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Asymptotische Entwicklungen der
Laguerreschen Polynome

Yon E. MokckLIN, Ziirich

Einleitung

§ 1. In der vorliegenden Arbeit werden asymptotische Entwicklungen
fiir die Laguerreschen Polynome

dz® Fosell v »!

L, (x) = e . & (2" e) =n ! S(—1y (n) o (1)

aufgestellt. Wir beschrinken uns auf die Betrachtung reeller Werte von z,
behandeln aber sowohl den Fall % | x | — oo wie den Fall, wo = | x | be-
schrankt bleibt. Die angewandte Methode ist die Pamethode, die in einer
dghnlichen Untersuchung von M. Plancherel und W. Rotach!) zur Her-
leitung asymptotischer Entwicklungen der Hermiteschen Polynome
gedient hat.

Aus (1) erhédlt man mit Hilfe der Cauchyschen Integralformel folgende
Integraldarstellung von L, (x):

L,(z) 1 yre-w-2 ] s _az)”dz 1
n!  2xi ) (y— )"+1dy ﬁfe <1+z z  2mi () » (2)

wo zur Abkiirzung

F ) =e (1 + —Z—)" (3)

gesetzt ist. In der z-Ebene ist das Integral im positiven Sinn iiber eine
einfach geschlossene Kurve zu erstrecken, die den Punkt z = 0 im Innern
enthalt.

Die Funktion F’ (z) besitzt auBler 2z = — « die beiden Nullstellen

x x?

namlich die Wurzeln der Gleichung 22 + 2z + nz = 0.

DS

1) M. Plancherel et W. Rotach, Sur les valeurs asymptotiques des polynomes

d’Hermite. Comment math. helv. 1, 1929, p. 227—254. In Formel (124) dieser Arbeit
: 2v

t At ?
is 3 statt 2— zu lesen.
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Ist z £ 0, 4 7, so sind diese Wurzeln voneinander verschieden. Im Fall
0 < x < 4 n bezeichne z, diejenige mit positivem Imaginérteil, 2, sei die
konjugierte. In den Fallen # > 4n und < 0 werde von den beiden
reellen Wurzeln diejenige mit dem kleinern absoluten Betrag mit z, be-
zeichnet. Betrachten wir in der z-Ebene die Umgebung eines der Punkte
(4), etwa z,. Sie wird durch die Kurve | F (2) | = | F (z,) |, fiir welche z,
ein Doppelpunkt ist, in 4 Sektoren getellt in denen abwechselnd
2)| > | F (2)| und | F (2) | <|F (2) | ist. Die Fliche w = | F () |
besitzt fiir z = 2, einen Paf}. Dasselbe gilt fiir 2 = z,. Je nach dem zu
betrachtenden Fall wahlt man nun den Integrationsweg durch einen oder
beide Piasse in den Sektoren, wo | F (2) | <|F (z) |, | F (2) | < | F (%) |
ist, so daf} im PaB} die Tangente an die Integrationskurve mit der Winkel-
halbierenden des Sektors zusammenfallt. (Richtung des groBten Gefilles
von | F (2) | ). Den wesentlichen Beitrag zum Integral (2) liefern dann die
Umgebungen der Passe, wie im folgenden gezeigt wird.

Ist x = 4 n, so fallen 2z, und z; im Punkt — —;— zusammen, dessen Um-

gebung in 6 Sektoren der beschriebenen Art geteilt wird.

§ 2. Die asymptotischen Entwicklungen

Die Polynome
A
(5)—2% N () ——Eb"”f“ () =Xoué  (5,6,7)

§=0

seien durch folgende Entwicklungen definiert:

efo (0 . 4‘ 20 @ 1 Zo 2‘ '
1+C E‘P}.(ff) c*, wo g(C)—i‘_—l_—C"“?&—gs? (—-— ) 5 (8,8")
[};1 (79")9]77 eghz(s)_—; ixlp (5) ,02., WO kl (0) — 5:_1_ (2 ,‘9) r—1 (9’9')
I A=0 vl V
und A, (9) = b —4 1 (29)"—3; 9'")
2 T 1'_'19 vf;l ‘V ?
exp [fi—}-C”“l]=§w (&) T*. (10)
v=2 ¥V A O

Die folgenden 5 Fille sind zu unterscheiden:
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L. 0 <x <4n; na — co, 1 — oo.

