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Zur Aufldsung eines Systems von
linearen gewdhnlichen Differentialgleichungen
mit konstanten Koeffizienten

Von L. LocHER, Winterthur

Die vorliegende Arbeit beschaftigt sich mit der Auflésung eines
Systems von linearen gewohnlichen Differentialgleichungen mit kon-
stanten Koeffizienten und beliebigen Storungsfunktionen. Das Aussehen
der allgemeinen Losung ist seit Euler und Lagrange wohlbekannt. Wegen
der grossen Bedeutung eines derartigen Systems bei der rechnerischen
Behandlung von mechanischen und elektrischen Schwingungen wurden
im Laufe der Zeit auch verschiedene praktische Methoden zur expliziten
Darstellung der Losung bei gewissen Anfangsbedingungen ausgearbeitet.
Vor allem ist es die schon auf Leibniz und Lagrange zuriickgehende, aber
erst von Heawiside wirklich praktisch durchgefiihrte Rechnung mit
Operatoren, welche sich hier niitzlich erweist. Diese in Ingenieur-Kreisen
,,Heaviside-Kalkiil*“ genannte Methode wurde in der letzten Zeit ver-
schiedentlich behandelt und begriindet. Die mir bekannten Begriindungen
[z. B. K. W. Wagner'), L.Casper?), J. R. Carsond)] ziehen von vorn-
herein mehr oder weniger Eigenschaften des in Frage stehenden Glei-
chungssystemes oder gewisse funktionentheoretische Satze heran. Die
Begriindung fiir einen Spezialfall im Buche von Z.J. Berg?), das im
iibrigen viele interessante Beispiele enthalt, ist nicht einwandfrei.
Die folgenden Ausfiihrungen beruhen auf einer Arbeit von W.Gausterd).
Damit sie ein Ganzes fiir sich bilden, werde ich das von W. Gauster
Gegebene zum Teil hier mit wesentlichen Vereinfachungen wiederholen.
Aus der allgemeinen Theorie der gew. Differentialgleichungen werde ich
dabei iiberhaupt nichts voraussetzen. Ferner sollen in der Losung keine
unbestimmten Koeffizienten auftreten, die erst nachtriglich den An-

1) K. W. Wagner, Der Satz von der wechselseitigen Energie. Elektr. Nach-
richtentechnik. Bd. 2, S. 376, 1925.

%) L. Casper, Zur Formel von Heaviside fiur Einschaltvorgénge. Arch. fir
Elektrotechnik. Bd. 15, S. 95, 1925.

3) J. R. Carson, Elektr. Ausgleichsvorgiange und Operatorenrechnung
(erw. deutsche Ausgabe von F. Ollendorf und K. Pohlhausen). Verlag J. Springer, 1929.

4) E.J. Berg, Rechnung mit Operatoren (deutsche Bearbeitung von O. Gramisch
und H. Tropper). Verlag R. Oldenbourg, 1932.

5) W.Gauster, Uber die Lésung von Schwingungsaufgaben mittels sym-
bolischer Differentialrechnung. Arch. f. Elektrotechnik, Bd. 24, S. 360, 1930.
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fangswerten angepaf3t werden, sondern sie enthalte direkt diese ange-
nommenen Anfangswerte, wodurch deren EinfluB bequem iiberschaut
werden kann. Das Inhaltliche deckt sich zum Teil mit der kiirzlich er-
schienenen Arbeit von K. Th. Vahlen8). Dort wird aber der wichtige
Fall, daB die Storungsfunktion eine ,,StoBfunktion ist, nur fiir den sog.
Einheitssto untersucht. Im Hinblick auf die hier verwendete Methode
sei von vornherein betont, daB das im ersten Teil verwendete Rechnen
mit Operatoren nur dazu dient, die fertigen Formeln moglichst elementar
zu beweisen. Hat man diese, so ist zur praktischen Berechnung der
Losung die Kenntnis der einschlagigen Rechengesetze nicht mehr not-
wendig.

