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Les problemes de représentation
conforme d'Helmholtz; théories des sillages
et des proues’

Par JEAN LERAY, Paris

INTRODUCTION

1° Enoneés des problémes

Soit & construire un sillage correspondant & un obstacle tranchant
donné; cet obstacle est plongé dans un liquide illimité qu’anime un mou-
vement plan, uniforme & l’infini; les lignes de jet sont assujetties & se
détacher aux points extrémes de l'obstacle.

D’aprés Helmholtz ce probléme équivaut a un probléme de représenia-
tion conforme essentiellement distinct de celui de Riemann et dont voici
I’énoncé:

Probléme du sillage. On demande de transformer conformément un
plan entaillé le long d’une deme-droite (a savoir le plan du potentiel complexe
f =@+ 1y quentazlle le demi-axe réel positif w =0, ¢ > 0), en un
domaine, D, d'un plan z = x -+ 1y, dont la frontiére se compose d’un arc
de courbe donné (I'obstacle) et de deux lignes libres inconnues (les lignes de
jet) ; ces deux lignes libres jorgnent le point a Uinfini aux points extrémes
de Uobstacle ; elles possédent, jusqu’en leurs extrémites, des tangentes conti-
nues ; en chacun de leurs points la transformation cherchée doit conserver
les longueurs ; elle doit en outre associer les points a Uinfine des deux plans
f et z et conserver les directions des courbes aboutissant en ces points (la
direction de 'axe des x est celle du courant, c’est-a-dire celle de la vitesse
aux points infiniment éloignés de I'obstacle).

La courbe obstacle donnée vérifiera, par hypothése, la condition sui-
vante: son intersection avec toute paralléle & I’axe des z, quand elle
existe, se compose d’un seul point ou exceptionellement d’un segment
rectiligne.

En poursuivant 1’étude que M. Levi-Civita a faite de ce probléme,
M. Brillouin et M. Villat ont constaté?) que les lignes libres se raccordent

1) Ce travail a été résumé en deux Notes parues aux Comptes rendus de I’Académie des
Sciences le 3 décembre 1934 et le 12 juin 1935. (t. 199 et 200).

%) Nous rappellerons les démonstrations au cours des chapitres I et II.
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a ’obstacle?) et que ces lignes libres présentent en leurs extrémités des
courbures en général infinies; depuis les travaux de ces Auteurs on consi-
dére que, pour étre physiquement acceptable, un sillage doit avoir des
lignes libres quittant ’obstacle de 1'une des deux fagons que voici:

Détachement vers Uaval®): la ligne libre se dirige du coté aval de 1’obs-
tacle, et y présente une courbure infinie.

Détachement en proue: la ligne libre se raccorde en son extrémité a
Pobstacle, et y présente une courbure finie5).

Ainsi s’est posé un second probléme:

Probléme de la proue. Etant donné un obstacle B,C, trouver un

P

stllage, correspondant a un obstacle BC, dont les propriétés soient les sui-
vantes : 1?5 coincide avec BO/-Z’O ou est une portion de cet arc. St B (ou O)
est en B (ou en C) la ligne libre issue de ce point dovt y présenter un détache-
ment vers laval, ou un détachement en proue. Si B (ou C) est intérieur a
Parc Bfoao, la ligne libre issue de ce point doit y présenter un détachement
en proue.

Mais une solution de ce probléme n’est acceptable, c’est-a-dire ne peut
correspondre & une réalité physique que si elle vérifie en outre les deux
conditions de M. Brillourn.

A~~~

19 Les arcs B,B et CC,, s’ils ne se réduisent pas a des points, doivent
étre extérieurs au domaine D que délimitent I’obstacle et les lignes libres.

20 Le module | df [ dz | de la transformation conforme doit valoir au
plus 1 (en d’autres termes la vitesse doit étre au plus égale & la vitesse a
I'infini).

Les problémes précédents seront nommés symeétrigues quand on les
posera pour des obstacles possédant un axe de symétrie paralléle au
courant, les sillages envisagés devant présenter cette méme symétrie.

2° Nature de 1’ obstacle

Rappelons que I'intersection de I’obstacle et de toute paralléle & I'axe
des x doit étre d’un seul tenant quand elle existe. Nous supposerons
d’autre part que ’obstacle a une courbure finie en tous ses points et que

3) De sorte que la ligne libre et 1’obstacle constituent une courbe & tangente continue.

4) On définit de méme le détachement vers ’amont, qui ne peut correspondre & aucune
réalité physique.

5) Nécessairement égale & celle de I'obstacle, comme I’a prouvé M. Villat.
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cette courbure, considérée comme fonction de I’abscisse curviligne, vérifie
une condition de Holder d’exposant x4 supérieur & 145. On peut d’ailleurs
remplacer en divers endroits cette seconde hypothése par d’autres
hypothéses moins restrictives: par exemple on peut discuter le nombre
des solutions du probléme du sillage quand, au lieu de supposer que
Pobstacle est un arc & courbure hoéldérienne, on considére un obstacle
composé d’un nombre fini d’arcs de cette nature, se joignant en des points
anguleux®). Nous n’exposerons pas la méthode qui convient & de telles
parois anguleuses: elle s’obtient en combinant les procédés par lesquels
nous allons étudier les parois lisses avec les procédés que M. Weinstein
et moi-méme appliquerons ultérieurement aux parois polygonales, le
probléme étant celui du jet et non plus celui du sillage.

Nous orienterons 'obstacle dans le sens des y croissants; nous désigne-
rons par ! son abscisse curviligne, par ¥ ’angle qu’il fait avec Ox. Les
hypothéses énoncées se formulent donc comme suit: 0 < P [I] < n; la
dérivée W’[l] existe et vérifie une condition de Holder d’exposant u

(Yo <p <1).
Nous nommerons accolade un obstacle B,C, du type suivant: il se

A~ A~

compose d’un arc convexe’) B, B;, d'un arc concave?) B;4, d’un autre

~ —~~

arc concave AC,; et d’un autre arc convexe C,C,; la valeur absolue de

P A~

la, courbure des arcs B,B, et C,C, croit ou ne décroit pas quand on les

parcourt de C, vers C,, de B, vers B,,.

™~

Remarques. Les arcs B;4 et AC; peuvent contenir des portions

—~ o~

/7~
rectilignes. Chacun des arcs B, B,, B,C,, C,C, peut se réduire & un point.
L’obstacle présente en A un angle saillant ou rentrant quelconque; si
A n’est pas anguleux, sa position est considérée comme indéterminée

P

sur B;C,. Les obstacles concaves et les obstacles circulaires convexes
sont les formes extrémes de ’accolade.

3° Résultats obtenus

Nous démontrons en premier lieu des théorémes d’existence (ch.IV).
Le probléme du sillage, le probléme symétrique du sillage sont toujours
possibles. Le probléme symétrique de la proue posséde au moins une

) Les demi-tangentes en ces points anguleux sont supposées distinctes. Toutefois,
dans le cas symétrique, 'obstacle peut présenter un rebroussement en son milieu.

) C’est-a-dire ayant une concavité sans cesse tournée vers I’aval.

8) C’est-a-dire ayant une concavité sans cesse tournée vers 1’amont.
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solution, méme quand on s§’impose les restrictions suivantes: le point de
détachement inférieur B doit étre choisi entre ’extrémité inférieure B,
de I’obstacle et le point B; ol la moitié inférieure de la courbe-obstacle
fait aveec Ox 'angle de plus petite valeur algébrique?); le point C doit
étre choisi entre C, et le point C; symétrique de B;. Le probléme de la
proue posséde au moins une solution, méme quand on s’impose les restric-
tions suivantes: B doit étre situé entre B, et le point B, ol la courbe
obstacle fait avec 0x I’angle de plus petite valeur algébrique®); C doit
étre choisi entre C, et le point C, ol cet angle atteint sa plus grande
valeur algébrique.

Nous démontrons ensuite U'unicité de la solution des problémes suivants:

le probléme du sillage posé pour un obstacle convexe (§ 30);

le probléeme symétrique du sillage (§ 30);

le probléme de la proue posé pour un arc circulaire convexe (§ 33);
le probléme symétrique de la proue posé pour une accolade symétrique

(§ 32).
Enfin nous prouvons qu’il existe des obstacles convexes et symétriques
pour lesquels le probléme de la proue posséde plusieurs solutions (§ 32).

Signalons qu’un autre mémoirel?) discute les conditions de validité
de M. Brillouin: il démontre qu’une solution du probléme de la proue
est toujours acceptable lorsque 1’obstacle est une accolade B,B,AC,C,
et que le point de bifurcation du courant se trouve étre en 4.

Les arcs circulaires convexes et les accolades symétriques sont donc des
obstacles auzquels la théorie du sillage s’adapte parfaitement.

