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Ueber die Unikohdrenz n-dimensionaler
Polyeder

Von M. RUEFrF, Ziirich

Ein Kontinuum K heilt , henkellos‘‘ oder ,,untkohirent‘‘, wenn bei
jeder Darstellung von K als Vereinigung zweier Teilkontinuen

(1) K =K, +K,

der Durchschnitt K, - K, selbst zusammenhéngend ist'); dagegen heif3t
K , multikohdrent’‘, wenn es eine Zerlegung (1) gibt, in der K, und K,
Kontinuen sind, K, - K, aber nicht zusammenhéngend ist. Einfache
Beispiele unikohéarenter Kontinuen sind die Strecke und die Kugelflache,
multikohdrenter Kontinuen die Kreislinie und der Kreisring.

Die naheliegende Frage, ob die Begriffe der kombinatorischen Topologie
zur Charakterisierung dieser wichtigen gestaltlichen Unterscheidung aus-
reichen, ist von K. Borsuk und von E. Qech in zwei voneinander unab-
hingigen Untersuchungen fiir die Klasse der ,,Peanoschen (d. h. ,,im
Kleinen zusammenhéngenden‘‘ oder ,,stetig durchlaufbaren‘‘) Kontinuen
bejaht worden?); der Borsuk-Cechsche Satz liefert die Charakterisierung :
das Peanosche Kontinuum K ist dann und nur dann unikohdirent, wenn
seine erste Bettische Zahl 0 ist. Damit ist zugleich ein rein geometrisches
Kriterium fiir das Verschwinden oder Nicht-Verschwinden der ersten
Bettischen Zahl gewonnen, welches im Hinblick auf die algebraischen
Begriffe und Methoden, die der Definition der Bettischen Zahlen zugrunde
liegen, beachtenswert ist.

Das Ziel der vorliegenden Arbeit ist die Darstellung eines Beweises
des Borsuk-Cechschen Satzes fir die zusammenhingenden n-dimen-
sionalen Polyeder®). Diese Polyeder sind spezielle Peanosche Kontinuen;
es wird also nichts Neues bewiesen; aber die Beschrankung auf Polyeder
laBt, wie ich hoffe, den kombinatorisch-elementargeometrischen Kern
klarer hervortreten, als es in den beiden fritheren Darstellungen moglich

1) L. Vietoris, Proc. Amsterdam 29 (1926), p. 445. — C. Kuratowski, Fund. Math. XIII
(1929), p. 307. — K. Borsuk, Fund. Math. XVII (1931), p. 171.

%) K. Borsuk, Fund. Math. XX (1933), p. 224. — E. éech, ibid. p. 232.

3) Wegen der Bezeichnungen und Begriffe aus der kombinatorischen Topologie verweise
ich auf die Darstellung von P. Alexandroff, Einfachste Grundbegriffe der To-
pologie (Berlin 1932).

14



war, die infolge ihres viel weiteren Giiltigkeitsbereiches erhebliche
mengentheoretische Schwierigkeiten zu iiberwinden haben4).

Der Satz besteht aus zwei Teilen:

Satz A : Hat das (zusammenhdngende) Polyeder P die erste Bettische Zahl
pt (P) = 0, so ist es unikohdrent.

Satz B: Ist p! (P) > 0, so ist P multikohdrent.

- Der Satz A ist ein einfaches Korollar bekannter ,,Additions-Satze‘‘);
nur weil die Beweise dieser allgemeinen Sétze fiir unseren Zweck unnotig
kompliziert sind, stelle ich im § 1 seinen naheliegenden Beweis dar.

Weniger nahe liegt der Beweis des Satzes B. Fiir ihn ziehen die beiden
genannten Autoren dasselbe Hilfsmittel heran: die stetigen Abbildungen
von K auf eine Kreislinte; obwohl diese Abbildungen auf den ersten
Blick weder mit dem Begriff der Unikohédrenz noch mit dem der Betti-
schen Zahl etwas zu tun haben, scheinen sie doch als Bindeglied zwischen
den beiden Begriffen unentbehrlich zu sein. Besonders klar wird ihre
Rolle von Borsuk herausgearbeitet, dessen Darstellung ich mich hier
enger anschlieBe.

