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Les problémes de représentation
conforme d’Helmholtz; théories des sillages
et des proues

Par JEaN LEray, Paris (suite *) )

V. Cas ou la soluﬁon du probléme du sillage est unique

26° Préliminaires

Soit une fonction I(s) résolvant le probléme du siilage:
(5,1) L(s) =V{I(s), P[], b, c}.

Nousavonsprouvé au §11 queV posséde une différentielle de Fréchet W.
Soient AW¥[l], 6b, dc des variations des données; écrivons 1’équation,
nommée équation aux variations,

(5,2) ol(s) = W {6l(s), AP[l], &b, dc; P[l(s)], b,¢c};

W est linéaire et complétement continue; (5,2) est donc une équation de
Fredholm.

La théorie des équations fonctionnelles établit les propositions suivantes:

Supposons que 1’équation (5,2) posséde une solution unique; alors I(s)
est une solution isolée de (5,1); quand A4 ¥[1], 6b, éc sont suffisamment
petits, le probléme du sillage posé pour ’obstacle Y[I]+4P[l], b+ b,
¢+ d¢ posséde au moins une solution voisine de I(s); 61(s) est la partie
principale de la différence entre I(s) et ces solutions voisines de I(s). En
outre la solution 6l(s) de (5,2), qui est supposée unique, a un indice
topologique égal & celui de la solution I(s) de (5,1). L’étude de (5,2)
permet donc de préciser les indices des solutions de (5,1) et par suite le
nombre des solutions de cette équation, puisque leur indice total vaut + 1.

27. Enoneé du probléme aux limites de M. Weinstein

Nous allons exposer les calculs#!) par lesquels M. Weinstein trans-
forme la résolution de (5,2) en la recherche d’une fonction harmonique g
assujettie & certaines conditions aux limites.

*) Voir ce journal vol. 8 pag. 149.
1) M. Weinstein a fait ces calculs dans le cas du jet; M. Jacob m’a aidé & les transposer
au cas présent.
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Introduisons les quantités 6£2, da, sy, dw que définissent les relations
(1,20), ....... (1,24) ou 'on pose 6L = dl; définissons 6f et dz par les
relations (1,1) et (1,3) différentiées logarithmiquement:

6f~6 2 sin 8, 08, déz dof
(5$3) 7 - + 1 (C _+ C._.l) — CO8 8, ’ (5,4) -El-z— 10w + f

Ces quantités sont les parties principales des variations que subissent,
en un point ¢ fixe, 2({), ... 2({), quand ol est la partie principale de la
variation de I(s) qui correspond & une variation des données.

Posons

(5,5) y=0/—Us:  (y=atip

Quand ! est la partie principale de la variation de [, y est la partie
principale de la variation que subit f(z) en un point z fixe.42)
Nous allons transformer les conditions imposées & dw en conditions
1mposées & f:
La relation qui lie y, dw, df est

d [dz déf .o .
|G —on|+ g =—ise;
il suffit de remplacer dz/df par e pour lui donner les formes suivantes:

(5,6) f—{—z f(y 0f) = —1dw .

df

(5a6’) C—I— dc( ———(5]‘) ——%awdé"

(5,7) y=1ie"[¢?[6fdo—dwdf] .

y et dy/d ¢ sont donc holderiennes dans la moitié supérieure du cercle
|¢] <1, sauf peut-étre au voisinage des points { = 0, e?®, 1.

a) Le long du demi-cercle { = €% (0 < 8 << z) nous devons avoir d’aprés
(1,20) et (1,23)

, dél . ddf
(5,8) do =W N0l —i Ty + AV + i .

2) Cette interprétation de y, quand elle est légitime, permet de déduire rapidement de
P’énoncé méme du probléme du sillage que 8 = | (y) doit vérifier des conditions aux limites
simples sur 1’obstacle et sur les lignes libres. Toutefois elle ne permet pas d’obtenir Ien-
semble des conditions imposées a (.
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Remplagons dans (5,4) dw par cette expression et dz par ' ¥ dl; il vient
0z = [¢P[id P ol+dol]+i [P AP[1]dl = T ol +A2[1];

z[ 1] est le point de I’obstacle dont 1’abscisse curviligne est I; A42[1] est la
variation connue de cette fonction; un choix particulier vient d’étre fait
pour la constante d’intégration, en sorte que y et dw se correspondent
biunivoquement. Portons dans (5,5) la valeur obtenue pour dz; il vient

(5,9) y=TFedl—e*°Az[1]+ 6f (4 pour 0 < s < 8p; — pour 8, < s < 7).