A ma connaissance aucun des théorémes d’existence et d’unicité ci-dessus n’avait
été prouvéll). Mais le probléme du jet symétriquel?), qui est identique & celui du
sillage symétrique dans un canal, a été étudié par M. Weinstein, Hamel, Weyl,

®) Sile minimum de I’angle est atteint en plusieurs points, on choisit celui d’entre eux
qui est le plus proche de B,.

10) Sur la validité des solutions du probléme de la proue (Volume du Jubilé
dé M. Brillouin, Gauthier-Villars, 1935).

11) Signalons que M. Brodetsky a construit d’excellentes solutions approchées des pro-
blémes du sillage et de la proue, 'obstacle étant circulaire ou elliptique. (Proc. Edin.
Math. Soc. XLI, 1923; Scripta Univ. Hieros., Jérusalem, 1923; Deuxiéme Congrés inter-
national de Mécan. appliquée, Zurich, 1926.)

12) 11 n’est pas inutile de faire I’historique de ce sujet: Le théoréme d’existence et le
théoréme d’unicité infinitésimale sont étudids simultanément; M. Weinstein démontre
que leur validité est assurée quand un certain théoréme d’unicité locale, dénommsé ,,pro-
bléme II, est exact. C’est ce ,,probléme II‘‘ qui est résolu successivement dans des cas
de plus en plus généraux par MM. Weinstein, Hamel, Weyl, Friedrichs.

M. Quarleri a consacré un article (Rend. R. Ace. Lincei, lernov. 1931, p. 332 t. 14) aux
sillages qui correspondent & des arcs de cercles symétriques; mais M. Weinstein a signalé
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Friedrichs; dans un autre mémoire, fait en collaboration avec M. Weinstein, nous
étendrons les résultats obtenus par ces divers Auteurs, en appliquant & ce probléme
du jet les méthodes du présent travail; nous nous y bornerons & ’étude des jets
issus de parois polygonales; ceci nous permettra d’un cété d’éviter I’emploi d’équa-
tions fonctionnelles, d’un autre c6té de montrer comment se traitent les difficultés
que présentent les parois anguleuses.

La majorité des Hydrodynamiciens considéraient les théorémes d’existence que
nous venons d’énoncer comme devant &tre siirement exacts; il n’est pas inutile
de justifier de telles croyances chaque fois qu’on le peut.

Au contraire, m’a-t-il semblé, les opinions étaient indécises sur les questions
d’unicité; nous sommes d’ailleurs loin de les avoir complétement élucidées.

4° Méthodes employées

Nos théorémes d’existence se déduisent d’'un théoréme d’existence
général concernant les équations fonctionnelles!3) (ch. IV). Les équations
fonctionnelles de nos problémes sont des équations intégro-différentielles
dues & M. Villat; nous en rappelons l'origine (ch. I et IT). L’application
du théoréme d’existence cité exige la vérification de deux catégories
d’hypothéses: les premiéres ont trait & la continuité de ’équation; la
vérification en est immédiate (ch. I et IT). Les deuxiémes consistent en
une limitation a priori de I’ensemble des solutions éventuelles; le chapitre
I1I établit que cette limitation est possible. Nous y utilisons un lemme de
représentation conforme et 1’équation de M. Villat.

Le chapitre V recherche des cas ou le probléme du sillage posséde une
solution unique; la théorie des équations fonctionnelles montre comment
on peut découvrir de tels cas en étudiant 1’allure de deux solutions infini-
ment voisines, c’est-a-dire le probléme de 1'unicité infinitésimale; ce
probléme est au premier abord compliqué; mais nous le transformons4)
suivant les principes que M. Weinstein a indiqués dans ses travaux.
Pour conclure?®) il nous suffit alors d’utiliser convenablement certaines
considérations’®) que M. Friedrichs a récemment appliquées & ces questions.

que cette note contenait trois erreurs et que la méthode employée ne conduisait en fait
qu’a des résultats trés restreints (Rend. R. Ace. Lincei, oct. 1932, p. 85t. 17; C.R.A.S.,
t. 196, p. 324, 1933; Zentralblatt fir Mech.).

Quant aux travaux de M. Schmieden ils contiennent en excés des raisonnements tels
que le suivant: ,,De I'inégalité | A | <| B | résulte par différéntiation |d4 | = |dB | .
(Ingenieur-Archiv, t. III, 1932, p. 368.)

13) Leray-Schauder, Annales de 1’Ecole normale supérieure, t. 51, 1934.

1) Cette transformation (§ 27) exige quelques calculs, que M. Jacob avait entrepris
et qu’il a eu ’amabilité de me communiquer.

1%) Nous n’opérons donc pas de réduction & un ,,probléme II*, comparable & celle que
M. Weinstein a effectuée dans le cas du jet et sur laquelle se basaient tous les travaux
Parus jusqu’a présent (voir p. 40, note 48).

1%) Ces considérations reposent sur l'inégalité (5,16); cette inégalité est plus simple et
Plus générale que celle sur laquelle M. Weyl base ses raisonnements.
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Cette étude de l'unicité infinitésimale est la base du chapitre VI qui
discute le nombre des solutions du probléme de la proue; tous les raisonne-
ments de ce dernier chapitre sont simples et intuitifs.

5° Le travail présent constitue donc un exemple typique d’application
de la théorie générale des équations fonctionnelles'?’). Nous y discutons
seulement les problémes; nous ne cherchons pas a les résoudre effective-
ment, entreprise que d’ailleurs les théoriciens du sillage ont menée aussi
loin qu’il était possible.

Mes premiéres remarques sur ce sujet ont eu ’avantage d’étre exposées
par M. Villat dans son Cours de 1’année 1933. Encouragé d’une telle
facon, j’ai tenu & pousser mes recherches le plus loin possible. Mon travail
a été singuliérement facilité par les directives de M. Villat et par les
nombreux échanges de vues que j’ai eus avec M. Weinstein.

I. Mise en équation du probléme du sillage!®)

6° La solution indéterminée de M. Levi-Civita

M. Levi-Civita a introduit dans 1’étude d’un sillage une troisiéeme
variable complexe [ = & + i7: il représente conformément le plan
coupé f sur le demi-cercle =0, || =1 en sorte que les éléments
suivants soient homologues dans la correspondance qui associe les plans
z et {: DPobstacle et la demi-circonférence 7 >0, |{| = 1; le point
2z = oo et le point { = 0; les lignes libres et les segments — 1 <{{ < 0,
0 < ¢ < 1. Dans ces conditions:

(1,1) f=al3E+eY)—coss|, @>0),

a et s, étant des constantes réelles (le point ¢ = e'®, le point f =0
et le point de I’obstacle ol le courant bifurque sont homologues).

En méme temps M. Levi-Civita définit dans le demi-cercle 7 = 0,
| £| £ 1 une fonction uniforme  ({) = 6 + i 7 par les deux conditions
suivantes
(1,2) w(0)=0 ;(1,3) dfjdz=e*

17) On y voit en particulier que les théorémes d’existence sont absolument indépendants
des théorémes d’unicité et qu’ils exigent des hypothéses moins strictes.

18) Les résultats énoncés au cours de ce chapitre ne sont pas originaux: ceux du para-

graphe 6 sont dus & M. Levi-Civita (Rendiconti Palermo t. 23, 1907), les autres sont dus &
M. Villat (Annales de I’Ecole normale supérieure, t. 28, 1911; Journal de Math., t. 10, 1914).
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La fonction w ({) est continue au voisinage du segment — 1 < { < 1;
elle est réelle sur ce segment: le principe de symétrie de Schwarz lui est
applicable. Un fait capital en résulte: w ({) est holomorphe pour | | <1
et prend des valeurs imaginaires conjuguées en des points { imaginaires
conjugués.

Il est aisé de vérifier avec M. Levi-Civita la réciproque suivante:
soient deux constantes réelles arbitraires a et s,; soit w ({) une fonction
holomorphe pour | | < 1, réelle et nulle en méme temps que {. Les
relations (1,1) et (1,3), que nous écrirons

f= a[ (4 L) —cos 80]

(1,4) dt

dz — a 659 @ [—2_(5+C“1) — 00880] [5 — 1] 3

A

établissent une correspondance conforme entre le plan f coupé et un
domaine D. Cette correspondance conserve les longueurs tout le long des
lignes libres (images des segments — 1 < { < 0,0 < { =< 1); elle associe
les points a 'infini; elle conserve les directions des lignes qui aboutissent
en ces points. Mais D peut se recouvrir, comme 1’a signalé M. Brillouin;
et aucun procédé n’apparait qui permette de choisir la fonction w ({) en
sorte que l'image, dans le plan des z, de la demi-circonférence » = 0,
| | = 1 soit un obstacle donné. M. Villat a réussi & écarter ces deux
inconvénients en précisant comme suit la nature de la fonction w ({).