Die fiir unseren Zweck ausschlaggebende Eigenschaft von Abbildungen
ist die ,,Wesentlichkeit‘‘: allgemein heilt eine stetige Abbildung f von P
in einem Raum R ,wesentlich’‘, wenn es keine, von dem Parameter ¢
(0 =t = 1) stetig abhéangende, Schar f, von Abbildungen von P in R
gibt, daB f, = f und die Bildmenge f, (P) nur ein echter Teil von R ist®).
Ist speziell R die Kreislinie, so gilt der Satz, dal f dann und nur dann
wesentlich ist, wenn in P ein eindimensionaler Zyklus z! existiert, der
durch f mit einem von 0 verschiedenen Grade auf R abgebildet wird?);
dabei darf man, da jeder eindimensionale Zyklus die Summe einmal
durchlaufener, einfach geschlossener Polygone ist, 2! selbst als ein solches
Polygon voraussetzen. Uberhaupt werden wir im folgenden unter einem
»eindimensionalen Zyklus‘‘ immer ein einmal durchlaufenes einfach ge-
schlossenes Polygon verstehen.

1) Die Anregung zu dieser Arbeit (die aus meiner Diplomarbeit an der Eidgenéssischen
Technischen Hochschule hervorgegangen ist) habe ich von Herrn Prof. H. Hopf erhalten;
ihm verdanke ich auch zahlreiche Verbesserungen und Ratschliage bei ihrer Abfassung und
ihre endgiiltige Redaktion.

5) W. Mayer, Monatshefte f. Math. u. Phys. XXXVI (1929), Uber abstrakte
Topologie, IV. Abschnitt. — L. Vietoris, ibid. XXXVII (1930), p. 160. — Zum ersten
Male treten derartige Satze iibrigens in dem Beweis des Jordan-Brouwerschen Satzes von
J. W. Alexander auf (Trans. Am. Math. Soc. XXIII, 1922).

8) H. Hopf, Moskauer Math. Sammlung 1930, sowie: Math. Ann. 104 (1931), S. 637.

) H. Hopf, Math. Ann., wie unter 8), Satz V.
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Den Satz B zerlegen wir (im Anschluss an Borsuk) in zwei Teile:

Satz B,: Ist p' (P) > 0, 80 kann man P wesentlich auf die Kreislinie R
abbilden.

Satz B,: Kann man P wesentlich auf die Kreislinie R abbilden, so ist P
multikohdrent.

Der Satz B, ist (samt seiner Umkehrung) von H. Hopf bewiesen
worden, und ich habe diesem Beweise nichts hinzuzufiigens).

Das eigentliche Ziel dieser Arbeit bleibt somit der Beweis von B,, zumal
er in der Arbeit von Borsuk indirekt gefiihrt wird, wahrend im folgenden
die Zerlegung von P, die die Multikohérenz in Evidenz setzt, direkt
konstruiert werden soll?). Man kann dem Satz eine rein kombinatorische,
von Stetigkeitsbegriffen freie Form geben. Wenn namlich eine Abbildung
von P auf R existiert, die wesentlich ist, bei welcher also nach einem oben
genannten Satze ein einfach geschlossenes Polygon z ¢ P mit von 0 ver-
schiedenem Grade abgebildet wird, so kann man eine simpliziale Approxi-
mation f dieser Abbildung heranziehen, welche z mit demselben Grade
abbildet; dabei liegt der simplizialen Abbildung f eine Simplizial-
zerlegung von R sowie im allgemeinen eine Verfeinerung der urspriing-
lichen Simplizialzerlegung von P zugrunde. Der Satz B, ist dann in dem
folgenden enthalten:

Satz B,: Das zusammenhingende n-dimensionale Polyeder P sei durch
die simpliziale Abbildung f so auf den einfach geschlossenen Strecken-
komplex R abgebildet, dass das einfach geschlossene Polygon z ¢ P mit
von 0 wverschiedenem Grade abgebildet ist. Dann gibt es eine Zerlegung
P = P;+ P, in Teilpolyeder P,, P,, von denen jedes selbst zusammen-
hingend 1ist, wihrend thr Durchschnitt P, - P, nicht zusammenhingend 1ist.