Nous avons donc
(5, 10) B =—1I{e*?42[1]}  sur le demi-cercle { = e¢;

le second membre de cette relation est une donnée.

b) Sur le diamétre (— 1, +1) dw, dw/df, 6f sont réels; donc d’aprés (5,6)

en d’autres termes désignant la dérivée normale au diamétre

dn
—1<{{<+1,0na

(5,11) ?3—'@ %pour———l<¢'<—]—l
c) Voisinage du point { = 1. Nous désignerons par ...... des fonctions

nulles en ce point et holderiennes en son voisinage. La valeur de dw
pour { = 1 étant réelle, est, d’aprés (5,8) et (1,21), ¥’[b]db + AWP[D];
donc dw = ¥’ [b]6b + AP [b] + - -

D’aprés (2,4) nous avons les développements limités

dow , do w’ (1) {+1
ac = ? )+ df  4a(l—cossy) L — 1

— Y [b] + -

Ces développements portés dans (5,7) prouvent que y est holderienne au
point { = 1; donc d’aprés (5,9)

y—8f =8b + T Az [b] +
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Portons cette valeur de y — df dans I’équation (5,6’); il vient

Z——}é = —1dw (1) {db + e FBIA2[b]} + -

d’autre part (ddf/df) = 0; donc
y—38f ={6b4+ TP Az[b]} {1 —t0’(1)(C—1) Q1+....... )}.

Portons dans (5,6) les développements limités obtenus pour dw, %—(ff-) et

y — of il vient:

dy _ | » o to’(l) {+1
W-?6b+e w[b]Az[b]}{ 4a (1 —cos 8;) C——l+

' (1)2
(5’12) -+ 1 [b]'_— 23,(;0__510)03 30)}
(¥ [b]6b + AVIb]} + -

d) Voisinage du point { = e'». Nous désignerons par ... des fonctions
vérifiant une condition de Holder au voisinage de ce point et nulles en ce
point. Nous avons d’apreés (5,3), (2,1), (1,23) les développements limités

0f =asinsg dsy[{+{1—2cossy][1 4 -] ;

24) = taet%sin g, [ + {T1— 2co8 8,][{1 + -] ;

dt
dw .y . 1 —1 .
it = —2¢ % ging,[{+ {1 —2cos 8,71 + ---];
dw = 218in8,08, [+ {1 — 2cos 8] 14 -] .
D’ou
(5,13) Gf%%)——dwg—ér—
D’autre part, d’aprés (1,11)

1 — et

ei'w_-—-__ W_——C_—[l‘}—“.]'

Par suite [e'°[dfdw — dwdf] est holdérienne au point = e?®;
autrement dit y({ — €)1 est holdérienne en ce point. Ce fait et le
développement (5,13) porté dans (5,6’) démontrent que dy/d( est
héldérienne au point { = ei.

18 Commentarii Mathematici Helvetici 253



e) Voisinage du point { = 0. w, f, dw, 6f sont des fonctions analytiques
pour | { | <1, réelles en méme temps que {; au point { =0 w et dw
s’annulent, f et 6f présentent un poéle double; par suite

df

dogt— ”d: ;

m+E -

a’ et a” étant des constantes réelles, qui dépendent des données et des
inconnues. Portons ces développements dans (5,7); il vient

’

13
g

les termes non écrits constituant un développement de Taylor.

(5,14) y=—"— (a0 (0)—ia")ei*®log{ + .-

Conclusion. Le probléme de Weinstein, auquel se raméne ainsi la
résolution de I’équation aux variations (5,2), consiste donc & trouver une
fonction analytique y qui vérifie les conditions suivantes: y est définie
dans la moitié supérieure du cercle | { | =<1; dy/d{ est holdérienne sauf
peut-étre au voisinage des points 0, 4 1; y(e!®*) = 0; B a des valeurs
données le long du demi cercle { = e?¢ [cf (5,10)]; la relation (5,11) est
vérifiée sur le diamétre (— 1, 4 1); au voisinage des points =41 et

{ = — 1 on doit avoir respectivement
dy {+1 . dy _ C
27 et ... 2
7 = S f c+1

b’ et b”, ¢’ et ¢c” étant des constantes complexes données [cf (5,12)]; au
point { = 0 y présente une singularité du type (5,14) ou a’ et a” sont des
constantes réelles tnconnues.