1.

n

Ist G (D) =+2'¢c, D” eine ganze rationale Funktion von D mit
0

konstanten Koeffizienten c,, so werde wie iiblich & (D) durch

4

¢ (D)} O ="Zo, g5} O
als Operator definiert. Sind dann @, (D), G, (D) zwei ganze rationale
Funktionen, so gilt wegen D™ {D"f (¢)} = D"t™ f (t) allgemein
G, (D) {Gy (D) f (t)} = {G, (D) G5 (D)} f (¢), also auch das kommutative
Gesetz {G, (D) -Gy (D)} f (t) = {Gy (D) G, (D)} (t), wotiir wir einfacher
G, (D) G, (D) f (t) = @y (D) G (D) (2

schreiben. Weiter ist auch das distributive Gesetz

GD){fL®)+ 1)} =G (D), (t) + G (D) [y (¥)

richtig. Mit Hilfe dieser Tatsachen lassen sich bekanntlich aus einem vor-
gelegten System von m linearen Differentialgleichungen

@ D)z, ) =f()  G=12...m) - (1)
1

mit beliebig gegebenen Storungsfunktionen f, (£) besonders bequem die
Differentialgleichungen gewinnen, denen die gesuchten Funktionen z, (¢)
einzeln geniigen. Bedeutet namlich 4 (D) = | G,; (D) | die Determinante

6) K. Th. Vahlen, Uber den Heaviside-Kalkiil. Zschr. f. angew. Math. u. Mech.,
Bd. 13, 8. 283, 1933.
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aus den ganzen rationalen Funktionen G,; (D) und 4,, (D) die dem Gliede
G (D) zugeordnete Unterdeterminante, so sind 4 (D) und 4,, (D) wieder
ganze rationale Funktionen von D und durch Ausiiben des Operators
4, (D) auf die linke und rechte Seite der ¢-ten Gleichung (1) und nach-
heriger Addition der erhaltenen Gleichungen folgt

AD) 2 O) = Z 40D, (=12 ...m) (2)

Wir wollen annehmen, dass A4 (D) nicht identisch Null ist. Die Variable
t sei reell. Damit die geforderten Operationen im allgemeinen ausfiihrbar
sind, miissen wir voraussetzen, dass die gegebenen reellen oder komplexen
Funktionen f; (¢) der reellen Variablen ¢ geniigend oft differenzierbar sind ;
abgesehen an isolierten Sprungstellen von f (¢), ' (), ..., die wir aus-
driicklich zulassen wollen. An diesen Stellen miissen wir zwischen links
und rechtsseitigen Differentialquotienten unterscheiden. Im iibrigen
seien die f, (¢) fiir alle endlichen ¢ endlich. Fiir die Elektrotechnik kommen
besonders solche Storungsfunktionen in Frage, die fiir ¢ < ¢, Null sind und
bei ¢ = ¢, im allgemeinen einen endlichen Sprung aufweisen. Wir wollen
eine solche Funktion eine ,,Stoffunktion‘ nennen und mit S, () be-
zeichnen. Hat man es namlich mit einem Stromnetz zu tun, dessen
m Maschen, von denen jede aus ohmischen, induktiven und kapazitiven
Elementen aufgebaut ist, ohmisch, induktiv und kapazitiv gekoppelt
sind und wird zurzeit ¢t = ¢,, die elektromotorische Kraft S;, (f) an die k-te
Masche angelegt, so erhilt man fiir die Funktionen z, () = [ J, (¢) dt,
wo J, (¢) den Strom in der k-ten Masche bedeutet, das Gleichungssystem :

Gy D)z, () =8, (). (G, k=12 ...m) (3)
ik k

In diesem besonderen Falle sind alle G, (D) von nicht htherem als
zweitem Grade.
Ist z,; (t) (s = 1, 2, ... m) die Losung der Gleichung

A (D) z (t) = Ay (D) £, (0),

so wird die Losung von (2) wegen 4 (D) iX x,; (t) = X 4 (D) x,; (£)
1 1
durch die Summe

m
(1) = ’{: Ty (£)
gegeben. Es handelt sich also schlieBlich darum, eine Gleichung der
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Gestalt ® D)z (t) = ¥ (D)f (%) (4)

aufzulosen, wobei f () eine gegebene, den erwihnten Bedingungen
geniligende Storungsfunktion und @ (D), ¥ (D) gegebene ganze rationale
Funktionen von D mit konstanten Koeffizienten sind. Im néchsten Ab-
schnitt wollen wir nun durch Verallgemeinerung des Ansatzes von
Gauster?) die gebrochenen rationalen Operationen mit D definieren.

