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Ûeber die Unikohârenz n-dimensionaler
Polyeder

Von M. Rueff, Zurich

Ein Kontinuum K heifit ,,henkellos" oder ,,unikohârent", wenn bei
jeder Darstellung von K als Vereinigung zweier Teilkontinuen

(1) K^K^Ki
der Durchschnitt Kx • K2 selbst zusammenhângend ist1) ; dagegen heiBt
K ,,multiJcohârenti(, wenn es eine Zerlegung (1) gibt, in der Kx und K2
Kontinuen sind, Kx • K2 aber nicht zusammenhângend ist. Einfache
Beispiele unikohàrenter Kontinuen sind die Strecke und die Kugelflàche,
multikohârenter Kontinuen die Kreislinie und der Kreisring.

Die naheliegende Frage, ob die Begriffe der kombinatorischen Topologie
zur Charakterisierung dieser wichtigen gestaltlichen Unterscheidung aus-
reiehen, ist von K. Borsuk und von E. (jech in zwei voneinander unab-
hângigen Untersuchungen fur die Klasse der ,,Peanoschen" (d. h. J3im

Kleinen zusammenhàngenden" oder ,,stetig durchlaufbaren") Kontinuen
bejaht worden2) ; der Borsuk-Ôechsche Satz liefert die Charakterisierung :

das Peanosche Kontinuum K ist dann und nur dann unikohàrent, wenn
seine erste Bettische Zahl 0 ist. Damit ist zugleich ein rein geometrisches
Kriterium fur das Verschwinden oder Nicht-Verschwinden der ersten
Bettischen Zahl gewonnen, welches im Hinblick auf die algebraischen
Begriffe und Methoden, die der Définition der Bettischen Zahlen zugrunde
liegen, beachtenswert ist.

Das Ziel der vorliegenden Arbeit ist die Darstellung eines Beweises
des Borsuk-Ôechschen Satzes fur die zusammenhângenden 7i-dimen-
sionalen Polyeder*). Dièse Polyeder sind spezielle Peanosche Kontinuen;
es wird also nichtsNeues bewiesen; aber die Beschrânkung auf Polyeder
lâBt, wie ich hoffe, den kombinatorisch-elementargeometrischen Kern
klarer hervortreten, als es in den beiden friiheren Darstellungen môglich

x) L. Vietoris, Proc. Amsterdam 29 (1926), p. 445. — C. Kuratowski, Fund. Math. XIII
(1929), p. 307. — K. Borsuk, Fund. Math. XVII (1931), p. 171.

2) K. Borsuk, Fund. Math. XX (1933), p. 224. — E. Cech, ibid. p. 232.

3) Wegen der Bezeichnungen und Begriffe aus der kombinatorischen Topologie verweise
ich auf die Darstellung von P. Alexandroff, Einfachste Grundbegriffe der
Topologie (Berlin 1932).
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war, die infolge ihres viel weiteren Gultigkeitsbereiches erhebliche
mengentheoretische Sehwierigkeiten zu uberwinden haben4).

Der Satz besteht aus zwei Teilen :

Satz A : Hat das (zusammenhangende) Polyeder P die erste Bettische Zahl
p1 (P) 0, so ist es unilcoharent.

Satz B: Ist p1 (P) > 0, so ist P multikoharent.

Der Satz A ist ein einfaches Korollar bekannter J5Additions-Satze"5);
nur weil die Beweise dieser allgemeinen Satze fur unseren Zweck unnotig
kompliziert sind, stelle ich im § 1 seinen naheliegenden Beweis dar.

Weniger nahe liegt der Beweis des Satzes B. Fur ihn ziehen die beiden
genannten Autoren dasselbe Hilfsmittel heran: die stetigen Abbildungen
von K auf eine Kreislinie; obwohl dièse Abbildungen auf den ersten
Blick weder mit dem Begrifï der Unikoharenz noch mit dem der Betti-
schen Zahl etwas zu tun haben, scheinen sie doch als Bindeglied zwischen
den beiden Begrifïen unentbehrlich zu sein. Besonders klar wird ihre
Rolle von Borsnk herausgearbeitet, dessen Darstellung ich mieh hier
enger anschlieBe.

Die fur unseren Zweck ausschlaggebende Eigenschaft von Abbildungen
ist die ,,Wesentlichkeit" : allgemein heiBt eine stetige Abbildung / von P
in einem Raum R ^wesenthch", wenn es keine, von dem Parameter t
(0 :±= £ :< 1) stetig abhangende, Schar ft von Abbildungen von P in R
gibt, daB /0 / und die Bildmenge /x (P) nur ein echter Teil von R ist6).
Ist speziell R die Kreislinie, so gilt der Satz, daB / dann und nur dann
wesentlich ist, wenn in P ein eindimensionaler Zyklus z1 existiert, der
durch / mit einem von 0 verschiedenen Grade auf R abgebildet wird7);
dabei darf man, da jeder eindimensionale Zyklus die Summe einmal
durchlaufener, einfach geschlossener Polygone ist, z1 selbst als ein solches

Polygon voraussetzen. TJberhaupt werden wir im folgenden unter einem
,,eindimensionalen Zyklus" immer ein einmal durchlaufenes einfach ge-
schlossenes Polygon verstehen.