N.B. S’il g’agit du probléme symétrique du sillage, f s’annule sur le
segment (0, ¢) et prend des valeurs opposées aux points 4 &+ ¢7.

28° L’hypothése de Friedrichs

Enoncé. — Nous disons qu’une solution du probléme du sillage [du
probléme symétrique du sillage] vérifie ’hypothése de Friedrichs quand il
existe une fonction B({) présentant les particularités suivantes: B({)
est définie sur le demi-cercle | {|<<1, >0 [dans le quart de cercle
| <1, 9= 0£>0]; B({)y est surharmonique et y posséde des dérivées
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holderiennes?®) ; B (L) est positive & l'intérieur de ce domaine de
définition; on a le long du diamétre (— 1, + 1) [du rayon (0, +1)]

1dB dx

(5,15) Ban —dn "

Lemme de Friedrichs. — Supposons vérifiée I’hypothése de Friedrichs.
Envisageons une solution du probléme de Weinstein, 8, qui ne soit pas
proportionnelle & B. Désignons par d les domaines en lesquels les lignes
f = 0 décomposent le demi-cercle | {|<<1,7n>0. Si la frontiére d’un
domaine d ne contient aucun arc du cercle | l,‘ | = 1 ou B # 0, alors cette
frontiére atteint le point { = 0 et y n’est pas holomorphe en ce point.

Pour établir ce fait M. Friedrichs#4) rattache le probléme étudié au
calcul des variations, ce qui lui permet d’appliquer le ,,principe de
Jacobi‘‘. Mais on peut résumer comme suit son raisonnement:

On a l'inégalité

g __ B df

(5,16) ﬁ[ﬂdn ﬁo dn] ds =
sous la seule condition que B est harmonique & l’intérieur du contour
d’intégration, que B, y est surharmonique et positive; 1’égalité ne peut

étre réalisée que si f§ et f§, sont proportionnels. En effet le premier membre
de (5,16) est égal & l'intégrale double

I 15838 + G 2 — it + ) fasan

Appliquons 1'inégalité (5,16) & la frontiére d’une domaine d qui ne
vérifie pas le lemme de Friedrichs4%). Choisissons 8, = B+ f 8 >0
B
Bol
membre de (5, 16) a un sens. Nous avons sur I’axe réel
1dp _1dB_14dg,,
Bdn B dn B, dn’
nous avons sur le restant de la frontiére ded g=0. Donc le premier
membre de (5, 16) est nul ; § est proportionnel & f,, c’est-a-dire & B.
C.Q.F.D.

43) On pourrait toutefois tolérer une singularité logarithmique au point ¢ = 0.

) K. Friedrichs, Uber ein Minimumproblem fiir Potentialstré6mungen mit
freiem Rande, Math. Annalen, t. 109, p. 60, 1933.

45) §’il s’agit du probléme symétrique d ne peut pas traverser 'axe & = 0; pour fixer
les idées nous supposerons que d appartient au quart de cerole |§| <1, =0, =0.

dans d, , = B — p dans le cas contraire ; puisque < 1, le premier
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Réalisations de Uhypothése de Friedrichs.

Faisons subir & l’'obstacle une variation, qui soit une translation
Az = C'". Une solution de I’équation aux variations est évidente: on
peut choisir4é) deow = 0, 6f = 0; il vient d’aprés (5,7) et (5,9)

y=-—e*t Az,

Supposons d’abord qu’il s’agisse du probléme symétrique; donnons a
Az une valeur réelle négative; dans le quart de cercle | {| <1, £ >0,
1 >0 nous avons — xw < 0 (£) <0 et par suite § >0; nous pouvons donc
choisir pour B cette fonction B. Ainsi hypothése de Friedrichs est toujours
vérifiée dans le cas du probléme symétrique.

Ne supposons plus qu’il s’agisse du probléme symétrique. Au voisinage
du point de bifurcation ! = 1, ’argument de y atteint les valeurs

arg. Az — ¥[l,] —n, arg. Az — P[l,];

pour donner & f un signe constant il est donc nécessaire de prendre
arg. 4z = Y[ly]+ =, c’est-a-dire d’effectuer la translation parallélement
a la tangente au point de bifurcation. Ceci fait, §({) a le signe de

sin { ¥[1,]1— 6(0)}.