II.

1
Der Operator mit dem Zeichen D-! oder D geniige jedenfalls der

Beziehung {DD-! f(¢)} = f (t), woraus sich D-1f (f) = [f (¢) d¢ ergibt.
Um Eindeutigkeit der Operation D-! zu erlangen, definieren wir mit
Gauster

D-1f(t) = Of f (u) du.

Dann wird fiir jede natiirliche Zahl n
t

D-"f (t) = (n) { f (u) du,
wo die vorgesetzte Klammer (n) andeuten soll, dass »-mal von o bis ¢ zu
integrieren ist. Die Operationen D, D-1, allgemein D*, D-" sind dann nicht
vertauschbar, denn es wird:

t

D1Df ()= [} (u)du = f (&) —f (0); (5)

0

allgemein:
n-1 v

DD (#) = f ®) —»Z [ (o). (6)

Dabei bedeutet f @ (¢) die »-te Ableitung von f (f) nach .
Der Erklirung des Operators (D — a)-! schicken wir eine Rechenregel,
.den ,,Verschiebungssatz‘‘ (Heaviside) voraus; es gilt namlich:

(D—a)f @) =e"Def (1) (7)

Durch wiederholte Anwendung erhalt man allgemein fiir jede natiirliche

Zahl n:
(D —a)"f (t) = et D" e~ f (t). (8)
" %) Vergleiche FuBnote 5.
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Fiir (D — a)-! fordern wir nun jedenfalls die Beziehung
(D—a) { (D—a)f (@)} ={(),
woraus sich nach Anwendung von (7)
(D—a) [ () = e [e' [ (1) dt

ergibt. Wieder erreichen wir die Eindeutigkeit durch Definition der
Integrationskonstanten, es sei:

(D—a)-1f (@) = e fe*““ f (w) du = e*® D-1 e~ f (¢). (9)
Nach dieser Definition und (7), (5) wird
(D—a)*(D—a)f(t)=f()—f (o) e (10)

Fiir @ = o ergibt sich wieder (5), wie es sein mufl. Durch wiederholte
Anwendung von (9) erhilt man fiir jede natiirliche Zahl » :

(D—a)-"f(t) = e** D" e f (2). (11)
Fiir f (£) = 1 bekommen wir:
(D —a)!l = —é—(e‘” — 1) (a o)

und nun mit (11) allgemein:
n~1 (_l)v A

a® o ar~v pl

(@ = o) (12)

Fir a = o wird:

" . ’
D—n lz_n_’. (12)

Haben wir es mit zwei Operatoren (D —a)-1, (D — b)-! zu tun, so
ergeben die bisherigen Definitionen:

t v
(D—a)1{(D—0b)1f (@)} =e[e®™"[e""f (u) dudr,
0 0
oder nach teilweiser Integration:
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! [e”‘ }e"’“ f (u)du — e*t }e—““f(u)du] ,

b—al
also:

(D—a) 1 {(D—0)1[ (O} = ;- [(D—HI—(D—a)11f() (3
und ebenso:

(D— b1 { (D—a)1{ ()} = — [(D—a)i— (D —b)11f @) (13)

Da die beiden rechten Seiten dieser Gleichungen identisch sind, sind
demnach die Operatoren (D — a)-1, (D — b)-1 miteinander vertauschbar
und wir diirfen

(D—a) (D—b)"f(t) = (D—0b)*(D—a)'f()

schreiben. Durch wiederholte Anwendung folgt jetzt allgemein, daB in
einem Produkt aus Faktoren der Gestalt (D — a)-! die Reihenfolge der-
selben beliebig gewihlt werden kann. Diese Tatsache erlaubt uns, den

n -1
7 (D——ak)% zu schreiben.

