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Les problèmes de représentation
conforme d'HelmhoItz; théories des sillages
et des proues1)

Par Jean Lebay, Paris

INTRODUCTION

1° Enoncés des problèmes

Soit à construire un sillage correspondant à un obstacle tranchant
donné ; cet obstacle est plongé dans un liquide illimité qu'anime un
mouvement plan, uniforme à l'infini; les lignes de jet sont assujetties à se

détacher aux points extrêmes de l'obstacle.
D'après Helmholtz ce problème équivaut à un problème de représentation

conforme essentiellement distinct de celui de Riemann et dont voici
l'énoncé :

Problème du sillage. On demande de transformer conformément un
plan entaillé le long dJune demi-droite (à savoir le plan du potentiel complexe

f (p -j_ iip qu'entaille le demi-axe réel positif xp 0, çp > 0), en un
domaine, D, d'un plan z — x -f- iy, dont la frontière se compose d'un arc
de courbe donné (Vobstacle) et de deux lignes libres inconnues (les lignes de

jet) ; ces deux lignes libres joignent le point à l'infini aux points extrêmes
de l'obstacle; elles possèdent, jusqu'en leurs extrémités, des tangentes continues

; en chacun de leurs points la transformation cherchée doit conserver
les longueurs ; elle doit en outre associer les points à l'infini des deux plans
f et z et conserver les directions des courbes aboutissant en ces points (la
direction de l'axe des x est celle du courant, c'est-à-dire celle de la vitesse

aux points infiniment éloignés de l'obstacle).

La courbe obstacle donnée vérifiera, par hypothèse, la condition
suivante: son intersection avec toute parallèle à l'axe des x, quand elle

existe, se compose d'un seul point ou exceptionellement d'un segment
rectiligne.

En poursuivant l'étude que M. Levi-Civita a faite de ce problème,
M. Brillouin et M. Villat ont constaté2) que les lignes libres se raccordent

x) Ce travail a été résumé en deux Notes parues aux Comptes rendus de l'Académie des
Sciences le 3 décembre 1934 et le 12 juin 1935. (t. 199 et 200).

2) Nous rappellerons les démonstrations au cours des chapitres I et II.
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à l'obstacle3) et que ces lignes libres présentent en leurs extrémités des

courbures en général infinies ; depuis les travaux de ces Auteurs on considère

que, pour être physiquement acceptable, un sillage doit avoir des

lignes libres quittant l'obstacle de l'une des deux façons que voici:
Détachement vers Vaval*) : la ligne libre se dirige du côté aval de l'obstacle,

et y présente une courbure infinie.
Détachement en proue: la ligne libre se raccorde en son extrémité à

l'obstacle, et y présente une courbure finie5).

Ainsi s'est posé un second problème:

Problème de la proue. Etant donné un obstacle BQCQ trouver un

sillage, correspondant à un obstacle BC, dont les propriétés soient les

suivantes : BC coïncide avec BQC0 ou est une portion de cet arc. Si B (ou C)

est en Bo (ou en Co) la ligne libre issue de ce point doit y présenter un détachement

vers Vaval, ou un détachement en proue. Si B (ou C) est intérieur à

Varc B0CQ, la ligne libre issue de ce point doit y présenter un détachement

en proue.

Mais une solution de ce problème n'est acceptable, c'est-à-dire ne peut
correspondre à une réalité physique que si elle vérifie en outre les deux
conditions de M. Brillouin.

1° Les arcs B0B et CC0, s'ils ne se réduisent pas à des points, doivent
être extérieurs au domaine D que délimitent l'obstacle et les lignes libres.

2° Le module | df \ dz\ de la transformation conforme doit valoir au
plus 1 (en d'autres termes la vitesse doit être au plus égale à la vitesse à

l'infini).
Les problèmes précédents seront nommés symétriques quand on les

posera pour des obstacles possédant un axe de symétrie parallèle au
courant, les sillages envisagés devant présenter cette même symétrie.

2° Nature de V obstacle

Rappelons que l'intersection de l'obstacle et de toute parallèle à l'axe
des x doit être d'un seul tenant quand elle existe. Nous supposerons
d'autre part que l'obstacle a une courbure finie en tous ses points et que

3) De sorte que la ligne libre et l'obstacle constituent une courbe à tangente continue.
4) On définit de même le détachement vers l'amont, qui ne peut correspondre à aucune

réalité physique.
5) Nécessairement égale à celle de l'obstacle, comme l'a prouvé M. Villat.
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cette courbure, considérée comme fonction de l'abscisse curviligne, vérifie
une condition de Hôlder d'exposant /u supérieur à %. On peut d'ailleurs
remplacer en divers endroits cette seconde hypothèse par d'autres
hypothèses moins restrictives: par exemple on peut discuter le nombre
des solutions du problème du sillage quand, au lieu de supposer que
l'obstacle est un arc à courbure hôldérienne, on considère un obstacle
composé d'un nombre fini d'arcs de cette nature, se joignant en des points
anguleux6). Nous n'exposerons pas la méthode qui convient à de telles
parois anguleuses: elle s'obtient en combinant les procédés par lesquels
nous allons étudier les parois lisses avec les procédés que M. Weinstein
et moi-même appliquerons ultérieurement aux parois polygonales, le
problème étant celui du jet et non plus celui du sillage.

Nous orienterons l'obstacle dans le sens des y croissants ; nous désignerons

par l son abscisse curviligne, par W l'angle qu'il fait avec Ox. Les
hypothèses énoncées se formulent donc comme suit: 0 5g W [l] ^ n\ la
dérivée *F'[l] existe et vérifie une condition de Hôlder d'exposant ju

(y2 </*<!)• ^Nous nommerons accolade un obstacle B0C0 du type suivant: il se

compose d'un arc convexe7) J50jB1? d'un arc concave8) BXA, d'un autre

arc concave AC1 et d'un autre arc convexe C^q] la valeur absolue de

la courbure des arcs B0B1 et C^Cq croît ou ne décroît pas quand on les

parcourt de Cx vers Co, de Bx vers Bo.

Remarques. Les arcs BXA et AC1 peuvent contenir des portions

rectilignes. Chacun des arcs BOBV B1CV C^q peut se réduire à un point.
L'obstacle présente en A un angle saillant ou rentrant quelconque; si
A n'est pas anguleux, sa position est considérée comme indéterminée

sur jBjC^!. Les obstacles concaves et les obstacles circulaires convexes
sont les formes extrêmes de l'accolade.

3° Résultats obtenus

Nous démontrons en premier lieu des théorèmes d'existence (ch. IV).
Le problème du sillage, le problème symétrique du sillage sont toujours
possibles. Le problème symétrique de la proue possède au moins une

6) Les demi-tangentes en ces points anguleux sont supposées distinctes. Toutefois,
dans le cas symétrique, l'obstacle peut présenter un rebroussement en son milieu.

7) C'est-à-dire ayant une concavité sans cesse tournée vers l'aval.
8) C'est-à-dire ayant une concavité sans cesse tournée vers l'amont.
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solution, même quand on s'impose les restrictions suivantes : le point de

détachement inférieur B doit être choisi entre l'extrémité inférieure Bo
de l'obstacle et le point Bx où la moitié inférieure de la courbe-obstacle
fait avec Ox l'angle de plus petite valeur algébrique9); le point C doit
être choisi entre Co et le point C^ symétrique de Bv Le problème de la

proue possède au moins une solution, même quand on s'impose les restrictions

suivantes: B doit être situé entre J50 et le point B2 où la courbe
obstacle fait avec Ox l'angle de plus petite valeur algébrique9); C doit
être choisi entre Co et le point C2 où cet angle atteint sa plus grande
valeur algébrique.

Nous démontrons ensuite Vunicité de la solution des problèmes suivants :

le problème du sillage posé pour un obstacle convexe § 30) ;

le problème symétrique du sillage § 30) ;

le problème de la proue posé pour un arc circulaire convexe § 33) ;

le problème symétrique de la proue posé pour une accolade symétrique
(§32).
Enfin nous prouvons qu'il existe des obstacles convexes et symétriques

pour lesquels le problème de la proue possède plusieurs solutions (§32).