7° La solution indéterminée de M. Villat

La fonction f (z) établit une correspondance conforme entre deux domai-
nes dont les frontiéres se composent d’'un nombre fini d’arcs a tangente
continue et d’un nombre fini de points anguleux. Donc 'argument de
df |dz est borné, et il est continu au voisinage de tout point frontiére qui
n’est anguleux ni dans le plan f ni dans le plan z: La fonction 6({) est
une fonction harmonique, bornée dans le cercle { < 1 et qui est siirement
continue au voisinage des points ¢ = e autres que + 1, e***. Puisque
7(0) = 0, nous avons d’aprés la formule de Schwarz-Poisson

—2}—{5 weis—}—cds.

27
La relation 6(0) = 0 nous apprend en outre que [0 (e¥)ds = 0.
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Posons avec M. Villat @ (s) = 6(e®®) = (e %) (0 <8 < 7): D(38) est
langle que fait avec ox la vitesse au point de I’obstacle homologue de
¢ = e8. Les deux relations précédentes s’écrivent

17 1— g2
(1,5) w(C)——_y_z_‘[@S 1 —2¢coss -+ ¢2 as,
(1, 6) ]Ecb(s)ds:O.
0

Rappelons que nous désignons par ¥ [I] ’angle que ’obstacle fait avec
O0x au point d’abscisse curviligne [ (b <[ =< ¢), 'obstacle étant orienté
dans le sens des y croissants;

(1,7 0=Vl =<n; Y] existe et vérifie une

condition de Holder d’exposant w > 4 ; ! est une fonction continuel®)
de s et nous avons

pour 0 < s < s,, D(8) = Y[l(s)] —m, (—

(18 §
pour s, <8 < @, D(s) = P[L(s)], (0 <

8° Direction des lignes libres

Soient réciproquement une constante a, une fonction ¥[l] vérifiant
les conditions (1,7) et une fonction croissante et continue I(s) (0 < s < &;
b <1 < c). Les relations (1,8) et (1,6) définissent une fonction D(s) et
une constante s,. Les relations (1,5) et (1,4) établissent une correspon-
dance conforme entre le plan f coupé et un domaine du plan z. Il est
possible de préciser 1’allure des lignes libres qui, rappelons-le, sont les
images dans le plan des z des deux segments 7 =0, —1 < & <0,
0< &<

Ces lignes sont analytiques, sauf peut-étre en leurs extrémités. Nous
les orienterons dans le sens des & croissants. L’angle que fait avec Ox
la ligne libre passant par l'image du point { = & est 0(&), si & <0,

6(&) +x si £ > 0. Nous avons d’aprés (1,8) —a << D(s) < x; dolr
—an < 0(0) <.

19) Parce que toute correspondance conforme entre deux domaines établit une corres-
pondance continue entre leurs éléments frontiéres.
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Nous avons d’aprés (1,5)

17 1 — g2
91(8) z'{{fo@(s) T —9fcoss T %%

ce que (1,6) nous permet d’écrire

B 1n 1___52 1—52 .
9(5)'——7—{{@(8)[1-—25 COSS+§2_1_2500530+§2](Z8’

d’aprés (1,8) @(s) << 0 pour 0 s <8, DP(s) >0 pour 8, <8 < «; or
le crochet est du signe de £ (cos s — cos s,); 6(&) a donc le signe de — &.

I1 résulte de cet ensemble de faits que l’angle des lignes libres avec Ox
est constamment positif et inférieur a .

La continuité de I(s) entraine celles de @(s), donc celle de 0(e*®) au
voisinage des valeurs O et = de s; 6({) est donc continue au voisinage des
points { = 1 et { = — 1: les lignes libres et l'obstacle constituent une
courbe a tangente continue?).

La correspondance entre les plans }/f et z, puisqu’elle représente con-
formément 1'un sur 'autre des domaines dont les frontiéres ont des
tangentes continues, vérifie une condition de Holder d’exposant » arbi-
trairement voisin de 1: on a

|7 —z2"| <Y =V 1P ear L1,

C(lf 1|, |f"]) étant une fonction continue de | f’ | et | f” |. En particulier
l(s) satisfait & une inégalité de la forme

(1,9) | 1(8") —I(s") | < C2|coss’—coss”|".

Désormais nous n’envisagerons plus dans les formules (1,8) que des fonc-
tions 1(s) de cette espéce; afin que toutes les formules ultérieures aient
un sens, nous choisirons 1/2u < v < 1.

9° Sillage associé a des fonctions ¥[I] et 7(s) données

Soit une fonction ¥[l] qui vérifie les conditions (1,7) (b <I< ¢c); soit
une fonction I(s) qui croit de b & ¢ et qui vérifie une inégalité (1,9); soit

20) Nous excluons de nos considérations les obstacles paralldles au courant: ¥ [l] ne
doit 8tre identique ni & 0, ni & 7. Ces cas sont les seuls ol s, puisse valoir 0 ou z; on a
alors z = f,
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enfin une constante a. Considérons les fonctions définies par (1,4), (1,5),
(1,6), (1,8).

® (8) est discontinue ; par contre Y[l (s) ] vérifie le long du demi-cercle
|| = 1. n >0 une condition de Holder d’exposant » :

| P[l(s) ] — PI() ]| < Clls—&'|”;

envisageons donc la fonction 2({) = @ 4 +T, qui est holomorphe pour
|| <1, dont la partie réelle @ prend sur le cercle |{| = 1 les valeurs
O (e+*®) = W[l(s)] et dont la partie imaginaire 7' s’annule avec ¢ : la
formule de Schwarz-Poisson nous donne :

1 —¢2

-—2Zcoss+é‘2d8'

(1,10) 20 =—

S —

W [1(s)]

De cette formule et du fait que W[I(s) ] satisfait & une condition de
Holder d’exposant v résulte, d’aprés Fatou?!) et M. Priwaloff??), que
0 (¢) vérifie une condition de Holder d’exposant » sur toute la région
10l < 1:

|20 — Q) <Cell—-C]|".

Les relations (1,5), (1,8), (1,10) donnent

1— e
e’l:so — C *

(1,11) o(f) = Q(¢) —i log

La seconde relation (1,4) peut donc s’écrire:

(1,12) dz = a eiﬂ(@)[_lz_(é'eiso + E-lein) — 1] . [é- _ CA]%E .
Par suite la frontiére image dans le plan z du demi-cercle |{| = 1,

n > 0 est une courbe; choisissons s pour parameétre de cette courbe
(0<s<m); son abscisse curviligne L est définie par la relation

1,13) O 42T gin2 2 _; % sin s ]

ds
ou l'on a, d’aprés (1,6), (1,8) et (1,10)

1) Fatou, Acta math., . 30 (1906).
22) Priwaloff, Bulletin de la Société math. de France, t. 44 (1916), p. 100—103.
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(1,14) T8y = r Yil(s)lds
‘0

(1,15)  T(e) = nij

0

sin 8
cos 8’ — cos s

PLs)]— PLL(s) ]! ds' ;

I'angle que cette courbe fait avec Oz est ¥[I(s)]. Cet angle, comme celui
des lignes libres, vaut au moins 0, au plus n. Le domaine que délimitent
cette courbe et les lignes libres ne peut donc se recouvrir: la frontiére de
ce domaine est une courbe a tangente continue sans point double.

Les relations (1,4), (1,5), (1,6), (1,8) définissent donc le sillage le plus
général; elles constituent une solution indéterminée du probléme du
sillage.

I1 y a plus: soit un obstacle, dont la forme et 1’orientation sont définis
par une fonction ¥[1] (b1 <c) (Cf. § 2); choisissons arbitrairement une
constante a et une fonction I(s) qui croit de b & ¢ quand s croit de 0 &4 =
et qui vérifie une inégalité du type (1,9); le sillage défini par (1,4), (1,5),
(1,6), (1,8) correspond & un obstacle qui a la méme allure que ’obstacle
donné: nous entendons par 14 que la tangente prend long des deux ob-
stacles la méme suite de directions; la multiplication de a par une con-
stante convenable permet de donner & ces deux obstacles la méme
longueur. Le sillage ainsi associé aux fonctions P[] et I(s) constitue done,
quel que soit I(s), une solution approchée du probléme du sillage, posé pour
I'obstacle que définit la fonction ¥[I]; cette solution est celle de M. Villat;
moyennant un choix habile de I(s) elle sera pratiquement trés satis-
faisante, la simplicité étant en Hydrodynamique aussi importante que
la précision.

Cette solution n’est exacte que si les choix de a et de I(s) sont tels que
[(s) soit identique & la fonction L(s) que définissent les relations (1,13),
(1,14) et (1,15): cette condition n’est autre que 1’équation intégro-
différentielle & laquelle M. Villat, en poursuivant les travaux de M. Leyi-
Civita, a ramené la résolution rigoureuse du probléme du sillage:

(1,16) f—% = 43¢ T sinziiz-—fﬂsin s .

