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Les problèmes de représentation
conforme d'HelmhoItz; théories des sillages
et des proues

Par Jean Leray, Paris (suite*))

V. Cas où la solution du problème du sillage est unique

26° Préliminaires

Soit une fonction l (s) résolvant le problème du sillage :

(5,1) W=V{l(s)9
Nous avons prouvé au § 11 que V possède une différentielle de FréchetW.

Soient AW[l], ôb, ôc des variations des données; écrivons l'équation,
nommée équation aux variations,

(5,2) ôl(s)= \N{ôl(s), AW[ll ôb,ôc; W[l(s)], b, c};

W est linéaire et complètement continue; (5,2) est donc une équation de

Fredholm.
La théorie des équations fonctionnelles établit les propositions suivantes :

Supposons que l'équation (5,2) possède une solution unique; alors l(s)
est une solution isolée de (5,1); quand A W[l], ôb, ôc sont suffisamment
petits, le problème du sillage posé pour l'obstacle W[l]-{-A W\l], 6+ ôb,

c-\~ ôc possède au moins une solution voisine de l(s); ôl(s) est la partie
principale de la différence entre l(s) et ces solutions voisines de l(s). En
outre la solution ôl(s) de (5,2), qui est supposée unique, a un indice
topologique égal à celui de la solution l(s) de (5,1). L'étude de (5,2)

permet donc de préciser les indices des solutions de (5,1) et par suite le
nombre des solutions de cette équation, puisque leur indice total vaut + 1.

27. Enoncé du problème aux limites de M. Weinstein

Nous allons exposer les calculs41) par lesquels M. Weinstein transforme

la résolution de (5,2) en la recherche d'une fonction harmonique /?

assujettie à certaines conditions aux limites.
*) Voir ce journal vol. 8 pag. 149.

41 M. Weinstein a fait ces calculs dans le cas du jet; M. Jacob m'a aidé à les transposer
au cas présent.
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Introduisons les quantités ôQ, ôa, ôs0, ôco que définissent les relations
(1,20), (1,24) où l'on pose ôL ôl; définissons ôf et ôz par les

relations (1,1) et (1,3) difïérentiées logarithmiquement :

(5,3) i/^^-f 2*ms0ôs0 /K ^ dôz
___ .Â dôf

Ces quantités sont les parties principales des variations que subissent,
en un point £ fixe, Q(Ç), z(£), quand ôl est la partie principale de la
variation de l(s) qui correspond à une variation des données.

Posons

Quand ôl est la partie principale de la variation de l, y est la partie
principale de la variation que subit f(z) en un point z fixe.42)

Nous allons transformer les conditions imposées à ôco en conditions
imposées à fl:

La relation qui lie y, ôco, ôf est

d \dz<.. *a! dôf _

il suffit de remplacer dzjdf par ei(ù pour lui donner les formes suivantes:

(5'6) ^ + id^(Y-ôf)

(5,6) -Z + %-{Y-if) -%dm-.

(5,7) y ie-i(ùjeiù)[ôfdœ — ôcodf]

y et dy/dÇ sont donc hôlderiennes dans la moitié supérieure du cercle

ICI ^1, sauf peut-être au voisinage des points f 0, ei8°, ^ 1.

a) Le long du demi-cercle f ei8 (0 < s < n) nous devons avoir d'après
(1,20) et (1,23)

(5,8) i^fpiil-il + JÎPra + î-.
42 Cette interprétation de y, quand elle est légitime, permet de déduire rapidement de

l'énoncé même du problème du sillage que fi \ (y) doit vérifier des conditions aux limites
simples sur l'obstacle et sur les lignes libres. Toutefois elle ne permet pas d'obtenir
l'ensemble des conditions imposées à /?.
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Remplaçons dans (5,4) ôa> par cette expression et dz par eiWdl; il vient

ôz (é*

z[l] est le point de l'obstacle dont l'abscisse curviligne est l; Az[l] est la
variation connue de cette fonction; un choix particulier vient d'être fait
pour la constante d'intégration, en sorte que y et ô co se correspondent
biunivoquement. Portons dans (5,5) la valeur obtenue pour ôz; il vient