4) Die Anregung zu dieser Arbeit (die aus meiner Diplomarbeit an der Eidgenossischen
Technischen Hochschule hervorgegangen ist) habe ich von Herrn Prof. H Hopf erhalten;
îhm verdanke ich auch zahlreiche Verbesserungen und Ratschlage bei îhrer Abfassung und
îhre endgultige Redaktion.

8) W. Mayer, Monatshefte f. Math, u Phys. XXXVI (1929), Ûber abstrakte
Topologie, IV. Abschnitt. — L. Vietoris, îbid. XXXVII (1930), p. 160. — Zum ersten
Maie treten derartige Satze ubrigens in dem Beweis des Jordan-Brouwerschen Satzes von
J. W. Alexander auf (Trans. Am. Math. Soc. XXIII, 1922).

«) H. Hopf, Moskauer Math. Sammlung 1930, sowie. Math. Ann. 104 (1931), S. 637.
7) H. Hopf, Math. Ann., wie unter 6), Satz V.
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Den Satz B zerlegen wir (im Anschluss an Borsuh) in zwei Teile :

Satz Bt : Ist p1 (P) > 0, so kann man P wesentlich auf die Kreislinie R
abbilden.

Satz B2 : Kann man P wesentlich auf die Kreislinie R abbilden, so ist P
multikoharent.

Der Satz Bj ist (samt seiner Umkehrung) von H. Hopf bewiesen
worden, und ich habe diesem Beweise nichts hinzuzuftigen8).

Das eigentliche Ziel dieser Arbeit bleibt somit der Beweis von B2, zumal
er in der Arbeit von Borsuk indirekt gefxihrt wird, wàhrend im folgenden
die Zerlegung von P, die die Multikohârenz in Evidenz setzt, direkt
konstruiert werden soll9). Man kann dem Satz eine rein kombinatorische,
von Stetigkeitsbegriffen freie Form geben. Wenn nâmlich eine Abbildung
von P auf R existiert, die wesentlich ist, bei weleher also nach einem oben

genannten Satze ein einfach geschlossenes Polygon z c P mit von 0 ver-
schiedenem Grade abgebildet wird, so kann man eine simpliziale Approximation

/ dieser Abbildung heranziehen, welche z mit demselben Grade
abbildet; dabei liegt der simplizialen Abbildung / eine Simplizial-
zerlegung von R sowie im allgemeinen eine Verfeinerung der ursprûng-
lichen Simplizialzerlegung von P zugrunde. Der Satz B2 ist dann in dem
folgenden enthalten :

Satz jB2'; Das zusammenhàngende n-dimensionale Polyeder P sei durch
die simpliziale Abbildung f so auf den einfach geschlossenen Strecken-
homplex R abgebildet, dass das einfach geschlossene Polygon z c P mit
von 0 verschiedenem Grade abgebildet ist. Dann gibt es eine Zerlegung
P pt -f- P2 %n Teilpolyeder Pv P2, von denen jedes selbst zusammen-
hangend ist, wàhrend ihr Durchschnitt Px • P2 nicht zusammenhângend ist.

Dabei sind P1 und P2 aus Simplexen einer festen vorgegebenen
Zerlegung von P aufgebaut; dièse Zerlegung wird auch wàhrend des Be-
weises (§2) niemals abgeàndert; Bg ist also in der Tat ein rein kombina-
torischer Satz.

§1.

Additionssatz: Jedes der Polyeder Pl9 P2, P P1 + P2 sei zusammen-
hàngend, und es sei p1 (P) 0. Dann ist auch P3 Pt- P2 zusammenhângend.

8) H. Hopf, wie unter •), Satz Va. Ich kann auf den Beweis hier um so leichter ver-
zichten, als er in dem Buch ûber Topologie von Alexandroff und Hopf, das sich in Vorberei-
tung befindet, dargestellt wird. — Man vergleiche auch N. Bruschlinsky, Math. Ann. 109
(1934), S. 525. — Der Satz ist von Borsuk fur beliebige kompakte metrische Baume P
verallgemeinert worden: Fund. Math. XX (1933), p. 224.