Supposons que nous ayons
(P — PlL]} (I — 1} >0;

Ioscillation de @(s), donc celle de 6({) dépassent z; §({) ne peut garder
un signe constant. Toutefois f est négatif pour |{| =1, n>0; y est
holomorphe pour { = 0. Le lemme de Friedrichs est donc contredit;
Phypothése de Friedrichs ne peut pas étre vérifiée. En particulier I’hypo-
thése de Friedrichs est en défaut quand Uobstacle est concave.

Supposons au contraire
{P[I]— ¥T]} {I— 1o} =0.
Nous avons 0=YP[ly] — D(s8) =m,

done 0 <W[l,] — 0(8) <z, B(5)>0

Nous pouvons choisir B = . En particulier I’hypothése de Friedrichs est
vérifiée quand Uobstacle est convexe.

4¢) On connait de méme une solution de ’équation aux variations quand la transforma-
tion que subit I'obstacle est une homothétie, 4z = h (z — 2,) : on peut choisir dw =
0, df =hf, y=h[f—ei0(z—z)].
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29° Discussion du probléme de Weinstein

On déduit aisément de (5,14) les conséquences suivantes: Si a’ £ 0 le
point { = 0 appartient & la frontiére de deux domaines d. Si a’ =0
et si a” % 0 ce point appartient & la frontiére d’un seul domaine d. Le
lemme de Friedrichs démontre donc le théoréme ci-dessous:

Théoréme a. — Supposons vérifiée ’hypothése de Friedrichs; soit = le
nombre des arcs en lesquels les points ot f = 0 subdivisent la demi-
circonférence | { | = 1, > 0. Le nombre des domaines d est au maximum
n-+ 2; si ce maximum est atteint, on a dans (5,14) a’ £ 0.

Supposons que le probléme de Weinstein admette une solution non
nulle, y, correspondant aux données nulles §b = dc = A P[l] = Az[l]=0.
D’aprés (5,12) nous avons dy/df =0 pour { =1, c’est-a-dire pour
f=a[l—coss,]?; y(f) est définie dans le demi-plan I(f) <0. Donc
prend des valeurs positives et des valeurs négatives dans la partie de ce
demi-plan qui est voisine du point?%) f == a [1 — cos s,]2. Autrement
dit { = 1 (et de méme { = — 1) est point frontiére de deux domaines d.

Faisons ’hypothése de Friedrichs; d’aprés le théoréme a il y a exac-
tement deux domaines d, et chacun atteint le point { = 0. Or ceci les
empéche d’atteindre tous deux les points { =1 et { = —1: on peut
joindre le point { = 0 au point { = ¢ par un chemin intérieur & l'un des
domaines d; ce chemin sépare les points { = 4+ 1 qui ne peuvent donc
appartenir tous deux & la frontiére de ’autre domaine d. Cette contra-
diction établit le théoréme suivant.

Théoréme b. — Quand I’hypothése de Friedrichs est vérifiée, 1’équation
aux variations (5,2) posséde une seule solution #8).

Remarque. — 11 est aisé d’obtenir, en précisant le théoréme a, un
résultat curieux: Considérons un sillage vérifiant ’hypothése de Fried-
richs; modifions infiniment peu la forme de l'obstacle; & ce nouvel

47) Cette proposition serait évidente si y (f) était holomorphe en ce point. Elle résulte,
sous les hypothéses plus générales qui se présentent ici, d’'un travail en préparation de
M. A. Magnier (cf. Sur les valeurs limites des fonctions harmoniques, Comptes
rendus de ’Académie des Sciences, t. 200 8 avril 1935, p. 1275).

48) L’hypothése suivante joue un rdle essentiel dans les travaux de M. Weinstein :
»» Quelle que soit la constante & (0 = k& == 1) il est impossible de trouver une fonction har-
monique 3, réguliére pour || =<1, =0, nulle’ pour |5| = 1, qui vérifie I’équation
1dg
; d—‘:—?’ =k g—:; pour —1<§&<+1"”. On démontre aisément que I’hypothése de
Friedrichs est stirement vérifiée quand cette hypothése de Weinstein I’est. Ceci permet de
dire que le théoréme b, sur lequel repose notre théorie, est une généralisation du théoréme
fondamental de M. Weinstein, que cet Auteur formule ainsi: ,,on peut réduire le probléme

d’unicité locale I au probléme d’unicité locale IT*.
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obstacle correspond un sillage infiniment voisin du sillage primitif
(ef § 26). Soit p le nombre de fois que se croisent nos deux obstacles
infiniment voisins. Le nombre des points en lesquels les nouvelles lignes
de jet et les anciennes se rencontrent est au plus p + 4; si les deux sillages
présentent un méme axe de symétrie, ce nombre est au plus p + 2.

