impliquent que

$$C'A=-\overline{D}'\,\overline{B}\;;\;\;AA'=\overline{D}\,\overline{D}'\;,\;\;AB'=-CD'\;\; ext{(r\'eels)}$$
 $B'D=\overline{A}'\,\overline{C}\;;\;\;BB'=\overline{C}\,\overline{C}'\;,\;\;A'B=-C'D\;\; ext{(r\'eels)}$ $C'B,\,D'A,\,B'C,\,A'D\;\, ext{r\'eels}.$

On tire de là

$$B' = -\overline{C}, \quad C' = -\overline{B}, \quad A' = \overline{D}, \quad D' = \overline{A}.$$

Les transformations T et U ont alors les matrices:

$$T = \left\| egin{array}{ccc} A \;,\; B \ C \;,\; D \end{array}
ight\| \;, \qquad U = \left\| egin{array}{ccc} \overline{D} \;,\; -\overline{\overline{C}} \ -\overline{\overline{B}} \;,\; \overline{\overline{A}} \end{array}
ight\| \;,$$

et U est déterminée lorsque T l'est. On voit qu'à une transformation de Lorentz réelle est associée une transformation unimodulaire à trois paramètres complexes. U est la conjuguée de la contragrédiente de T.

Il y a donc isomorphie entre²²):

Le groupe linéaire spécial à deux variables complexes x_1 , x_2 , le groupe linéaire de la forme quadratique réelle $x_1^2 + x_2^2 + x_3^2 - x_4^2$.

(Reçu le 25 décembre 1935.)

²²) Cartan, loc. cit. p. 353.