Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 8 (1935-1936)

Artikel: Uber das Phanomen der Unzerlegbarkeit in der Polyedertopologie.
Autor: Borsuk, Karol

DOl: https://doi.org/10.5169/seals-9290

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-9290
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Uber das Phanomen der Unzerlegbarkeit in der
Polyedertopologie

Von KaroL Borsuk, Warszawa

1. Eine Menge!) M von einer Eigenschaft /7 heilt beziiglich dieser
Eigenschaft unzerlegbar, wenn keine Zerlegung von M in zwei echte Teil-
mengen von der Eigenschaft /7 existiert. So sind z. B. die beziiglich des
Zusammenhanges unzerlegbaren Mengen die sog. unzerlegbaren Kon-
tinuen, welche zu den merkwiirdigsten Gebilden der Topologie gehéren?).

Der Zweck dieser Arbeit ist, zu zeigen, dall das Phidnomen der Un-
zerlegbarkeit schon unter den Polyedern erscheint, wenn man anstatt
des Zusammenhanges sein hoherdimensionales kombinatorisches Kor-
relat betrachtet. Es existieren ndmlich Polyeder, welche unzerlegbar be-
ziiglich der Higenschaft ,,ein azyklisches®) Polyeder zu sein‘‘ sind. Da eine
in sich zusammenziehbare?) Menge in allen Dimensionen azyklisch ist?)
und da alle Bettischen Zahlen (auBler der nulldimensionalen) einer azy-
klischen Menge verschwinden, so ist die vorstehende Behauptung in dem
folgenden, genaueren Satze enthalten:

Satz. Es gibt im dreidimensionalen euklidischen Raume ein in sich
zusammenziehbares, zweidimensionales Polyeder, welches keine Zerlegqung
tn zwer®) echte Teilpolyeder mit verschwindender eindimensionaler Bettischer

Zahl zuldf3t.

2. Die Konstruktion eines die Behauptung unseres Satzes erfiillenden
Polyeders 148t sich sehr einfach angeben. Wir werden nédmlich ein solches

1) Unter einer Menge wird stets eine metrische in sich kompakte Menge verstanden.

2) Die unzerlegbaren Kontinuen wurden von L. K. J. Brouwer entdeckt. Siehe Math.
Ann. 68 (1910), S. 426. Vgl. auch Z. Janiszewski, Journ. Eec. Pol. 16 (II), 1912, S. 79—170.

%) Eine Menge M hei3t in der n-ten Dimension azyklisch, wenn jeder n-dimen-
sionale, berandungsfahige, wahre Zyklus nach variablem Koeffizientenbereiche von M
in M berandet. (Wegen dieser Begriffe siehe die Arbeit von P. Alexandroff ,,Uber die
Urysohnschen Konstanten®, Fund. Math. 20, 1933, S.142.) Die in der O0-ten
Dimension azyklischen Mengen sind bekanntlich mit den Kontinuen identisch.

4) M heiBt in sich zusammenziehbar, wenn es eine stetige Funktion f(z, ¢) derart
gibt, daB f(z, 0) = x; f(x, t)e M ; f(x, 1) = konst. fur jedes ze M und O =< ¢ =< 1 ist.
5) Fund. Math. 21 (1933), S. 95.

8) Es ist unschwer zu zeigen, dal P — wie jedes zweidimensionale, zusammenhéngende
Polyeder — in drei von ihm verschiedene und in sich zusammenziehbare Polyeder zer-
legbar ist. Siehe meine Arbeit: ,,Sur la décomposition des polyedres n-dimen-
sionnels en polyédres contractiles en soi‘, Compositio Math., in Vorbereitung.

