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Ùber das Phânomen der Unzerlegbarkeit in der
Polyedertopologie

Von Karol Borstjk, Warszawa

1. Eine Menge1) M von einer Ëigenschaft II heiBt bezuglich dieser
Eigenschaft unzerlegbar, wenn keine Zerlegung von M in zwei echte Teil-
mengen von der Eigenschaft U existiert. So sind z. B. die bezuglich des

Zusammenhanges unzerlegbaren Mengen die sog. unzerlegbaren Kon-
tinuen, welche zu den merkwùrdigsten Gebilden der Topologie gehôren2).

Der Zweck dieser Arbeit ist, zu zeigen, da6 das Phânomen der
Unzerlegbarkeit schon unter den Polyedern erscheint, wenn man anstatt
des Zusammenhanges sein hôherdimensionales kombinatorisches Kor-
relat betrachtet. Es existieren namlich Polyeder, welche unzerlegbar
bezuglich der Eigenschaft ,,ein azyklisches3) Polyeder zu sein" sind. Da eine

in sich zusammenziehbare4) Menge in allen Dimensionen azyklisch ist5)
und da aile Bettischen Zahlen (auBer der nulldimensionalen) einer azy-
klischen Menge verschwinden, so ist die vorstehende Behauptung in dem
folgenden, genaueren Satze enthalten :

Satz. Es gibt im dreidimensionalen euldidischen Baume ein in sich
zusammenziehbares, zweidimensionales Polyeder, welches keine Zerlegung
in zwei6) echte Teilpolyeder mit verschwindender eindimensionaler Bettischer
Zahl zulàfit.

2. Die Konstruktion eines die Behauptung unseres Satzes erfullenden
Polyeders làBt sich sehr einfach angeben. Wir werden namlich ein solches

x) Unter einer Menge wird stets eine metrische in sich kompakte Menge verstanden.
2) Die unzerlegbaren Kontinuen wurden von L. E. J. Brouwer entdeckt. Siehe Math.

Ann. 68 (1910), S. 426. Vgl. auohZ. Janiszewski, Journ. Ec. Pol. 16 (II), 1912, S. 79—170.

3) Eine Menge M heifit m der w-ten Dimension azyklisch, wenn jeder n-dunen-
sionale, berandungsfahige, wahre Zyklus nach vanablem Koeffizientenbereiche von M
m M berandet. (Wegen dieser Begrifïe siehe die Arbeit von P. Alexandroff ,,Ûber die
Urysohnschen Konstanten", Fund. Math. 20, 1933, S. 142.) Die m der 0-tf»n
Dimension azyklischen Mengen sind bekannthch mit den Kontinuen identisch.

4) M heifit in sich zusammenziehbar, wenn es eine stetige Funktion f(x, t) derart
gibt, dafi f(x, 0) x, f(x, t)eM; f(x, 1) konst. fur jedes xeM und 0 ^ t < 1 ist.

5) Fund. Math. 21 (1933), S. 95.

6) Es ist unschwer zu zeigen, dafi P — wie jedes zweidimensionale, zusammenhangende
Polyeder — m drei von îhm verschiedene und m sich zusammenziehbare Polyeder zer-
legbar ist. Siehe même Arbe^: ,,Sur la décomposition des polyèdres n-dimen-
sionnels en polyèdres contractiles en soi", Compositio Math., m Vorbereitung.
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Polyeder P erhalten, indem wir in der Kreisscheibe K E [ | z | < 1 ]7)
z

der komplexen z-Ebene jeden Punkt x der Strecke Cffï mit dem Punkte
e27Tix identifizieren. Es ist klar, da8 P topologisch als ein zweidimen-
sionales Polyeder darstellbar ist. Man kann dabei ein Modell von P im
euklidischen dreidimensionalen Raume R* (mit rechtwinkligen Koordi-
naten x, y, t) folgendermaBen konstruieren :

Wir setzen:

R+ E p>0]; R~ E [t < 0],

0 < <p < 2 tt] 8),

J EU[p (cos<p, 0, sinç>); 0 < ç? < 2 tt]

1, 0, 0))— 1;

P Q

J,?)=l; qeJ]

EZ [Q(p, (1, 0, 0)) > 1 ; ^(2>5 q) < ^(g, (- 1, 0, 0) - 1 ;

Es ist leicht festzustellen, dafi die Summe P' A-\- B-\-C mit P
homôomorph ist. Zu diesem Zweck braueht man nur die geometrisch
ersichtliche Tatsache zu beachten, da8 die lângs der Kreislinie 8

E [(x+l)2 + y2 l; t 0] aufgeschnittene Flàche P' sich topolo-
(x,y,t)
giseh auf die Kreisscheibe K ¦== E [\ z \ ^1] abbilden làBt und zwar

z

derart, dafi ein Exemplar von S in den Rand von K und das im
Punkte 0 aufgeschnittene zweite Exemplar von S in den Radius 0; 1

ubergeht.