10° Equation fonctionnelle du probléme

Introduisons des notations qui faciliteront le maniement de cette
équation intégro-différentielle.
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L’obstacle sera I’'arc 6 <! <c¢ d’une courbe illimitée, dont la forme et
Porientation seront définies par la donnée de son angle avec Oz en fonction
de son abscisse curviligne: ¥[1]. Désignons par Cy, Cy, les plus petites
constantes telles que

| PIL]—P[L] < Cp|h—L W | YL — P[] <Cplli—1L|*,
et nommons ,,norme de ¥Y[I]* la grandeur

| #1ly,p = { Max. | ¥| + Cy} + {Max. | ¥/ | + Cy} .

Nous supposerons que ¥[I] appartient & l’espace abstrait K, , des
fonctions telles que cette norme existe.

Nous utiliserons un second espace abstrait E,; il sera linéaire, normé
et complet comme le précédent. Il se composera de 1’ensemble des fonc-
tions [ (s), définies pour 0 <s <z, qui possédent une norme finie, ||1(s) ||, ,
au sens que voici: » étant la constante que nous avons choisie arbitraire-
ment au § 8 (1|2 u<<v<<1), soit ¢, la plus petite constante telle que

| 1(81) —I(s5) | < ¢, | cos sy —cos s, |Y;

nous posons
[T (s) ||, = Max [ i(s) | +c,.

Etant donnés un élément I(s) de E,, (1,14) définit une constante s, et
(1,15) définit une fonction 7' (¢*8) ; d’aprés le théoréme déja cité de Fatou-
Priwaloff 7 (e*®) vérifie, par rapport & s, une condition de Hélder d’ex-
posant »; (1,13) définit alors des fonctions croissantes L(s) qui dépendent
d’une constante d’intégration additive et de la constante multiplicative a;
il existe une et une seule de ces fonctions dont les valeurs pour s = 0 et
8 = 7 soient b et c; elle correspond au choix suivant de a

(1,17) c—b=4a fe_T(e“) sinzs—g—?QSiHSdS ;
‘0
nous désignerons par V{i(s), P[], b,c}

la transformation fonctionnelle qui fournit cette fonction L(s) & partir
des éléments 23) I(s), P[l], b et c, lesquels sont respectivement un point
de E,, un point de E, , et deux constantes réelles.

23) 11 importe de bien remarquer que ! (8) n’est plus nécessairement une fonction crois-

sante, que ¥ (I) n’est plus nécessairement compris entre 0 et 7z, comme c’était le cas au
cours des paragraphes précédents.
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Le probléme du sillage équivaut & la résolution de I’équation suivante:
étant donnés v, P[1], b et ¢, et sous réserve que ’'on a

12u<v<l, 0 K< PII<m b<c,
trouver un point /(s) de E, tel que

I(s) = V{I(s), P[I], b, ¢}

11° Propriétés fonctionnelles de la transformation V

Continuité compléte de V. 1l est facile de vérifier que la transformation V
fournit un point de E, qui dépend continiment des arguments de V;
cette continuité résulte d’ailleurs de la différentiation de V que nous
effectuerons & la fin de ce paragraphe.

Les fonctions L(s) = V{1(s), ¥Y[l], b, ¢} sont des éléments particuliers
de E, : la dérivée dL/d (cos s) existe et est continue; les maxima de
| L(s)|, |dL |d(coss)| peuvent étre majorés au moyen des quatre
grandeurs [|1(s)[,, || Z[L]11l1,p> 0], €t [c|. Tout ensemble de valeurs de
I(s), P[1], b, ¢ sur lequel ces quatre grandeurs sont bornées est donc
transformé continlment par V en un sous-ensemble compact de E,.
On exprime cette propriété en disant que V est complétement continue.

Différentiation?*) de V. Nous allons comparer le systéme d’arguments
[(s), P[I], b, ¢ & un systéme voisin, que nous désignerons par l’indice 1.
Représentons les accroissements des arguments par les symboles

ol(s) = 1,(s) — I(s), AWP[I] = Y [I1]—¥P[I], 6b =b; —b, 6c =c, —ec.
La partie principale de I’accroissement de P[l(s)] est
S W[L(s)] = ¥'[L(s)] O0L(s) + A¥[L(s)];

cette fonction appartient & 1’espace E,., .

La partie principale de ’accroissement de 7' (e?¢) est, d’aprés (1, 15)

sin 8 ,

5T (ei%) =%f{5¥f[l(s')]——a¥f[1(s)]} ds'
0

cos 8' —cos 8

en vertu du théoréme de Fatou-Priwaloff22) 67 (e*®) appartient aussi

) Cette différentiation sera utilisée au début du chapitre V; la démonstration des
théorémes d’existence n’en fait pas usage.

%) Priwaloff, Bulletin de la Société math. de France, t. 44 (1916), p. 100—103.
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a Eu.y. Les équations (1,14) et (1,17) différentiées définissent deux
constantes ds,, 0a:

7 08y = ?6T[l(s)]ds ,

—T(e“‘ _

oc— ob = 4a}e

0

8+ ——gin sl%——dT(ew)—{—cotg T+ °6so]ds .

Soit enfin 6 L(s) la fonction qui satisfait aux trois conditions ci-dessous,
dont la premiére résulte de la différentiation de (1,13)

dsL
ds

— 4 ¢ T(e%) gin2 + — 2 sms[%————éT(ew) -+ cotg — ST 0680] ,
O0L(0)=06b, 6L(n) = éc ;

I’équation de définition de da exprime la compatibilité de ces trois con-
ditions.

La lettre A nous servira & représenter diverses fonctions continues de

to ¥s 1L s [TPL1, 0 1015 Tels [0 () o [ F1L8 1,5 115 [€4] . Nous
avons, en posant

r(t,8) = ¥ [1(s) +161(s)] — P'[L(s)],

Y[l (s)] — P[L(s)] — 0 P[l(s)] = Ol(s ,f?‘(t $)
Or
|7(t, 8) | << A | dL(s) |[F+ |AP'[L(s)];

done, a fortiori,
|7 (t8) —7 (4 89) | < A. {I[80]],+ | 4P| ], u}ws
d’autre part r (¢, s) appartient & Ey.:
|7(t, 81) — 7 (¢, 85) |[< A. | cos 8; — cos s, |HV.

Soit ¢ une constante inférieure & 1; nous la choisirons supérieure a
1/2 uv, pour satisfaire aux exigences du paragraphe 14; les deux
inégalités précédentes entrainent

|7 (t,8) — 7 (t,8)|< A.|cos s;—coss,|#ve-{ |||, + || A P||1,u}O

Cette inégalité portée dans I'intégrale ci-dessus donne
(1,18)
|11 (L ()P [(8)]—0P [U(3)] | wve < A. 1|82} - {|| 82y + || 4P| 1, }H 10
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Par conséquent
|81,0— 89— 08y | + Max. | T, (e*¢) — T'(et%) — 0T (&%) | <
<A {0y + [|[AW¥||1,p} OO,
D’our

gy —a—da| < A.{|[6l|l + (|4l u+ |8b] + |c| P+r0-0.

Par suite

Max. | L, — L — oL | + Max,|#fa—L—00)|

d (coss) )

< A{||ol|ly + || A¥||1,u+ |6b] + |Sc] Jrtrea-o

nous avons donc, quand I,(s), ¥,[I], b, ¢,, tendent respectivement vers
I(s), ¥[1], b, c,

(1,19)
lim. || Ly (5) — L(s)— 8L () [I,.- {I[611, + 1A%y, o+ | 8b] + | de [} =0,

Posons
0L =W {dl(s), A¥[l], 6b, dc; W[I(s)], b,c};

la transformation fonctionnelle W fournit, comme V, des fonctions
appartenant & E,; comme V elle est complétement continue; elle est
linéaire et homogéne par rapport & ses quatre premiers arguments; la
relation (1,19) exprime que c’est, au sens de M. Fréchet, la différentielle
de la transformation V.

Remarque. Dans le cas particulier ou I'obstacle est rectiligne W est
indépendant de dl.

Propriétés définissant W. L’équation de définition de 67 (e*®) exprime
que SW[I(s)] + 26T (¢*3) sont les valeurs sur la demi-circonférence
{=ets (0< s<<n) d'une fonction 6L2(f) holomorphe & lintérieur de
cette demi-circonférence, réelle sur son diamétre; I’équation de définition
de ds, exprime que ds, = 6L2(0). Nous pouvons donc définir la fonction
dL(s) que fournit la transformation W par l'ensemble des propriétés
suivantes: il existe une fonction 6£((), holomorphe pour |[{|< 1,
n > 0, holdérienne pour |{| < 0, qui est réelle sur le diametre — 1 <<{ < 1
et dont les valeurs frontiéres sur la demi-circonférence ¢ = ¢*¢ sont

s+ 8

'd6L+fi%§'+icotg 5 03y ;

(L,20)  6Q(eis) = W' [1]61 + AP —i—r

on a en outre
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(1,21) 8L(0) = b, 8L (m) = bc,
(1,22) 88, = 62(0).