142



Polyeder P erhalten, indem wir in der Kreisscheibe K = E[| 2| < 1]9)
der komplexen z-Ebene jeden Punkt z der Strecke 0;1 mit dem Punkte

e?™** identifizieren. Es ist klar, daB P topologisch als ein zweidimen-
sionales Polyeder darstellbar ist. Man kann dabei ein Modell von P im
euklidischen dreidimensionalen Raume R? (mit rechtwinkligen Koordi-

naten z, y, t) folgendermaflen konstruieren:

Wir setzen:
Rt= K [t>0]; R = E [t<0],

(z,¥,t) (2, 9,1)

I = EZ‘[p:(1+sin21—9)cos<p———1,(1+sin2%)sin @, 0);
Py ; \ |
0 <o < 2x]8),
J=EX[p= (cosg,0,sing); 0 <¢p <2a],
P9

A=EZ[o(p,q) = 0(g, (—1,0,0))—1; geI] - R~ 9),

B=EZX[o(p,q) =1; qeJ] - R,
v q

C'=EZX[o(p,(1,0,0) >1; o(p,q) < 0(g, (—1,0,0)) —1;
P q qsI]'R""'R”.

Es ist leicht festzustellen, daB die Summe P’ = 4 + B+ C mit P
homoéomorph ist. Zu diesem Zweck braucht man nur die geometrisch
ersichtliche Tatsache zu beachten, dal die lings der Kreislinie § =

E [(x+1)24y% = 1; t = 0] aufgeschnittene Fldche P’ sich topolo-

(z,9,?)

gisch auf die Kreisscheibe K = E[| 2| << 1] abbilden liBt und zwar

derart, dal ein Exemplar von § in den Rand von K und das im
Punkte 0 aufgeschnittene zweite Exemplar von S in den Radius 0;1
iibergeht.

3. Um zu beweisen, da3 P in sich zusammenziehbar ist, bemerken
wir vor allem, daB die Kreisscheibe K mit derjenigen Menge topologisch
identisch ist, welche aus K entsteht, wenn man dort alle Punkte von der
Gestalt 2™, wo 0 < x g—?’—n, miteinander identifiziert. P ist somit

) E[ ] bedeutet die aus allen Punkten p von der Eigenschaft [ ] bestehende Menge.

Y

8) 3'[ ] bedeutet die Aussage: ,,Es gibt eing derart, daB [ ] wahr ist. Vgl. C. Kuratowsk:t,
¢ L[]

Topologie I, Monografje Matematyczne III, Warszawa-Lwow, 1933, S. 3.
®) o(p, q) bezeichnet die Entfernung zwischen den Punkten p und g.
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homéomorph mit der Menge, welche aus K entsteht, indem wir die beiden
folgenden Operationen nacheinander ausfiihren:

—%ﬂ'&(x—{- 2)

1° Identifizierung jedes Punktes x¢ 0;1 mit dem Punkte e ,

20 Zusammenziehung auf einen einzigen Punkt des Kreisbogens
EX[z= e?; 0 < g <—4iaz].
z @ 3

Wir zerlegen die Kreisscheibe K in zwei Halbkreisscheiben K+ und K-,
von denen die erste die Punkte von nichtnegativem und die zweite die-
jenigen von nichtpositivem reellen Teil enthdlt. Nun entsteht aus K-
durch 19 eine mit K homoéomorphe Menge K*, und K+ bleibt dabei
ungedandert. K* und K+ sind also zwei absolute Retrakte!?) und ihre
Durchschnittsmenge besteht aus einem einfachen Bogen. Somit ist auch
die Summe von K* und K+, d. h. die aus K durch 1° entstehende Menge K’
ein absoluter Retrakt!!). Da ferner, durch Zusammenziehung eines ein-
fachen Teilbogens eines absoluten Retraktes wieder ein absoluter Retrakt

entsteht!?), so ist das aus K’ durch 29 entstehende Polyeder P auch einer.
Damit ist aber auch bewiesen, daf3 P in sich zusammenziehbar ist.

4. Es bleibt zu beweisen, dafl P keine Zerlegung in zwei echte Teil-
polyeder mit verschwindender eindimensionaler Bettischer Zahl zuldft.