Definiert man den Winkel a durch

S 1]/;<0< <n>
cosa=—|/— ],
oV * =7

so ergibt sich

A1
k-1 A
L, (x)  (—1)" e cos®a ~ , 1+ (—1)* F(———~2 + ﬂ)
n! % )nsin 2a : , o 2 A 2
A=0 ‘u=0 (sin @)2 7" (2n cos a)2

X cos { 7 (20 — sin 2a) — (4 + 1)%+a—(%——a> (A4 p) + ay,}
\

+ O{ (sin @ V m sin 2a)-*} |, (11)

wo 73, und ay, durch a,, = r;, " * bestimmt sind. Die Koeffizienten A

2 :
sind von 2= — 2 cos a ¢”** abhiingig.
n
Thre ersten Werte sind:

Goo = 1;

4
Ago = 1,05 = (— 2 4+ ~g—cos2 acos 2a + 2 cos® a cos 3a)
[ 4 . .
—z<§~cos2as1n2a+Zcos3asm3a>,
/1 4 2a 4 cost .
Agp = | — — — c0s? a cos — cost a cos 4a
22 \2 3 a a 9 a

8
+ 1 <—é— cos2 a sin 2a " cos? a sin 4a>.

Die Koeffizienten a;, mit ungeradem A braucht man nicht zu berechnen,
da die entsprechenden Glieder in (11) verschwinden?2).

II. ¢ > 4n. Definiert man f§ durch

chﬂ=—;—l/—3—— (0 < < o),

) Fiir k= 3 hat W. Rotach, eine asymptotische Formel fiur L, () angegeben: Reihen-
entwicklungen einer willkiirlichen Funktion nach Hermiteschen und
Laguerreschen Polynomen. Diss. E.T. H., Zirich 1925, S. 26.
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so ergibt sich

k=1 A
L,(x) (—1)"(ch2B + sh2p)" enchb(chi—shf) I+ (=1)*
n! 27 Ynsh2B(chB—shp) [Z za"” 2

A=0 p=0
*
(—D° @ii+w>
X —+0{n"2 thﬂ‘i} (12)
(shp)® " (2nchp)® (chB—shp)

Die Koeffizienten a,. sind von _:L_o L%J =—2ch B(ch p—sh ) ab-
hangig. Ihre ersten Werte sind:
Ggo = 13
Ay = 1,09y = — 2 4 —‘-;—-ck2 p (ch g —sh B)* + 2 ch3 B (ch § — sh B)3,
1 4 2
Ayy = —2—[ 1 — ch? B (ch B — sh 5)2] .

III. ¢ < 0; nn|ac| - o0, — 00,

Die Einfiihrung der Hilfsgroe y durch

4n
sh? (2 y) =—— (0 <y < 00)
ergibt:
L, (x) ech 7 (cthy)?™ ch?y [ 1+ (——-l)" ( )
r 2 ch 2 :E::E:
n 7 |2nch2y el e
A
= =+ u 2(A+u) E
—1) 2 22 h - et
DD (h7) +0ln " Thp) | | . 13
nz(ch2y)zt¥
Die ersten Koeffizienten a,, sind:
Bzl 1
n n ch?y
Ago = 1;
——1a oy L (L, 1 L(, 1 )2
=1, — — ], Qg9 = —— - .
20 2l chiy\3 ' 4achry) B 2 ( 3chty
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IV. x ~ 4 n. Fihren wir die Hilfsgrole

=23 p3)

ein. Es lassen sich 2 positive Konstanten d; und d, finden, so daB fiir

2

[t <d, z® gilt:

2
- Z A41
p—2 kS 33+HI'<Z—)i-§j;—.+H)
Ap ()= (—1)?3 ? 7 (14')
Am0 pu=0 z\3
()
@ . 2(p+21+1 O &
. X bmsm< 3 az)—}—O (:c 3).
Die ersten Koeffizienten b‘;ji sind :
b(p) = 1:
(I’) + 1 b(P) _ 1
n=
, 3411 16 1
o = PR 1 o —— (o ) W =

Die in (14) auftretende Reihe ist eine ganze Funktion von ¢. Vernach-
lissigt man in (14) die Glieder von einem gewissen p an, so laft sich der
Fehler abschitzen?).