Signalons qu'un autre mémoire10) discute les conditions de validité
de M. Brillouin : il démontre qu'une solution du problème de la proue
est toujours acceptable lorsque l'obstacle est une accolade B0B1AC1C0
et que le point de bifurcation du courant se trouve être en A.

Les arcs circulaires convexes et les accolades symétriques sont donc des

obstacles auxquels la théorie du sillage s'adapte parfaitement.

A ma connaissance aucun des théorèmes d'existence et d'unicité ci-dessus n'avait
été prouvé11). Mais le problème du jet symétrique12), qui est identique à celui du
sillage symétrique dans un canal, a été étudié par M. Weinstein, Hamel, Weyl,

9) Si le minimum de l'angle est atteint en plusieurs points, on choisit celui d'entre eux
qui est le plus proche de Bo.

10) Sur la validité des solutions du problème de la proue (Volume du Jubilé
de M. Brillouin, Gauthier-Villars, 1935).

11 Signalons que M. BrodetsJcy a construit d'excellentes solutions approchées des
problèmes du sillage et de la proue, l'obstacle étant circulaire ou elliptique. (Proo. Edin.
Math. Soc. XLI, 1923; Scripta Univ. Hieros., Jérusalem, 1923; Deuxième Congrès
international de Mécan. appliquée, Zurich, 1926.)

12) II n'est pas inutile de faire l'historique de ce sujet: Le théorème d'existence et le
théorème d'unicité infinitésimale sont étudiés simultanément; M. Weinstein démontre
que leur validité est assurée quand un certain théorème d'unicité locale, dénommé
,,problème H", est exact. C'est ce ,,problème II" qui est résolu successivement dans des cas
de plus en plus généraux par MM. Weinstein, Hamel, Weyl, Friedrichs.

M. Quarleri a consacré un article (Rend. R. Ace. Lincei, lernov. 1931, p. 332 t. 14) aux
sillages qui correspondent à des arcs de cercles symétriques; mais M. Weinstein a signalé

152



Friedrichs ; dans un autre mémoire, fait en collaboration avec M. Weinstein, nous
étendrons les résultats obtenus par ces divers Auteurs, en appliquant à ce problème
du jet les méthodes du présent travail; nous nous y bornerons à l'étude des jets
issus de parois polygonales; ceci nous permettra d'un côté d'éviter l'emploi d'équations

fonctionnelles, d'un autre côté de montrer comment se traitent les difficultés
que présentent les parois anguleuses.

La majorité des Hydrodynamiciens considéraient les théorèmes d'existence que
nous venons d'énoncer comme devant être sûrement exacts; il n'est pas inutile
de justifier de telles croyances chaque fois qu'on le peut.

Au contraire, m'a-t-il semblé, les opinions étaient indécises sur les questions
d'unicité; nous sommes d'ailleurs loin de les avoir complètement élucidées.

4° Méthodes employées

Nos théorèmes d'existence se déduisent d'un théorème d'existence
général concernant les équations fonctionnelles13) (ch. IV). Les équations
fonctionnelles de nos problèmes sont des équations intégro-différentielles
dues à M. Villat; nous en rappelons l'origine (ch. I et II). L'application
du théorème d'existence cité exige la vérification de deux catégories
d'hypothèses: les premières ont trait à la continuité de l'équation; la
vérification en est immédiate (ch. I et II). Les deuxièmes consistent en
une limitation a "priori de l'ensemble des solutions éventuelles; le chapitre
III établit que cette limitation est possible. Nous y utilisons un lemme de
représentation conforme et l'équation de M. Villat.

Le chapitre V recherche des cas où le problème du sillage possède une
solution unique ; la théorie des équations fonctionnelles montre comment
on peut découvrir de tels cas en étudiant l'allure de deux solutions infiniment

voisines, c'est-à-dire le problème de l'unicité infinitésimale; ce
problème est au premier abord compliqué ; mais nous le transformons14)
suivant les principes que M. Weinstein a indiqués dans ses travaux.
Pour conclure15) il nous suffit alors d'utiliser convenablement certaines
considérations16) que M. Friedrichs a récemment appliquées à ces questions.

que cette note contenait trois erreurs et que la méthode employée ne conduisait en fait
qu'à des résultats très restreints (Rend. R. Ace. Lincei, oct. 1932, p. 85 t. 17; C.R.A.S.,
t. 196, p. 324, 1933; Zentralblatt fur Mech.).

Quant aux travaux de M. Schmieden ils contiennent en excès des raisonnements tels
que le suivant: ,,De l'inégalité \A | < | B | résulte par différentiation \dA | < | dB | ."
(Ingenieur-Archiv, t. III, 1932, p. 368.)

1S) Leray-Schauder, Annales de l'Ecole normale supérieure, t. 51, 1934.
14) Cette transformation (§27) exige quelques calculs, que M. Jacob avait entrepris

et qu'il a eu l'amabilité de me communiquer.
15) Nous n'opérons donc pas de réduction à un ,,problème II", comparable à celle que

M. Weinstein a effectuée dans le cas du jet et sur laquelle se basaient tous les travaux
parus jusqu'à présent (voir p. 40, note 48).

16) Ces considérations reposent sur l'inégalité (5,16); cette inégalité est plus simple et
plus générale que celle sur laquelle M. Weyl base ses raisonnements.
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Cette étude de l'unicité infinitésimale est la base du chapitre VI qui
discute le nombre des solutions du problème de la proue ; tous les raisonnements

de ce dernier chapitre sont simples et intuitifs.

5° Le travail présent constitue donc un exemple typique d'application
de la théorie générale des équations fonctionnelles11). Nous y discutons
seulement les problèmes ; nous ne cherchons pas à les résoudre effectivement,

entreprise que d'ailleurs les théoriciens du sillage ont menée aussi
loin qu'il était possible.

Mes premières remarques sur ce sujet ont eu l'avantage d'être exposées

par M. Villat dans son Cours de l'année 1933. Encouragé d'une telle
façon, j'ai tenu à pousser mes recherches le plus loin possible. Mon travail
a été singulièrement facilité par les directives de M. Villat et par les

nombreux échanges de vues que j'ai eus avec M. Weinstein.

I. Mise en équation du problème du sillage18)

6° La solution indéterminée de M. Levi-Civita

M. Levi-Civita a introduit dans l'étude d'un sillage une troisième
variable complexe £=|-|-i^: il représente conformément le plan
coupé / sur le demi-cercle 17 ^ 0, | £ | <j| 1 en sorte que les éléments
suivants soient homologues dans la correspondance qui associe les plans
z et £: l'obstacle et la demi-circonférence rj > 0, | £ | 1; le point
z 00 et le point £ 0; les lignes libres et les segments — 1 ^ £ < 0,
0 < £ ^ 1. Dans ces conditions:

(1,1) / [4 ]

a et s0 étant des constantes réelles (le point £ — ei8°, le point / 0

et le point de l'obstacle où le courant bifurque sont homologues).
En même temps M. Levi-Civita définit dans le demi-cercle rj ^ 0,

£ | ^ 1 une fonction uniforme co (£) 6 + ix par les deux conditions
suivantes
(1,2) o> (0) 0 ; (1,3) dfjdz er*»

17 On y voit en particulier que les théorèmes d'existence sont absolument indépendants
des théorèmes d'unicité et qu'ils exigent des hypothèses moins strictes.

18) Les résultats énoncés au cours de ce chapitre ne sont pas originaux: ceux du
paragraphe 6 sont dus à M. Levi-Civita (Rendiconti Palermo t. 23, 1907), les autres sont dus à
M. Villat (Annales de l'Ecole normale supérieure, t. 28,1911; Journal de Math., t. 10, 1914).
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dz a *«<*> [y (£ + C-i) - cos *

La fonction co (£) est continue au voisinage du segment — 1 < £ < 1 ;

elle est réelle sur ce segment: le principe de symétrie de Schwarz lui est

applicable. Un fait capital en résulte: co (£) est holomorphe pour | f | < 1

et prend des valeurs imaginaires conjuguées en des points £ imaginaires
conjugués.