Dabei sind P, und P, aus Simplexen einer festen vorgegebenen Zer-
legung von P aufgebaut; diese Zerlegung wird auch wahrend des Be-
weises (§ 2) niemals abgeandert; B, ist also in der Tat ein rein kombina-
torischer Satz.

§ 1.

Additionssatz: Jedes der Polyeder P,, P,, P = P, + P, sex zusammen-
hingend, und es sei p' (P) = 0. Dann 18t auch Py = P, - P, zusammen-
hingend.

8) H. Hopf, wie unter %), Satz Va. Ich kann auf den Beweis hier um so leichter ver-
zichten, als er in dem Buch iiber Topologie von Alexandroff und Hopf, das sich in Vorberei-
tung befindet, dargestellt wird. — Man vergleiche auch N. Bruschlinsky, Math. Ann. 109
(1934), 8. 525. — Der Satz ist von Borsuk fir beliebige kompakte metrische Réume P
verallgemeinert worden: Fund. Math. XX (1933), p. 224.

?) Hierbei beriihrt sich mein Beweis enger mit dem letzten Schritt des Beweises von

Cech.
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Beweis: Infolge des Zusammenhanges von P ist Py nicht leer. a und b
seien Eckpunkte von Pj;. Infolge des Zusammenhanges von P, und von P,
gibt es Kantenziige C} ¢ P,, C} ¢ P, mit den Berandungsrelationenl?)

(2) ' =a—b, Cl=b—a.

Dann ist O] 4 C; ein eindimensionaler Zyklus in P, und wegen p! (P)=0
gibt es einen zweidimensionalen Komplex C? ¢ P mit

(3) C* = m (C} + CY),

wobei m eine von 0 verschiedene ganze Zahl ist. Da jedes zweidimensionale
Simplex von C? wenigstens einem der Polyeder P,, P, angehort, existiert
eine Zerlegung

(4:) 02=0%+C§,C%CP1, O§<P2.
Aus (3) und (4) ergibt sich
(5) mCt — (2 = —mCL + C2

Der durch (5) gegebene Komplex C}, gehort, wie die linke Seite von (5)
zeigt, zu P, und, wie die rechte Seite zeigt, zu P,; es ist also C}, ¢ P;.

Bildet man seinen Rand, so folgt aus <0§> ‘= 0 und aus (2)
0'112 =m (a —_ b).

Hieraus ist ersichtlich, daB man ¢ und b durch einen Kantenzug von P,
miteinander verbinden kann. Da dies fiir jedes Paar a, b von Eckpunkten
von Py gilt, ist Py zusammenhingend.

Bewetis des Satzes A (man vergleiche die Einleitung): K,, K, seien
Teilkontinuen des zusammenhingenden Polyeders P, und es sei P =
K, + K,; ferner sei wieder p! (P) = 0; wir haben zu zeigen, da83 K, - K,
zusammenhangend ist.

Wir nehmen mit P eine Folge von Unterteilungen vor, so daf3 die i-te
Unterteilung eine Verfeinerung der (i—1)-ten ist, und daB die Simplex-
durchmesser mit wachsendem i gegen 0 streben; die Polyeder P und

1) Siehe Fussnote 3)

2 Commentarii Mathematicl Helvetici 17



PY) seien aus denjenigen Simplexen der i-ten Unterteilung aufgebaut,
welche Punkte von K, bezw. K, enthalten; dann ist P = P, 4+ P,, und
wegen des Zusammenhanges von K; und von K, sind auch P, und P,
zusammenhéngend. Daher ist nach dem Additionssatz auch P¢) =
P9 . PY zusammenhingend.

Ist x; ein Simplex von P und z; , dasjenige Simplex der (i—1)-ten
Unterteilung von P, dem x; angehort, so enthalt z; ,, ebenso wie sein
Teilsimplex x;, sowohl einen Punkt von K, als auch einen von K,; es ist
also z;,_, ¢ P%Y, Dies bedeutet: P® ¢ P&V, die PP bilden also eine ab-
steigende Folge.