V. n | a¢| beschrinkt, n — oo.

Bezeichnet man die Besselsche Funktion ». Ordnung mit ./, , so ergibt sich

L 3w e _
(x) Zz(""l)“cm 2Mx 2 Jau (2)n2)+ 0 (n7F).  (15)

A=0 umo

3) Vergleiche M. Plancherel und 'W. Rotach a. a. O. § 16.
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Fiir k = 1, 2, 3 erhalten wir insbesondere:

L, (%)

n!

— 5 @y +0()

_ 1
— T, (2 i) — SayeYaa) +0 (7—5)
= J, @ YrE) — 2, 2 YmE) .~_;.n— ¥ o T 2)nE)
+ 2, @fnz) + o(#).

Ist #» beschrankt und | | — oo, so gilt nach (1)

Ln(x)z(———l)":v"[l—<n\) — 12 !( ) ;12—+
FE et (" asro(5) | e=m. oo

Die Anwendung der Formeln (11) — (15) setzt voraus, daB n grof} ist.
In Formel (11) zeigt dies der Ausdruck

z\3 11/x 3
)2’n

1
sin a}/n sin 2a = (nx)* (1— in t=— |/ —14,

Ist n groB, nicht aber sin a Jn sin 20, so ist entweder nx beschrinkt oder

x
L;liegt in der Nahe von 1. Im ersten Fall ist die Formel (15), im zweiten

Fall die Formel (14) zu verwenden.

Die Formel (12) ist zu benutzen, wenn der Ausdruck

0 (thB)T =n (1—--—-) 1/..__| (<

groB ist. Ist n groB (und damit auch z), nicht aber » 2 (th B)2, so hegt in
in der Nihe von 1, und man gebraucht die Formel (14).
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Die Formel (13) ist brauchbar, wenn der Ausdruck
n 2

Py 1 /1 4
n n na

so ist m | | beschrankt, und man

. . n
grof} ist. Ist n groB, nicht atberck2 >

verwendet die Formel (15).

I. Kapitel.

Der Fall 0 <X < 4m; nx— oo, N oo,

§ 3. Wir wihlen den Integrationsweg symmetrisch zur reellen Axe der
z-Ebene durch die beiden Punkte z, und z,. In der oberen Halbebene setzt
er sich aus 3 Kreisbogenstiicken C,, C, und C; zusammen (Fig. 1), deren
genaue Festlegung spater erfolgen wird. Da die Beitrige der symmetri-
schen Kurventeile in der oberen und unteren Halbebene vom Integral (2)
konjugiert ausfallen, kann man sich auf den ersten Teil beschrianken.
Der Beitrag der Umgebung von z, soll zunichst bestimmt werden.

8§ 4. Umgebung des Passes 2.

Die Substitution 1 — 1+¢ ergibt
2 2o
F (2) 219 < %o >
= lgf1—=
F (2) ewp[HCJrng Ik

n ]/n 1
]zol-—-:]/nzv, l—z_Jz 'x_>—2—s
1

a fortiori fir | { | = 5 erhilt man die Entwicklung

F 2,08 222 < 1/2z, . \"2
Flz,) “‘“’p[’“”"“ T e Z’;r(zf‘?) ]

v=3
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1+ (Tl sV E X —l/1— £
woa=1+4 2n——<1 4n)+ d (1 4n) , la| = l/l I’ la] < 1.
Man findet jetzt

efg ()

st (17)

F)-LeFge—nt.
wo & = 2z, {2 und g () durch (8’) gegeben ist.

, so ist u reell fiir die Richtung des grofiten

u
Setzt man ¢ =VM—
az,

Gefilles im Pafl z;,, dem der Punkt u = O entspricht. In der u-Ebene
erstrecken wir das Integral von

Uy DIS U5, WO — Uy = Uy = O) * WC;ZQ, 0<e <l

Den diesem Wegstiick entsprechenden Kreisbogen der z-Ebene be-
zeichnen wir mit €, seine Endpunkte mit 2, und 2z3. Fithren wir in (17)
die Entwicklung (8) ein, so resultiert fiir den Beitrag von C:

2;ifF(z)€lz_z=_2m Vazo [?fe—u <]/a,z0> dutR ]

o

wenn zur Abkiirzung

JeSu e e
ug A=k

gesetzt ist. Erstreckt man in der endlichen Summe die Integration von
— oo bis -+ oo, 50 begeht man einen Fehler E; und man erhilt:

k—1 y)
B dz_ T (29) E:Eﬁ —(3-+;») _A1+4 (=14

=0 wu=0

> F(l—}«l

+ )+R;+R;:] .9

Die Koeffizienten a,, sind durch (5) und (8) bestimmt.
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§ 5. Abschidtzung von Rj und R}