Operator I7 (D — a,)-! auch in der Form
k=1 k=1

Die zunéachst rein formale Identitat

1 1 1
HP—a) (D—p)}= a—>b [D—a, —ow]

gilt nach (13) auch in der erweiterten Bedeutung fiir Operatoren.
Wir wollen jetzt untersuchen, ob sich fiir das reziproke Produkt
mehrerer Faktoren D — a eine ahnliche Zerlegung durchfiihren lafBt.

Es sei
n

® (D)= IT (D—ay) *

k=1

wobei die 7, natiirliche Zahlen und die @, untereinander verschieden
seien. Rein formal 1aBt sich dann @ (D)-! eindeutig in Teilbriiche zer-
legen:

1 Ain h=12 ...n

2D .~ (D—a)*" 14
702 D—a k—12...n (14)
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Die Konstanten A4,, fir h = n,, n,, ... n, sind dann bekanntlich von
Null verschieden, wiahrend gewisse der iibrigen auch verschwinden
konnen. Wird zur Abkiirzung

2 — @, (D) (15)

gesetzt, so wird nach Multiplikation von (14) mit @ (D):

1=2%24,, ?,, (D).
= Len xn (D) (16)

Die Konstanten 4,, kénnen nach der Formel®8)

1 ("")
Akhzm q’knk (ax)

berechnet werden, wobei rechts die (n, — k)-te Ableitung von (Dkn (D)
nach D gemeint ist.

Die formale Identitat (16) gilt, da nur ganze rationale Operationen auf-
treten, auch in erweiterter Bedeutung fiir Operatoren. Wenden wir den

-1

(17)

1
so dargestellten Operator 1 auf die wohldefinierte Funktion - & (D) f (¢) an,

so ergibt sich

1

oder wegen (D —a) (D —a)-! = 1 und der erlaubten beliebigen Wahl

1
der Reihenfolge der Faktoren in @,, wie in ik

1 t ~h —a t

#) o= B Ay = f 1] == *D e *f@). (18)
ke (D k)

YRR i
Die formal giiltige Teilbruchzerlegung (14) ist also auch fiir Operatoren
richtig. Hat @ (D) nur einfache Nullstellen, sowirdn, =1 (k= 1,2, ...
n) und

Ay ={Ps1 (@p) }1={ P (ap) }? (19)
und (18) vereinfacht sich zu
! a (t—u)
mi()— Eqb(a Je*  f(w)du (20)

8) Zum Beweis s. z. B. in Serret-Scheffers: Lehrb. d. Diff.- u. Int.-Rechn. 8. Aufl.,
Bd. 1, S. 612.
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Jetzt wollen wir schliellich zwei Operatoren der Gestalt ¥ (D) und
{ @ (D) }-! hintereinander anwenden. Es sei

O(D)=M(D—a)* , YD =ID—b) , (21
k=1 l=1

wobei die n,, m; beliebige natiirliche Zahlen und alle a,, b, untereinander
verschieden seien. Die Reihenfolge der Faktoren sowohl in & (D) wie in
{ @ (D) }-! darf beliebig gewahlt werden, hingegen ist zwischen

¥ (D){ @ (D)} und { @ (D)} ¥ (D)

wohl zu unterscheiden. Fiir den ersten Fall 1Bt sich leicht eine zu (18)
analoge Darstellung geben. Zundchst kann man bekanntlich
¥ (D) { @ (D)} rein formal eindeutig in der Form

?(D).__.l___za(D)_{_z Ckh (h= 1,2,...nk;

@ (D) ZD—ay k=12 ..n) (22)

schreiben. Dabei ist @ (D) die ganze rationale Funktion, die sich beim
Dividieren von ¥ (D) durch @ (D) ergibt und C,, sind Konstante. Mit
der in (15) erklirten Bezeichnung erhilt man durch Multiplikation von
" (22) mit @ (D) die formale Identitét:

¥ (D) =G (D) @ (D) + 2 Cyy, Dy (D). (23)
k, h

Als Beziehung zwischen ganzen rationalen Funktionen ist sie auch fiir
Operatoren richtig. Wenden wir den so dargestellten Operator ¥ (D) auf

1
die Funktion & (D) f (t) an und beachten die frither entwickelten Rechen-

regeln, so ergibt sich:

1 1 1
YD) gpy O =6(D) 2(D) g pf) +ﬁ0kh (D) gy f )

Ok h
=G (D)f () +£m f ()
— @DV O+ EC, e D e * f). (24)
k,h
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Die Koeffizienten C,, koénnen folgendermaflen berechnet werden:
Setzt man

n

(D—ay) *

YD)y * =F,(D k=12, ... 25
D =P n o (25)

so wird?): 1 (")
Cen = mﬂc (@) (26)
Insbesondere sind die Zahlen C,, fir 2 =n, (k= 1,2, ... n) alle von

Null verschieden.
I11.

Vertauschungssatz. Fiir den Operator ¥ (D) lafit sich nicht ohne

1
@ (D)

1
weiteres eine explizite Darstellung geben wie (24) fiir ¥ (D)m. Aber

insbesondere wird uns der Zusammenhang zwischen den Ausdriicken

. (D)} (1) und & (D) - g%ﬁf(t)=f(t)

ohne weiteres die gewiinschte Form der Losung unserer Differential-
gleichung (4) geben. Wenn wir den in die Gestalt (14) gesetzten Operator

auf die Funktion @ (D) f (¢) anwenden und die entsprechenden

b (D)

Rechenregeln beachten, so ergibt sich:

F) =515 @D = Z 52— 0 (D) f (0
9 (D) - kh (D —ay)”

= ICZ;Akh (D —ap) ™ (D — a,)* Dy, (D) f (1)
=2 A,,e%'D*D"e% ' D, (D)]f(2). (27)
kh

Mit Hilfe der Formel (6), in der an Stelle von n bezw. f (f) jetzt 4 bezw.

e=%" @y, (D) [ (1) = @i (8)
zu setzen ist, ergibt sich:
?) Vergleiche Fufinote 8.
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h—1 (v)

et D4 Dh -t @, (D) f (t) = Dy, (D) f (£) — e#t 2 (o)——- (28)

Die Koeffizienten ¢{) (0) der ganzen rationalen Funktion (A — 1)-ten
Grades rechts lassen sich noch iibersichtlicher darstellen. Es wird niamlich
nach (8) und (15) fiir v < bh:

D" @4y (t) = D" e*x* By, (D) f (£) = 4" (D — a5)" Dy, (D) (1)

= e~k D, 4,y (D) f (2)-
Also
‘P;cv}l (0) =1 ¢k(h—v) D)Yf®)] =0 - (29)

Setzen wir nun (28) in (27) ein, so ergibt sich:

atlt h—1 v

1
f(t) = ¢(D) (D)f( ) Eh Akh ¢khf(t)~— kn€ * ”E [¢k(h-—v)f ]t=o;~{

Dabei wurden die Argumente D weggelassen. Wegen (16) erhalten wir so
schlieBlich den Vertauschungssatz:

— 1 at k-1 v

f@)=——=DP(D)f(t)= f(t)"‘“ZAkhe "2[¢k (h—v)f(t) ] t-o : (30)
@ (D) kb !
(h=1,2,...‘nk;
k=1,2,...n)

Seine Giiltigkeit ist an die Bedingung gekniipft, daBl f (¢) bei { = o
geniigend oft differenzierbar ist. Verhalt sich die Funktion f (¢) oder eine
ihrer Ableitungen f’ (), ... bei ¢ = 0 unstetig, aber so, daB} die Grenz-
werte f (4 0), f (— 0) oder ' (+0), f' (— 0), ... existieren, so 1aBt sich
die Formel (30) so fassen, daB fiir alle positiven ¢ in den Klammeraus-
driicken [ ... ] auf der rechten Seite f (4 0), {’ (+ 0) usw., hingegen fiir
alle negativen ¢ entsprechend f (— 0), ' (— 0) usw. zu nehmen ist. Bei
der praktischen Berechnung von f (f) aus gegebenem f (¢)und @ (D)
besteht natiirlich die Hauptarbeit in der Bestimmung der Nullstellen «,,.
Durch aufeinanderfolgende Divisionen von @ (D) durch D — a,, erhalt
man dann @, (D) (h =1, 2, ... n,), woraus sich schlieBlich die Zahlen
A,, und die Koeffizienten der auftretenden ganzen rationalen Funktionen
von ¢ ergeben.
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IV.