Wir kénnen annehmen, daf3 P in der Gestalt eines geometrischen Kom-
plexes, d. h. in einer Simplizialzerlegung!?) gegeben ist. Es bezeichne a,
den Punkt von P, welcher durch Verschmelzung von 0 und €*™*° = 1
entsteht. Es ist klar, dall der baryzentrische Stern!?) jedes von a, ver-
schiedenen Punktes acP eine Umgebung (,.baryzentrische Umgebung‘)
von a bildet, die entweder mit einer Kreisscheibe oder mit der Summe
dreier Dreiecke mit einer gemeinsamen Seite homdomorph ist. Die
baryzentrische Umgebung von a ist dabei beliebig klein, wenn nur die
betrachtete Simplizialzerlegung von P hinreichend fein ist. Wir beachten
ferner, daf3 die Punkte a, fiir welche die baryzentrischen Umgebungen mait
einer Kreisscheibe homéomorph sind, ein mit K —{E[|z| =1]+0;1}

16) Wegen des Begriffes eines absoluten Retraktors, siehe z. B? Fund. Math. 19 (1932),

S.222. Unter den Polyedern sind die absoluten Retrakte durch Zusammenziehbarkeit in
sich charakterisiert. Siehe 1. ¢. S. 227 und 229.

11) Siehe N. Aronszajn uad K. Borsuk, Fund. Math. 18 (1932). S. 194.
12) Siehe Fund. Math. 24 (1935), S. 250.

13) Wegen der Definition eines geometrischen Komplexes und einer Simplizialzerlegung
siehe z. B. P. Alexandroff ,,Einfachste Grundbegriffe der Topologie‘, Berlin,
Springer, 1932, S. 6.

14) Wegen dieses Begriffes siehe 1. c. S. 32,
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(also auch mit der Ebene) homéomorphes Qebiet G bilden und dafB3 dic
Menge aller iibrigbleibenden Punkte von P nirgendsdicht in P ist. Es
folgt daraus insbesondere, daffi P eine zweidimensionale Cantorsche
Mannigfaltigkeit'®) (eine Fliche) ist.

8. Ist A ein geometrischer Komplex?), welcher entweder mit einer Kreis-
scheibe oder mit der Summe dreier Dreiecke mit einer gemeinsamen Seite
homoomorph ist und bezeichnet L eine lineare Menge'®), die mit dem Rande R
von A7), einen zusammenhdingenden Durchschnitt hat, so 1st A — L zu-
sammenhdngend.

Um den Beweis dieser Behauptung anzugeben, braucht man nur zu
zeigen, dafl L das Gebiet 4 — R nicht zerschneidet. Wir kénnen deshalb
die Menge L — R anstatt L betrachten und somit voraussetzen, daf}
jede Komponente von L mit R héchstens einen gemeinsamen Punkt
hat. Ist nun 4 mit einer Kreisscheibe homéomorph, so ist die Behaup-
tung in dem sogenannten Janiszewski’schen Satze'®) enthalten. Ist
dagegen A mit der Summe dreier Dreiecke 4;, 4, und 4; mit einer ge-
meinsamen Seite homéomorph und sind a und b irgend zwei Punkte
von A — R — L, so gibt es zwei unter diesen Dreiecken, z. B. 4, und
A,, so dal 2 und b in dem der Summe 4, 4+ 4, entsprechenden und
mit einer Kreisscheibe homéomorphen Teilkomplex 4" von A enthalten
sind. Da aber jede Komponente von L mit dem Rande von A’ (der eine
Teilmenge von R bildet) hochstens einen gemeinsamen Punkt hat, so

ist die Behauptung auf den schon erledigten Fall zuriickgefiihrt.

6. Ist die eindimensionale Bettische Zahl eines Streckenkomplexes S ¢ P
gleich Null, so zerschneidet S dve Fliche P nicht.

Beweis. Wiirde S die Flache P zwischen irgend zwei Punkten a, b von
P — 8 zerschneiden, so gibe es eine Teilmenge S’ von 8, die einen irre-
duziblen Schnitt!®) zwischen a und b bildet. Da aber die Fldche P — als

15) Das heiBt eine zweidimensionale Menge, welche durch keine héchstens 0-dimensionale
Teilmenge zerlegt werden kann.