Die Funktion g (¢) (8’) besitzt auf Grund von 2

n

< 2 die Majorante

l_ (2¢)»—2, also a fortiori die Majorante
3V

S:—‘—?v@—"--i- 2(2‘3’” —3lg(1—2), (IC!<-;—>-
v=1 v=1

Die Funktion (8) 148t daher die Majorante

(1—2¢)— A+31Eh= 1_|_<1 3 fl)(24‘)-{—( 315'—) ( l51)(24')2

zu. Daraus erhilt man die Ungleichung
’ E @ (&) &
A=k

Beachtet man, dafl im Integrationsintervall », < u < %z 1 — 2

<26 (148 &N (1 —2]|C])—a+3ED|Z|*,

u
= 1 — 0, so erhalt man fir R, die Abschétzu;g Jaz,
2 \r 1 1 ufy
’ . 7 LA A
IREI"S"(W&ZI) 1_@.[ [e1—o)7] (1+3|a) |ul* du.
us J

Hieraus findet man, falls ® hinreichend klein gewihlt wird

Ry = 0(layaz,|™). (20)
Das in (19) stehende Fehlerglied R, kann unter der Voraussetzung
| @ Jazy| — co gegeniiber R; vernachlassigt werden?)

4) Vergleiche M. Plancherel und W. Rotach a. a.O., S. 238
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§ 6. Beitrag des iibrigen Integrationsweges.

$-ELéene

2-Ebene

........ R R

e

Fig.1

Die den Punkten u, und %, der u-Ebene (§ 4) entsprechenden Punkte
der {-Ebene seien {, und {, (Fig. 2). Durch £, legen wir einen Kreisbogen
K,, dessen Zentrum (, die Abszisse — —%— hat und auf der Geraden liegt,

welche der reellen Axe der z-Ebene entspricht. Das Bild von K, in der
z-Ebene nennen wir C,. Den Beitrag von C, wollen wir zunéchst ab-
schitzen.

Vorerst ist zu zeigen, daBl der gewahlte Kreis den Punkt — 1 der
{-Ebene einschliefit, d. h. dal » > s, wenn mit r der Radius von K, und
mit s die Strecke (— 1, {,) bezeichnet wird.

Zur Bestimmung von r gehen wir aus von u = { ]/E , woraus
arg uy = arg £y + % (arg a + arg z,). Fithren wir den Winkel a ein durch

arg z, = w — a (a ist also mit dem in § 2 I eingefiihrten Winkel identisch),
so wird ’

tga= V% — 1=clg (arg a), arga =% — a, folglich

n=arg§2+é—<§2f-——-2a>, oderarg{‘2=—ii+a.

Somit ist 72 = 82 + 8| {, | }/2 + | { | und daher r > s.

Fiir ¢ erhalt man

3 Commentarii Mathematici Helvetici 33



1
Abgesehen vom FaktorE;i— ergibt sich fiir den Beitrag von C,:

[r %= fan [ 2 1+ 2 22 = [0 2,
Cy K, X

Das Integral iiber K, schreiben wir in der Form:

di H(sz .
fH —-~+ == 78 1+C wobei
LT NS O [ S I | L@_i__’ific ar_
H(,) 14+-¢ 0 1+ 1+, gic 1+¢
K, K, lzol + &
Auf K, setzen wir nun { = — 1 + se ™ —re "= — g™ —re’™,

wo die Bedeutung von 7 aus Fig. 2 ersichtlich ist.

Entspricht dem Punkt {, der Winkel 7 = 7, so folgt

n .
eza _i__é‘ .
| 20 | _ 36:: :::g — (1)
n . Se
Iz |em+é'2 2
0

Fiihren wir noch die folgenden abkiirzenden Bezeichnungen ein:

21 (%) =m[e‘m<1i5_1+}cz) Ik ? (’)zllJlrﬂ :

so erhalt man

7 %

|f§f§2) 1+;'$¢ exp [ |2 Dy (7) ] Dy (v) dr=r | f (v) d.

a

Die Funktion f () ist eine mit v wachsende Funktion und nimmt den
maximalen Wert fiir die obere Integrationsgrenze = = 7, an. Die Rech-
nung liefert namlich

§—r1r cos (tT—a)

P10 = ST srscos(t—a)
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f' (z) = Pielal®: . s.sin (t—a) [IZO| = ¢§_~1] .