(5,9) y=^fexôl—e~i(ùAz[l]+ôf {+pomO^s ^s0;—pour so^

Nous avons donc

(5, 10) fi —1{e~iù)Az[l]} sur le demi-cercle £ eu;

le second membre de cette relation est une donnée.

b) Sur le diamètre (— 1, +1) àco, dœ/df, ôf sont réels; doncd'après (5,6)

da dco

en d'autres termes, -=- désignant la dérivée normale au diamètre

— 1 < f < + 1, on a

<5"> 7K £
c) Voisinage du point f 1. Nous désignerons par des fonctions

nulles en ce point et hôlderiennes en son voisinage. La valeur de ôoo

pour £ 1 étant réelle, est, d'après (5,8) et (1,21), W [b] ô b + A W[b] ;

donc ôco ¥'[b]ôb +AW[b] + •••

D'après (2,4) nous avons les développements limités

^/m d(o œ'(l) ï+l yr61 I

Ces développements portés dans (5,7) prouvent que y est hôlderienne au
point C 1 ; donc d'après (5,9)

y—ôf
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Portons cette valeur de y — ôf dans l'équation (5,6'); il vient

fl «36 + e
aÇ

d'autre part (dàfjdÇ) 0; donc

y — ôf {ôb + e~iW[b]Az [b]} {l—ia>'(l)(Ç—l) (1+ )}.

ortons dans (5,

y — ôf il vient:

Portons dans (5,6) les développements limités obtenus pour ôa>, -j-j et

(5,12)

df~rr -"v^ \ 4a(l—cos«0)C — 1T

2a (1 — cos«0)|

d) Voisinage du point f e%8\ Nous désignerons par des fonctions
vérifiant une condition de Hôlder au voisinage de ce point et nulles en ce

point. Nous avons d'après (5,3), (2,1), (1,23) les développements limités

df a&insQÔSQlC + C1—2coss0] [1 + •••] ;

%l iae-is*sins0[Ç + Ç-1— 2eos«0][l + ••-] ;
aç

%? — 2e-i«>sm80lÇ + Ç-i — 2co880T1[l + ¦¦¦];dç

D'où

(5,13, ,/g_
D'autre part, d'après (1,11)

e ~ e^ —C
L + J

Par suite $eitù[dfdco — ôcodf] est hôldérienne au point f ei8°;

autrement dit y(C — e**0)"1 es^ hôldérienne en ce point. Ce fait et le

développement (5,13) porté dans (5,6') démontrent que dy/dÇ est

hôldérienne au point f ei8°.
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e) Voisinage du point £ 0. co, /, ôœ, ôf sont des fonctions analytiques
pour | CI <1> réelles en même temps que f; au point £ 0 co et ôco

s'annulent, / et ôf présentent un pôle double; par suite

df ..dœ a' .a"

a' et a" étant des constantes réelles, qui dépendent des données et des

inconnues. Portons ces développements dans (5,7); il vient

(5,14) y =_^|-_(a'co'(0) — tV)e-*a<£>logf+ •••

les termes non écrits constituant un développement de Taylor.

Conclusion. Le problème de Weinstein, auquel se ramène ainsi la
résolution de l'équation aux variations (5,2), consiste donc à trouver une
fonction analytique y qui vérifie les conditions suivantes: y est définie
dans la moitié supérieure du cercle | £ | ^1; dy/dÇ est hôldérienne sauf
peut-être au voisinage des points 0, ±1; y(ei8°) — 0; /S a des valeurs
données le long du demi cercle £ ei8 [cf (5,10)]; la relation (5,11) est
vérifiée sur le diamètre (— 1, +1); au voisinage des points £ + 1 et
£ — 1 on doit avoir respectivement

d/£—lrv ' * d/v£ + llv '

b' et 6", c' et c" étant des constantes complexes données [cf (5,12)]; au
point £ 0 y présente une singularité du type (5,14) où a' et a" sont des

constantes réelles inconnues.

N.B. S'il s'agit du problème symétrique du sillage, /S s'annule sur le

segment (0, i) et prend des valeurs opposées aux points ±£ + irj.