Anwendung des Kalkils. Die im folgenden auftretenden Funktionen
@ (D), ¥ (D) seien immer durch (21) definiert und sollen den dort er-
wiahnten Voraussetzungen geniigen. Zunichst betrachten wir die homo-
gene Gleichung

@ (D) x (t) = 0. (31)

Die allgemeine Losung werde mit z* (¢) bezeichnet. Dann wird:

1

— 1
a* () =—D (D) 2*() =0 = 0.
0 =552 D =* O =55
Aus (30) ergibt sich daraus sofort:
akt h~1 tv
x* (i) = 2 Akh e” vX [¢k (h—v) x* (t) ] im0 1 V (32)
¥ k,h 0 )

Damit ist die allgemeine Losung von (31) direkt konstruiert. In der
eckigen Klammer stecken die als gegeben gedachten Anfangswerte

x* (0), x*’ (0), ... Ist g = ¥2n,; der Grad von @ (D), so haben die ganzen
rationalen Funktionen @, (h_,,l) (D) den Grad ¢ — A + », also ist der hochst
vorkommende fiir y = b — 1 gleich ¢ — 1. Da alle Azx;, von Null ver-
. schieden sind, treten demnach rechts die Konstanten z* ) (0) (¢ =
1,2,...,9—1) auf. Im Falle lauter verschiedener Nullstellen a, ver-
einfacht sich nach (19) die Losung auf

1 a t
x* (t) = kZ ) [ le t) ]t:-oe i (33)
Nun sei die Differentialgleichung
(D) (t) = ¥ (D) () (34)

vorgelegt. Wieder werden wir die allgemei;xe Losung « (¢) direkt konstru-
ieren. Wir bilden zunéichst die Funktionen:

7 () = @“(lb—)T(D)f(t)=f(t)—f* ©);

T (t) = @ (D) z (t) = = (8) — * (t).

@ (D)
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x* () ist nach dem Vorhergehenden die allgemeine Losung der homo-
genen Gleichung @ (D) x (t) = 0, wahrend f* (¢) durch f (¢) vollstandig
bestimmt ist.

- — 1
Uben wir auf f (t) den Operator ‘I’E- aus, so ergibt sich unter Beachtung

der im Abschnitt IT erhaltenen Rechenregeln 19):

Vo FO) =¥ 5 PIO=¥ 5 Pzl =20
Es gilt also: e :’-,jx 1Mé§ b“\j;f* T A
z (t) = ¥ (D) ‘m]‘(t)
Die rechte Seite konnen wir aber nach (24) durchTeilbruchzerlegung in

folgender Form schreiben:

- —_ -— b= 1,2, .00 By
z(t) =G (D)f () + fhokhe“k* D" e f () (k =12, ... Z;‘

(35)
Die allgemeine Losung von (34) wird also gegeben durch:

t a (t-uw)

x () =2a* (t)+G (D) {f @) —f* (t)}-l—kf;: Cen () Je*  {f(u)—f*(u)}du

/]

(36)
mit
a t h-1 v
x* (2) =kZ’.: Aene” vZ[Pyw @ ()]s T
bt 81 A
0= ZBue' sZ [¥ionfOlosy (37)

Dabei haben B, und ¥, _,, (D) fir ¥ (D) dieselbe Bedeutung wie 4,,
und @D, ;_,, (D) fiir @ (D). Die vorgesetzte Klammer (k) soll andeuten,
daB A-mal von 0 bis ¢ zu integrieren ist. Damit die geforderten Operationen
alle ausfithrbar sind, miissen wir voraussetzen, daBl f (¢) bei ¢t = 0 ge-
niigend oft differenzierbar ist. Im iibrigen schaden isolierte Sprung-
stellen von f (¢), f’ (£), nichts, da dies fiir die in der Summe in (36)
auftretenden einfachen und mehrfachen Integrationen nicht hinderlich
ist; nur miissen wir dann an diesen Stellen zwischen links- und rechts-