Aus der Definition von P folgt unmittelbar K, + K, ¢ P fiir
jedes ¢. Ist andererseits a ein Punkt von P, der nicht zu K, - K, gehort,
so hat er von einer der beiden Mengen, etwa von K, eine positive Ent-
fernung; da die Simplexdurchmesser mit wachsendem 4 beliebig klein
werden, gehort a fiir hinreichend groBes ¢ nicht zu P9, also nicht zu
PY. Daher ist K, - K, der Durchschnitt aller P?.

Als Durchschnitt der absteigenden Folge der zusammenhingenden
P? ist K, - K, offenbar und bekanntlich selbst zusammenhéingend.

§ 2.

Zum Beweis des Satzes B, kniipfen wir unmittelbar an den Wortlaut
der Einleitung an; wir stellen noch einmal fest: P liegt in einer bestimm-
ten Simplizialzerlegung vor, an der niemals etwas gedndert wird; alle
auftretenden Teilpolyeder von P sind aus Simplexen dieser Zerlegung
aufgebaut.

a und b seien zwei voneinander verschiedene Eckpunkte von R; ihre
Originalmengen 4 = f~1 (a), B = f~1 (b) sind infolge der Simplizialitat
von f Teilpolyeder von P mit der folgenden Eigenschaft: gehoren alle
Eckpunkte eines Simplexes von P zu 4 oder B, so gehort das ganze
Simplex zu A bezw. B.

Jedes (echte oder unechte) Teilpolyeder P’ von P wird durch B in eine
endliche Anzahl (offener) Teilmengen, die Komponenten von P'—B,
zerlegt; den Durchschnitt von A mit einer dieser Komponenten nennen
wir eine ,,Familie von A in P’'*‘. Die Anzahl der Familien ist endlich; jede
Familie ist ein Teilpolyeder von P,

Je zwei Punkte einer Familie 4, von 4 in P’ kann man, nach Definition
der ,,Familie”, durch einen in P’ verlaufenden, zu B fremden Weg, also
auch durch einen ebensolchen Streckenzug, verbinden. Man kann die
Familien aber auch rein kombinatorisch durch die folgende Eigenschaft
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charakterisieren: je zwei Eckpunkte z und 2’ von 4, kann man durch
einen zu B fremden Kantenzug von P’ miteinander verbinden.

In der Tat: S sei ein zu B fremder, in P’ verlaufender Streckenzug von
z nach 2’; bei Durchlaufung von § notiere man in jedem Augenblick das
Simplex hdchster Dimension von P’, in dem man sich befindet; die so
entstehende Simplexreihe sei

x:xl,xz, ....,x,n:x.

In dieser Reihe sind je zwei aufeinanderfolgende Simplexe inzident,
d.h. es ist immer entweder x; Seite von z,_, oder z, ; Seite von z,; daraus
folgt: ist e, irgend ein Eckpunkt von =z, e;;, irgend ein Eckpunkt von
*;,q, 80 bestimmen e; und e; , eine Kante von P’. Nun enthilt jedes z;
einen Punkt, der nicht zu B gehort, ndmlich einen Punkt von S; folglich
konnen, wie wir oben bemerkt haben, nicht alle Ecken von z; zu B
gehoren. Wir verstehen nun fiir jedes ¢ unter e; eine nicht zu B gehorige
Ecke von z,; insbesondere ist ¢, = z, ¢, = «’; dann bilden die Kanten
€ €, €€, ...,¢, e, einen Kantenzug, der die Behauptung erfiillt.

Analog definiert man die ,,Familien von B in P'* als die Durchschnitte
von B mit den Komponenten von P’— 4 ; man kann dann je zwei Eck-
punkte einer solchen Familie durch einen zu A fremden Kantenzug von
P’ verbinden.

Wir betrachten insbesondere die Familien von A und B in 2. Da z ein
einfach geschlossenes Polygon ist, wechseln bei Durchlaufung von 2 die
Familien von 4 mit denen von B ab; ihre Anzahlen sind daher gleich.
Diese Familien seien 4;, B; (1 =1, 2, ... m).