8
2___ g2
Nun ist 2ol 7 —+) > |2y]] &)Y 2> oo und folglich ' (z) 20
8
(= 0 fiir T = a). Weiter erhalt man f (7)) = D, (7,) = = < 2 und
| 1+C5

daher

lfgé——é%l—d_—l%]<2r(ro—a) <27'(73"2a)=4r(%——a>,
K2

Diese Abschatzung geniigt noch, wenn r sehr grof} ist, d. h. wenn

n___
| 2 |

4r<—£—a)<~—4—7;~2, Weilrw‘/—?1 und tga-:l/é')—z—-—l N2l/£ '
2 g a x x x

Da

]/—Z— sehr grof ist; denn

H
H(O)::F(zo)und [H(O) < e — ezl
so ergibt sich schlieBlich
1 d
’Mfﬂz);z < My | F (%) | e=21as], (21)
02

wo d und M, zwei positive Konstanten sind.

Wiahlt man durch den Punkt {; den Kreisbogen K4 mit demselben
Mittelpunkt ¢, wie fiir K,, so findet man fiir den Beitrag iiber den ent-
sprechenden Weg C; der z-Ebene eine analoge Abschitzung wie iiber C,,

vorausgesetzt daBV%beschrﬁJnkt ist. Ist dies nicht der Fall, so ersetzen

wir K3 durch den Kreisbogen K;, dessen Zentrum {; auf der Mittel-
senkrechten zur Verbindungsstrecke der beiden Punkte — 1 und (, liegt.
(Fig. 3). Sein Bild in der z-Ebene nennen wir C.
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Fz’g.d

Das Integral iiber K; schreiben wir in der gleichen Form wie dasjenige
iber K, und setzen

{=—1+4r*(e*—¢e™), wo mit 7* der Radius von K; bezeichnet ist.
Dann gilt auf K;
. 1 1
R | ¢io ( — ) |=0
[e 1+ 1+, ]
n
A St
4 nimmt mit wachsendem v vom Wert 1 an ab.
Ll
| Teol ol

Somit wird fiir eine geeignete positive Konstante M,

H@) de
UHcs I+¢ l < Myr*.

n 1
Falls V% — oo bleibt 7* kleiner als | Zn | =5 (m und ¢’ sind po-
: 3
sitive Konstanten), und es ergibt sich fiir den Beitrag von C;

i j F (22)

3

§ 7. Zusammenfassung

Die Abschiatzungen (20), (21) und (22) zeigen, dal unter der Voraus-
setzung | @ Jaz, | - oo die Umgebung des Passes z, den wesentlichen in
(19) enthaltenen Beitrag liefert.
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Die Einfithrung des wiederholt gebrauchten Winkels a ergibt die
Ausdriicke
o = — 2n cos a e‘i“, <1 + _:_:_) — (_l)n e2€na ,
0

14

" . (3
a=sina e (z-9) , Yaz, =}n sin 2 ae (- .

Fiigt man zu (19) den vom PaB 2; herrithrenden konjugierten Beitrag, so
erhalt man schlieflich die Formel (11) der Einleitung.

II. Kapitel.
Der Fall >4 n,

§ 8. Wir wahlen den Integrationsweg symmetrisch zur reellen Axe
der z-Ebene durch den einen Paf}

x2
z(,:———}- -———nx

Er setzt sich aus 2 Kreisbogenstiicken C, und C zusammen (Fig. 4),
die wir spater genauer festlegen werden. Mit einigen Abweichungen sind
die Ausfithrungen des vorhergehenden Kapitels iibertragbar.

§ 9. Umgebung des Passes.

Beachtet man die Beziehungen

| 2o | = —2 ,m<|2Z] <2n,
H_Vl_._

O<a-—l+— —E

8o ergibt sich fiir den Beitrag der Umgebung von z,

1 dz___ F(zo) 2 —
2”&‘1?(2)? 2 Yalz| ZZ'L i & T

X

. 2+@+M+M . (23)
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Hier sind die Koeffizienten a,, wieder durch (5) und (8) bestimmt; die
Bedeutung von C,, R, und R’ ist analog wie im § 4.

Da auch in diesem Fall % < 2, so gilt die Abschitzung von R, im

§ 5 hier unverandert; R, kann unter der Voraussetzung a Ja | z,[— oo
gegeniiber R, vernachlissigt werden.