11 est aisé de vérifier avec M. Levi-Civita la réciproque suivante :

soient deux constantes réelles arbitraires a et s0; soit a> (£) une fonction
holomorphe pour | £ | < 1, réelle et nulle en même temps que f. Les
relations (1,1) et (1,3), que nous écrirons

(1,4)

établissent une correspondance conforme entre le plan / coupé et un
domaine D. Cette correspondance conserve les longueurs tout le long des

lignes libres (images des segments — 1 ^£<0,0<£^l); elle associe
les points à l'infini; elle conserve les directions des lignes qui aboutissent
en ces points. Mais D peut se recouvrir, comme l'a signalé M. Brillouin;
et aucun procédé n'apparaît qui permette de choisir la fonction co (£) en
sorte que l'image, dans le plan des z, de la demi-circonférence r\ 0,
| £ | i soit un obstacle donné. M. Villat a réussi à écarter ces deux
inconvénients en précisant comme suit la nature de la fonction co (£).

7° La solution indéterminée de M. Villat

La fonction / (z) établit une correspondance conforme entre deux domaines

dont les frontières se composent d'un nombre fini d'arcs à tangente
continue et d'un nombre fini de points anguleux. Donc l'argument de

df/dz est borné, et il est continu au voisinage de tout point frontière qui
n'est anguleux ni dans le plan / ni dans le plan z: La fonction 0(£) est

une fonction harmonique, bornée dans le cercle £ ^ 1 et qui est sûrement
continue au voisinage des points £ ê8 autres que i 1, e-**°. Puisque
t(0) 0, nous avons d'après la formule de Schwarz-Poisson

27T

La relation 6(0) 0 nous apprend en outre que J O(eis)ds 0.
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Posons avec M. Villat 0(8) 6(é*) 6(e~i8) (0 ^ s ^ n): 0(8) est

l'angle que fait avec ox la vitesse au point de l'obstacle homologue de

f ei8. Les deux relations précédentes s'écrivent

(1,5) «,(f)=±r-- 1~
n .1 v ' 1 — 2£coss

(1,6)

Rappelons que nous désignons par W [l] l'angle que l'obstacle fait avec
Ox au point d'abscisse curviligne l (b ^ l ^ c), l'obstacle étant orienté
dans le sens des y croissants;

(1,7) 0 ^ W[l] ^ w ; ÏF'[Z] existe et vérifie une

condition de Hôlder d'exposant /u > \ ; l est une fonction continue19)
de s et nous avons

pour 0<5 <80, 0(s) W[l(8)] — n, {—n^ 0{s) < 0) ;

(1,8)
pour s0 < 8 < n, 0(8) W[l(s)l (0 < 0(5) < n).

8° Direction des lignes libres

Soient réciproquement une constante a, une fonction W[l] vérifiant
les conditions (1,7) et une fonction croissante et continue l(s) (0 ^ s ^ n\
b ^.l < c). Les relations (1,8) et (1,6) définissent une fonction 0(s) et
une constante s0. Les relations (1,5) et (1,4) établissent une correspondance

conforme entre le plan / coupé et un domaine du plan z. Il est

possible de préciser l'allure des lignes libres qui, rappelons-le, sont les

images dans le plan des z des deux segments rj 0, — l^£<0,
Ces lignes sont analytiques, sauf peut-être en leurs extrémités. Nous

les orienterons dans le sens des | croissants. L'angle que fait avec Ox

la ligne libre passant par l'image du point f f est 0(f), si £ < 0,

+n si £ > 0. Nous avons d'après (1,8) —jf <#($)< tt; d'où

n <
19) Parce que toute correspondance conforme entre deux domaines établit une

correspondance continue entre leurs éléments frontières.
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Nous avons d'après (1,5)

ce que (1,6) nous permet d'écrire

6 (|) ±|* (S) [__^=

d'après (1,8) 0(5) < 0 pour 0 < s < <s0, 0(5) > 0 pour s0 <s ^n; or
le crochet est du signe de f (cos «s — cos s0) ; 0 (£) a donc le signe de — |.

Il résulte de cet ensemble de faits que l'angle des lignes libres avec Ox
est constamment positif et inférieur à n.

La continuité de l(s) entraîne celles de @(s), donc celle de 0(ei8) au
voisinage des valeurs 0 et n de s; 0(Ç) est donc continue au voisinage des

points f 1 et £ — 1 : les lignes libres et Vobstacle constituent une
courbe à tangente continue2®).

La correspondance entre les plans |// et z, puisqu'elle représente
conformément l'un sur l'autre des domaines dont les frontières ont des

tangentes continues, vérifie une condition de Hôlder d'exposant v
arbitrairement voisin de 1 : on a

/' I? I /" I) étant une fonction continue de | /' | et | /" |. En particulier
l(s) satisfait à une inégalité de la forme

(1,9) | 1(8') — 1(8") | < C^| COS 8' — COS S" | "

Désormais nous n'envisagerons plus dans les formules (1,8) que des fonctions

l(s) de cette espèce; afin que toutes les formules ultérieures aient
un sens, nous choisirons 1/2 fi < v < 1.

9° Sillage associé à des fonctions W[V\ et l(s) données

Soit une fonction W[l] qui vérifie les conditions (1,7) (b^l^c); soit
une fonction l(s) qui croît de b à c et qui vérifie une inégalité (1,9); soit

20) Nous excluons de nos considérations les obstacles parallèles au courant: V[l] ne
doit être identique ni à 0, ni à ;x. Ces cas sont les seuls où s0 puisse valoir 0 ou i;ona
alors z /.
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enfin une constante a. Considérons les fonctions définies par (1,4), (1,5),
(1,6), (1,8).

0 (s) est discontinue ; par contre W[l (s) ] vérifie le long du demi-cercle
| £ | 1. r\ > 0 une condition de Hôlder d'exposant v :

envisageons donc la fonction Q (£) © + iT, qui est holomorplie pour
| £ | < 1, dont la partie réelle © prend sur le cercle | f | 1 les valeurs
(9(e±*«) W[l(s)] et dont la partie imaginaire T s'annule avec f : la
formule de Schwarz-Poisson nous donne :

De cette formule et du fait que W[l(s)] satisfaite une condition de

Hôlder d'exposant v résulte, d'après Fatou21) et M. Priwaloff22), que
vérifie une condition de Hôlder d'exposant v sur toute la région

Les relations (1,5), (1,8), (1,10) donnent

1 /• pis.
(1.11) ^

La seconde relation (1,4) peut donc s'écrire:

(1,12) dz a éfQ

Par suite la frontière image dans le plan z du demi-cercle |£| 1,

rj > 0 est une courbe; choisissons s pour paramètre de cette courbe

); son abscisse curviligne L est définie par la relation

(1,13) =p éae-T^8) sina -^ s{n s

où l'on a, d'après (1,6), (1,8) et (1,10)

ai) Fatou, Acta math., t. 30 (1906).
2a) Priwaloff, Bulletin de la Société math, de France, t. 44 (1916), p. 100—103.
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(1,14)

/ 1 i m\ m é na\ ¦*• 1 itt r 7 / t \ -\ it/r 7 / \ ~-t I QJ.11 ô

jcoss'—coss '

l'angle que cette courbe fait avec Ox est W[l(s)]. Cet angle, comme celui
des lignes libres, vaut au moins 0, au plus n. Le domaine que délimitent
cette courbe et les lignes libres ne peut donc se recouvrir : la frontière de
ce domaine est une courbe à tangente continue sans point double.

Les relations (1,4), (1,5), (1,6), (1,8) définissent donc le sillage le plus
général; elles constituent une solution indéterminée du problème du
sillage.