B. Um zu beweisen, da8 P in sich zusammenziehbar ist, bemerken
wir vor allem, dafi die Kreisscheibe K mit derjenigen Menge topologisch
identisch ist, welche aus K entsteht, wenn man dort aile Punkte von der

Gestalt e27Tix, wo0<a; <-^-^r3 miteinander identifiziert. P ist somit
o

7) E [ ] bedeutet die aus allen Punkten p von der Eigenschaft [ ] bestehende Menge.
P

8) S [ ] bedeutet die Aussage : ,,Es gibt eincp derart, dafi [ ] wahr ist. Vgl. C. Kuratowski,
<p

Topologie I, Monografje Matematyczne III, Warszawa-Lwôw, 1933, S. 3.

9) Ç(P> 9.) bezeiehnet die Entfernung zwischen den Punkten p und q.

143



homôomorph mit der Menge, welche aus K entsteht, indem wir die beiden
folgenden Operationen nacheinander ausfûhren:

1° Identifizierung jedes Punktes xe 0; 1 mit dem Punkte e

2° Zusammenziehung auf einen einzigen Punkt des Kreisbogens

Wir zerlegen die Kreisscheibe K in zwei Halbkreisscheiben K+ und K~,
von denen die erste die Punkte von niehtnegativem und die zweite die-

jenigen von nichtpositivem reellen Teil enthalt. Nun entsteht aus K~
dureh 1° eine mit K homôomorphe Menge K*, und K+ bleibt dabei

ungeandert. Jl* und K+ sind also zwei absolute Retrakte10) und ihre
Durchschnittsmenge besteht aus einem einfachen Bogen. Somit ist auch
die Summe von K* und K+, d. h. die aus K durch 1° entstehende Menge K'
ein absoluter Retrakt11). Da ferner, durch Zusammenziehung eines
einfachen Teilbogens eines absoluten Retraktes wieder ein absoluter Retrakt
entsteht12), so ist das aus K' durch 2° entstehende Polyeder P auch einer.
Damit ist aber auch bewiesen, daB P in sich zusammenziehbar ist.

4. Es bleibt zu beweisen, daB P keine Zerlegung in zwei echte Teil-
polyeder mit verschwindender eindimensionaler Bettischer Zahl zulaBt.

Wir konnen annehmen, daB P in der Gestalt eines geometrischen Kom-
plexes, d. h. in einer Simplizialzerlegung13) gegeben ist. Es bezeichne a0
den Punkt von P, welcher durch Verschmelzung von 0 und e27Tl0 1

entsteht. Es ist klar, daB der baryzentrische Stern14) jedes von a0 ver-
schiedenen Punktes aeP eine Umgebung („baryzentrische Umgebung'')
von a bildet, die entweder mit einer Kreisscheibe oder mit der Summe
dreier Dreiecke mit einer gemeinsamen Seite homôomorph ist. Die
baryzentrische Umgebung von a ist dabei beliebig klein, wenn nur die
betrachtete Simplizialzerlegung von P hinreichend fein ist. Wir beachten
ferner, dafi die Punkte a, fur welche die baryzentrischen Umgebungen mit
einer Kreisscheibe homôomorph sind, ein mit K — {i?[|z| 1 ] +0 ; 1}

g
10) Wegen des Begrifïes eines absoluten Retraktors, siehe z. B. Fund. Math 19 (1932),

S.222. Unter den Polyedern sind die absoluten Retrakte durch Zusammenziehbarkeit m
sich charakterisiert. Siehe 1. c. S. 227 und 229.

n) Siehe N. Aronszajn, uid K. Borsuk, Fund. Math. 18 (1932). S. 194.

12) Siehe Fund. Math. 24 (1935), S. 250.
13 Wegen der Définition eines geometrischen Komplexes und einer Simplizialzerlegung

siehe z. B. P. Alexandroff ,,Einfachste Grundbegnffe der Topologie", Berlin,
Springer, 1932, S. 6.

14) Wegen dièses Begrifïes siehe 1. c. S. 32.
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(also auch mit der Ebene) homoomorphes Gebiet G bilden und daB die
Menge aller ûbrigbleibenden Punkte von P nirgendsdicht in P ist. Es
folgt daraus insbesondere, dafi P eine zweidimensionale Cantorsche

Mannigfaltigkeit15) (eine Floche) ist.

5. Ist A ein geometrischer Komplex13), welcher entweder mit einer
Kreisscheibe oder mit der Summe dreier Dreiecke mit einer gemeinsamen Seite

homôomorph ist und bezeichnet L eine lineare Menge1Q), die mit dem Bande R
von A17), einen zusammenhângenden Durchschnitt hat, so ist A — L zu-
sammenhângend.