§ 10. Beitrag des librigen Integrationsweges

2-Ebene $-Edene

) S

Fiy 4 f'z:yj'

Durch die Endpunkte {, und {; des geradlinigen Wegstiickes der

¢-Ebene legen wir einen Kreisbogen K mit dem Zentrum ¢, = ——l;n—l= —8.
0

Der entsprechende Kreisbogen der z-Ebene sei C. Ist r der Radius von
K, so wird

r+s8=10s*+|6IE+ s> 28> 1, weil s>—;-, d. h. K umschlieBt

den Punkt — 1 der {-Ebene, C den Nullpunkt der z-Ebene.
Die Abschitzung des Beitrages iiber C ist derjenigen iiber C, im Fall
x < 4n ganz analog; auf K ist dabei zu setzen { = — s —re-*, wo die

Bedeutung von 7 aus Fig. 5 zu ersehen ist. Da s = < 1, soist der

[ 2o
Radius » von K beschrankt. Es existieren also auch hier 2 positive
Konstanten M und 6 derart, daf3

< M| F ()] e 0ol (24)

1 dz
lmf F @)=
()
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§ 11. Die Einfithrung der Hilfsgrofe g durch
1]/«
Chﬁz‘g“l/‘n" (0 < B < o0)

ergibt die Ausdriicke

20 = — 2 ch B (ch f— sh B), l+;—=——(ck2ﬁ+sh2ﬂ),
a = sh B (ch B — sh B). "

Setzt man sie in (23) ein, so resultiert die Formel (12) der Einleitung.

ITII. Kapitel.

Der Fall x<0: n | x| - oo, 11— oo,

§ 12. Wie im II. Kapitel verlaufe der Integrationsweg nur durch
den einen Pal}

2 v E nx
0 2 4 )

Die Gestalt des Weges ist aus Fig. 4 ersichtlich.

Die Beziehungen

| 2g| = — 24 = =
1-|—V1___§,_'":
x

zeigen, dal man fiir die Umgebung des Passes 2z, den gleichen Ausdruck
erhilt wie im Fall x > 4 n (§ 9).

1 20
—_— =14 — 1
<n-—-—<a +2n<

§ 13. Abschitzung von R .

Auf Grund von —l—z?:—l < 1lfolgt — 21g (1 — 2 {) als Majorante von g ({)

( | ¢ < —;—), und (1 — 2 £)~@+21¢D alg solche der Funktion (8). Die

weitere Abschiatzung verlauft analog wie frither und man findet

k
Ri=0( 2| %) (25)
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§ 14. Beitrag des {lbrigen Integrationsweges

Durch die Punkte ¢, und {,; der Fig. 5 legen wir einen Kreisbogen mit
dem Zentrum {, = — 1. Das Stiick in der oberen Halbebene sei K* und
sein Bild in der z-Ebene C*. Dann setzen wir wieder

n

LY

dz H (¢,) 1 1 | 2| d¢
[F@T=—m0 G E- [ |k (=g | 2— | e
c* &+ |z0|+ o
Auf K*ist { = — 1 —7re-*", {3 = — 1 — re~*" und folglich

1 1

" 2
2 e t (n__——l) (cos T — cos T,)
[ 2] 1 | 2] gl,weﬂi>1§
_”’__H; ! i-l—Cz : =l
{lzol 2{ |24l
|14+ =r
Somit wird

& 1P ()] e inl, (26)

dz
[27;sz

wo J* eine positive Konstante ist.

Fiir den in der unteren Halbebene gelegenen Kurventeil gilt dieselbe
Abschéatzung.

§ 15. Die Einfithrung der HilfsgroBe y durch

4
h?(29) =— =" (0 <y < oo)
liefert die Ausdriicke
___m L __ ch2y
2y = iy’ 1+20 = cth’y, a = Sohty °

In Verbindung mit (23) ergeben sie die Formel (13) der Einleitung.
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IV. Kapitel.

Der Fall x ~ 4 n,

§ 16. Fiir x = 4 n gehen vom Punkt -—% 3 Sektoren mit den Zentri-

winkeln -731 aus, in welchen | F (z) | < | F ( ———;—) | . Ihre Winkelhalbie-
\

renden haben die Richtungswinkel —71, — —gund . In der Umgebung

des Passes setze sich der Integrationsweg aus 2 zur reellen Axe sym-
metrischen Kreisbogenstiicken ¢’ und ¢’ zusammen, deren Tangenten
7
3
(" werden durch einen Kreisbogen miteinander verbunden. Die ge-
nauere Festlegung folgt spater.