Il y a plus : soit un obstacle, dont la forme et l'orientation sont définis
par une fonction W[l] (b^l^c) (Cf. § 2); choisissons arbitrairement une
constante a et une fonction l(s) qui croît de b à c quand s croît de 0 à n
et qui vérifie une inégalité du type (1,9); le sillage défini par (1,4), (1,5),
(1,6), (1,8) correspond à un obstacle qui a la même allure que l'obstacle
donné: nous entendons par là que la tangente prend long des deux
obstacles la même suite de directions; la multiplication de a par une
constante convenable permet de donner à ces deux obstacles la même
longueur. Le sillage ainsi associé aux fonctions W[l] et l(s) constitue donc,
quel que soit l(s), une solution approchée du problème du sillage, posé pour
l'obstacle que définit la fonction ¥[1] ; cette solution est celle de M. Villat ;

moyennant un choix habile de l(s) elle sera pratiquement très
satisfaisante, la simplicité étant en Hydrodynamique aussi importante que
la précision.

Cette solution n'est exacte que si les choix de a et de l(s) sont tels que
l(s) soit identique à la fonction L(s) que définissent les relations (1,13),
(1,14) et (1,15): cette condition n'est autre que l'équation intégro-
différentielle à laquelle M. Villat, en poursuivant les travaux de M. Leyi-
Civita, a ramené la résolution rigoureuse du problème du sillage :

(1,16) dl 4aér^s) Sin2l±i2sin s
ds 2

10° Equation fonctionnelle du problème

Introduisons des notations qui faciliteront le maniement de cette
équation intégro-différentielle.
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L'obstacle sera Tare b^l^c d'une courbe illimitée, dont la forme et
l'orientation seront définies par la donnée de son angle avec Ox en fonction
de son abscisse curviligne: W[l]. Désignons par C&, C'w, les plus petites
constantes telles que

et nommons ,,norme de Ï^Z]" la grandeur

i.m { Max- 1^1 + ^} + {Max. \W'\+ C'w}

Nous supposerons que W[l~\ appartient à l'espace abstrait E1JJL des

fonctions telles que cette norme existe.
Nous utiliserons un second espace abstrait Ev', il sera linéaire, norme

et complet comme le précédent. Il se composera de l'ensemble des
fonctions l(s), définies pour 0^s<tv, qui possèdent une norme finie, \\l(s) \\v,
au sens que voici : v étant la constante que nous avons choisie arbitrairement

au § 8 (1\2/li<v<1), soit ct la plus petite constante telle que

nous posons

Etant donnés un élément l(s) de Ev, (1J4) définit une constante s0 et
(1,15) définit une fonction T(ei8) ; d'après le théorème déjà cité de Fatou-
Priwaloff T(eis) vérifie, par rapport à s, une condition de Hôlder
d'exposant v; (1,13) définit alors des fonctions croissantes L(s) qui dépendent
d'une constante d'intégration additive et de la constante multiplicative a ;

il existe une et une seule de ces fonctions dont les valeurs pour s 0 et
s n soient b et c ; elle correspond au choix suivant de a

(1,17) c — 6 4a (e~T{B%9) ùn*?^Jomn8 ds ;

nous désignerons par V{ l(s) ^[Z], 6, c }

la transformation fonctionnelle qui fournit cette fonction L(s) à partir
des éléments 23) l(s), W\11, b et c, lesquels sont respectivement un point
de Ev, un point de Ex ^ et deux constantes réelles.

23) II importe de bien remarquer que l (s) n'est plus nécessairement une fonction
croissante, que *P(l) n'est plus nécessairement compris entre 0 et 71, comme c'était le cas au
cours des paragraphes précédents.
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Le problème du sillage équivaut à la résolution de l'équation suivante:
étant donnés v, W\l^ b et c, et sous réserve que l'on a

1/2/*< v< 1, 0 < W[l] < n, b< c,

trouver un point l (s) de Ev tel que

11° Propriétés fonctionnelles de la transformation V

Continuité complète de y. Il est facile de vérifier que la transformation V
fournit un point de Ev qui dépend continûment des arguments de V ;

cette continuité résulte d'ailleurs de la difïérentiation de V que nous
effectuerons à la fin de ce paragraphe.

Les fonctions L(s) V{ l(s), ¥[1], b, c} sont des éléments particuliers
de Ev - la dérivée dL/d (cos s) existe et est continue ; les maxima de
| L(s) \, \ dL jd (cos s) \ peuvent être majorés au moyen des quatre
grandeurs ||Z(s)||v, H^Tï] ||i ^ \b\, et \c\. Tout ensemble de valeurs de

l(s), W[l], b, c sur lequel ces quatre grandeurs sont bornées est donc
transformé continûment par V en un sous-ensemble compact de Ev-
On exprime cette propriété en disant que V est complètement continue.

Différentiation2*) de V. Nous allons comparer le système d'arguments
l(s), W[l], b, c à un système voisin, que nous désignerons par l'indice 1.

Représentons les accroissements des arguments par les symboles

La partie principale de l'accroissement de W\l(s)] est

ôW[l(s)] ¥'[l(8)] ôl(s) +AV[l(8)];

cette fonction appartient à l'espace Epv.

La partie principale de l'accroissement de T(ei8) est, d'après (1, 15)

7T

ÔT(ei8)= — Ç {ôW[l(s')] — ôV[l(s)]} 5£i dsr ;

0

en vertu du théorème de Fatou-Priwaloff22) ôT(ei8) appartient aussi

24 Cette différentiation sera utilisée au début du chapitre V; la démonstration des
théorèmes d'existence n'en fait pas usage.

22) Priivaloff, Bulletin de la Société math, de France, t. 44 (1916), p. 100—103.
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à E^y. Les équations (1,14) et (1,17) différentiées définissent deux
constantes ôs0, à a:

n

nÔso fôW[l(s)]ds

Soit enfin ôL(s) la fonction qui satisfait aux trois conditions ci-dessous,
dont la première résulte de la différentiation de (1,13)

sin* î±?° sins\^-ôT(e*°) + cotg -±fiôJ
66 ôL(n) — (5c ;

l'équation de définition de ôa exprime la compatibilité de ces trois
conditions.

La lettre A nous servira à représenter diverses fonctions continues de

ix,v,\\w\\v,\\nn\\i,^\b\,\c\,\\h(s)\i,ii^mii!^,i^i, |Cl|. nous
avons, en posant

r(t, s) W[

Yi[li(»)'\ — Y[H*)] — àW(*)] àW. ]r(t,s)dt.
Or °

\r{t,8)\<A\âl(a)\»+\AY'[l(a)]\;
donc, a fortiori,

| r (t, 8x)—r(t, 8t) \<A. {\\àl\\v+\\âW\ |liJt}P;

d'autre part r (t, s) appartient à E^v :

Soit q une constante inférieure à 1 ; nous la choisirons supérieure à

1/2 jllv, pour satisfaire aux exigences du paragraphe 14; les deux
inégalités précédentes entraînent

!'(*,«!)— r(t9ê2)\<A.\oo&81 — eoa82\t">*.{\\dl\\v + \\

Cette inégalité portée dans l'intégrale ci-dessus donne

(1,18)
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Par conséquent

,o—«b —H I +Max- I ^(«*•) — T(ës) —

<A.{\\àl\\v + \\

D'où

\a1 — a — ôa\ <A.{\\dl\\9+ \\AY\\ltll+ \ôb\ + \ôc\

Par suite

Max. | Lx — L — ôL \ + Max.
d (coss)

+ |ae|}' + «u-«);

nous avons donc, quand lt(s), ï^fï], bv cv tendent respectivement vers

(1,19)

]im.\\L1(s)-L(s)-ÔL(s)\\v tf
Posons

ÔL \N{ ôl(s), A W[l], (56, ^c; ÎP[i(s)], b, c} ;

la transformation fonctionnelle W fournit, comme V, des fonctions
appartenant à E/, comme V elle est complètement continue; elle est
linéaire et homogène par rapport à ses quatre premiers arguments; la
relation (1,19) exprime que c'est, au sens de M. Fréchet, la différentielle
de la transformation V.

