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Uber die Unabhéngigkeit des Beweises des
Primzahlsatzes vom Begriff der analytischen
Funktion einer komplexen Variabeln

Von ALFrED Krienast, Kiisnacht (Ziirich)

Im Beweise des Primzahlsatzes wird bisher immer, direkt oder indirekt,
das Resultat verwendet, dal (1 - ¢¢) fiir kein reelles ¢ verschwindet.
Da die Reihe Zn—1-%¢ nicht konvergiert, mufite man, um es zu erhalten,
die durch Xn—¢ definierte Funktion auf die Gerade ¢ = 1 und tiber sie
hinaus analytisch fortsetzen, wodurch erst die Werte {(1 + 4t) definiert
wurden. Deshalb beruht die Ableitung des genannten Resultates wesent-
lich auf dem Begriff der analytischen Funktion.

Hierin liegt nichts Besonderes, solange man auch in den iibrigen Teilen
des Beweises des Primzahlsatzes die Theorie der Funktionen eines kom-
plexen Argumentes notig hat. Die Bestrebungen, einen Beweisgang anzu-
geben, der ohne sie auskommt, sind neuerdings erfolgreich gewesen.

E. Landau und H. Heilbronn [1] haben einen allgemeinen Satz iiber
Dirichlet’sche Reihen, der den Primzahlsatz enthilt, bewiesen ohne die
Funktionentheorie zu verwenden. Seine Voraussetzungen lauten, wenn
man sie spezialisiert auf gewohnliche Dirichlet’sche Reihen:

(a) f(s) = 2%—’; konvergiere fiir o > 1;

(b) a, = 0;

(c) es sei A > 0; fiir | £] < 2 1 sei bei ¢ - 0 gleichméBig

he(t) =1 (1 + ¢ + it) = h(t).

1
e -+ 4t

Herr Landau [2] hat dem Beweis eine noch einfachere Gestalt gegeben

und fir f(s) = — %— (s) damit den Primzahlsatz abgeleitet [3]. In diesem

Spezialfall folgert E. Landau das Bestehen von (¢) aus der Tatsache, daB

96 =10 — = — 50— M

fir o = 1 regular ist, was dort die Aussage von Satz 4 (pag. 517) ist.
Hierin ist das Ergebnis {(1 -+ ¢t) % 0 enthalten.
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Andererseits hat Herr Landau 1923 [4] einen Beweis des Primzahl-
satzes angegeben, bei dem man nicht zu definieren braucht, was unter
¢ (1 + t) zu verstehen ist. Dies deutet darauf hin, daBl in der Aussage:
g(s) ist fiir o = 1 reguldr, mehr enthalten ist, als fiir den vorliegenden
Zweck erforderlich ist. Das ist in der Tat der Fall, wie sich unten ergibt.

Der vorliegende Aufsatz enthélt einen Beitrag zur Frage: welches sind
die geringsten Voraussetzungen, die noétig sind, um das Bestehen von
Bedingung (c¢) festzustellen. Es wird gezeigt, dafl in den zunéchst inter-
essierenden Fillen, die von den Funktionen {(s) und {,(s) ({, die zum
algebraischen Korper K gehoérende Zetafunktion) abhingen, der Begriff
der in abgeschlossenem Gebiet stetigen Funktion von o, ¢ ausreicht. Es
ist dabei nicht nétig, die Werte von g¢(s) auf der Geraden ¢ = 1 zu defi-
nieren, so dal man ohne den Begriff der analytischen Funktion aus-
kommen kann. Die Uberlegungen umfassen die Fille, in denen

f(s) = E(s) {(s) + F (s) G7(s),

wo E, F, G gegeben sind durch Dirichlet’sche Reihen, die fiir ¢ =1,
| t| < T gleichmaBig konvergieren. Analoges gilt fiir f(s), wo an Stelle
von ¢, ¢, steht und £, F, G durch Reihen gegeben sind von gleichem Bau
wie {,, die firo = 1, | t| < T gleichméaBig konvergieren.

In T wird gezeigt, daf

H (s) 1 M(s)—L(s)
‘O =gm—0em ‘¥ i1 K@

worin die groBen Buchstaben Dirichlet’sche Reihen bedeuten, die fiir
=1, |t| £T gleichmiBig konvergieren und wo fiir 0 = 1

Q(s) —G(1) % 0 (s #1), K(s) 0. II. Analoge Aussagen gelten fiir
£.(s). In III werden diese Ergebnisse in drei Beispielen angewendet.

I.