Ist x ~ 4 n, so sind die Pésse z, und 2z, benachbart, und wir wihlen in

im Paf} die Argumente —und — —g—besitzen. Die Endpunkte von C’ und

der Umgebung dieser Punkte durch den Punkt — —226— denselben aus C’

und ¢’ bestehenden Integrationsweg, der also nicht durch die Pésse
von | F (z) | geht.

§ 17. Umgebung der Pédsse

Die Substitutionen z = —3 (1":_ ik {=—w <——g~)

ergeben, wenn zur Abkiirzung

1 2 1
(3 == )] 2
2 2 x 2 4n,

gesetzt wird:

x
j [y [—
1 dz 1 < 2) we® | e(*+1), 20\] do (o7
274, F(z) 2 2mi 0 tfexp[ ) T 2 .,g<l——— ?)] ® 27)
¢ oo Ar A 1-—-@— 1——-5

A’ und A" bedeuten 2 vom Nullpunkt der w-Ebene ausgehende Strecken
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mit den Argumenten ———g?:—t und 2—373 . Thre Lénge sei 6 - %, 0<0O <1,
ihre Endpunkte seien o’ und w’’'. Mit C’ und C” werden die Bilder von
A’ und A" in der z2-Ebene bezeichnet, ihre Endpunkte mit 2" und 2”.

Setzt man zur Abkiirzung fiir das Integral der rechten Seite von (27)
211G (t, ), so wird

l— %

1 dz < 2>

2m;f1r(z)—z—: o G0 (28)
oron

G (t, o) ist eine ganze Funktion von ¢ und 148t sich in eine fiir jeden Wert
von ¢ konvergente Reihe entwickeln

(e )

A
G(t,g)———z 2P, (29)
p=0
WO
__.___E_QP 3[ E 1 (___2_(_0_) [ 2w ]” dw
A,= 2(2> fexp 0 1~_g—|—2lg 1 o Ig(1 o) 11— (30)
A, A’/ Q p

§ 18. Asymptotische Formel fiir 4 ,.

Dalings A" und 4" |w | =6 - —%— < —S— , 8o resultiert

. PR
A, =__;_(_1)pf[—}-b—_ll(£—)—§e§ka Nore 3 do,
Ar An

wo 9 =-‘;’-, £ = 3 und h, (), hy (¥) die Funktionen (9’) und (9”') be-
deuten. Fiihrt man die Entwicklung (9) ein, so geht A iiber in

; o k-1 .
WO
. i O N o \*
'Rk:: ———é—-(——l)”fw”e 3 Zxkp(w3)<—é—) d(!) . (31)
* A AN A=k

42



2ng PE)
Auf A’ setzen wir w =7ne 3 und auf A" w=17n-¢3 .

Dann folgt
£ Tt
274 (p11) 7 e T\ .
A, =3|(—1pe 3 fnpe 3 E %2 (%) (’1_%_> dn|+R,.
0 A=0

Ersetzt man die obere Grenze @ - -—g— des Integrals durch oo, so begeht man

einen Fehler R;. Schreibt man fir ¥,, die Entwicklung (8), so fiihrt
dies auf die Berechnung von Integralen der Form
p—2 A
3 tgte A+1
3 73 F<ip -+ ; + +:“>

P i
fe Syp+3utrdy | die den Wert 3
0

haben. Schliellich ergibt sich

pAAtl )Sin (2<p+3’1+”n>

A, = (—1)" 3“22 I’(— 3 I
(32)

A=0 um0

+ R, + R,.

§ 19. Abschatzung von R; und R}.

Die Funktion (9) hat die Majorante

(1—29)— +p+518h) — 1 +(1 -+ Z'j‘_f_\_f_l) (29)

+(1 + p+5'5‘) ( +ﬁ;—@>(2ﬂ)2+

Daraus ergibt sich

X Loy (E) | < 28 (1+-p 45 |E|)E | (1— 2 8])- W+p+5 16D,
A=k
. . . e ?_12 -
Da im Integrationsintervall 0 <7 < @ 5 1— ; = 1 —6,
so folgt
6.0
2 7_3 __5178
P14+ p+ 59 ) d.