Nun kann es vorkommen, daf3 zwei verschiedene Familien in z, etwa
4,, A,, zur gleichen Familie in P gehoéren. Einen solchen Zustand wollen
wir beseitigen; dies gelingt auf Grund des folgenden Hilfssatzes:

Hilfssatz I: Die Voraussetzung des Satzes B, sei erfiillt; 4, und 4,
seien zwei verschiedene Familien in 2, die zu derselben Familie in P ge-
horen. Dann gibt es einen Zyklus z, ¢ P mit den folgenden beiden Eigen-
schaften: a) er wird durch f mit einem von 0 verschiedenen Grade abge-
bildet; b) die Anzahl der Familien von 4 und B in z, ist kleiner als die
Familienzahl in z.

Beweis: a,, a, seien Eckpunkte von 4, bezw. 4,; da A, und A, der-
selben Familie in P angehoren, konnen wir @, mit a, durch einen ein-
fachen Kantenzug W verbinden, der fremd zu B ist. Wir verstehen unter
einer ,,Briicke* in W einen Teilstreckenzug von W, dessen Anfangs- und
Endpunkt auf z liegen, und der im iibrigen fremd zu z ist. W, sei die erste
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Briicke, die man bei Durchlaufung von W in Richtung @, a, antrifft.
Durch ihren Anfangspunkt p und ihren Endpunkt ¢ wird z in zwei ein-
fache Streckenziige zerlegt:

z2 = 8; + 8,.
Von den beiden Zyklen

_ €
n=8+ Wy, zp=8+W

wird, da z = 2, + 2, ist, wenigstens einer durch f mit von 0 verschiedenem
Grade abgebildet ; es habe etwa 2, diese Eigenschaft, von der wir iibrigens
erst spater Gebrauch machen werden.

Im Augenblick ist fiir uns die folgende Eigenschaft wichtig: Die
Anzahl der Familien von 4 in 2z, ist nicht grofier als die Familienzahl in z;
in der Tat: wenn 9’, ¢ die ersten Punkte von B sind, die man von p
bezw. von ¢ aus auf s, erreicht, so liegt auf dem Streckenzug 9’ ¢’ von z,,
der W, enthalt, hochstens eine Familie 4’; von 4 in z;, aber auf dem
Streckenzug ¢’ ¢ von z, der s, enthalt, mindestens eine Familie von 4
in 2, ndmlich gewill 4,. Wir unterscheiden nun zwei Falle:

1. 2, besitzt weniger Familien als z. In diesem Fall ist der Hilfssatz
bereits bewiesen.

2. z, besitzt ebenso viele Familien wie z. In diesem Fall liegt auf dem
oben genannten, W, enthaltenden Streckenzug ¢’ ¢ von 2, gewill ein
Eckpunkt a’; von 4’;; ferner liegt auf dem anderen, also W, nicht ent-
haltenden, Bogen p’ ¢ von 2, die ganze Familie 4,, also der Punkt a,.

-Nun sei W’ der folgende Weg von a; nach a,: man lduft von a; auf pTa'
in Richtung a, ¢, bis man das erste Mal W trifft — dies geschieht spa-
testens in ¢ —, und dann auf dem Rest von W bis a,. Dieser Strecken-
zug W’ spielt fiir 2, dieselbe Rolle wie W fiir 2. Die Anzahl der Briicken
von W’ ist aber bestimmt kleiner als die Anzahl der Briicken von W, da
ja insbesondere der Streckenzug W, die Eigenschaft einer Briicke ver-
loren hat.