Définissons une fonction dw({) par la relation (1,11) différentiée

1 —¢2

1— 2 cossy + (2 980

(1,23) dw (§) = 6L2(¢) —

on peut substituer & la formule (1,22) la suivante

(1,24) dw(0) = 0.

II. Mise en équation du probléme de la proue

12° Préliminaires

Soit un sillage correspondant a un obstacle donné. La fonction z(f)
est analytique le long des lignes libres. Son allure a I'infini est trés simple
& préciser, grice aux équations (1,4). Sa nature le long de ’obstacle se
déduit des nombreuses études qui ont porté sur les voisinages des fron-
tiéres de deux domaines donnés se correspondant conformément. Les
points de détachement sont donc les seuls points que nous devions
examiner.

Nous savons que [(s) et par suite £({) vérifient une condition de

Holder d’exposant » (§ 8 et 9). 1l en résulte, par ’équation de M. Villat

(1,16), que dl/ds vérifie aussi une telle condition; donc que dlpo[lls ()1 _

PrlL(s)] % vérifie une condition de Holder d’exposant uv. La partie

imaginaire de ¢ %—? vérifie également une condition de Holder d’exposant
pv, puisqu’elle vaut + P’[1(s)] dl/ds au point e*** et que cette fonction
Y [l(s)]dl/ds s’annule pour s=0 et pour s=wn. Le théoréme de

Fatou-Priwaloff permet d’en déduire que ¢ %% et par suite

d[)__dw_i_ 28in 8,
d¢ d¢ ' 1—2%cos s, + 2

(2,1)
vérifient une condition de Hoélder d’exposant u» sur tout le cercle |{] =1.
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Digression. Supposons pour un instant ¥[l] analytique; le raisonnement se
poursuit, basé sur ’équation de M. Villat et le théoréme de Fatou-Priwaloff: on

démontre successivement que les fonctions suivantes satisfont une condition de

. AT (%) e @l BPs) . &0
Holder :—————, donc, d’apreés (1,16)21;5 » puis ——5—, la partie réelle de m ,

ds
2N d2T (eis dsl At 2L
(¢*9) atd UL Mais en général la partie

R —dE donc d’aprés (1,16)d——8—8 , puis enfin PR
i inaire d P2 di tinuité int, +1 tdam infini
imaginaire de @log &P & une discontinuité aux points § = + 1 e dg & un infini
logarithmique en chacun des points de détachement.

Un point de détachement ne présente pas cette singularité quand en ce point

P _
dsd o

Nous transformerons cette condition en remarquant que d’aprés (1,3)

1] = e-t)af]
c’est-a-dire
dl = 2ae7|coss8—cos g |sinsds ;

cette équation, qui n’est autre que I’équation de M. Villat, fournit le développement
limité au voisinage de la valeur s = 0:

l(s) = fonction paire de ¢ — %9- (%) (1—cosgy) 884 +++ ;
0
. . . 2a , dr "
d’ou ¥[l(s)] = fonction paire de s — 5 v [b] s (1 —cossy)s®+ -«
/ 0
PPl )
par suite la condition ~—-d£3—(8)1 =0 équivaut & la suivante: ¥’[b] - @’ (1) =0.

a3 . . .
Pour que E;L: soit bornée au voisinage d’un point de détachement il faut et il

suffit done que la courbure de ’obstacle y soit nulle ou bien qu’on y ait ®’ = 0.

En poursuivant on aboutit aux conclusions suivantes: Considérons la suite des
o .. d?rtle : , "
dérivées d’ordre impair @logJ2r+1 (p = 0); soit 2m - 3 l'ordre de la premiére
d’entre elles qui n’est pas continue au point de détachement; soit 2n + 1 1’ordre
de la premiére d’entre elles qui n’y est pas continue et nulle; m (ou n) est posé égal
a + oc si toutes ces dérivées y sont continues28) (ou continues et nulles). On a

0 =% =< m. Les dérivées 3 d’ordres inférieurs & 2m -+ 3 vérifient une condi-

die
(d log §)
i p . ., dZm+3
tion de Holder au point de détachement. Si m est fini la dérivée (d Tog §)Zm +3 y
Présente un infini logarithmique. Si la courbure de l’obstacle n’est pas nulle au

point de détachement, on a n = m.

L’allure du détachement dépend de n: au voisinage du point de détachement
Pobstacle et la ligne de jet sont les transformés d’un segment de I’axe des f réels
par la fonction z (f) = f et df. Si n= - cotoutesles dérivées de z(f) sont continues
—_——

**) On a en général m = n = 0; les cas n = co et m = oo sont trés exceptionnels.
Toutefois m = ~ quand Pextrémité de I’obstacle est un segment rectiligne; alors ¥(I(s)]
ot par suite la partie réelle de 2 (%) sont constants au voisinage du point de détachement;
® (§) ¥ est done analytique.
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ld2n+16
(dlog &) 2n+1

+1 . + 2 . . . . . .
dﬁ»i est continue alors que s O devient infinie. La ligne libre a au point
d f” +1 y . q d f" +2 y g P

au point de détachement. Sinon y est continue, mais non nulle ; donc

de détachement un contact d’ordre n + 1 avec le prolongement de 'obstacle ; si n

est fini son élément de contact d’ordre n -+ 2 est singulier et c’est le signe de
2n+1 o e . . .

B bl calculé au point de détachement, qui indique si la ligne libre est

située au voisinage de ce point du cdté amont ou du co6té aval de 'obstacle.

Le paragraphe ci-dessous va montrer comment cette conclusion reste en partie
valable quand on ne suppose plus I'obstacle analytique.

13° Courbure d’une ligne libre en son point de détachement

L’angle que fait la ligne libre supérieure (ou inférieure) avec Oz est w
(ou w + 7z) ; son abscisse curviligne est f(ou—f); sa courbure est donc

do(,, _do
af af) -
Déterminons ’allure au point { = 1 de la fonction analytique

do dw 2.(8

(2,2) df ~ dl e(—1)(2—2Ccosg, + 1)

Au voisinage du point { =1 do vérifie une condition de Holder d’ex-

’dC

posant uv (cf § 12) et nous avons donc

do o' (1) t+1
df 4a(l—cos sy (—1

(2,3) <ol et (o =

&n‘&
e 8
S—

D’autre part?6) sur le demi-cercle { =¢% (0 <s < az)
dw , o dl
R(q7) = v g
or d’apres (1,3) |df| =e*|dl|; d’on

R(%}) = Y'[l]- e signe de% ‘

\

26) R signifie ,,partie réelle de . . .
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R(?) reprend ces mémes valeurs sur le demi-cercle complémentaire;
le long du cercle || = 1 et au voisinage du point { = 1, R (%)vériﬁe

donc une condition de Holder d’exposant uv. Introduisons une fonction
W () qui présente les caracteres suivants: elle est analytique pour

|£]<<1; pour || < 1elle vérifie une condition de Holder d’exposant uv;

elle est réelle en méme temps que ¢ ; sa partie réelle vaut R (o(l;;)le long

/

de |{| = 1, au voisinage de { = 1. La fonction

dw ' (1) c+1

df  4a(l1—cossy)i—1

W ()

a sa partie réelle nulle le long de ce cercle, au voisinage de { = 1; d’aprés
le principe de symétrie elle existe et est holomorphe dans un petit cercle
pointé 0 < | — 1| <e; elle y vérifie une inégalité semblable a (2,3);
elle est donc holomorphe au point ¢ = 1. Par définition W (1) = — ¥’ [b].
On a donc le développement

do o’ (1) (+1
2,4: —_— == —¥'Ib aee
(2:4) df 4a(l—cossy)i—1 6] +
les points ...... représentant une fonction qui s’annule pour { = 1 et

qui vérifie une condition de Holder d’exposant u» dansle cercle |{| <1,
au voisinage du point { = 1.

La ligne de jet se détache donc vers Uamont, vers Uaval ou en proue suivant
que dw | d¢ est positif, négatif ou nul au point de détachement.

N.B. Quand le détachement est en proue ' (1) =0, do/df est
continue au point de détachement; et la formule (2,4) prouve que la
courbure de la ligne de jet y est égale a celle de I’obstacle (Villat).