28° L'hypothèse de Friedrichs

Enoncé. — Nous disons qu'une solution du problème du sillage [du
problème symétrique du sillage] vérifie l'hypothèse de Friedrichs quand il
existe une fonction jB(£) présentant les particularités suivantes: J5(£)
est définie sur le demi-cercle | £|^1, rj^O [dans le quart de cercle
I Cl^lj rç^Ofs^O]; B(Qy est surharmonique et y possède des dérivées
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hôlderiennes43) ; J5(£) est positive à l'intérieur de ce domaine de

définition; on a le long du diamètre (— 1, + 1) [du rayon (0, +1)]
1 dB dx

Lemme de Friedrichs. — Supposons vérifiée l'hypothèse de Friedrichs.
Envisageons une solution du problème de Weinstein, p, qui ne soit pas
proportionnelle à B. Désignons par d les domaines en lesquels les lignes

0 décomposent le demi-cercle | £ | ^ 1, r\ ^ 0. Si la frontière d'un
domaine d ne contient aucun arc du cercle | £ | 1 où p ^ 0, alors cette
frontière atteint le point £ 0 et y n'est pas holomorphe en ce point.

Pour établir ce fait M. Friedrichs44) rattache le problème étudié au
calcul des variations, ce qui lui permet d'appliquer le ,,principe de

Jacobi". Mais on peut résumer comme suit son raisonnement:
On a l'inégalité

sous la seule condition que /? est harmonique à l'intérieur du contour
d'intégration, que f}0 y est surharmonique et positive ; l'égalité ne peut
être réalisée que si p et po sont proportionnels. En effet le premier membre
de (5,16) est égal à l'intégrale double

J\(iÈ-A drj didrj

Appliquons l'inégalité (5,16) à la frontière d'une domaine d qui ne
vérifie pas le lemme de Friedrichs45). Choisissons (io B-\-f} si fi >0
dans d, po B — fi dans le cas contraire ; puisque 1, le premier

membre de (5, 16) a un sens. Nous avons sur l'axe réel

1 dp 1 dB 1 dpo t

~P dn~~ B dn ~~
p0 dn '

nous avons sur le restant de la frontière de d p==0. Donc le premier
membre de (5, 16) est nul : p est proportionnel à po, c'est-à-dire à B.
C. Q. F. D.

48) On pourrait toutefois tolérer une singularité logarithmique au point J 0.

44) K. Friedrichs, Ûber ein Minimumproblem fur Potentialstrômungen mit
freiem Rande, Math. Annalen, t. 109, p. 60, 1933.

46) S'il s'agit du problème symétrique d ne peut pas traverser l'axe £ 0 ; pour fixer
les idées nous supposerons que d appartient au quart de cercle |£|:fE:l,£:Er:O, y>0.
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Réalisations de l'hypothèse de Friedrichs.

Faisons subir à l'obstacle une variation, qui soit une translation
Az Ct0. Une solution de l'équation aux variations est évidente: on
peut choisir46) ôco 0, ôf Ô ; il vient d'après (5,7) et (5,9)

Supposons d'abord qu'il s'agisse du problème symétrique; donnons à

Az une valeur réelle négative; dans le quart de cercle | f | <1, f>0,
rj >0 nous avons — n < 6 <0 et par suite /? >0; nous pouvons donc
choisir pour B cette fonction /?. Ainsi l'hypothèse de Friedrichs est toujours
vérifiée dans le cas du problème symétrique.

Ne supposons plus qu'il s'agisse du problème symétrique. Au voisinage
du point de bifurcation l Zo, l'argument de y atteint les valeurs

arg. A z — W[l0] — n, arg. A z — W[l0] ;

pour donner à /S un signe constant il est donc nécessaire de prendre
arg. Az ^[^ol + ^j c'est-à-dire d'effectuer la translation parallèlement
à la tangente au point de bifurcation. Ceci fait, /?(£) a le signe de

Supposons que nous ayons

l'oscillation de <P(s), donc celle de 6(Ç) dépassent n; /?(£) ne peut garder
un signe constant. Toutefois /? est négatif pour |f | 1, rj >0; y est

holomorphe pour f 0. Le lemme de Friedrichs est donc contredit ;

l'hypothèse de Friedrichs ne peut pas être vérifiée. En particulier Vhypo-
thèse de Friedrichs est en défaut quand Vobstacle est concave.