Remarque. Dans le cas particulier où l'obstacle est rectiligne W est
indépendant de ôl

Propriétés définissant W. L'équation de définition de ôT(eis) exprime
que àW[l{s)~\Jr iàT(ei8) son^ les valeurs sur la demi-circonférence
C eis (O^s^ti) d'une fonction ôQ(Ç) holomorphe à l'intérieur de
cette demi-circonférence, réelle sur son diamètre ; l'équation de définition
de ôsQ exprime que ôs0 ôQ(0). Nous pouvons donc définir la fonction
ôL(s) que fournit la transformation W par l'ensemble des propriétés
suivantes: il existe une fonction ôQ(Ç), holomorphe pour |f|<l,
V > 0, hôldérienne pour |f |< 0, qui est réelle sur le diamètre — 1 <f < 1

et dont les valeurs frontières sur la demi-circonférence Ç ei8 sont

(1,20) ôQ^is) y'Wôl + Anil-i^+i^ + ieotgS-±*>ôs0 ;

on a en outre
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(1,21) ôL(O) ôb, 6L{n) Ôc,

(1,22) ôs0 ÔQ(O).

Définissons une fonction ôœ(Ç) par la relation (1,11) différentiée

(1,23)

on peut substituer à la formule (1,22) la suivante

(1,24)

IL Mise en équation du problème de la proue

12° Préliminaires

Soit un sillage correspondant à un obstacle donné. La fonction z(f)
est analytique le long des lignes libres. Son allure à l'infini est très simple
à préciser, grâce aux équations (1,4). Sa nature le long de l'obstacle se

déduit des nombreuses études qui ont porté sur les voisinages des
frontières de deux domaines donnés se correspondant conformément. Les

points de détachement sont donc les seuls points que nous devions
examiner.

Nous savons que l(s) et par suite Q(Ç) vérifient une condition de

Hôlder d'exposant v (§ 8 et 9). Il en résulte, par l'équation de M. Villat

(1,16), que dljds vérifie aussi une telle condition; donc que —~—

^'m^l-f- vérifie une condition de Hôlder d'exposant juv. La partie

imaginaire de f -y— vérifie également une condition de Hôlder d'exposant
dÇ

juv puisqu'elle vaut ± W[l(s)] dl/ds au point e—i% et que cette fonction

¥" IH8) ] dl/ds s'annule pour 5 0 et pour s n. Le théorème de

Fatou-Priwaloff permet d'en déduire que f -jyr et par suite
dç

s
dQ __dco 2sins0

z1! ~TF ~TF ~

vérifient une condition de Hôlder d'exposant pv sur tout le cercle |£i 5s 1.
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Digression. Supposons pour un instant W{1\ analytique; le raisonnement se

poursuit, basé sur l'équation de M. Villat et le théorème de Fatou-Pnwaloff : on
démontre successivement que les fonctions suivantes satisfont une condition de

dT(ei>8) dH d2lF[l(8)] d2JlHolder —-^— ,donc, d'après (1,16)^ puis—dg2 la partie réelle de rjz—^
d2ll d2T(e™) 1 dH d**F [*(«)]
~d& ' —ds*— ' c aPres (1 '16) ^â ' PU1S ennn —ds3 • Mais en général la partie

d?Jl dca
imaginaire de ^ 1q 3 a une discontinuité aux points £ + 1 et -z—q a un infini
logarithmique en chacun des points de détachement.

Un point de détachement ne présente pas cette singularité quand en ce point

ds*

Nous transformerons cette condition en remarquant que d'après (1,3)

c'est-à-dire
dl — 2ae-i\ cos s — cos s0 \ sm 8ds ;

cette équation, qui n'est autie que l'équation de M. Villat, fournit le développement
limité au voisinage de la valeur s 0

l(s) fonction paire de s — -^ (—) (1 — cos 50)s3 -f • • •

d'où ^[1(8) ] fonction pane de s ^ V [b] (j-\ (1 — cos s0) s3 + • •

par suite la condition —-r-g— 0 équivaut à la suivante *F'[6] • cso' (1) 0

dzco
Pour que -r-^ soit bornée au voisinage d'un point de détachement il faut et il

suffit donc que la courbure de l'obstacle y soit nulle ou bien qu'on y ait (of 0.

En poursuivant on aboutit aux conclusions suivantes Considérons la suite des

dérivées d'ordre impair -r-p. r^—t-j (p ^ 0) ; soit 2 m + 3 l'ordre de la première
d'entre elles qui n'est pas continue au point de détachement, soit 2n -f- 1 l'ordre
de la première d'entre elles qui n'y est pas continue et nulle; m (ou n) est posé égal
a -f- oc m toutes ces dérivées y sont continues25) (ou continues et nulles). On a

0 ^ n < m. Les dérivées 7-n—r^r d'ordres inférieurs à 2m + 3 vérifient une condi-
(dlogÇ)**

df<v,tion de Holder au pouit de détachement Si m est fini la dérivée jj-z— 2m+3 ¦?

présente un infini logarithmique. Si la courbure de l'obstacle n'est pas nulle au
point de détachement, on a n m.

L'allure du détachement dépend de n au voisinage du point de détachement
l'obstacle et la ligne de jet sont les transformes d'un segment de l'axe des / réels
par la fonction z (f) — jel(ùdf Si n— +00 toutes les dérivées de z(/)sont continues

25) On a en gênerai m n 0, les cas n 00 et m 00 sont très exceptionnels
Toutefois m co quand l'extrémité de l'obstacle est un segment rectiligne, alors W[l{sy\
©t par suite la partie réelle de J2(£) sont constants au voisinage du point de détachement,
Cû (Ç) y est donc analytique
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au point de détachement. Sinon —^ 2 1 y est continue, mais non nulle ; donc

ÂJnTr y es^ con^inue alors que -?, 2 y devient infinie. La ligne libre a au point

de détachement un contact d'ordre n + 1 avec le prolongement de l'obstacle ; si n
est fini son élément de contact d'ordre n + 2 est singulier et c'est le signe de

iâ\ \2fT+i ' ca^cule au pomt de détachement, qui indique si la ligne libre est

située au voisinage de ce point du côté amont ou du côté aval de l'obstacle

Le paragraphe ci-dessous va montrer comment cette conclusion reste en paitie
valable quand on ne suppose plus l'obstacle analytique.

13° Courbure d'une ligne libre en son point de détachement

L'angle que fait la ligne libre supérieure (ou inférieure) ave^ Ox est co

(ou (o -f- n) ; son abscisse curviligne est /(ou — /) ; sa courbure est donc

dco dco

(2,2)

Déterminons l'allure au point £ 1 de la fonction analytique

dco de» 2£3
df dÇ v(Ç*-l)(Ç2—2Çcoss0+l)

Au voisinage du point £ 1, -jz vérifie une condition de Holder

d'exposant juv (cf § 12) et nous avons donc

dco co (1) £ ~t~ 1

df 4a(l— cos s0) Ç—1

D'autre part26) sur le demi-cercle f e18 (0 < s < n)

or d'après (1,3) \df\ e*\dl\ ; d'où

26) R signifie ,,partie réelle de ."
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-Tr) reprend ces mêmes valeurs sur le demi-cercle complémentaire;

le long du cercle | f | 1 et au voisinage du point £ 1, R (-^ (vérifie

donc une condition de Hôlder d'exposant juv. Introduisons une fonction

JF(£) qui présente les caractères suivants: elle est analytique pour

|C|< 1 ; pour | £ | ^ 1 elle vérifie une condition de Hôlder d'exposant (jlv\

elle est réelle en même temps que £ ; sa partie réelle vaut R (-jt lie long

de | £ | 1, au voisinage de £ 1. La fonction

df 4a (1 — Coss0)£— 1

a sa partie réelle nulle le long de ce cercle, au voisinage de £ 1 ; d'après
le principe de symétrie elle existe et est holomorphe dans un petit cercle

pointé 0 < | £ — 11 < e ; elle y vérifie une inégalité semblable à (2,3) ;

elle est donc holomorphe au point £ 1. Par définition W (1) — ¥// [6].
On a donc le développement

(2 ±\
dœ œ'W

les points représentant une fonction qui s'annule pour £ 1 et
qui vérifie une condition de Hôlder d'exposant /uv dans le cercle | £ | < 1,

au voisinage du point £ 1.