14° Caleul de o’ (1) et ' (—1)

Considérons le sillage associé 4 des fonctions ¥[I] et I(s) données.
Calculons o’ (1) et ' (— 1) & 1’aide de ces données. Nous avons d’apres
(1,5)

ds )
1—2¢ coss-C2°

w(l) —w(l) _ _:{;f[q)(o) — D (s)]

167



Faisons tendre [ vers 1 par des valeurs réelles, et tenons compte de
I'inégalité, déduite de (1,7), (1,8) et (1,9):

| ®(0) — P(8) |< Cte|1—coss|” (1/2<v<1);

opérons de méme au point { = — 1; nous obtenons les deux formules
(1) =5 [ (B0 — 0
@ 2 ( (8 }sm2(8/

(2,5) ° .
1 8
' (—1) = T 2 {{@(s O (m )}0032(8/2)'

Les relations (1,8) permettent de donner & (2,5) la forme suivante 27)

o (1)= o [{ P11(0)] — W[l(s)]}gi—i%m——cotgfza ;
(2,6) °
o (—1) =5 f (PUE]— Pl)] st — 10

Les seconds membres de (2,6) sont des fonctionnelles de I(s) et ¥[l] qui
sont continues sauf quand ¥[!] se réduit identiquement & 0 ou a 7.

Quelques cas od la nature du détachement est évidente a priors : Supposons
que ¥Y[b] soit la plus petite des valeurs que prend ¥[l] sur la partie de
I’'obstacle inférieure au point de bifurcation (c’est-a-dire pour 0 < s<s,);
ceci a lieu par exemple si ¥[b] = 0; on a alors

D(0)<<L D(3); donec d’apres (2,5), w’(1)<0

Si ¥[b] = & nous avons @(0) = 0; donc

w__l
“‘2

o\——§~q
?l -
3
prmcenns
[y
(=}

fon—
|

S

—

=,

ISM

(V.

Z . )
Sm 2 ’ 2 5

or le crochet a le signe de @(s); donc w’(1) > 0.,

27) Les deux quantités w’(1) et w’(—1) intervenant fréquemment dans les travaux de
M. Villat, signalons 'aspect qu’elles y présentent: M. Villat se limite en général au cas
symétrique ou elles sont égales & 7

2
2 1
— a1t

x,) sins ds
0
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Différentiation des fonctionelles w’(1) et w’(— 1).

L’inégalité (1,18) prouve 28) que les fonctionnelles, w’(1) et w’(— 1)
possédent des différentielles de Fréchet, dw’(l) et dw’(— 1). Nous
avons 29)

(2,7) 6w'(1)———gl;tf{a!zf[z(())]——wu(g)]} ds L)
0

sin?(s/2) ) sin2 50 )
2

Cette expression et ’expression analogue de dw’(—1) permettent de
vérifier que dw’(1) et dw’(— 1) sont les dérivées3?), aux points + 1, de
la fonction dw (¢) définie par (1,23).

156° Equations fonctionnelles du probléme de la proue

Etant donnés un élément I(s) de E, et un élément ¥[l] de E, ,,
posons

B {I(s), P[]} = w'(1) sin%‘l , C{l(s), P[1]} = o (—1) cos %‘1 ;
c.-a.-d.
B {I(s), P[]} = .-_sm__f{srf[z(on—wu a;)]}sm2 ) cos%‘-’—,
(2,8)

C{i(s), 'I’[l]}-———cos——J {(P[L(s)]— P[l(n )]}Ea-sﬁzl-a/—g)—sin%.

Ces fonctionnelles sont continues par rapport & leurs arguments. La
condition pour qu’en ’extrémité inférieure (ou supérieure) de I’obstacle le
détachement soit vers ’aval, vers 'amont ou en proue est que B (ou C)
soit négatif, positif ou nul. Et ces propriétés subsistent, méme quand
I'obstacle devient paralléle au courant. Il y a donc avantage & considérer
B et C au lieu de w’(1) et w’(— 1).

Le probléme de la proue se formule comme suit: on donne v, ¥[!],
by, ¢y (1/2u<v <1; 0K P ; by<c,); on demande de trouver un
point I(s) de E, et deux constantes b et ¢ qui vérifient I'un des quatre
systémes écrits ci-dessous

*8) Car nous avons l'inégalité uvp=1/2.

%) On ne peut guére restreindre les hypothéses faites sur la régularité de I'obstacle sans
que la définition de dw’(1) perde toute signification; or le chapitre VI est entiérement
basé sur I'existence de dw’(1).

39) Caleculées le long du diamsétre réel.
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(2,9) l(S) = V{Z(S), Yj[l], b, C}, B{ l(S), T[l]} s i,
C{l(s), P[]} =0, by<b<ec<ey;

(2;10) l(s) = V{ l(8)7 T[l]p bO’ C}, B{ l(s)’ T[l]} é O,
C{Z(S), T[l]}:o’ b0=b<c<00;

(2,11) L(s) = V{1(s), P[1],b,¢o}, B{I(s), P[]} =0,
CLls), PIII} =0,  by<b<c = cy;

(2,12) L(s) = V{(s), P[1], bos o)  B{i(s), ¥[l]} =0,
C{l(s), P[]} =0, by = b, ¢ = c,.
Soient by, ¢, b,, ¢, les abscisses curvilignes des points B, Uy, B,, C,
que définit le paragraphe 3; le chapitre IV établira que le probléme

symétrique de la proue est résoluble méme quand on impose a b et ¢ les
restrictions

(2,13) b < b, ¢, < c.
I1 établira que le probléme de la proue est résoluble méme quand on
impose a b et ¢ les restrictions3?)

(2,14) b < b, ¢y < C.

III. Limitation (a priori) des inconnues

16° But du chapitre

Nous dirons qu’une famzille d’obstacles est bornée quand les longueurs
¢ — b et les courbures | ¥’ [1]| de ces obstacles sont bornées dans leur
ensemble. Nous nous proposons d’établir le théoréme suivant:

Théoréme. Soit une famille bornée d’obstacles. Les fonctions 1(s)
correspondantes (s’il en existe) vérifient sitmultanément une méme inégalité

| 1(8) —1I(s’)| < C|coss—coss’|”.

En d’autres termes les normes || 1(s) ||, sont bornées dans leur ensemble.

31) Ces restrictions facilitent la résolution du probléme.
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L’inégalité de Holder

b b 1 1-v 0 1 Y
[o@ v@)de <[f|¢(w) l“”d-’v} - [flw(w) I”dx]
s’écrit, quand on pose x = cos 8, y = 1, ¢ = dl/d(cos s):
cos 8’ dl 1 1-v
— ' e 1-v . - 'y .
[1(s) —1I(s")| < J | afcoss) d (coss)| - |coss—coss'|” ;

pour établir le théoréme il suffit donc de majorer les intégrales
870
S=
Or nous avons 1’équation de M. Villat (1,16),

al -7 (%) ., 848
d—g_.—4a,e sin 3

1
1-v

dl

(08 3) d (cos s) .

sin s .

Le théoréme énoncé est donc un corollaire des deux faits suivants, que
nous allons établir indépendamment I’un de ’autre:

19 Les coefficients a sont bornés dans leur ensemble (§ 17).
20 Les intégrales

'y
(3,1) [eantr(ods
0

sont bornées dans leur ensemble (§ 18 & 21).

17° Majoration de a

Nous avons d’apreés la seconde formule (1,4)

T

(3,2) ¢c—b=2a [e"|coss—coss,|sinsds .
0

La convexité de la fonction exponentielle permet, comme on sait,
de tirer de (3,2) 'inégalité32)
fr(e"s)lcoss—cossOISinsds.
0

c—b 1

3,3 o
(3.3) log 2a (L I cos?sy) ~ 1 cos?s,

) Cette inégalité exprime le fait suivant:
des masses infinitésimales dm = sin s | cos s— cos s, | ds placées aux points
Z (8) = 7(s), y (s) = e~7(8) ont un centre de gravité situé dans le domaine log y = — 2.
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Or fr(e“) (cos 8" — cos s,) sin 8’ ds’ est égal, le long du cercle

{ = e*3, 4 la partie imaginaire de la fonction

”(5)’;’“%;‘“’(5)[-;—(54-4"1)—-cosso] [C—-—&“l]%‘-
¢¥%

On a
IT(8) = o (0)[E— &1+~ [0 (0) — 20 (0) cos 5,1 log £ + IT,(2)

IT, ({) étant holomorphe pour | { | < 1.

La relation (1,5), ou | @(8) | <=, entraine les inégalités
w’(0) <4, w”(0)<8.

La partie réelle de 7, ({) sur le cercle { = e*8 est

8

[0(e%") (cos 8’ — cos 8,) sin &' ds’;

3
cette fonction a une dérivée comprise entre — 2 7z et -+ 2 7; le théoréme
de Fatou-Priwaloff déja utilisé permet d’en déduire que, sur le cercle
| ¢|<<1, | I, () | est inférieur & une certaine constante numérique.

Il existe donc une constante numérique qui majore | I7({) |; on peut

donc assigner une borne inférieure3?) au second membre de (3,3). Par
suite a peut étre majorée en fonction de b—c. C. Q. F. D.

18° Lemme

Soit une fonction, 2,() = O, + +T,, holderienne pour |L|<1, holo-
morphe pour |{| <1, réelle pour { = 0. Supposons que loscillation de
O, (et®) soit 260 <m. Je dis que

2w
(3,4) j e T ds < 27 (cosd)1.