Supposons au contraire

Nous avons 0 ^ ¥[l0] — 0 (s) ^ n,

donc 0<¥[l0] — 0(Ç)<nf j8(C) >0
Nous pouvons choisir B p. En particulier Yhypothèse de Friedrichs est

vérifiée quand Vobstacle est convexe.

46) On connaît de même une solution de l'équation aux variations quand la transformation

que subit l'obstacle est une homothétie, J z h (z — zx) : on peut choisir ô <ù

0, âf=*hf, y=h[f—e-*»(z —sj],
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29° Discussion du problème de Weinstein

On déduit aisément de (5,14) les conséquences suivantes: Si a' ^ 0 le

point £ 0 appartient à la frontière de deux domaines d. Si a' 0

et si a" t^ 0 ce point appartient à la frontière d'un seul domaine d. Le
lemme de Friedrichs démontre donc le théorème ci-dessous :

Théorème a. — Supposons vérifiée l'hypothèse de Friedrichs ; soit n le
nombre des arcs en lesquels les points où /5 0 subdivisent la demi-
circonférence | £ | 1, rj > 0. Le nombre des domaines d est au maximum
n-\- 2; si ce maximum est atteint, on a dans (5,14) a1 ^ 0.

Supposons que le problème de Weinstein admette une solution non
nulle, y, correspondant aux données nulles ôb ôc A W[l] A z[l] 0.

D'après (5,12) nous avons dyjdf — 0 pour £ 1, c'est-à-dire pour
/ a[l — cos s0]2; y(f) est définie dans le demi-plan /(/) ^0. Donc /?

prend des valeurs positives et des valeurs négatives dans la partie de ce

demi-plan qui est voisine du point47) / =- a [1 — cos s0]2. Autrement
dit £ 1 (et de même £ — 1) est point frontière de deux domaines d.

Faisons l'hypothèse de Friedrichs; d'après le théorème a il y a
exactement deux domaines d, et chacun atteint le point £ 0. Or ceci les

empêche d'atteindre tous deux les points £ 1 et £ — 1 : on peut
joindre le point £ 0 au point £ i par un chemin intérieur à l'un des
domaines d; ce chemin sépare les points £ ± 1 qui ne peuvent donc
appartenir tous deux à la frontière de l'autre domaine d. Cette contradiction

établit le théorème suivant.

Théorème b. — Quand l'hypothèse de Friedrichs est vérifiée, l'équation
aux variations (5,2) possède une seule solution48).

Remarque. — II est aisé d'obtenir, en précisant le théorème a, un
résultat curieux: Considérons un sillage vérifiant l'hypothèse de Friedrichs;

modifions infiniment peu la forme de l'obstacle; à ce nouvel

47) Cette proposition serait évidente si y (/) était holomorphe en ce point. Elle résulte,
sous les hypothèses plus générales qui se présentent ici, d'un travail en préparation de
M. A. Magnier (cf. Sur les valeurs limites des fonctions harmoniques, Comptes
rendus de l'Académie des Sciences, t. 200 8 avril 1935, p. 1275).

48) L'hypothèse suivante joue un rôle essentiel dans les travaux de M. Weinstein:

„ Quelle que soit la constante k (0 < k < 1 il est impossible de trouver une fonction
harmonique /?, régulière pour |f| < 1, *?>0, nulle' pour | J| 1, qui vérifie l'équation

- —_ Je— pour —l<;£<;-f-l". On démontre aisément que l'hypothèse de
p an an
Friedrichs est sûrement vérifiée quand cette hypothèse de Weinstein l'est. Ceci permet de
dire que le théorème 6, sur lequel repose notre théorie, est une généralisation du théorème
fondamental de M. Weinstein, que cet Auteur formule ainsi: ,,on peut réàuire le problème
d'unicité locale I au problème d'unicité locale II".
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obstacle correspond un sillage infiniment voisin du sillage primitif
(cf § 26). Soit p le nombre de fois que se croisent nos deux obstacles
infiniment voisins. Le nombre des points en lesquels les nouvelles lignes
de jet et les anciennes se rencontrent est au plus p + 4 ; si les deux sillages
présentent un même axe de symétrie, ce nombre est au plus p -f- 2.