Um den Beweis dieser Behauptung anzugeben, braucht man nur zu
zeigen, daB L das Gebiet A — R nicht zersehneidet. Wir kônnen deshalb
die Menge L — R anstatt L betrachten und somit voraussetzen, daB

jede Komponente von L mit R hôehstens einen gemeinsamen Punkt
hat. Ist nun A mit einer Kreisscheibe homôomorph, so ist die Behauptung

in dem sogenannten Janiszewski'schen Satze18) enthalten. Ist
dagegen^4 mit der Summe dreier Dreiecke Al9 A2 und Az mit einer
gemeinsamen Seite homôomorph und sind su und b irgend zwei Punkte
von A — R — L, so gibt es zwei unter diesen Dreiecken, z. B. Ax und
A2, so daB a und b in dem der Summe Ax + A2 entsprechenden und
mit einer Kreisscheibe homôomorphen Teilkomplex A' von A enthalten
sind. Da aber jede Komponente von L mit dem Rande von A' (der eine

Teilmenge von R bildet) hôehstens einen gemeinsamen Punkt hat, so
ist die Behauptung auf den schon erledigten Fall zuruckgefuhrt.

6. Ist die eindimensionale Bettische Zahl eines Streckenkomplexes S c P
gleich Null, so zersehneidet S die Flache P nicht.

Beweis. Wùrde S die Flache P zwischen irgend zwei Punkten a, b von
P — S zerschneiden, so gâbe es eine Teilmenge S' von S, die einen irre-
duziblen Schnitt19) zwischen a und b bildet. Da aber die Flache P — als

15) Das heifit eine zweidimensionale Menge, welche durch keine hôehstens O-dimensionale
Teilmenge zerlegt werden kann.

16) Das heifît eine mit einer Menge der reellen Zahlen homôomorphe Menge.
17) R bezeichnet also die Summe aller 1-dimensionalen Simplexe des geometrisehen

Komplexes A, die nur auf einem Dreiecke von A liegen.
18) Z. Janiszewski, Prace Mat. — Fiz. 26 (1913), S. 11—63. Siehe auch G. Kuratowski,

Fund. Math. 14 (1929), S. 309—310.
19) Das heifit dafî S1 die Flache P zwischen a und b zersehneidet, im Gegensatze zu jeder

seiner echten Teilmengen. Der Beweis, daÔ jeder Schnitt zwischen a und b einen irre-
duziblen Schnitt zwischen diesen Punkten enthàlt, ist von S. Mazurkiewicz, Fund. Math. 1

(1920), S. 63 gegeben worden.
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ein absoluter Retrakt — unikoharent ist20), so muB der irreduzible
Schnitt ein (nicht einpunktiges) Kontinuum21) und somit ein Baum22)
sein. Es folgt daraus, da6 8' mindestens zwei Endpunkte enthalt23). Es
gibt also einen von a0 verschiedenen Endpunkt e von s'. Es sei E eine
Simplizialzerlegung und U eine so kleine baryzentische Umgebung (in P)
von e, daB aile e nicht enthaltenden eindimensionalen Simplexe von E
mit U punktfremd sind. Wenn man nun beachtet, daB U ein Stern mit
dem Mittelpunkte e ist, so schlieBt man, daB das e enthaltende ein-
dimensionale Simplex L von E einen zusammenhangenden Durchschnitt
mit dem Rande R von U hat. Da ferner 8r als ein irreduzibler Schnitt
von P zwischen a und b vorausgesetzt ist, so gibt es einen einfachen
Bogen j5, welcher a und b im P — (8f — U) verbindet. Es sei nun % der
erste und bx der letzte Punkt von B (wenn man B von a bis b durchlauft),
welcher der Menge R angehort. Die Punkte a1 und b± lassen sich dann —
auf Grund von 5 — durch einen einfachen Bogen Bx c U — S' c U — L
verbinden. Wenn wir nun den Teilbogen Bo von B mit den Endpunkten
ax und b± durch B± ersetzen, so erhalten wir aus B einen einfachen Bogen
B' (B — BQ) -f- Bl9 der die Punkte a und 6 im P — S' verbindet, was
der Définition von S' als Schnitt zwischen a und b widerspricht.

*7. Wenn Q c P ein P zerschneidendes Polyeder ist, so verschwindet seine

eindimensionale Bettische Zahl nicht.

Beweis. Wir konnen annehmen, daB Q ein Teilkomplex einer Simplizialzerlegung

E von P ist, welches m zweidimensionale Simplexe (Dreiecke)
von E enthâlt. Im Falle m 0 ist Q ein Streckenkomplex und, auf Grund
von 6, ist die Behauptung richtig. Wir wollen also annehmen, die Be-

hauptung sei fur den Fall m ^ m0 gultig und unter dieser Annahme
ihre Gultigkeit fur den Fall m m0 + 1 nachweisen.