Wir haben also, wenn wir 2z durch 2, ersetzen, entweder — Fall 1 —
die Anzahl der Familien vermindert, oder — Fall 2 — wir sind bei gleich-
bleibender Familienzahl zu einem, B vermeidenden, 4; mit 4, verbin-
denden Kantenzug W’ gekommen, der weniger Briicken enthilt als der
urspriingliche Verbindungsweg W zwischen 4, und A,. Wiederholen wir
das Verfahren mehrere Male, so kann der Fall 2 nur endlich oft eintreten,
da W nur endlich viele Briicken enthélt; es tritt also gewil einmal der
Fall 1 ein.
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Damit ist der Hilfssatz I bewiesen. Durch seine wiederholte Anwendung
gelangt man zu einem Zyklus z mit den folgenden Eigenschaften: 1) z wird
durch f mit von 0 verschiedenem Grade abgebildet; 2) sind 4; und A4,
zwei voneinander verschiedene Familien in z, so gehoren sie auch ‘nicht
zu derselben Familie in P, und das Analoge gilt fiir die Familien von B.

Hilfssatz I11: P sei durch f simplizial auf R abgebildet, und es gebe
einen Zyklus z ¢ P mit den eben genannten Eigenschaften 1) und 2);
dann lassen sich zwei Punkte p und ¢ in P und zwei Teilpolyeder U und V
von P mit den folgenden drei Eigenschaften angeben: a) U und V sind
zueinander fremd; f) p und ¢ werden weder durch U noch durch ¥ von-
einander getrennt; ) p und ¢ werden durch U+ V voneinander getrennt.

Beweis : Das einfach geschlossene Polygon R wird durch die Punkte
a und b in zwei Bogen L; und L, zerlegt. Unter den Bogen, in die z durch
die zu 44 B gehorigen Punkte zerlegt wird, unterscheiden wir zwei
Arten: die ,,unwesentlichen‘‘ Bogen, von denen beide Endpunkte zu 4
oder beide zu B gehoren, und die ,,wesentlichen‘‘ Bogen, von denen je
ein Endpunkt zu 4, der andere zu B gehort. Jeder unwesentliche Bogen
wird, da seine Endpunkte auf a (bezw. b), aber keine seiner Punkte auf b
(bezw. a) abgebildet werden, mit dem Grade 0 auf einen echten Teil von R
abgebildet; jeder wesentliche Bogen wird entweder auf L, oder auf L,
mit dem Grade -+ 1 abgebildet. Aus der Eigenschaft 1) von z folgt daher:
es gibt sowohl wenigstens einen wesentlichen Bogen L',, der auf L,, als
auch wenigstens einen wesentlichen Bogen L',, der auf L, abgebildet
wird. Es mull daher bei der Durchlaufung von z ein solches Paar L',, L',
geben, zwischen denen kein weiterer wesentlicher Bogen liegt; dann liegt
zwischen ihnen auBler etwa vorhandenen unwesentlichen Bogen genau
eine Familie von 4 oder eine Familie von B; wir diirfen annehmen, es
sei die Familie 4,. Ferner sei B, die an L; anschlieBende Familie von B.

Jetzt seien p und ¢ innere Punkte von L; und L,; U und V seien die-
jenigen Familien von 4 und B in P, zu denen 4, bezw. B; gehtren. Wir
behaupten, daB p, ¢, U, V die in dem Hilfssatz genannten Eigenschaften
a, B, y besitzen. a folgt unmittelbar aus U ¢ 4, V ¢ B.

Beweis von f: Infolge der Eigenschaft 2) von z sind 4, und B, die
Durchschnitte von U bezw. V mit z. Daher ist derjenige Bogen p g von z,
welcher 4, nicht enthilt, fremd zu U, derjenige Bogen p g, welcher B,
nicht enthilt, fremd zu V. '

Beweis von y: W sei ein Streckenzug in P, der p mit ¢ verbindet; wir
haben zu zeigen, daB er UV trifft. Da von den Punkten f (p), f (¢) der
eine in L,, der andere in L, liegt, liegt wenigstens einer der Punkte ¢ und b
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auf f (W), folglich wird A+ B von W getroffen; bei der Durchlaufung von
W in Richtung ﬁ sei ¢ der erste Schnittpunkt mit A+ B. Ist s ¢ 4, so
kann man von s auf W zuriick bis p und dann auf L; bis 4, laufen, ohne
B zu treffen; folglich gehort s zu U. Ist s ¢ B, so laufe man ebenfalls auf
W zuriick bis p und dann auf L; bis B;; da man dabei 4 nicht trifft,

gehort s zu V.
Damit ist der Hilfssatz II bewiesen. Der folgende Hilfssatz liefert un-

mittelbar den Beweis des Satzes Bi.