10) In dies—;r Art behandelt W. Gauster (s. FuBnote 5) den besonderen Fall einfacher
Nullstellen.
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seitigen Ableitungen von f (f) und z (f) unterscheiden. Die Forderung, daf3
f (¢) fiir alle endlichen ¢ endlich ist, 148t sich dahin einschrianken, daB3 die
in (36) auftretenden Integrale existieren. Auf der rechten Seite von (36)
treten aufler den als gegeben gedachten Anfangswerten z (0), " (0), usw.
in z* (t) keine unbestimmten Konstanten auf.

Wir wollen nun noch einige Spezialfalle betrachten. Wiinschen wir die
Hauptlosung von (34), d. h. die Lésung mit den Anfangswerten

x(0)=2a (0)=...=29V0)=0

so brauchen wir nur in (36) das Glied z* (¢) zu streichen, da in diesem
Falle «* (¢) identisch Null wird. Fiir die Gleichung

O (D) x(t) =f() (38)

wird also die Hauptlosung!!) gegeben durch:

t a (t—u)

x(@t)=2 Ap, (h) [e*  f(u)du. (39)
k,h o

da fir ¥ (D) = 1 dann G (D)= 0 (wenn @ (D) nicht konstant ist) und
f* (t) = 0 wird.

Ist die Stérungsfunktion f (¢) in (34) eine ,,Sto[;’fdnktz’on“ S, (t), also
S, (t)=0firt=e¢

wobei ¢ > 0 sei, so gilt auch fiir sie die Losung (36). In diesem Falle wird
f* () = 8,* (t) = 0, da dann 8, ({) und alle ihre Ableitungen fiir ¢t = 0
verschwinden und demnach auch alle Koeffizienten

[Pi—) (D)8 ()] 1m0
in (37) Null werden. Die allgemeine Losung der Gleichung

@ (D) z (t) = ¥ (D) 8, (t) £> 0

lautet also:
~h at

# ()=2% (t) + @ (D) S, (§) + ZCype* D ¢ * 8, ().
k, h

1) W. Gauster (vergleiche FuBnote 5) beweist dies fiir den Fall einfacher Nullstellen
durch Differentiation und Anwendung gewisser Formeln fiir die A1, was aber gerade durch
seine Methode iiberfliissig wird.
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Dalfiir konnen wir auch schreiben:

2() = 2* )+ G (D) S, () + Z 0@ ™ 82 w) du (40)

&

Da die Summe rechts wegen der vorausgesetzten Endlichkeit von S, (¢)
eine stetige Funktion von ¢ darstellt, diirfen wir den Grenziibergang
lim ¢ = 0 vornehmen. Die Gleichung (40) ist also auch fiir ¢ = 0 giiltig,
womit auch der vorher ausgeschlossene Fall erledigt ist. Nur ist hier wohl
zu beachten, dafl an der Stelle { = 0 die Losung x (¢) und ihre Ableitungen
im allgemeinen Sprungstellen aufweisen werden. Denkt man sich die
Zahlen = (0) gegeben, so wird wohl fiir pos. 7 :

lim ) (— 5) = 2 ® (0); =0,1,2,...,9—1
Jim 29 (— n) (0) (1 g—1)
hingegen :
lim x(;»)(n) = o) (0) + lim H®) ),
n—>0 7—>0

wobei H (t) die von a* (t) befreite rechte Seite von (40) mit ¢ = 0 be-
deutet. Man darf also hier die gegebenen Zahlen " (0) nicht einfach die
gegebenen Anfangswerte, sondern genauer etwa die ,linksseitigen
Anfangswerte‘‘ der Losung « (t) nennen. Der praktisch wichtigste Fall
fordert von der Losung z (f), daB sie fiir alle negativen ¢ verschwindet.
In diesem Falle wird:

lim 2 ® (—7) = 0;
n—>»0

d. h. es mufl z* (¢) identisch Null sein. Daraus folgt der fiir die Elektro-
technik (Anlegen einer elektromotorischen Kraft § () an einen zunéchst
stromlos gedachten Stromkreis) fundamentale Satz:

Unter der Schaltbedingung, das heift
x(t) =0, S@)=0 firt=<o0
wird die Losung der Qleichung

D D)z (t) =¥ (D)S () (41)
gegeben durch

t a (t—u)

() =GD)SE) + ZChp,-wfe* S (u)du (42)
k,h 0
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Ist dabes ¥ (D) von niedrigerem Grade als @ (D), so wird G (D) = 0 und
in diesem Falle verschwindet x (i) ber t = 0.

Arbeitet man also unter der Schaltbedingung, so kann man die Losung
von (41) einfach in der symbolischen Form

¥ (D)
x () = S(t
0= g5 ®
hinschreiben und auswerten (mit unterer Integrationsgrenze Null), wobei
die Integrationskonstanten automatisch richtig bestimmt werden, dies
ist der allgemeine Fall vom ,,Heaviside-Kalkiil‘‘12).

Wir wollen die Losung noch fiir den besonderen Fall angeben, daf3
G (D)= 0 und S (?) gleich dem ,,Einheitsstop*‘ E (t) ist:

1firt> 0

E ) = 0 fiir t < 0.

Nach (12), (12") ist:

D—ay B = (1P| — e T

E(@#); (az0)

g}'

th

D"hE(t) = z‘;

E (t). (43)

Also nach (42):
at h— (__l)v v

1
x(t) =k§0kh (— 1) [;‘h gt ¥ E—'z:r';,—,']E(t)

k

at
Das von Faktoren e * freie Glied wird :

(— )" Yo
Zokh o E(t)= =% o)

E(2);
dies folgt aus (22) fiir D = 0. Also schlieBlich:

2 at -1 (1) ¢
¢EZ; —Z(——l)hc'khe ”Z( ) ;—!E'(t). (a, 52 0) (44)

12) §, auch die Uberlegung von L. Casper in der Anmerkung?) zitierten Arbeit.

z (t) =

61



Ist eine der Nullstellen a, gleich Null, so muf} die innere Summe fiir das
betreffende % durch (43) ersetzt werden. Im Falle lauter einfacher Null-
stellen stellt (44) die sog. Heavistde sche Formel

T(O) ‘nY (@) eakt

50 Zieet | FO @#0

z (t) =

dar. Fiir den Fall, daB alle Nullstellen a, negative Realteile haben, wurde
(44) mit Hilfe einer Integraldarstellung des diskontinuierlichen Faktors
E (t) von K. W. Wagner (vergl. Fufinote 1) bewiesen, es ist die sogenannte
Heaviside-Wagner'sche Formel. Allgemein zeigt K. Th. Vahlen in der
oben!3) erwiahnten Arbeit, dal (44) — vom Faktor X (t) befreit — ein
partikuldres Integral der Gleichung (34) mit f (¢) = 1 ist. Es wird aber
nicht bewiesen, dafl diese Losung allein durch die Bedingungen

1 firt>e>0

x™(—0) =0, f () =lim E, ({) mit E, () = t <e

lim. 0 (45)

vollstdndig bestimmt ist. Der wesentliche Punkt liegt aber gerade darin,
die Losung unter der Schaltbedingung zu finden. Die Annahmen (45)
sind wohl zu unterscheiden von den Bedingungen

ad® (0)=0 (u=0,1,...,9—1), f() =
welche natiirlich ein anderes Ergebnis liefern, auch wenn man dieses noch
mit dem Faktor ¥ (¢) versieht.
Weitere Angaben iiber die diesbeziigliche Literatur findet man im
Buche von J. R. Carson (s. Anm. 3).

(Eingegangen den 17. Mai 1934.)

13) 8. 294, Abschnitt XIV der in Anmerkung 6 zit. Arbeit.
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