16) Das heiBt eine mit einer Menge der reellen Zahlen homomorphe Menge.

17) R bezeichnet also die Summe aller 1-dimensionalen Simplexe des geometrischen
Komplexes 4, die nur auf einem Dreiecke von A liegen.

18) Z. Janiszewski, Prace Mat. — Fiz. 26 (1913), S. 11—63. Siehe auch C. Kuratowsks,
Fund. Math. 14 (1929), S. 309—310.

19) Das heif3t daB S* die Flache P zwischen a und b zerschneidet, im Gegensatze zu jeder
seiner echten Teilmengen. Der Beweis, daB jeder Schnitt zwischen a und b einen irre-
duziblen Schnitt zwischen diesen Punkten enthalt, ist von S. Mazurkiewicz, Fund. Math. 1
(1920), S. 63 gegeben worden.
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ein absoluter Retrakt — unikohéarent ist??), so mull der irreduzible
Schnitt ein (nicht einpunktiges) Kontinuum?!) und somit ein Baum?22)
sein. Es folgt daraus, daB §” mindestens zwei Endpunkte enthilt?3). Es
gibt also einen von a, verschiedenen Endpunkt e von s'. Es sei X eine
Simplizialzerlegung und U eine so kleine baryzentische Umgebung (in P)
von e, da} alle e nicht enthaltenden eindimensionalen Simplexe von X
mit U punktfremd sind. Wenn man nun beachtet, da U ein Stern mit
dem Mittelpunkte e ist, so schlieBt man, daBl das e enthaltende ein-
dimensionale Simplex L von X einen zusammenhédngenden Durchschnitt
mit dem Rande R von U hat. Da ferner S’ als ein irreduzibler Schnitt
von P zwischen a und b vorausgesetzt ist, so gibt es einen einfachen
Bogen B, welcher a2 und b im P — (8" — U) verbindet. Es sei nun a, der
erste und b, der letzte Punkt von B (wenn man B von a bis b durchlduft),
welcher der Menge R angehdrt. Die Punkte a, und b, lassen sich dann —
auf Grund von 5 — durch einen einfachen Bogen B, ¢ U —§" ¢ U — L
verbinden. Wenn wir nun den Teilbogen B, von B mit den Endpunkten
a, und b; durch B, ersetzen, so erhalten wir aus B einen einfachen Bogen
B’ = (B — B,) + B, der die Punkte a2 und b im P — §’ verbindet, was
der Definition von 8’ als Schnitt zwischen a und b widerspricht.

. Wenn Q ¢ P ein P zerschneidendes Polyeder ist, so verschuindet seine
etndimensionale Bettische Zahl nicht.

Beweis. Wir kénnen annehmen, da@  ein Teilkomplex einer Simplizial-
zerlegung X' von P ist, welches m zweidimensionale Simplexe (Dreiecke)
von X enthélt. Im Falle m = 0 ist ¢) ein Streckenkomplex und, auf Grund
von 6, ist die Behauptung richtig. Wir wollen also annehmen, die Be-
hauptung sei fiir den Fall m < m, giltig und unter dieser Annahme
ihre Giiltigkeit fiir den Fall m = m,- 1 nachweisen.

Da auf Grund von 4, die Punkte, wo P mit der Ebene lokal homdoo-
morph ist, ein mit der Ebene homéomorphes Gebiet G bilden, so gibt es

20) Ein zusammenhéngender Raum M heiBt unikoh#érent, wenn der Durchschnitt je
zweier zusammenhéangender in M abgeschlossener Mengen mit der Summe M, zusammen-
hiangend ist. Wegen der Unikoh#renz der absoluten Retrakte siehe Fund. Math. 17
(1931), S. 163, 3°.

21) C. Kuratowsk:, Fund. Math. 13 (1929), S. 309 (¥,).

22) Das hei3t ein zusammenhéngender Streckenkomplex, der kein geschlossenes Polygon
enthalt, oder — was dasselbe bedeutet — dessen eindimensionale Bettische Zahl ver-
schwindet.