Hilfssatz 111'1): In dem zusammenhéngenden Polyeder P gebe es ein
Punktepaar p, ¢ und zwei Teilpolyeder U, V mit den im Hilfssatz II
genannten Eigenschaften a, f, . Dann gibt es eine Zerlegung P = P,+ P,
in Teilpolyeder P;, P,, so da3 jedes von ihnen zusammenhéingend, ihr
Durchschnitt P, - P, nicht zusammenhéngend ist.

Bewets: U und V gehoren einer festen Simplizialzerlegung von P an,
an der nichts gedndert wird. Unter allen, aus Simplexen dieser Zerlegung
aufgebauten Teilpolyedern von U4V, welche auch noch die Eigenschaft
haben, p von ¢ zu trennen, sei S eines mit moglichst wenig Simplexen.
Gy, Q,, ... G, seien die Komponenten von P — 8, und zwar sei p (G,
q CG,; die abgeschlossene Hiille von G, nennen wir wie iiblich @;; sie ist
ein Polyeder. Wirsetzen P, = @, P, = @, ... G, und werden zeigen,

daB} P, und P, die Behauptung erfiillen.
P, + P, = P ist selbstverstindlich. Ferner ist klar, daB3 P, zusammen-

hingend ist. Zu zeigen bleibt zweierlei: 1) P, ist zusammenhingend,
2) P, - P, ist nicht zusammenhéangend.

Fiir jedes ¢ gilt
(6) G,—G, c8

sowie infolge des Zusammenhanges von P

(7) G, —G,+0;
aus (6) und
ai'gj= 0 (¢ +7)
folgt
(8) G;- G, ¢ 8 (i+7)
11) Man vergleiche C. Kuratowski, Fund. Math. XIIT (1929), p. 309 (11 4).
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Dariiber hinaus ergibt sich aus der Minimaleigenschaft von §
(9) a1 Gy =8§;

denn wire @, - G, ein echter Teil von S, so wire er, da alle auftretenden
Polyeder aus Simplexen derselben festen Zerlegung von P bestehen, ein
echtes Teilpolyeder von S, welches p und ¢ trennte, im Widerspruch zu
der Definition von 8.

Nach (6) und (7) enthilt jedes G, einen Punkt von 8, also nach (9)
einen Punkt von G,; daher folgt aus der Tatsache, daB @, zusammen-
hangend ist, der Zusammenhang von Py =Gy + ... + G,,..

Aus (8) und (9) folgt P, - P, = 8, und wir haben zu zeigen, dafl S
nicht zusammenhéngend ist. Nun folgt aus S ¢ U + V:

(10) S=8-U+8:V;

da U und V zueinander fremd sind, ist (10) eine Zerlegung von 8§ in zwei
fremde Polyeder, und wir haben uns nur noch davon zu iiberzeugen, dafl
keines von ihnen leer ist. Aber wire etwa S+ U = 0, sowdre S =8V,
im Widerspruch zu der Tatsache, dal p von ¢ zwar durch S, aber nicht
durch V, also erst recht nicht durch § - V getrennt wird.

Damit ist der Hilfssatz III bewiesen, und zugleich ist der Beweis des
Satzes B, erbracht. Denn, um den Beweisgang zusammenzufassen, es
ergibt sich aus den Voraussetzungen von B, auf Grund des Hilfssatzes I
zunichst die Existenz eines Zyklus 2, der die beiden Voraussetzungen des
Hilfssatzes II erfiillt; infolgedessen existieren Punkte p, ¢ und Polyeder
U, V, auf die wir den Hilfssatz III anwenden konnen; die Behauptung
dieses Hilfssatzes ist mit der Behauptung des Satzes B, identisch.

(Eingegangen den 5. Mai 1934.)

23



	Über die Unikohärenz n-dimensionaler Polyeder.

