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Uber ein Problem von Herrn Speiser

Von Ecox UrLricH in Marburg

Jede einfachzusammenhéngende, unendlich vielbliattrige Riemannsche
Flache lafit sich bekanntlich schlicht und konform entweder in den
Einheitskreis | 2 | < 1 oder in die punktierte Ebene | 2 | < oo abbilden;
jenachdem bezeichnet man sie als vom hyperbolischen oder vom para-
bolischen Typus. Speziell hat Herr Speiser jene Flichen untersucht?),
welche iiber allen Stellen + a,, a,, a; nur schlichte Blatter haben, wahrend
iiber diesen Stellen selbst auch logarithmische Windungspunkte ge-
stattet (aber nicht fiir alle Blatter vorgeschrieben) sind. Diese Flachen-
klasse leistet fiir eine Orientierung iiber das Typenproblem zweifellos
niitzliche Dienste.

Herr Speiser stellt solche Flachen iibersichtlicher durch topologische
Baume dar, die (den Blattern der Flache entsprechend) mit Knoten-
punkten besetzt sind ; ein beliebiger von diesen wird als nullte Generation,
seine Nachbarn als erste Generation, die nachsten Nachbarn als zweite
Generation bezeichnet usf. Unter einer Endfolge wird dann ein beliebiger
Weg durch den Baum, vom Anfangspunkt (nullte Generation) ausgehend
durch immer héhere Generationen in infinitum verstanden.

Im Anschlufl daran &uflerte Herr Speiser die Vermutung: die Rie-
mannsche Flache sei stets dann vom hyperbolischen Typus, wenn die
Endfolgenmenge die Méachtigkeit des Kontinuums habe, dagegen vom
parabolischen Typus, wenn diese Menge abzihlbar oder endlich sei.

Etwas spater hat Herr Rolf Nevanlinna diese Flachenklasse betrach-
tet?): Die Knotenpunkte sind im Sinne der Kurventheorie entweder
Punkte zweiter Ordnung (gewohnliche Punkte des Baumes) oder dritter
Ordnung (Verzweigungsknoten); sei o (n) die Anzahl der Verzweigungs-
knoten in den ersten n» Generationen. Dann zeigte Nevanlinna: Die
Flache ist jedenfalls dann von parabolischem Typus, wenn die Reihe

2wy

divergiert, insbesondere also, wenn nur endlich viele Endfolgen (also
auch : Verzweigungsknoten) vorhanden sind. Damit ist ein Teil der obigen
Vermutung bestitigt.

1) A. Speiser, Probleme aus dem Gebiet der ganzen transzendenten
Funktionen. Comment. math. helv.1 (1929), S.310f. und: Uber Riemannsche

Flachen. Ebenda 2 (1930), S. 284 f. bes. S. 288.
?) R. Nevanlinna, Ein Satz iiber die konforme Abbildung Riemannscher
Flachen. Comment. math. helv. 5 (1933), S. 95 f.
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Man kann aber aus demselben Satze unschwer folgern, daB der erste
Teil der Speiserschen Vermutung nicht zutrifft, dal es vielmehr Fliachen
mit kontinuierlich vielen Endfolgen gibt, die gleichwohl parabolischen
Typus sind. Man sieht sogar, dafl Flichen, deren Baum genau ebensoviele
Endfolgen zeigt, wie der Modulbaum (Baum zur Fliche der Modul-
funktion) parabolisch sein konnen. Da Herr Nevanlinna auf diese
Folgerung seines Satzes nicht hingewiesen hat, mag es hier geschehen,
obschon das Ergebnis leicht zu finden ist?).

Legen wir eine einfache Kurve (Kreis) K durch a,, a,, a; und wihlen
beiderseits davon je einen Punkt p, ¢; verbinden wir diese Punkte durch
je einen Bogen iiber die drei Teilbdgen zwischen a,, a,, a; hinweg, und
denken dieses Liniensystem auf alle Bliatter der Riemannschen Fliche
projiziert, auf der so ein Liniensystem L entsteht. Wére nun irgend einer
der Punkte a, in einem gewissen Blatte kein Windungspunkt, sondern ein
schlichter Punkt, so wére L in der Umgebung dieses Punktes geschlossen;;
wir vereinbaren daher:

Unter den Bogen pg von L sollen diejenigen geloscht werden, welche
bei einem Umlauf a, a, a; a, langs K unmittelbar auf eine gewohnliche
Stelle der Flache iiber a; folgen.

Dadurch wird aus L ein Baum B herausgehoben, auf dem wir aber alle
Stellen iiber p und ¢ markiert denken wollen; jede solche Marke vertritt
dann ein Halbblatt, entweder das Innere, oder das AuBere der Kurve K.