Es sei s die komplexwertige Funktion ¢ -+ ¢ der beiden reellen Varia-
beln o, t. Fiir > 0 sei bei reellem lgu: w8 = ¢%%%, also

| uf | = . (2)

Das Differentiationszeichen ist nachstehend immer aufzufassen als
Differentiation der Funktion des reellen Argumentes. In die durch die
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Differentiation entstehende Funktion wird fiir s wieder ¢ - ¢ eingesetzt.
Hierin steckt keine Voraussetzung und keine Aussage iiber die Diffe-
renzierbarkeit einer Funktion eines komplexen Argumentes.

1. Satz. Fundamentalsatz iiber Dirichletreihen.
Wenn die Reihe
an
=
fir s, = o, + i, konvergiert, dann ist sie gleichmiBig konvergent fir
jedes Paar o, ¢, dessen zugehdriger Punkt im Sektor

larg(S—SO)l §a<~?

enthalten ist;
somit stellt sie eine fiir ¢ > ¢, stetige Funktion von o, ¢ dar.

2. Satz. Wenn die Reihe
a’n

-V

fiir s, = o, + 1t, absolut konvergiert, dann ist sie fiir ¢ = o, gleichméafig
konvergent;
und stellt somit eine fiir ¢ = o, stetige Funktion von o, ¢ dar.

Definition 1. Fir ¢ > 1 sei

Die Reihe konvergiert absolut und gleichmiBig fir ¢ =1 4 ¢, ¢ > 0.

3. Satz. Fir o > 1 ist { (o + t) eine stetige Funktion von o, ¢.
4. Satz. Fir o > 1 ist

1\-1 1
(=1 <l“5@> =P

und somit fiir o > 1: {(s) % 0. Beweis siche H. § 41.

Definition 2. Es sei 7 reell und gréfler als 4.
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fir ¢ > 1.

G =3
> pe lgn
S lgk — y, (X' bedeutet, daB %+ 1)
kin
H(s)zil’i—:——ﬁg—cﬂ—l—)—zﬂs) {G(s) —G(1)} fir o > 1. (3)
1
5. Satz.

1. Fiiro = 1 ist G (¢ + 4t) eine stetige Funktion von o, £.
2. Firo =1, |t| = T ist H(o + i) eine stetige Funktion von o, .
Beweis: 1. folgt aus Definition und Satz 2

2. Das Dirichlet’sche Verfahren gibt

) - 7 Vz
Sy.=a3k llgk—zz@/k(,c —|% ])+21§2:gk [Vx]wgk
1-1 3 17 »
=x{G(1)———0(lgx)}—O( )—1—0(%—2— 7) 0( t)

lgw lgx

somit

Unter Verwendung dieser Abschétzung findet man, daf8 die durch par-
tielle Summation aus H(s) hervorgehende Reihe fir ¢ =1, |t]| =T
absolut und gleichméBig konvergiert; dies ergibt die Behauptung.

6.8atz. 1. Firo =1, s # 1 ist G(s) —G(1) # 0, folglich

__HE)
‘O =gm—am @

folglich nach Satz 4: H (s) # 0 fiir ¢ > 1.
2. Firo =1 ist
G (s) — G(1)

s—1

K(s) = # 0

eine stetige Funktion von ¢, ¢ und
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° 1
El)=6¢(1)=—3Y—#0.
*klgk

3. Firo =1 ist

L(s) = — {K(s) — 6 (1))

eine stetige Funktion von o, ¢.
Beweis: 1. folgt aus G'(1) > R (G(s)).
2. Der Taylor’sche Satz fiir 2 Variable liefert, 1 <o,
Go+it) =G+ (A+00—1)+iOt)(c—1+1t),0<O <.

Die Reihe
® 1
st -1

" nilgm

konvergiert absolut fiir s = 1; Satz 2 und G’ (1) > R (G’ (s)) ergeben die
Behauptungen.

3. Der Taylor’sche Satz fiir 2 Variable liefert, 1 <o, 0 << 0 < 1,
G(o + i) =G(1)+G (1) (c— 1+ t) +
1 . .
—l——é—iG”(l + O —1) +i6t) (0 — 1 + it

Die Reihe
= 1
G"(8) =X—
2nslgn

konvergiert absolut fiir s = 1; somit folgt die Behauptung aus Satz 2.