La fonction — j 2 @) transforme le cercle ¢ = et (0<<s <2m)

en un arc ouvert, P ; l’ongme de I' est le point 0; I’extrémité de I" est le
point 27¢ef6:®; la corde qui sous-tend I' a donc pour longueur 2 7.

33) J’ai cherché si ’on pouvait choisir cette borne égale & 0; il n’en est rien. Si ce choix
avait été possible, il en serait résulté par (3,3) que la longueur de 'obstacle est toujours

supérieure & celle de son image dans le plan f du potentiel complexe. Cette proposition est
fausse elle aussi.
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D’autre part I' fait avec 'axe réel ’angle 0, (¢*¢), dont ’oscillation est
2@. Par suite la longueur de I" vaut au plus 2 # (cos w)-1. Or le premier
membre de (3,4) représente cette longueur. Notre lemme est donc établi.

Remarque. Supposons que la famille des obstacles donnés présente
le caractére suivant: les oscillations des fonctions ¥Y[I], qui définissent
ces obstacles, admettent une borne supérieure inférieure3?) & z(1—v);
soit 2 @ (1—v»). Envisageons un sillage correspondant & l'un de ces
obstacles. Le lemme qui précéde s’applique & la fonction 2,({) =
(1—v»)"1 2({). L’intégrale (3,1) est identique au premier membre de
(3,4). Le lemme ci-dessus suffit donc dans ce cas & établir le théoréme du
paragraphe 16.

19° Lemme sur la eorrespondance des frontidres dans une représentation
conforme

Il existe ume fonction n[e], continue et nulle pour ¢ = 0, qui posséde la
propriété suivante : Soit F une variable complexe. Donnons-nous arbitraire-
ment deux segments éirangers FF, et FoF, de Vaxe des F' réels et une sur-
face D*, d’aire o, qus soit 'tmage conforme du demi-plan I (F') > 0. Appelons
A la plus courte longueur des chemins tracés sur D* qui joignent 'image de
F,F, a U'image de F3F ;. On a 3%)

(3,5) 4< VE n[—EF FF Fy)]

Démonstration: Transformons conformément le demi-plan I(F')>0.
en un rectangle R d’un plan complexe G'4 ¢ H, de fagon que les points
F,, F,, F,, F,deviennent les sommets 0, a, a 48, 18 de R. Soit M (G-+1H)
le module de la correspondance conforme qui représente R sur D*.
Nous avons

B 8
A%< borne [ [ M(G+ iH)dH]? < borne g [M(G+iH)?dH <
0 0

~

< M(G+z‘H)2-dG-dH=_g-a.

Q=
© Sy T

!

3) Nous supposons au cours de tout le mémoire 1/2 <<u» << 1; mais seule la discussion
du nombre des solutions du probléme de la proue (chapitre VI) tomberait en défaut si
nous choisissions » arbitrairement voisin de 0.

*) (F,, F,, F,, F,) représente le rapport anharmonique des points F,, Fg, F,, F, .
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D’apreés la définition méme de la fonction modulaire 4,
(FI,F3,F4,FQ==AF£].

Or — A[iz] croit de 0 & 4 co quand « croit de 0 & + co. Par conséquent
nous avons

2
(3’6) —-‘Z[i%— \<\~—~(F1,F3,F4,F2),
et cette inégalité équivaut & une inégalité du type (3,5).

20° Construetion d’un module de eontinuité pour la fonetion ¥ [ (s)]

Considérons un sillage; nous allons lui appliquer le lemme ci-dessus.
Nous représentons le demi-cercle |{|<1,%>0 sur un demi-plan
I(F) >0 au moyen de la transformation F = — }({+¢-1). Nous
envisageons deux points {’ = €8/, " = €%8” tels que 0 s’ <s”" < m,
| cos s’ —cos8” | < 1; I'une des inégalités cos s’ <1, — 1 < coss” est
donc vérifiée; fixons les idées en admettant que cos s’ <1.

Les transformés des points {’et {” sont #', = — cos 8/, F'q = — coss8”;
2 3
posons F;, = — 1, F, = oo; nous avons

cos 8 —cos 8’’

1 —coss’ , donc

”‘(Fls Fs, F43 Fz):

(3,7) —(Fy, Fy, F,, F,) < 2(coss’ —coss'’).

Soit D le domaine situé en amont de I'obstacle et des lignes libres.
Soient 2z’ = x’ + iy’, 2" = x” + 1y " les points de I’obstacle homologues
de ¢’ et ¢”. Tragons la sphére 2 de diamétre ¢ — b qui touche en z” le
plan z. Soit D* la projection stéréographique3é) de D sur 2.

L’image de F,F, dans le plan z est un arc de I'obstacle qui appartient &
la région D’: | z—2"| <c—b, y < y’. L’'image de F,F, se compose de la
ligne libre supérieure et d’une partie de 1’obstacle; elle appartient donc
au demi-plan D”: y > y” (cf § 8). On vérifie sans peine que les projections
¥y —y

5 . Par suite

sur 2 de D’ et D’ sont distantes d’au moins

(3,8) =4 <a.

80) Le centre de projection est le point de = diamétralement opposé & 2z”.
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Des inégalités (3,6), (3,7), (3,8) nous concluons que

L _"E_(?/'““y”)2 ' " ’ "
(3,9) A in (o—b) < 2|coss’—coss” |pour|coss’ —coss” | <]

Cette inégalité (3,9) fournit un module de continuité pour I’ordonnée y(s)
des points de I'obstacle.

Nous avons le long de ’obstacle

sin Vd¥ = Y'[lldy,
done
|cos W[I(s')]—cos¥[l(s")]| = |y —y"|. Max | ¥P'[I]],

2 ” ’ ” ’
| PUEEN]—=PUEN]P =y —y"|. Max| ¥[]]
Portons cette inégalité dans (3,9); il vient, si | coss’—coss”| < 1,

| PIL()]— PLi(s”

Cette inégalité fournit pour la fonction ¥Y[I(s)] un module de continuité,
qui dépend seulement de la grandeur (¢ — b). Max | ¥’[I]|.

21 Majoration des intégrales (3,1)

Considérons une famille bornée d’obstacles et les fonctions ¥P[I(s)],
9(e*®) correspondantes. Donnons-nous un nombre & <z [/ 2. L’inégalité
(3,10) entraine l’existence d’une constante S possédant la propriété
suivante: l’oscillation des fonctions Y[I(s)], et par suite celle des
fonctions @ (%) est inférieure & 2(1 — »)® sur tous les arcs du cercle
|| = 1 dont la longueur est 3 S.

Pour savoir majorer les intégrales (3,1), il suffit de savoir majorer
les intégrales
(3,11) f e~ (=01 1) gg

8,

quand s, —s, = S. Soit 2,(f) = O, + 1T, la fonction holomorphe
pour |{| < 1, qui est réelle quand ¢ est réel et dont la partie réelle @, est
définie comme suit: @, ({) est continue au voisinage du cercle { = ¢?;
O, (e**) vaut (1 — »)-1O(ef%) pour s; — S <+ 5<8 + S; O;(e?®) est
constante au voisinage des autres valeurs de s. Puisque 0 <O
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on peut construire, en fonction de § et », une quantité qui majore
| T, (e*®) — (1 —»)~1 T (e8) | pour 8; <8 <8, Lesintégrales (3,11) peuvent

8, .
donc étre majorées au moyen des intégrales [e-T.(¢**)ds. Or, d’aprés le
8
paragraphe 18, celles-ci sont inférieures & 2 z(cos @)1

On peut donc assigner une borne supérieure aux intégrales (3,1).
C.Q.F.D.

IV. Theorémes d’existence

22° Préliminaires

Nous allons maintenant établir que le probléme du sillage posséde
toujours une solution au moins, et qu’il en est de méme pour le probléme
de la proue. Nous n’expliciterons pas 1’étude des problémes symétriques:
ceux-ci peuvent étre traités par les raisonnements qui suivent, ol I'on
précise que tous les obstacles et tous les sillages envisagés sont symé-
triques. '

Nous nous appuierons sur une théorie récented?) des équations fonction-
nelles: Soit une équation de la forme

(4,1) x = F(z);

x étant un point d’'un espace abstrait, linéaire, normé et complet, E;
F () étant une transformation fonctionnelle, définie sur E, complétement
continue. On associe a cette équation la transformation fonctionnelle

(4,2) . y=a—F(x)

Soit dans E un domaine borné D dont la frontiére ne comporte aucune
solution de (4,1). On nomme indice total des solutions de (4,1) contenues
dans D le degré topologique au point 0 de la transformation (4,2) en-
visagée sur D. Cet indice total reste constant quand on modifie conti-
niment la transformation complétement continue F(z) sans qu’aucune
solution de (4,1) atteigne la frontiére de D; des théorémes d’existence
peuvent donc s’obtenir par le procédé suivant: on réduit continiment
I’équation (4,1), sans qu’aucune de ses solutions atteigne la frontiére de
D, 4 une équation suffisamment simple pour qu’on puisse déterminer

37) Leray-Schauder, Annales de I’Ecole norm. sup., t. 51, 1934, p. 45.
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Pindice total des solutions qu’elle a dans D; s’il différe de 0, ’indice
total des solutions que (4,1) a dans D, lui étant égal, différe de 0; alors
D contient nécessairement au moins une solution de (4,1).