30° Indices de celles des solutions du problème du sillage qui vérifient
l'hypothèse de Friedrichs

Soient deux sillages, pour lesquels s0 a une même valeur; nous les

repérerons par les indices 1 et 2. Envisageons les équations aux variations
correspondantes

(5,2^ ôl(8) W{ ôl(8),AW[l], db, de; IPi

(5,2), âl(s) W{ ôl(s)9AW[ll ôb9 ôc; W2[l2(8)], 62, c2}.

Soit k un paramètre variant de 0 à 1. Posons &(s) k 01(s) +
(1 — k)02(8). Introduisons le sillage associé à cette fonction 0(s): celui

que définissent (1,4) et (1,5); notons que co(Ç) kco^Ç) + (1 — k)œ2 (£).

L'équation aux variations (5,2) qui correspond à ce sillage se réduit
à (5,2^ pour k 1, à (5,2)2 pour k 0.

Supposons que les deux sillages donnés vérifient l'hypothèse de
Friedrichs. Posons B(Ç) JS^C)*. B2(Ç)l~k. B{Ç) est surharmonique.
Nous avons, sur le diamètre — 1 ^ £ ^ + 1,

Lil^lcL îlt+(i_k)— ^î^k^+il-^k)^=—S du Bi du B2 dn du du du

Le sillage variable vérifie donc l'hypothèse de Friedriehs quel que soit k.

Par suite l'équation (5,2) possède toujours une seule solution; son indice
est constant. Les équations (5,2^ et (5,2)2 ont donc même indice
topologique.

Etant donné le sillage numéroté 1, qui vérifie l'hypothèse de Friedrichs,
on peut choisir pour sillage numéroté 2 celui qui correspond à un segment

1 v
rectiligne de direction— f S^f^W] ds : ce second sillage vérifie l'hypo-

n Jo

thèse de Friedrichs. Le second membre de (5,2)2 est alors indépendant de

ôl(8); l'indice topologique de la solution de (5,2)2 est donc + 1. Par suite
l'indice topologique de la solution de (5,2)x est + 1. Il en résulte, comme
nous l'avons rappelé au § 26, que 1(8) est une solution d'indice +1 du
problème du sillage. Donc :
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Théorème c. — Toute solution du problème du sillage qui vérifie
l'hypothèse de Friedrichs a l'indice + 1-

Or nous avons déterminé l'indice total des solutions du problème du
sillage ; c'est + 1 ; donc :

Théorème d. — Soit un obstacle ; s'il est impossible qu'une solution du
problème du sillage correspondant mette en défaut l'hypothèse de

Friedrichs, alors ce problème possède une seule solution.
En particulier le problème symétrique du sillage possède une seule

solution] le problème du sillage possède une seule solution quand Vobstacle

est convexe.

VI. Nombre des solutions du problème de la proue

31° Sillage infiniment voisin d'un sillage en proue

Soit un sillage vérifiant l'hypothèse de Friedrichs. Supposons que le
détachement inférieur soit en proue: co' (1) 0. Faisons subir à l'obstacle
une variation infinitésimale, qui consiste à le prolonger en son extrémité
inférieure; cette variation est définie par Az[l] 0, A ¥[1] 0, de 0,

ôb ^ 0. Les termes écrits au second membre de (5,12) disparaissent; la
solution du problème de Weinstein est évidemment fi 0. Donc y 0 ;

l'examen de la figure le faisait d'ailleurs prévoir. Nous avons, d'après
(5,6),

o dco

ÔCO=jjôf]
rappelons la relation (5,3)

les deux constantes Sa, ôs0, se déterminent en remarquant que la relation
(5,9) se réduit
pour £ 1 à ôf — ôb, pour £ — 1 à 3/ 0; nous obtenons ainsi

(6,1) 2a(l—
D'où")

*•) La dérivée écrite au second membre de (6,2) existe puisque do*' (1) existe.
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Si en outre le détachement supérieur est également en proue, on a