7.8atz. 1. H(1) =G’ (1)
2. Firo =1, |t =T ist

H(s)— H (1)

M (8) = s—1

eine stetige Funktion von o, ¢.
Beweis: 1. Aus Satz 6, 1) folgt (s — 1) £(s) = %—%3 ; man hat durch
elementare Abschétzung, vgl. H. pag. 112,
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lim eC(l—l—e)zE(—l)—

== [.
>0 K(l)

2. Der Taylor’sche Satz ergibt diese Aussage iiber M (s) analog wie
fiir die entsprechende in Satz 6, 2). Die Abschétzung der summatorischen
Funktion der Reihe H (s) (bei Satz 5) ergibt, dal die aus H’(s) durch
partielle Summation hervorgehende Reihe fiir ¢ = 1,|¢| < T absolut
und gleichméaBig konvergiert.

8. Satz. Es sei H (1 + it) = a,

yi— G (1) .
% g = f(n);
dann ist die Reihe
(o) = S22 o) (H (s + i) —a) ©

konvergent fiir ¢ = 1.

Beweis: Setzt man

w:ﬂk, 0<o(A)=41—[2]<1,

SO 1ist

X Vz /A

\7 1z ) E
;f(n):lef(n)‘*,?ﬂk9<k +~T‘?ﬂk_[]/§]%ﬁh
Esist | y, | <d, — 1, wo d; die Anzahl der Teiler von k£ bedeutet; somit

| Bl Sdy—1+G(1)
Hiermit folgt

s P —ogya)
lz+1

somit
2—-1

2-t
i) = {H( +it) —0 (lg 2)} +0 (g )
woraus die Behauptung sich ergibt.
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9. Satz. Fiir jedes ¢, fiir das

lim ¢(1 4 &+ 38) =

e->»0
existiert der limes

lim -—I—C(l—{—e—!—it)———d

£>0

Beweis: Die Voraussetzung ist nicht erfiillt fiir { = 0; somit ¢ = 0.
Zur Abkiirzung sei (nach Satz 6, 1)

(G + i) —GF1)1=b#0
Somit: wenn die Voraussetzung erfiillt ist, dann ist nach (3)

lim H(1 + & +4t) = a = 0.

£->0

Dann ergibt (4) und dann (5)

hm—{(l—l—e—{—zt)—hm H(l—{—e—{—zt)b-—h N(1)b

£>0 £>0 e>0 8C(l+ )_N(l)bZd

w.Z. b. w.

10. Satz. Fiir jedes reelle ¢ ist

lim ¢ (1 + &+ 4t) = H(L +14t) b #0.

£>0

Beweis: Die Behauptung mu8}, wegen (4) nur fiir ¢ # 0 bewiesen werden.

In H. § 45 ist ausfiihrlich, unter Verwendung des letzten Ausdruckes
in Satz 4, entwickelt, daB fir 0 < e < 1, t,>2 0, die Ungleichung besteht

1
72N T Fet 2k

l—él—-z(1+a+z't)

Bei zu null abnehmendem & wichst die rechte Seite iiber alle Grenzen,
also auch die linke Seite. Nimmt man nun an, es wire fiir ein gewisses
t # 0,lim £(1 + & + 4t) = 0, so wire nach Satz 7 der limes \

>0

lim
e->0

St(etin| =|d|

vorhanden, wihrend soeben gezeigt wurde, daf3 er nicht existiert; das
ist ein Widerspruch ; somit kann die Annahme nicht richtig sein und dies
ist die Behauptung.
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II.

Es sei K ein beliebiger algebraischer Zahlkorper, k£ sein Grad. Die zu
ihm gehorende Zetafunktion ist definiert, fiir ¢ > 1 durch

. 1 _F(n) . l)—l___ v 1
)= Xy = S "3(‘ Np) =P % miNp

somit ist fir ¢ > 1, {;(s) % 0. Das Fundament der Aussagen iiber diese
Funktion ist der Weber’sche Satz (1896)

-l

%

l=oax +0(x1‘1/k),
Noa<z

IA

Jetzt kann man Uberlegungen durchfiihren, die véllig analog ver-
laufen zu denen in I.

Definition 3. Es sei 7 reell und grofler als 4.

Gy (8)=§Z L

R
S =, NavlyNg ro=1s

"lg" Nm =y, (X' bedeutet, dal Nm £ 1);

nem=q

) = 3 P — ) (64— Bu(1) }

Hier ergeben sich Aussagen analog zu Satz 5—7, die auf gleiche Weise zu
beweisen sind.

11. Satz. Es sei H, (1 + i) = a

oy 'Ym—Gk(l) _
X =@
dann ist die Reihe
> f(4)—a

Ni(s) = X s = () { Hi(s + it) —a}
Na=1 a
konvergent fiir ¢ = 1.