La ligne de jet se détache donc vers Vamont, vers Vaval ou en proue suivant
que dco/dÇ est positif, négatif ou nul au point de détachement.

N.B. Quand le détachement est en proue co'(l) 0, dco/df est
continue au point de détachement; et la formule (2,4) prouve que la
courbure de la ligne de jet y est égale à celle de l'obstacle (Villat).

14° Calcul de w (1) et œ (—1)

Considérons le sillage associé à des fonctions *P[l] et l(s) données.

Calculons o) (1) et co' (— 1) à l'aide de ces données. Nous avons d'après
(1,6)

167



Faisons tendre f vers 1 par des valeurs réelles, et tenons compte de

l'inégalité, déduite de (1,7), (1,8) et (1,9):

| 0(0) — 0(S)\ <Cte| 1 — '

opérons de même au point £ — 1 ; nous obtenons les deux formules

ds

Les relations (1,8) permettent de donner à (2,5) la forme suivante 27)

Les seconds membres de (2,6) sont des fonctionnelles de l(s) et W[l] qui
sont continues sauf quand W[l] se réduit identiquement à 0 ou à tc.

Quelques cas où la nature du détachement est évidente a priori : Supposons

que W[b] soit la plus petite des valeurs que prend W[l] sur la partie de
l'obstacle inférieure au point de bifurcation (c'est-à-dire pour
ceci a lieu par exemple si W[b] 0; on a alors

; donc d'après (2,5), co'(l)<0.

Si W[b~\ n nous avons $(0) 0; donc

or le crochet a le signe de 0(s); donc co'(l) > 0.

27) Les deux quantités oo'(l) et co'{—1) intervenant fréquemment dans les travaux de
M. Villat, signalons l'aspect qu'elles y présentent: M. Villat se limite en général au cas
symétrique où elles sont égales à ^

2 f l dfps
TtJ sms as

o
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Différentiation des fonctionelles co'(l) et co'(— 1).

L'inégalité (1,18) prouve 28) que les fonctionnelles, co'(l) et co'(— 1)

possèdent des différentielles de Fréchet, <5<o'(l) et ôco'(—1). Nous
avons 29)

Slna-f
Cette expression et l'expression analogue de àa)'{—1) permettent de
vérifier que <5co'(l) et da)'(—1) sont les dérivées30), aux points ± 1, de
la fonction âœ(Ç) définie par (1,23).

15° Equations fonctionnelles du problème de la proue

Etant donnés un élément l(s) de Ev et un élément ¥[1] de E1JJL,

posons

B {!(«), !P[ï]} a>'(l)sin-^, C{l(s) W[l] } wf (— 1) cos ^ ;

c.-à.-d.

B{l(s), W[l]} ±sm^
(2,8)

Ces fonctionnelles sont continues par rapport à leurs arguments. La
condition pour qu'en l'extrémité inférieure (ou supérieure) de l'obstacle le
détachement soit vers l'aval, vers l'amont ou en proue est que B (ou C)
soit négatif, positif ou nul. Et ces propriétés subsistent, même quand
l'obstacle devient parallèle au courant. Il y a donc avantage à considérer
B et C au lieu de a>'(\) et <o'(— 1).

Le problème de la proue se formule comme suit: on donne v, *F[l],
60, c0 (1/2/i<v<1; O^yp]^^; 6o<co)'> on demande de trouver un
point l(s) de Ep et deux constantes b et c qui vérifient l'un des quatre
systèmes écrits ci-dessous

18) Car nous avons l'inégalité tuv p :> 1/2
*•) On ne peut guère restreindre les hypothèses faites sur la régularité de l'obstacle sans

que la définition de ô<*i'(l) perde toute signification; or le chapitre VI est entièrement
basé sur l'existence de <W(1).

80) Calculées le long du diamètre réel.
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(2,9) l(s) V{Z(«), yp], b, c}, B{ 1(8), W[l]} 0,

C{l(s), W[l]} 0, bo<b<c<co;

(2,10) 1(8) V{ Z(«), W[l], 60, c}, B{ Z(*), !P[Z]} rg 0,

(2,11) 1(8) V{ Z(«), ?P[Z], 6, c0}, B{ Z(*), S^[Z]} - 0,

C{>Z(«), y[Z]}^0, 6O<6 <c-co;

(2,12) 1(8) V{ Z(«), !P[Z], &0> c0), B{ Z(«), ÎPtZ]} ^ 05

Soient bl9 cv b2, c2 les abscisses curvilignes des points Bl9 Cl3 B2, C2

que définit le paragraphe 3; le chapitre IV établira que le problème
symétrique de la proue est résoluble même quand on impose à b et c les

restrictions

(2,13) b <bx cx<c.

Il établira que le problème de la proue est résoluble même quand on
impose à b et à les restrictions31)

(2,14) b <b2 c2 <c.

III. Limitation (a priori) des inconnues

16° But du chapitre

Nous dirons qu'une famille d'obstacles est bornée quand les longueurs
c — b et les courbures | W [Z] | de ces obstacles sont bornées dans leur
ensemble. Nous nous proposons d'établir le théorème suivant :

Théorème. Soit une famille bornée d'obstacles. Les fonctions l(s)
correspondantes (s'il en existe) vérifient simultanément une même inégalité

| 1(8) — 1(8') | < G | COS S — COS 8' \V

En d'autres termes les normes \\l(s) \\v sont bornées dans leur ensemble.

81 Ces restrictions facilitent la résolution du problème.
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L'inégalité de Holder

0

I (p(x) xp(x)dx < \9(x)\1'vdx\ \rp(x) - T
\vdx\

s'écrit, quand on pose x cos s, ip 1, 9? dl/d(oos s):

-l(s')\ <
COS S7

/ dl
d (cos s)

1-v

cos s — cos s
d (cos s)

pour établir le théorème il suffit donc de majorer les intégrales

dl/ d (cos s)

1

1-v d (cos s)

Or nous avons l'équation de M. Villat (1,16),

dl
éae 9sm2 sm

Le théorème énoncé est donc un corollaire des deux faits suivants, que
nous allons établir indépendamment l'un de l'autre:

1° Les coefficients a sont bornés dans leur ensemble (§ 17).

2° Les intégrales

(3,1) JVu-*)-1^")^
0

sont bornées dans leur ensemble (§ 18 à 21).

17° Majoration de a

Nous avons d'après la seconde formule (1,4)

7F

(3,2) c — b — 2a $e~T \ cos 5 — cos s0 \ sin s ds
0

La convexité de la fonction exponentielle permet, comme on sait,
de tirer de (3,2) l'inégalité32)

(3,3) log
c — b

2a (1 + cos2s0)

1 r
—_^ —l + COS2SnJ

32) Cette inégalité exprime le fait suivant:
des masses infinitésimales dm — sm s | cos s— cos s0 \ ds placées aux points
x (s) % {§), y [s) — e-* («) ont un centre de gravité situé dans le domaine log y> — a?.
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Or fr(e%8') (cosa'— coss0) sin s' ds' est égal, le long du cercle

£ ei8, à la partie imaginaire de la fonction

On a

^]+ ^K'(O) - 2a>'(0) cos s0] log

/7i(f) étant holomorphe pour | £ | < 1.

La relation (1,5), où | 0(s) \ <ni entraîne les inégalités

La partie réelle de771(£) sur le cercle f ei8 est

J6(et'8') (cos sf — cos 80) sin s' ds' ;

*.

cette fonction a une dérivée comprise entre — 2 n et + 2 tt ; le théorème
de Fatou-Priwaloff déjà utilisé permet d'en déduire que, sur le cercle
| £ |^ 1, | nx(Ç) | est inférieur à une certaine constante numérique.

Il existe donc une constante numérique qui majore | II(Ç) \ ; on peut
donc assigner une borne inférieure33) au second membre de (3,3). Par
suite a peut être majorée en fonction de b—c. C. Q. F. D.

18° Lemme

Soit une fonction, QX(Ç) &x-\- iTx, hôlderienne pour |£|^1,
holomorphe pour |C| <1, réelle pour C 0. Supposons que Voscillation de

0x(ei9) soit 2œ <7t. Je dis que

(3,4) Je-Vx('u) ds < 2n (cosâ)"1.