23° Probléme du sillage

Ce probléme a été ramené (§ 10) a la résolution de I’équation
(4,3) L(8) = V{1(s), P[], by, ¢ };

I'inconnue [(s) appartient & ’espace linéaire, complet, et normé E,.

Envisageons ’équation, qui dépend continiment d’un paramétre k,
(44  U)=V]is), kP +(1—k 5, by, 6|, (0<Ek<);

c’est I’équation du probléme du sillage pour l’'obstacle que définit la
fonction

(4,5) kP[] + (1 — k)—’éi .

Faire varier £ de 1 & O revient a transformer continiiment 1’obstacle
donné en un segment rectiligne de méme longueur, perpendiculaire au
courant.

La transformation V{1(s), k Y[I]+ (1—Fk) % , by, €4 } €8t complétement

continue dans l’espace E,, comme nous I’avons constaté au § 11: la
théorie de l'indice total s’applique. Le théoréme du § 16 certifie que les
solutions I(s) de (4,4) sont toutes intérieures & I’hypersphére D que
constituent les points de E, dont la distance & l’origine est inférieure &
une certaine constante; ’indice total de ces solutions est donc indépen-
dant de k.

Pour & = 0 V est un élément de E, indépendant de I(s) et cet indice
total vaut done 1. Par suite il vaut encore 1 pour k = 1, et I’équation
(4,3) a au moins une solution C. Q. F. D.

24° Probléme de 1a proue. Cas ol b, = b,

Dans ce cas la valeur de b est imposée et le probléme de la proue peut

étre rattaché au paragraphe précédent: Considérons les obstacles B,C
tels que c,<{c<Ccy; la théorie des équations fonctionnelles permet
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d’apporter la précision suivante au théoréme qui affirme 'existence des
' sillages: il existe un ensemble continu3®) de sillages qui correspondent &

P

ces obstacles B,C en sorte qu’a chacun de ces obstacles soit associé au
moins un sillage de ce continu. Pour tous ces sillages nous avons?®?)
B <0. Nous avons?®) C <0 quand ¢ = c,; si tous les sillages correspon-

~

dant & ByC, sont tels que C >0 il existe nécessairement un sillage du
continu pour lequel C = 0. Le probléme de la proue est donc toujours
possible quand b, = b,

Le cas ou ¢, = ¢, se traite de la méme fagon.

Quand on a & la fois b, = b, et ¢, = ¢, le probléme de la proue ne

différe pas du probléme du sillage posé pour 'obstacle B/OE‘O.

25° Probléme de la proue

Le cas général, contrairement aux cas particuliers qui précédent, ne
peut étre traité au moyen du théoréme qui affirme I’existence du sillage??):
nous allons devoir faire & nouveau un raisonnement de la méme nature
que le paragraphe 23.

Les inconnues du probléme de la proue sont la fonction I(s) et les
paramétres b, c. L’espace abstrait E que nous considérerons aura pour
élément ’ensemble x que constituent une fonction I(s) de E, et deux
constantes b, c¢. Par définition la norme d’un tel élément de E sera
|l = 1161l + 5] + ol ; si 27 = [I(s), b, ¢'] e6 2" = [1"(s), b", o
sont deux éléments de E leur combinaison linéaire & coefficients constants
h'z’ -~ h"x" sera 1'élément [h’l’(s) + h"1"(s), h'b’ + R"D", h'c’ +
h"c"].

11 s’agit de trouver un élément de E qui vérifie les inégalités (2,14) et
I'un des quatre systémes (2,9), (2,10), (2,11), (2,12). Ce probléme équivaut
au suivant (dans ’énoncé duquel le symbole d+ représente le nombre d
quand d >0 et 0 quand d <0):

Trouver un élément [I(s), b, c] de E qui appartient au domaine non
borné

D,: b<b, cy,<c, b<c,

et qui satisfasse le systéme unique

38) Ceci signifie que les fonctions I (s) correspondantes constituent un continu dans Ey.
39) Cf. § 14, ,,Quelques cas ol la nature du détachement est évidente a priori‘.

40) Toutefois le raisonnement de continuité du paragraphe précédent permet de résoudre
le probléme symétrique de la proue. Rappelons que dans le cas du probléme symétrique

nous remplagons b, et ¢, par b, et c,.
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Ls) = V{l(s), Y[, by + (b—bg)*, cy— (cg—)*},
(4,6) B{l(s), Y[I]1} + (by—b)* =0,
C{l(s). P} + (c—cp)* = 0.

Envisageons le systéme qui dépend d’'un paramétre k(0 <<k <1)

1(s) =V ]I(s), k?f[l]+(1~—k)-72f-,b0+(b—~bo)+, co—(e—0)* | ,
@7 (B, KPR T+ G—b) =0,
cvwnkwm+a~4m§ﬂ+w—%r=o.

Chercher les points de D, qui le vérifient, c’est se poser le probléme de la
proue pour l’obstacle que définit la fonction (4,5); en effet quel que soit &
le maximum et le minimum de la fonction (4,5) sont respectivement
atteints pour ! = ¢, et [ = b,. Le systéme (4,7) équivaut & une équation
du type (4,1): la théorie de I'indice total s’applique.

Montrons qu’aucune solution de (4,7) ne peut appartenir & lafrontiére
de D,.

Supposons que nous ayons b=rc; alors b —by>0,¢c—c>=0; b,+
(b—bg)t=cy— (co—c)*; (4,7); prouve que I(s) est constant; donc
d’aprés (2,8), 'une des quantités B, C est négative (I’autre est négative
ou nulle); I'une des équations (4,7),, (4,7); est impossible.

Supposons que nous ayons b = b,; alors b — by,>0; d’aprés (4,7);.
[(0) =b,; donc P[I(s)] atteint son minimum pour s=0; ce minimum
ne pouvant étre , il est impossible que s, = x; nous avons done, d’aprés
(2,8), B <0: (4,7), ne peut pas étre vérifiée. De méme (4,7); ne peut étre
vérifiée si ¢ = c,.

Considérons les solutions [I(s), b, c] de (4,7) intérieures & D,. Les
obstacles correspondants constituent une famille bornée; d’apres le
théoréme du paragraphe 16 les normes ||I(s)||, sont donc bornées dans
leur ensemble. Par suite les valeurs prises par B et C constituent un
ensemble borné. Donec, en vertu de (4,7),, de (4,7); et des inégalités
définissant D, les valeurs prises par b et ¢ sont bornées dans leur ensemble.
Ainsi tout point de D, qui vérifie le systéme (4,7) appartient & la portion
D de D, qui est intérieure & une certaine hypersphére

[12@s)Il, + 1B] + [e| <C'.
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L’indice total des solutions du probléme, qui est l'indice total des
solutions de (4,7) intérieures & D, est une constante indépendante de £,
puisque le domaine D est borné et que sa frontiére ne peut jamais con-
tenir de solution de (4,7).

Déterminons cet indice en faisant dans (4,7) £ = 0. La transformation
fonctionnelle

V{ L), kPIL + (1 — k) 5, b+ (b — bo)*, ¢ — (g — )}
est alors indépendante de I(s) et les fonctionnelles

B { Ls), P [1]4 (1 —k) -325} , C {l(s), EP[1]+(1—Fk) %}

ont la valeur constante — ]/§/ 2; l'indice total des solutions de (4,7) est
donc le degré topologique au point b’ = 0, ¢’ = 0 de la transformation

b’ = —V2/2 + (by—0b)*, ¢ =—)2/2+ (c—¢y)*,
envisagée sur le domaine & deux dimensions
b < by, ¢y <c, b<ec.

L’image de la portion de ce domaine comprise hors de I’angle 0 <b,— b
0 <c¢ — ¢, fait partie des droites b’ = — 1/2/2 et ¢’ = — }/2/2. L’angle
0<by—>b, 0<c—c, est transformé, par une translation suivie d’une
symétrie, en 'angle — }/2/2 <b’, —J/2/2 <¢’. Le point b’ = 0, ¢’ =
est donc recouvert une seule fois et le degré de la transformation y est —1.
Ainsi I'indice total des solutions de (4,7) intérieures & D est —1; D

contient donc au moins une solution de (4,6). C. Q. F. D.
(A suivre)

(Regu le 4 juillet 1935)
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