30° Indices de celles des solutions du probléme du sillage qui vérifient
Phypothése de Friedrichs

Soient deux sillages, pour lesquels s, a une méme valeur; nous les
repérerons par les indices 1 et 2. Envisageons les équations aux variations
correspondantes

(5,2), ol(s) = W{ dl(s), 4W[l], db, dc; P,[1,(3)], b1, ¢, },
(5,2), 8l(s) = WH{ dl(s), AP[l], b, d¢c; Wy[ls(8)], by, €2}

Soit £ un paramétre variant de 0 & 1. Posons @(s) = k &D,(s) +
(1 — k) D,(s). Introduisons le sillage associé a cette fonction @ (s): celui
que définissent (1,4) et (1,5); notons que w({) =kw,({) + (1—k)w, (£).
I’équation aux variations (5,2) qui correspond & ce sillage se réduit
a (5,2), pour k = 1, & (5,2), pour k = 0.

Supposons que les deux sillages donnés vérifient 1’hypothése de
Friedrichs. Posons B({) = B,({)k. B,({)1*. B({) est surharmonique.
Nous avons, sur le diamétre — 1< <<+1,

1dB_, 1dB, 1 dB, ,dr, dr, dv
f%-kBl + (01— k)B F il bl et TR

Le sillage variable vérifie donc ’hypothése de Friedrichs quel que soit .
Par suite I’équation (5,2) posséde toujours une seule solution; son indice
est constant. Les équations (5,2), et (5,2), ont donc méme indice topo-
logique.

Etant donné le sillage numéroté 1, qui vérifie ’hypothése de Friedrichs,
on peut choisir pour sillage numéroté 2 celui qui correspond & un segment

T
rectiligne de direction—:-t— [ W[l (s)]ds: ce second sillage vérifie I’hypo-
0

thése de Friedrichs. Le second membre de (5,2), est alors indépendant de
d1(s); 'indice topologique de la solution de (5,2), est donc + 1. Par suite
Pindice topologique de la solution de (5,2), est + 1. Il en résulte, comme
nous 1’avons rappelé au § 26, que [(s) est une solution d’indice + 1 du
probléme du sillage. Donc:

2568



Théoréme c. — Toute solution du probléme du sillage qui vérifie
I’hypothése de Friedrichs a I’indice +- 1.

Or nous avons déterminé l’indice total des solutions du probléme du
gillage; c’est 4 1; done:

Théoréme d. — Soit un obstacle; 8’il est impossible qu’une solution du
probléme du sillage correspondant mette en défaut I’hypothése de
Friedrichs, alors ce probléme posséde une seule solution.

En particulier le probléme symétrique du sillage posséde ume seule
solution ; le probléme du sillage posséde une seule solution quand I’obstacle
est convexe.

VI. Nombre des solutions du probléme de la proue

31° Sillage infiniment voisin d’un sillage en proue

Soit un sillage vérifiant ’hypothése de Friedrichs. Supposons que le
détachement inférieur soit en proue: w’ (1) = 0. Faisons subir & ’obstacle
une variation infinitésimale, qui consiste & le prolonger en son extrémité
inférieure; cette variation est définie par 4z[l] = 0, 4 ¥[l] = 0, ¢ = O,
0b # 0. Les termes écrits au second membre de (5,12) disparaissent; la
solution du probléme de Weinstein est évidemment § = 0. Donc y = 0;
I’examen de la figure le faisait d’ailleurs prévoir. Nous avons, d’aprés
(5,6),

dw
dw = 27- 6f,

rappelons la relation (5,3)

oy =221 2ty
les deux constantes da, ds,, se déterminent en remarquant que la relation
(5,9) se réduit

pour { =1 & éf = — 6b, pour { = — 1 & 6f = 0; nous obtenons ainsi
do — éb
(6,1) ow=— jj?[f“]/a (1 + cos 8p) W—] 5a (1l —cosay) "
D’ou4?)
/ ——[2 (22
2 o (+1) = —[2(37)], ., o0

4%) La dérivée écrite au second membre de (6,2) existe puisque J »’ (1) existe.
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Si en outre le détachement supérieur est également en proue, on a

(6,3) S’ (—1) =0

Remarques. — Rappelons que la courbure d’une ligne libre est ¢ %_a_»
(¢ = 4+ 1 pour la ligne libre supérieure; ¢ = — 1 pour la ligne libre
inférieure). Considérons un détachement en proue ol

(6,4) gz (";_;’) ~0.