La fonction —i]eiQl^-— transforme le cercle C &* (0<s <2jr)
î C

en un arc ouvert, F; l'origine de F est le point 0; l'extrémité de F est le

point 2neieii0); la corde qui sous-tend F a donc pour longueur 2n.
88) J'ai cherché si Ton pouvait choisir cette borne égale à 0; il n'en est rien. Si ce choix

avait été possible, il en serait résulté par (3,3) que la longueur de l'obstacle est toujours
supérieure à celîe de son image dans le plan / du potentiel complexe. Cette proposition est
fausse elle aussi.
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D'autre part F fait avec Taxe réel l'angle ©x(ei8)y dont l'oscillation est

2ok Par suite la longueur de F vaut au plus 2 n (cos co)-1. Or le premier
membre de (3,4) représente cette longueur. Notre lemme est donc établi.

Remarque. Supposons que la famille des obstacles donnés présente
le caractère suivant: les oscillations des fonctions ¥[1], qui définissent
ces obstacles, admettent une borne supérieure inférieure34) à n(l— v);
soit 2co(l — v). Envisageons un sillage correspondant à l'un de ces

obstacles. Le lemme qui précède s'applique à la fonction Q^Ç)
(1 —v)~xQ{t)' L'intégrale (3,1) est identique au premier membre de

(3,4). Le lemme ci-dessus suffit donc dans ce cas à établir le théorème du
paragraphe 16.

19° Lemme sur la correspondance des frontières dans une représentation
conforme

11 existe une fonction rj[e], continue et nulle pour e 0, qui possède la

propriété suivante : Soit F une variable complexe. Donnons-nous arbitrairement

deux segments étrangers FXF2 et FZF± de Vaxe des F réels et une surface

D*, d'aire a, qui soit l'image conforme du demi-plan I (F) > 0. Appelons
A la plus courte longueur des chemins tracés sur D* qui joignent l'image de

FXF2 à l'image de F^F^ On a 3fi)

(3,5) A<yit) [—(F1F3FéF2)].

Démonstration: Transformons conformément le demi-plan I(F) >0
en un rectangle R d'un plan complexe G + iH, de façon que les points
Fl9 F2, F3, Fé deviennent les sommets 0, a, a + i/S, i/3 de R. Soit M(G+iH)
le module de la correspondance conforme qui représente R sur D*.
Nous avons

fi fi

borne [JM(G + iH) dH]2 < borne PfM(G + iH
o o

0 0

*4) Nous supposons au cours de tout le mémoire 1/2 <juv ¦< 1 ; mais seule la discussion
du nombre des solutions du problème de la proue (chapitre VI) tomberait en défaut si
nous choisissions v arbitrairement voisin de 0.

85) {Fv F3, F# F2) représente le rapport anharmonique des points Fv FB, Fv F2
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D'après la définition même de la fonction modulaire k,

(FltFt, FltFJ

Or — X[ix] croît de 0 à +00 quand x croît de 0 à +00. Par conséquent
nous avons

(3)6) -
et cette inégalité équivaut à une inégalité du type (3,5).

20° Construction d'un module de continuité pour la fonction W [l (s)]

Considérons un sillage; nous allons lui appliquer le lemme ci-dessus.
Nous représentons le demi-cercle | £ | < 1, rj > 0 sur un demi-plan
l(F)>0 au moyen de la transformation F =—KC + f"1). Nous
envisageons deux points £' ei8/, £" ë*" tels que 0 ^ s' < s" ^ n,
| coss' — cos s" | < 1 ; Tune des inégalités cos s' <•£, — f < cos s" est
donc vérifiée; fixons les idées en admettant que cos 8' <\.

Les transformés des points £' et £ " sont F2 — cos s ', F3 — cos s "
;

posons Fx — 1, J?4 00; nous avons

/-n tï n xiv COS 5' COS 8"
-(#1? J,, JP4, J2)^ 1^ ' donc

(3,7) — (Ft, F3, Ft, F2)^2 (cos sf — cos s")

Soit D le domaine situé en amont de l'obstacle et des lignes libres.
Soient z' x' + iy', z" x" + iy" les points de l'obstacle homologues
de £' et £". Traçons la sphère S de diamètre c — b qui touche en z" le

plan z. Soit D* la projection stéréographique36) de D sur 27.

L'image de FXF2 dans le plan z est un arc de l'obstacle qui appartient à

la région D': \ z—z"|<c — b, yt=*y'- L'image de FZF± se compose de la
ligne libre supérieure et d'une partie de l'obstacle ; elle appartient donc

au demi-plan D": y > y" (cf § 8). On vérifie sans peine que les projections
y" y'

sur E de D' et D" sont distantes d'au moins -—~- Par suite

(3,8) ^=^ < A

80) Le centre de projection est le point de S diamétralement opposé à zff.
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Des inégalités (3,6), (3,7), (3,8) nous concluons que

— ÏJ < 2 Icos<*' —GO8S" I Pour | coss' — coss" | < 1

Cette inégalité (3,9) fournit un module de continuité pour l'ordonnée y(s)
des points de l'obstacle.

Nous avons le long de l'obstacle

sin WdW= ¥'\t\dy,
donc

- cos ¥[1(8")] | £ | y' - y" |. Max | ¥' [l] |

\ | [()] — Vin*")] ?<\y' — y" |. Max | F'[/] |

Portons cette inégalité dans (3,9); il vient, si | cos^' — cos5"| g 1,

(3 10)
(c —6

Cette inégalité fournit pour la fonction W[l(s)] un module de continuité,
qui dépend seulement de la grandeur (c — b). Max | ¥'[l] |.

21 Majoration des intégrales (3,1)

Considérons une famille bornée d'obstacles et les fonctions Wms)],
3(eis) correspondantes. Donnons-nous un nombre œ <n j 2. L'inégalité
(3,10) entraîne l'existence d'une constante S possédant la propriété
suivante: l'oscillation des fonctions ¥[1(8)], et par suite celle des

fonctions &(eis) est inférieure à 2(1 — v)a> sur tous les arcs du cercle

|C| 1 dont la longueur est 3 S.

Pour savoir majorer les intégrales (3,1), il suffit de savoir majorer
les intégrales

(3,11)

quand s2 — sx S. Soit QX(Ç) 0X + iTx la fonction holomorphe
pour |C| < 1, qui est réelle quand C est réel et dont la partie réelle 0X est
définie comme suit: @i(C) est continue au voisinage du cercle C &*\
&x(eis) vaut (i — v)-i9(é8) pour st— 8^±s^s2 +S; B^é8) est

constante au voisinage des autres valeurs de s. Puisque 0^.©^ti
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on peut construire, en fonction de S et v, une quantité qui majore

I Ti(e%8) — (1 — v^Tié*) | pour s1^s^s2. Les intégrales (3,11) peuvent

donc être majorées au moyen des intégrales fe-T^e*8) ds. Or, d'après le

paragraphe 18, celles-ci sont inférieures à 2 jr(cos «S)-1.

On peut donc assigner une borne supérieure aux intégrales (3,1).
C. Q. F. D.

IV. Théorèmes d'existence

22° Préliminaires

Nous allons maintenant établir que le problème du sillage possède

toujours une solution au moins, et qu'il en est de même pour le problème
de la proue. Nous n'expliciterons pas l'étude des problèmes symétriques:
ceux-ci peuvent être traités par les raisonnements qui suivent, où l'on
précise que tous les obstacles et tous les sillages envisagés sont
symétriques.