(6,3) ôco'(—1) 0

Remarques, — Rappelons que la courbure d'une ligne libre est e -77dj
(£,==-)- 1 pour la ligne libre supérieure; e — 1 pour la ligne libre
inférieure). Considérons un détachement en proue où

On démontre 60) qu'au voisinage du point de détachement r ne prend que
des valeurs négatives si l'obstacle est convexe en ce point. La dérivée
de la courbure de la ligne libre par rapport à l'arc y vaut + 00. Si nous
prolongeons l'obstacle, ce prolongement se trouve donc situé en aval
de la ligne libre; d'après (6,2) le détachement devient un détachement
vers l'amont ; il suffit d'ailleurs d'examiner la figure pour prévoir que ces

deux circonstances se présentent simultanément.

Considérons au contraire un détachement en proue où

Les faits opposés ont lieu; en particulier aucune des deux conditions de

validité de M. Brillouin (§1) n'est satisfaite.

32° Problème symétrique de la proue

Considérons un obstacle symétrique BQC0; choisissons-en le milieu
comme origine des abscisses curvilignes, l. Faisons varier le paramètre
c — b de 0 à c0. Le chapitre V nous apprend qu'à chaque valeur de c

correspond un seul sillage symétrique. Envisageons la courbe P qui
représente les variations de et>' (1) en fonction de c. Les solutions du
problème symétrique de la proue sont les points où cette courbe P coupe
l'axe des c, et en outre le point c0 si co' (1) y est négatif. Quand c tend vers
0, co'(l) tend vers — 1 [cf (2,6]. Il est donc certain que le problème de la

proue possède une solution au moins. D'après (6,2) et (6,3) la pente de P

en un point où elle coupe l'axe des c, est -j-r (-77) \ ^es points où P

•°) J.Leray, Sur la validité des solutions du problème de la proue, Volume
du Jubilé de MM. Brillouin (Gauthier-Villars, 1935).
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coupe Taxe des c avec une pente négative constituent donc des solutions
inacceptables du problème.

De telles intersections peuvent avoir lieu : les méthodes de M. Villat
fournissent aisément des obstacles symétriques, convexes BC, dont le

sillage présente des détachements en proue où l'inégalité (6,5) est vérifiée.
Nous en avons par exemple construit50) un, dont la courbure croît
constamment en valeur absolue quand on se rapproche de son milieu, le

rapport des courbures extrêmes étant 5,7. Soit B0C0 un obstacle

symétrique convexe contenant un tel arc BC. L'examen de la courbe P

montre immédiatement que le problème de la proue posé pour cet obstacle

B0C0 possède au moins trois solutions symétriques.

Envisageons par contre un obstacle symétrique en accolade (cf § 2). On
démontre51) que l'inégalité (6,4) a alors lieu en un point de détachement,
quand le détachement y est en proue : la courbe P a une pente positive là
où elle coupe l'axe des c. Le problème de la proue possède donc dans ce cas

une seule solution62).

33° Obstacle circulaire convexe

Nous savons que la solution du problème du sillage est unique si
l'obstacle est convexe. On démontre d'autre part que toute solution du
problème de la proue vérifie l'inégalité (6,4) aux points où le détachement

est en proue si l'obstacle est une accolade BQBXA Cfi^ et si le courant
bifurque en A51). Nous désirons faire simultanément ces deux hypothèses ;

la valeur absolue de la courbure de l'obstacle ne croîtra donc jamais quand
on se rapprochera du point de bifurcation ; or ce point est un point
inconnu de l'obstacle. Nous sommes contraints à supposer l'obstacle
circulaire.

S1) Cf. le. (50). La démonstration est entièrement élémentaire: on pose -j— —U-\-iV;
d [ dll d*

on remarque que le long de l'obstacle—-= I ^t^7>|= —F; on régionne le demi-cercle |£| < 1,

7^0 suivant les signes de U et V; on constate ainsi que les conditions de validité de
M. Brillouin sont satisfaites; on en déduit, comme corollaire, que l'inégalité (6,4) est
vérifiée là où le détachement est en proue.