On démontre 3°) qu’au voisinage du point de détachement 7 ne prend que
des valeurs négatives si ’obstacle est convexe en ce point. La dérivée
de la courbure de la ligne libre par rapport & ’arc y vaut -+ oco. Si nous
prolongeons l'obstacle, ce prolongement se trouve donc situé en aval
de la ligne libre; d’aprés (6,2) le détachement devient un détachement
vers ’amont; il suffit d’ailleurs d’examiner la figure pour prévoir que ces
deux circonstances se présentent simultanément.

Considérons au contraire un détachement en proue ol

9 2 (4 <o,

Les faits opposés ont lieu; en particulier aucune des deux conditions de
validité de M. Brillouin (§ 1) n’est satisfaite.

32° Probléme symétrique de la proue

Considérons un obstacle symétrique B,C,; choisissons-en le milieu

comme origine des abscisses curvilignes, I. Faisons varier le paramétre
¢ =—0b de 0 & ¢,. Le chapitre V nous apprend qu’a chaque valeur de ¢
correspond un seul sillage symétrique. Envisageons la courbe P qui
représente les variations de w’ (1) en fonction de c. Les solutions du
probléme symétrique de la proue sont les points ou1 cette courbe P coupe
Paxe des ¢, et en outre le point ¢, si w’(1) y est négatif. Quand c tend vers
0, w’(1) tend vers — 1 [cf (2,6]. Il est donc certain que le probléme de la

proue posséde une solution au moins. D’aprés (6,2) et (6,3) la pente de P

en un point ol elle coupe ’axe des ¢, est [-(—l— (‘12)] ; les points ou P
124 df £=1

80) J. Leray, Sur la validité des solutions du probldme de la proue, Volume
du Jubilé de MM. Brillouin (Gauthier-Villars, 1935). :
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coupe ’axe des ¢ avec une pente négative constituent donc des solutions
tnacceptables du probléme.

De telles intersections peuvent avoir lieu: les méthodes de M. Villat

fournissent aisément des obstacles symétriques, convexes 1/3_6\’, dont le
sillage présente des détachements en proue o I'inégalité (6,5) est vérifiée.
Nous en avons par exemple construit®®) un, dont la courbure croit
constamment en valeur absolue quand on se rapproche de son milieu, le

N

rapport des courbures extrémes étant 5,7. Soit B,C, un obstacle symé-
trique convexe contenant un tel arc BC. L’examen de la courbe P

montre immédiatement que le probléme de la proue posé pour cet obstacle

7~

ByC, posséde au moins trors solutions symétriques.

Envisageons par contre un obstacle symétrique en accolade (cf §2). On
démontre®) que I'inégalité (6,4) a alors lieu en un point de détachement,
quand le détachement y est en proue: la courbe P a une pente positive la
ou elle coupe ’axe des c. Le probléme de la proue posséde donc dans ce cas
une seule solutionb52).

33° Obstacle circulaire convexe

Nous savons que la solution du probléme du sillage est unique si
Pobstacle est convexe. On démontre d’autre part que toute solution du
probléme de la proue vérifie I'inégalité (6,4) aux points ou le détachement

est en proue si ’obstacle est une accolade B,B,;4 C,C, et sile courant
bifurque en 4%!). Nous désirons faire simultanément ces deux hypothéses;
la valeur absolue de la courbure de 1’obstacle ne croitra donc jamais quand
on se rapprochera du point de bifurcation; or ce point est un point in-
connu de l’obstacle. Nous sommes contraints & supposer l’obstacle
circulaire.

81) Cf. 1c. (50). La démonstration est entiérement élémentaire: on pose %—(5;— =U+41iV;

d dl
on remarque que le long de I'obstacle 71 UE——]= —7V; on régionne le demi-cercle |§|=1,

7 = 0 suivant les signes de U et V; on constate ainsi que les conditions de validité de
M. Brillouin sont satisfaites; on en déduit, comme corollaire, que ’inégalité (6,4) est
vérifiée 1a ou le détachement est en proue.