Hier schlieBen sich Sitze an analog zu Satz 9 und 10, und ihre Beweise
verlaufen ebenso.
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I11.

Die vorangehenden Sitze ermoglichen auf das Bestehen von Be-
dingung (¢) des Satzes von Landau und Heilbronn zu schliefen fiir
Reihen der in der Einleitung genannten Zusammensetzung.

1. Beispiel.
Definition 4.

A(n) =\ lgp fir n = p™, p Primzahl, m > 0 ganz,
| 0 fiir die anderen ganzen n > 0.

12. Satz. Fir ¢ > 1 ist

eine stetige Funktion von o, t;

) * A(n
9 —r'(s) =t (s) =AM
1 n
Beweis: 1) folgt aus Satz 2.
2) XAm) =X Xgp=Igk.
nlk plk mn:)/o
b k

¢’ ist das Produkt von Reihen, die fiir o > 1 absolut konvergieren.

13. Satz. Fir o > 1 ist

) eirg) — oA
— () ) = x50

Folgt aus 12. Satz, 2., wegen Satz 4.

14. Satz. Es ist fir A > o, | ¢ | < 21 gleichmiBig

l+etit _,

e+ et (®)

1im-—%-(1+e+z't)—-

t>0
und A (2) ist stetig.
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Beweis: Durch Berechnung der summatorischen Funktion nach
Dirichlet’s Verfahren findet man, dal (C' = Euler’sche Konstante)

e

ws) = () + £2(s) —20L(s) = X 2
durch eine Reihe dargestellt wird, die fiir ¢ > 1 konvergiert. Somit
ist u(s) eine stetige Funktion von o, ¢ fiir ¢ = 1. Jetzt ist unter Ver-
wendung von in I eingefiihrten Bezeichnungen

G(s) —G(1)
H (s)

= — % (8) ——20—1—[—K—1(~8 (M(s)— L(s))= R(s).

)

Die rechte Seite ist auf Grund der abgeleiteten KEigenschaften eine
stetige Funktion von ¢, ¢ fiir ¢ = 1, somit ist

limg(1 + ¢ 4+ ot) = R(1 + ¢¢)

&e->0
Da R (s) im Innern und auf der Begrenzung jedes Rechtecks: 1 <o < 2,
| t| < 22 stetig ist, so ist dieser limes gleichméafig. Damit ist Bedingung

() fiir f(s) = _t (s) bewiesen und es ergibt sich, wie von E. Landau

¢
in [3] § 2 ausgefiihrt, der Primzahlsatz.

2. Beispiel.
15. Satz. Es ist fiir A > 0, | t| < 21 gleichmifig

linimglf(l-{—s—-i—it)

>0 Z..'k

_1+s+it=h

P k()

und 5, (t) ist stetig.

Beweis: Durch Berechnung der summatorischen Funktion (vgl.
Landau [5]) findet man, daB

> ela)

() = Gie) + i) — (et + D Gl = 3 T
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fiir 0 > 1 — (2k)~! konvergiert. Man erhalt fiir — Sk (8) — . il g
A _

IT eine Formel, analog zu derjenigen im Beweise zu Satz 14. Das

durch

Landausche Verfahren von |3] § 2 ergibt hier den Primidealsatz

SlgNy =2 + o (x).

N pm <z
3. Beispiel.
Sei die Reihe f(s) des Satzes von Landau und Heilbronn (s. Einleitung)
. L1

F) =L@ + HIA 60 + T30, 7)) = X o (1 B(zmum) )

wo y nicht Hauptcharakter mod. k, y* der konjugierte Charakter ist,
. . . . x(n) ..

dann sind die Bedingungen (a), (b) erfiillt. Da L(s, y) =2 s firo = 1,

|t| = T gleichméBig konvergiert und L (s, y) 5= 0 fiir 0 = 1 (siehe H
pag. 460—62), so folgt nach Satz 6 und 7

s  M(s)— L(s)

O ==y =" g~ HHEED L0 =U0),

U(s)ist firl <o <2, |¢| < 4 eine stetige Funktion von ¢, £ und somit
ist Bedingung (c) erfiillt. Das Landausche Verfahren von [3] § 2 ergibt

R (é*x(n)ﬂ(n)) — o(2).

Analoges folgt fiir den imaginidren Teil; also

W

/8

x (m)u(n) = o ().

=b

Hieraus folgt elementar

x

S Am) =o(a)

Dies und der Primzahlsatz geben den Primzahlsatz fiir die arithmetische
Progression.
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