Da auf Grund von 4, die Punkte, wo P mit der Ebene lokal homôo-

morph ist, ein mit der Ebene homôomorphes Gebiet G bilden, so gibt es

20) Ein zusammenhangender Raum M heiBt unikoharent, wenn der Durchschnitt je
zweier zusammenhangender m M abgeschlossener Mengen mit der Sumrae M, zusammen-
hangend ist. Wegen der Umkoharenz der absoluten Retrakte siehe Fund Math. 17

(1931), S. 163, 3°.

21) C. Kuratowski, Fund. Math. 13 (1929), S. 309 (%).
22) Das heifît ein zusammenhangender Streckenkomplex, der kein geschlossenes Polygon

enthalt, oder — was dasselbe bedeutet — dessen emdimensionale Bettische Zahl
verschwindet.

23) Siehe z. B. K. Menger, Kurventheorie, Leipzig und Berlin, 1932, S. 307.
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zwei Dreiecke A c Q und A' c P—Q von E, die eine in G liegende
(eventuell mit Ausnahme ihrer Endpunkte), gemeinsame Seite A be-
sitzen. Es sei W(x) eine Funktion, welche A auf die Summe zweier von A
verschiedenen Seiten von A retrahiert24) und auf Q — A die Identitat
ist. Die so definierte Funktion W retrahiert das Polyeder Q auf ein Poly-
eder Qo W(Q), welches aus Q entsteht, indem man dort aile Innen-
punkte von A und A entfernt. Da ferner Qo nur ra0 Dreiecke von S ent-
halt und seine eindimensionale Bettische Zahl die eindimensionale
Bettische Zahl von Q nicht ùbertrifft25) (da Qo ein Retrakt von Q ist), so
wird unsere Behauptung bewiesen sein, wenn nur gezeigt ist, da6 Qo die
Flache P zwischen denselben Punkten a und b zerschneidet wie Q.
Existierte aber ein einfacher Bogen B c P — Qo mit den Endpunkten
a und b, so muBte er A und somit auch A treffen. Es bezeichne % den
ersten und bx den letzten Punkt von B (wenn man B von a bis b durch-
lauft), welcher der Strecke A angehôrt. Ein hinreichend nahe bei ax
(bezw. bei 61) und zwischen a und ax (bezw. zwischen b und 6X) liegender
Punkt aoeA (bezw. bosA) gehôrt dann zum Inneren des Dreieckes A' und
der Teilbogen B' (bezw. B") von B mit den Endpunkten a und a0
(bezw. b und 60) ist in der Menge P — Q enthalten. Das Kontinuum
B' +ao;6o + JB//, wo a0 ; 60 die geradlinige Strecke mit den Endpunkten
a0, b0 bezeichnet, verbindet dann die Punkte a und 6 auBerhalb von Q,

was unserer Voraussetzung widerspricht.

8. Wir brauchen nun nur wenige Worte, um den Beweis unseres Satzes

zu vollenden. Es sei nâmlich eine Zerlegung von P in zwei echte Teil-
polyeder P± und P2 gegeben. Ist aeP—Px und beP — P2, so
zerschneidet das Polyeder P1 • P2 die Flache P zwischen a und b, und somit
— auf Grund von 7 — verschwindet seine eindimensionale Bettische Zahl
nicht. Wenn wir aber berucksichtigen, da6 die zweidimensionale Bettische
Zahl der Flache P (als eines absoluten Retraktes5)), und somit auch die
zweidimensionale Bettischen Zahlen von P± und P2 verschwinden, so

schlieBen wir auf Grund der bekannten Former26), die eine Beziehung
zwischen den Homologieeigenschaften zweier Polyeder und ihrer Summe
und Durchschnitt anbetrifït, da8 das Verschwinden der eindimensionalen
Bettischen Zahlen von Px und P2 das Verschwinden der eindimensionalen

24) Eme Funktion / retrahiert eine Menge M auf îhre Teilmenge ÎV, wenn sie M stetiger-
weise auf N abbildet, indem sie auf N als Identitat bestimmt ist.

25) Fund. Math. 21 (1933), S. 91—92.
26) W. Mayer, Monatshefte f. Math. u. Phys. 36 (1929), S. 40 (96).
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Bettischen Zahl von Pt • P2 zur Folge hat. Somit kônnen also die ein-
dimensionalen Bettischen Zahlen von Pt und P2 nicht beide verschwin-
den, w. z. b. w.

Die Frage, ob P auch beziiglich der Eigenschaft ,,eine azyklische
Menge zu sein" unzerlegbar ist, bleibt unentschieden.

(Eingegangen den 21. Mai 1935.)
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