52) Un cas particulier de ce théoréme & déja été établi: dans sa thése M. C. Jacob prouve
que si ’'obstacle est un arc de cercle convexe la pente de Pest constamment positive. Sa
démonstration, sans rapport avec les raisonnements ci-dessus, est basée sur quelques
inégalités remarquables. (Mathematica, t. 11, 1936).
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Soit donc un demi-cercle convexe de rayon 1:

Y[l =5 —1 <—-’é”-<l<-g->.

Représentons un arc b <<I< ¢ de ce demi-cercle par un point du triangle.
7[2<b<<c<n/2 dont les sommets (n/2, x/2), (—% , -———7—;—-), (—%—,%)
seront nommés m,n,p. A chaque point de ce triangle mnp correspond
un sillage unique; les points qui nous intéressent sont ceux ou B <0,
C <0. Nous avons d’aprés le paragraphe 14 (quelques cas ou la nature
du détachement est évidente a priori)

sur mn B <0 et C<O0;
sur mp C >0; sur np B >0.

Soit un point (b, ¢) o B = 0, C < 0; puisque ’arc BC est une accolade,
I'inégalité (6,4) est vérifiée en B; il en résulte, d’aprés (6,2), que B a le
signe de — b au point voisin (b -+ db, ¢). Soit de méme un point (b, ¢) ou
B <0, C = 0; C a le signe de dc au point voisin (b, ¢ + d¢). Soit enfin
un point (b,c) ou B = 0, C = 0; les relations (6,2) et (6,3) prouvent
qu’au point voisin (b + b, ¢+ dc) B a le signe de — b, C celui de dc.

Considérons 'un des domaines 4 en lesquels se décompose ’ensemble
des points ou B et C sont négatifs. Orientons la frontiére 4’ de A de
maniére que A soit a sa gauche. La partie de 4’ qui est intérieure au
triangle mnp est constituée par des arcs o B <0, C = 0; des arcs ol
B = 0, C <0; des points ol B = C = 0. D’aprés ce qui précéde un tel
point est I'extrémité d’un arc ol B <0, C = 0 et P'origine d’un arc ot
B = 0, C <0. La partie de 4’ intérieure au triangle mnp est donc un

ensemble d’arcs mgn tels que B <0, C = 0 sur mq, B=0, C <0 sur ¢n.

~~
Le sens positif sur chacun de ces arcs est le sens mn. Il est donc nécessaire

que 4’ contienne un seul arc mgn. Par suite 4’ contient le segment
rectiligne mn, et le domaine A est unique.
Ainsi les points ot B et C sont négatifs constituent I'intérieur d’un

_ — o~
triangle mngq, dont le c6té mn est rectiligne, dont les cotés mq et ng sont
curvilignes. Ce triangle est nécessairement symétrique par rapport a

I'axe de symétrie du triangle mnp; il présente en ¢ un angle droit saillant;
~~ J— 7~

I'arc mq n’a pas de tangente paralléle & np, ni 'arc ng de tangente

paralléle & —n_;}; Les points du triangle mnp ot B <0, C = 0 constituent

~ 7~
mq; ceux ot B=0, C <0 constituent ngq; ¢ est le seul point ol B=C=0.
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I1 nous est maintenant aisé d’indiquer quelle est la solution (b, ¢) du
probléme de la proue quand I’obstacle est un arc (b, ¢,) du cercle donné.

r——

Abaissons de ¢ les perpendiculaires q—r et EZ sur _7;; et np.

Si (bg, ¢o) est dans le triangle ourviligne mng, (b, ¢) est confondu avec

(bgs Co)-
Si (b, ¢,) est dans le carré prqt, (b, c) est le point q.
Si (by, c,) est dans le triangle curviligne mqr, (b, c) est le point de I’arc

N
mgq dont I’abscisse est b = b,

Si (by,c,) est dans le triangle curviligne ngqt, (b, c) est le point de I’arc
VY

nq dont 'ordonnée est ¢ = c,,.

Nous constatons ainsi que le probléme de la proue, posé pour un
obstacle circulaire convexe, posséde une seule solution.

(8>0)

n

Remarques. La Méthode des approximations successives permet

~

d’étudier le voisinage du point m : on constate ainsi que la pente de mq
~

en m est 7/15. D’aprés M. Brodetsky®®) l’arc symétrique bc¢ qui cor-

respond au point ¢ a une mesure trés voisine de 1100,
%) Voir note 1), p. 152.

(Regu le 4 juillet 1935.)
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