Bildet man nun die Riemannsche Flache schlicht und konform durch
eine Funktion z = 2z (w) in einen (endlichen oder unendlichen) Kreis ab,
so wird zugleich der Baum B in die z-Ebene iibertragen; doch sind ent-
gegen den Gepflogenheiten der Topologen auch alle Stellen z, und z,
markiert, (wo der Baum einen Trieb knospen lassen kénnte — ohne daf3
dies bei allen diesen Knotenpunkten wirklich der Fall sein mufl) und wo
die Umkehrfunktion w = f (z) bezw. die Werte p oder ¢ annimmt.

Man bemerke nun den Unterschied zwischen der Vermutung von Herrn
Speiser und dem Satze von Herrn Nevanlinna: Die Vermutung beruft
sich allein auf die topologische Struktur des Baumes, und auf eine Eigen-
schaft, die von der Verteilung der Knotenpunkte zweiter Ordnung in
bezug auf die dritter Ordnung gar nicht abhéangt. Der Satz dagegen zeigt
gerade, daB diese Verteilung quantitativ beriicksichtigt werden muf3!

Die Unterdriickung von Knotenpunkten zweiter Ordnung wiirde die
Funktion o (n) rascher wachsen machen und so der Divergenz der
Reihe (1) entgegenwirken; die Hinzufiigung von Knotenpunkten zweiter
Ordnung, die zwischen solche von dritter Ordnung eingeschoben werden,

1) Wie ich erfahre, hat auch Herr Ahlfors diese Bemerkung gemacht.
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aber wiirde o (n) zu einer langsamer wachsenden Funktion machen und
wenn sie ausgiebig genug geschieht, aus einer konvergenten eine divergente
Reihe machen.

Zeigen wir, vom Modulbaum ausgehend, an Hand einer einfachen
Vorschrift, wie dies geschehen kann. Im Modulbaum ist jeder Knoten-
punkt von dritter Ordnung; denken wir diesen Baum abgeindert wie
folgt: Es sollen so viele Knotenpunkte zweiter Ordnung eingeschoben
werden, dafl die Reihe divergent wird, die Abénderungen aber keine der
Endfolgen des Modulbaumes fortnehmen. Es geniigt dazu etwa

o (n) = [log n]

zu nehmen, wo rechts das groffte Ganze des Logarithmus gemeint ist;
denn es gilt ja

Z nlolgn <<2 ;z_fi—olﬁ_j EZ nal(n) ’

so daf3 die Reihe (1) divergiert.

Wir wollen den abgeédnderten Baum in der ¢{-Ebene zeichnen, derart,
daf} alle Punkte der n-ten Generation auf dem Kreis |t | = » liegen?).
Im Ursprung wahlen wir einen Knotenpunkt dritter Ordnung, von dem
3 Aste etwa nach 1, ¢, & (¢ = 1) gezogen werden. Diese werden gerad-
linig fortgesetzt und in jedem Schnitt mit dem Generationenkreis
| ] = n wird ein Knoten zweiter Ordnung eingetragen, solange bis sich
nach folgender Regel ein Knoten dritter Ordnung ergibt:

Wir reihen alle Knoten dritter Ordnung auf eine spiralenartige Kurve
auf. Von ¢ = 0 aus verfolgen wir zunichst den Ast iiber # = 1 hinaus
bis zur n,-ten Generation, welche durch

[log (n, —1)] <2, [logm,]=2

bestimmt ist. Dort bringen wir einen Knoten dritter Ordnung an. Dann
verfolgen wir den Generationskreis | ¢ | = n, im positiven Umlaufssinne
bis zum niéichsten Ast (er geht iiber ¢ = ¢ hinaus), dem wir bis zur
Generation n, folgen, die durch

[log (ng — 1)] <3, [logny] =3
1) Der Baum wird dazu ohne Anderung seiner Struktur verzerrt, um die Ubersichtlich-
keit zu erhéhen.
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bestimmt ist. Nachdem wir dort einen Knoten dritter Ordnung ange-
bracht haben, verfolgen wir wieder den Generationenkreis |¢| = n,
in positivem Umlaufssinne, bis wir auf den nachsten Ast stoflen, folgen
dann diesem bis zur Generation ng4, und fahren so fort in infinitum.

Dieses einfache Verfahren macht aus dem Modulbaum einen Baum,
der ihm, abgesehen von den Knotenpunkten zweiter Ordnung, topologisch
dquivalent ist. Die Endfolgen beider Baume entsprechen einander ein-
deutig. Gleichwohl ist der Modulbaum hyperbolisch, der abgednderte
Baum parabolisch.

Man bemerkt, daBl ein ganz ahnliches Verfahren es erlaubt, aus jedem
beliebigen hyperbolischen Baum durch Einschalten von Knotenpunkten
zweiter Ordnung einen parabolischen Baum zu machen.

(Eingegangen den 28. Mai 1934.)
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