23) Siehe z. B. K. Menger, Kurventheorie, Leipzig und Berlin, 1932, S. 307.
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zwei Dreiecke 4 ¢ Q und 4’ ¢ P—Q von X, die eine in @ liegende
(eventuell mit Ausnahme ihrer Endpunkte), gemeinsame Seite A be-
sitzen. Es sei ¥ (x) eine Funktion, welche 4 auf die Summe zweier von A
verschiedenen Seiten von A retrahiert?4) und auf Q@ — 4 die Identitit
ist. Die so definierte Funktion ¥ retrahiert das Polyeder @ auf ein Poly-
eder , = ¥ (¢), welches aus ¢ entsteht, indem man dort alle Innen-
punkte von 4 und A entfernt. Da ferner @, nur m, Dreiecke von X' ent-
hidlt und seine eindimensionale Bettische Zahl die eindimensionale
Bettische Zahl von @ nicht iibertrifft?®) (da @, ein Retrakt von @ ist), so
wird unsere Behauptung bewiesen sein, wenn nur gezeigt ist, dal @, die
Fliche P zwischen denselben Punkten a und & zerschneidet wie Q.
Existierte aber ein einfacher Bogen B ¢ P — @, mit den Endpunkten
a und b, so miifite er 4 und somit auch A treffen. Es bezeichne a, den
ersten und b, den letzten Punkt von B (wenn man B von a bis b durch-
lauft), welcher der Strecke A angehért. Ein hinreichend nahe bei a,
(bezw. bei b,) und zwischen a und a, (bezw. zwischen b und b,) liegender
Punkt ayeA (bezw. byeA) gehdért dann zum Inneren des Dreieckes 4” und
der Teilbogen B’ (bezw. B’’) von B mit den Endpunkten a und a,
(bezw. b und b,) ist in der Menge P — @ enthalten. Das Kontinuum
B’ +ay; b+ B, wo a,; b, die geradlinige Strecke mit den Endpunkten
ag b, bezeichnet, verbindet dann die Punkte a und b auBlerhalb von @,
was unserer Voraussetzung widerspricht.

8. Wir brauchen nun nur wenige Worte, um den Beweis unseres Satzes
zu vollenden. Es sei ndmlich eine Zerlegung von P in zwei echte Teil-
polyeder P, und P, gegeben. Ist a¢P — P; und beP — P,, so zer-
schneidet das Polyeder P, - P, die Fliche P zwischen a und b, und somit
— auf Grund von ¢ — verschwindet seine eindimensionale Bettische Zahl
nicht. Wenn wir aber beriicksichtigen, dafl die zweidimensionale Bettische
Zahl der Fliche P (als eines absoluten Retraktes®)), und somit auch die
zweidimensionale Bettischen Zahlen von P; und P, verschwinden, so
schlieBen wir auf Grund der bekannten Formel?¢), die eine Beziehung
zwischen den Homologieeigenschaften zweier Polyeder und ihrer Summe
und Durchschnitt anbetrifft, daB das Verschwinden der eindimensionalen
Bettischen Zahlen von P, und P, das Verschwinden der eindimensionalen

24) Eine Funktion f retrahiert eine Menge M auf ihre Teilmenge N, wenn sie M stetiger-
weise auf N abbildet, indem sie auf N als Identitiat bestimmt ist.

%) Fund. Math. 21 (1933), S. 91—92.
%) W. Mayer, Monatshefte f. Math. u. Phys. 36 (1929), S. 40 (96).
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Bettischen Zahl von P, - P, zur Folge hat. Somit kénnen also die ein-
dimensionalen Bettischen Zahlen von P; und P, nicht beide verschwin-
den, w. z. b. w.

Die Frage, ob P auch beziiglich der Eigenschaft ,eine azyklische
Menge zu sein‘‘ unzerlegbar ist, bleibt unentschieden.

(Eingegangen den 21. Mai 1935.)
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