52) Un cas particulier de ce théorème a déjà été établi: dans sa thèse M. C. Jacob prouve
que si l'obstacle est un arc de cercle convexe la pente de P est constamment positive. Sa

démonstration, sans rapport avec les raisonnements ci-dessus, est basée sur quelques
inégalités remarquables. (Mathematica, t. 11, 1936).
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Soit donc un demi-cercle convexe de rayon 1 :

Représentons un arc 6 ^ l ^ c de ce demi-cercle par un point du triangle.

^/2<6<c<7r/2 dont les sommets (tt/2, 7r/2),(—4r> —— )9 — -?-,-?-)
\ * * / \ * *

seront nommés m,n,p. A chaque point de ce triangle mnp correspond
un sillage unique ; les points qui nous intéressent sont ceux où B ^ 0,
C ^0. Nous avons d'après le paragraphe 14 (quelques cas où la nature
du détachement est évidente a priori)

sur mn B <0 et C <0;
sur mp C >0; sur np B >0.

Soit un point (6, c) où B 0, C <0; puisque l'arc BG est une accolade,
l'inégalité (6,4) est vérifiée en B; il en résulte, d'après (6,2), que B a le
signe de — ôb au point voisin (b + (56, c). Soit de même un point (b, c) où
B <0, C 0; C a le signe de ôc au point voisin (b, c-\-ôc). Soit enfin
un point (6, c) où B 0, C 0; les relations (6,2) et (6,3) prouvent
qu'au point voisin (6 + ôb, c + ôc) B a le signe de — ôb,C celui de ôc.

Considérons l'un des domaines A en lesquels se décompose l'ensemble
des points où B et C sont négatifs. Orientons la frontière A ' de A de
manière que A soit à sa gauche. La partie de A ' qui est intérieure au
triangle mnp est constituée par des arcs où B < 0, C 0 ; des arcs où
B 0, C <0; des points où B C 0. D'après ce qui précède un tel
point est l'extrémité d'un arc où B < 0, C 0 et l'origine d'un arc où
B 0, C < 0. La partie de A ' intérieure au triangle mnp est donc un

ensemble d'arcs mqn tels que B < 0, C 0 sur mq, B 0, C < 0 sur qn.
Le sens positif sur chacun de ces arcs est le sens mn. Il est donc nécessaire

que A ' contienne un seul arc mqn. Par suite A ' contient le segment

rectiligne mn, et le domaine A est unique.

Ainsi les points où B et C sont négatifs constituent l'intérieur d'un

triangle mnq, dont le côté mn est rectiligne, dont les côtés mq et nq sont
curvilignes. Ce triangle est nécessairement symétrique par rapport à
l'axe de symétrie du triangle mnp ; il présente en q un angle droit saillant ;

l'arc mq n'a pas de tangente parallèle à np, ni l'arc nq de tangente

parallèle à mp. Les points du triangle mnp où B <0, C 0 constituent

mq ; ceux où B 0, C < 0 constituent nq ; q est le seul point où B C 0.
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Il nous est maintenant aisé d'indiquer quelle est la solution (6, c) du

problème de la proue quand l'obstacle est un arc (60, c0) du cercle donné.

Abaissons de q les perpendiculaires qr et qt sur mp et np.
Si (60, c0) est dans le triangle ourviligne mnq, (6, c) est confondu avec

(6o> co)-

Si (60, c0) est dans le carré prqt, (b, c) est le point q.
Si (60, c0) est dans le triangle curviligne mqr, (b, c) est le point de l'arc

mq dont l'abscisse est b 60.

Si (bQ,c0) est dans le triangle curviligne nqt, (b, c) est le point de Tare

nq dont l'ordonnée est c c0.

Nous constatons ainsi que le problème de la proue, posé pour un
obstacle circulaire convexe, possède une seule solution.

Remarques. La Méthode des approximations successives permet

d'étudier le voisinage du point m : on constate ainsi que la pente de mq

en m est 7/15. D'après M. Brodetsky53) l'arc symétrique bc qui

correspond au point q a une mesure très voisine de 110°.

M) Voir note "), p. 152.

(Reçu le 4 juillet 1935.)
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