Nous nous appuierons sur une théorie récente37) des équations fonctionnelles

: Soit une équation de la forme

(4,1) x=F(x);

x étant un point d'un espace abstrait, linéaire, norme et complet, E;

¥(x) étant une transformation fonctionnelle, définie sur E, complètement
continue. On associe à cette équation la transformation fonctionnelle

(4,2) y x—F(x)

Soit dans E un domaine borné D dont la frontière ne comporte aucune
solution de (4,1). On nomme indice total des solutions de (4,1) contenues
dans D le degré topologique au point 0 de la transformation (4,2)
envisagée sur D. Cet indice total reste constant quand on modifie
continûment la transformation complètement continue F(x) sans qu'aucune
solution de (4,1) atteigne la frontière de D; des théorèmes d'existence
peuvent donc s'obtenir par le procédé suivant: on réduit continûment
l'équation (4,1), sans qu'aucune de ses solutions atteigne la frontière de

D, à une équation suffisamment simple pour qu'on puisse déterminer

87) Leray-Schauder, Annales de l'Ecole norm. sup., t. 51, 1934, p. 45.
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l'indice total des solutions qu'elle a dans D; s'il diffère de 0, l'indice
total des solutions que (4,1) a dans D, lui étant égal, diffère de 0; alors
D contient nécessairement au moins une solution de (4,1).

23° Problème du sillage

Ce problème a été ramené (§ 10) à la résolution de l'équation

(4,3) J(«)=V{I(«),m60,c0};

l'inconnue l(s) appartient à l'espace linéaire, complet, et norme E,,.

Envisageons l'équation, qui dépend continûment d'un paramètre k,

(4,4) —É)iL, 60,c

c'est l'équation du problème du sillage pour l'obstacle que définit la
fonction

(4,5) kW[t}+(l-k)%.

Faire varier k de 1 à 0 revient à transformer continûment l'obstacle
donné en un segment rectiligne de même longueur, perpendiculaire au
courant.

La transformation V{ l(s), k W[l] + (1—k) — 60, c0 } est complètement

continue dans l'espace Ev, comme nous l'avons constaté au § 11: la
théorie de l'indice total s'applique. Le théorème du § 16 certifie que les
solutions l(s) de (4,4) sont toutes intérieures à l'hypersphère D que
constituent les points de Ev dont la distance à l'origine est inférieure à

une certaine constante; l'indice total de ces solutions est donc indépendant

de k.
Pour fc 0V est un élément de EV indépendant de l(s) et cet indice

total vaut donc 1. Par suite il vaut encore 1 pour k 1, et l'équation
(4,3) a au moins une solution C. Q. F. D.

24° Problème de la proue. Cas où b2 b0

Dans ce cas la valeur de 6 est imposée et le problème de la proue peut
être rattaché au paragraphe précédent: Considérons les obstacles É0C
tels que c2^c^.c0; la théorie des équations fonctionnelles permet
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d'apporter la précision suivante au théorème qui affirme l'existence des

sillages: il existe un ensemble continu38) de sillages qui correspondent à

ces obstacles B0C en sorte qu'à chacun de ces obstacles soit associé au
moins un sillage de ce continu. Pour tous ces sillages nous avons39)
B <0. Nous avons39) C <0 quand c c2; si tous les sillages correspondant

à B0C0 sont tels que C > 0 il existe nécessairement un sillage du
continu pour lequel C 0. Le problème de la proue est donc toujours
possible quand b2 60.

Le cas où c2 c0 se traite de la même façon.

Quand on a à la fois b2 b0 et c2 c0 le problème de la proue ne

diffère pas du problème du sillage posé pour l'obstacle B0CQ.

25° Problème de la proue

Le cas général, contrairement aux cas particuliers qui précèdent, ne

peut être traité au moyen du théorème qui affirme l'existence du sillage40) :

nous allons devoir faire à nouveau un raisonnement de la même nature
que le paragraphe 23.

Les inconnues du problème de la proue sont la fonction l(s) et les

paramètres b, c. L'espace abstrait E que nous considérerons aura pour
élément l'ensemble x que constituent une fonction l(s) de Ev et deux
constantes b, c. Par définition la norme d'un tel élément de E sera

||*|| ||Z(*)||v + |6| + |c|; si x' [l'(8),b',c'] et x" [V(s)y 6", c"]
sont deux éléments de E leur combinaison linéaire à coefficients constants

h'z' + h"x" sera l'élément [h'l'{s) + h"l"{s)y K'b' + h"b", h'c'+
h"c"\

II s'agit de trouver un élément de E qui vérifie les inégalités (2,14) et
l'un des quatre systèmes (2,9), (2,10), (2,11), (2,12). Ce problème équivaut
au suivant (dans l'énoncé duquel le symbole d+ représente le nombre d

quand d > 0 et 0 quand d < 0 :

Trouver un élément [l(s), b, c] de E qui appartient au domaine non
borné

D2: b<b2, c2<c, b <c,

et qui satisfasse le système unique

88) Ceci signifie que les fonctions l (s) correspondantes constituent un continu dans Ev-

S8) Cf. § 14, „Quelques cas où la nature du détachement est évidente a priori".
40) Toutefois le raisonnement de continuité du paragraphe précédent permet de résoudre

le problème symétrique de la proue. Rappelons que dans le cas du problème symétrique
nous remplaçons 62 et c2 par bt et cv
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(4,6)

(b-bo)+, c0-(c0-c)+},

Envisageons le système qui dépend d'un paramètre k(O^.k^. 1)

Chercher les points de D2 qui le vérifient, c'est se poser le problème de la

proue pour l'obstacle que définit la fonction (4,5) ; en effet quel que soit k
le maximum et le minimum de la fonction (4,5) sont respectivement
atteints pour l c2 et l — 62. Le système (4,7) équivaut à une équation
du type (4,1): la théorie de l'indice total s'applique.

Montrons qu'aucune solution de (4,7) ne peut appartenir à lafrontière
de D2.

Supposons que nous ayons 6 c; alors b— bo°^O,co— c^O; 60 +
(6 — bo)+ co—(c0 — c)+; (4,7)x prouve que l(s) est constant; donc
d'après (2,8), l'une des quantités B, C est négative (l'autre est négative
ou nulle); l'une des équations (4,7)2, (4,7)3 est impossible.

Supposons que nous ayons b — b2; alors b — bo^O; d'après (4,7)2.
Z(0) 62; donc W[l(s)] atteint son minimum pour s 0; ce minimum
ne pouvant être jz, il est impossible que s0 — n\ nous avons donc, d'après
(2,8), B <0: (4,7)2 ne peut pas être vérifiée. De même (4,7)3 ne peut être
vérifiée si c c2.

Considérons les solutions [l(s),b,c] de (4,7) intérieures à D2. Les
obstacles correspondants constituent une famille bornée; d'après le
théorème du paragraphe 16 les normes ||Z(«)||W sont donc bornées dans
leur ensemble. Par suite les valeurs prises par B et C constituent un
ensemble borné. Donc, en vertu de (4,7)2, de (4,7)3 et des inégalités
définissant D2 les valeurs prises par 6 et c sont bornées dans leur ensemble.
Ainsi tout point de D2 qui vérifie le système (4,7) appartient à la portion
D de D2 qui est intérieure à une certaine hypersphère

179



L'indice total des solutions du problème, qui est l'indice total des

solutions de (4,7) intérieures à D, est une constante indépendante de kf
puisque le domaine D est borné et que sa frontière ne peut jamais
contenir de solution de (4,7).

Déterminons cet indice en faisant dans (4,7) k 0. La transformation
fonctionnelle

est alors indépendante de l(s) et les fonctionnelles

ont la valeur constante —1/2/2; l'indice total des solutions de (4,7) est
donc le degré topologique au point b' 0, c' 0 de la transformation

6' — j/2/2 + (b0 — 6)+, c' — j/2/2 + (c — co)+,

envisagée sur le domaine à deux dimensions

b<b2, c2<c, b<c.

L'image de la portion de ce domaine comprise hors de l'angle 0 <b0 — b

0 <c — c0 fait partie des droites b' — j/2/2 et c' —1/2/2. L'angle
0<60 — 6, 0<c — c0 est transformé, par une translation suivie d'une
symétrie, en l'angle — ]/2/2 <&', — j/2/2 <c'. Le point 67 0, c' 0

est donc recouvert une seule fois et le degré de la transformation y est — 1.

Ainsi l'indice total des solutions de (4,7) intérieures à D est —1; D
contient donc au moins une solution de (4,6). C. Q. F. D.

(A suivre)

(Reçu le 4 juillet 1935)
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