B == ) gy

0
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Fiir hinreichend kleines & erhalten wir
k

Ry, =0(¢*) =0 (z 7). (33)

R, kann fiir geniigend groBes g gegeniiber R} vernachlissigt werden.

§ 20. Beitrag des ilbrigen Integrationsweges.

Durch die den Punkten o’ und «” (§ 17) entsprechenden Punkte ¢’

und ¢’ der {-Ebene legen wir einen Kreisbogen mit dem Mittelpunkt — —% y

Es geniigt dabei, den in der oberen Halbebene liegenden Teil K* zu
betrachten. Sein Bild in der z-Ebene nennen wir C*.

Wir setzen
f () 1 H(O)H(C') H(C) 24
27 2m o H(O) H () 14¢°
\ g =
wo H ({) = exp [1164_9(92“);9(__1_._2;)] 0 =2.°
Nun ist
O\ &
1H(Z;’)l___ o] L (O) (‘2‘)6
=i |=| emp @l —— 5] ———x
| H(0) 3<2> 14 8.5

1l e ST EY Fe Lo 59 ﬁ;—‘__tjf)
2<1+92)@ ; v N T 2 ° 3

Dieser Ausdruck zeigt, dafl man 2 positive Konstanten d’ und d’’ finden
kann, so daB fir | ¢ | < d’ p? und geniigend kleines @
H (')

HA\s ) —d" g8
H(O) <e .

Die Abschiatzung des Integrals iiber K* geschieht gleich wie in den beiden
Fillen « = 4 n. Es gibt eine positive Konstante N, so da8

l H() d¢
JHQC) 142

< N.
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Fiir den Beitrag von C* ergibt sich also

Fl—=~
2:w ()_:____(__5_2_).

0.

V. Kapitel.

Der Fall 72| 2 | beschrankt, 7— o,

§ 21. Wir setzen zunichst x > 0 voraus. Als Integrationsweg wahlen
wir den Kreis C durch die Pisse z, und z,, dessen Mittelpunkt mit dem
Nullpunkt der z-Ebene zusammenfillt. Der Radius von C ist also gleich

Yo
§ 22. |[ntegration liber C.
Die Substitution z = — » ]/ﬁx“ fithrt auf:

Ln('x) 2;fexp[ an +nlg(l-———~V )]

wo das Integral im positiven Sinn iiber den Einheitskreis K der v-Ebene
zu erstrecken ist.

lg (1 ——%— V )IaBt sich in eine Reihe entwickeln; denn

|'v|--1>V——, weil V—-——>O

Man findet
L (x) 1 — 1 N Vev—11dw
> -_—_2nz.fexp [an <v—;—>]exp[§§: " ]’}}' , (35)
K v=32
WO E:—V—n;—zc undC:-{;}l—V% .

Fithrt man in (35) die Entwicklung (10) ein, so resultiert

=P :‘m;f cwp | (v—5) [ (~L2) (G £ ) 5+ Butao
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wobei zur Abkiirzung

o0

R, :Eg% Kexp[]/ﬁ(’l)————;i—) ] Z’/’l (“‘@) (%—V%)A —('Zv—v

gesetzt ist. Ersetzt man in (36) y, durch die Entwicklung (7), so erhilt
man

k—1 A
=1 _hcw atu _
L, (x)__:z Z(___ 1)“ Cru T 2 g 2 J1+M (2an) + Ry , (37)

n !
A=0 u=0

wo mit J, die Besselsche Funktion ». Ordnung bezeichnet ist.

§ 23. Abschéatzung von E;.
Aus der Ungleichung

=@+ ENF QA=) 18 folgt

Sy (6) O
A=k

e i e

wenn man beachtet, daB auf K |v| = 1und

SR[]/%ZZ (v -———i—) ] = 0 ist.

B, . :
Da nach Voraussetzung @ < —L ist, wird also
n

7\ —1-yiz
(1 — V——) < B, und
n

| By | < Bgn*, (38)

wo B,, B,, B, geeignete positive Konstanten sind.

§ 24, Ist z < 0, so wahlt man als Integrationsweg den Kreis mit
dem Nullpunkt als Mittelpunkt und dem Radius |/n [z] (2, ~— }/n|z]).
Die Substitution z = — iv|/n[z| zeigt dann, daB (37) und (38) auch
in diesem Fall unverandert gelten.

" (Eingegangen den 22. Mai 1934.)
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