•) Hierbei beriihrt sich mein Beweis enger mit dem letzten Schritt des Beweises von
Cech.
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Beweis: Infolge des Zusammenhanges von P ist P3 nicht leer. a und b

seienEckpunkte von P3. Infolge des Zusammenhanges von Px und von P2
gibt es Kantenzuge C\ c Pl9 C\ c P2 mit den Berandungsrelationen10)

(2) C\ a~b, Cl2 b — a.

Daim ist C\ + C\ ein eindimensionaler Zyklus in P, und wegen p1 (P) 0

gibt es einen zweidimensionalen Komplex C2 c P mit

(3) C2 m (C\ + Cl),

wobei m eine von 0 verschiedene ganze Zahl ist. Da jedes zweidimensionale
Simplex von C2 wenigstens einem der Polyeder Pl5 P2 angehôrt, existiert
eine Zerlegung

(4) C2 C\ + Cl, Of c Plf C? c P2.

Aus (3) und (4) ergibt sich

(5) mC\ —C\=— mC\ + C*.

Der durch (5) gegebene Komplex Cf2 gehôrt, wie die linke Seite von (5)
zeigt, zu P± und, wie die rechte Seite zeigt, zu P2; es ist also C^ c P3.

Bildet man seinen Rand, so folgt aus (Ôfj 0 und aus (2)

Ci2 ~ m {a — b).

Hieraus ist ersichtKch, daB man a und b durch einen Kantenzug von P3
miteinander verbinden kann. Da dies fur jedes Paar a, b von Eckpunkten
von P3 gilt, ist P3 zusammenhângend.

Beweis des Satzes A (man vergleiche die Einleitung) : Kv K2 seien
Teilkontinuen des zusammenhàngenden Polyeders P, und es sei P
Kx + K2; ferner sei wieder p1 (P) 0; wir haben zu zeigen, daB Kx • K2
zusammenhângend ist.

Wir nehmen mit P eine Folge von Unterteilungen vor, so daB die i-te
Unterteilung eine Verfeinerung der (i—l)-ten ist, und daB die Simplex-
durchmesser mit wachsendem i gegen 0 streben ; die Polyeder P(J) und

10) Siehe Fussnote 8)
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P{12) seien aus denjenigen Simplexen der i-ten Unterteilung aufgebaut,
welche Punkte von Kx bezw. K2 enthalten; dann ist P Px + P2> un<ï

wegen des Zusammenhanges von Kx und von K2 sind auch P1 und P2
zusammenhângend. Daher ist nach dem Additionssatz auch P(!ô}

pb). p(t) zusammenhângend.
Ist xt ein Simplex von P{1) und a;^! dasjenige Simplex der (i—l)-ten

Unterteilung von P, dem xt angehôrt, so enthâlt x% l9 ebenso wie sein
Teilsimplex zt, sowohl einen Punkt von Kx als auch einen von K2 ; es ist
also x^x c P{1^\ Dies bedeutet: P(*> c Pi%1\ die P® bildenalso eine ab-
steigende Folge.

Aus der Définition von P^ folgt unmittelbar Kx • K2 c P(|} fiir
jedes i. Ist andererseits a ein Punkt von P, der nicht zu i*^ • K2 gehôrt,
so hat er von einer der beiden Mengen, etwa von Kv eine positive Ent-
fernung; da die Simplexdurchmesser mit wachsendem i beliebig klein
werden, gehôrt a fiir hinreichend groBes i nicht zu P(J), also nicht zu
PC. Daher ist Kx • K2 der Durchschnitt aller P%K

Als Durchschnitt der absteigenden Polge der zusammenhàngenden
P(J) ist jÈl! • K2 offenbar und bekanntlich selbst zusammenhângend.

§2.

Zum Beweis des Satzes B2 kniipfen wir unmittelbar an den Wortlaut
der Einleitung an; wir stellen noch einmal fest: P liegt in einer bestimm-
ten Simplizialzerlegung vor, an der niemals etwas geàndert wird; aile
auftretenden Teilpolyeder von P sind aus Simplexen dieser Zerlegung
aufgebaut.

a und b seien zwei voneinander verschiedene Eckpunkte von R; ihre
Originalmengen A f~x (a), B f~x (b) sind infolge der Simplizialitât
von / Teilpolyeder von P mit der folgenden Eigenschaft: gehôren aile
Eckpunkte eines Simplexes von P zu A oder J3, so gehôrt das ganze
Simplex zu A bezw. J5.

Jedes (echte oder unechte) Teilpolyeder P7 von P wird durch B in eine
endliche Anzahl (ofifener) Teilmengen, die Komponenten von P/—B,
zerlegt; den Durchschnitt von A mit einer dieser Komponenten nennen
wir eine ,,Familie von A in P'". Die Anzahl der Familien ist endlich; jede
Familie ist ein Teilpolyeder von P\

Je zwei Punkte einer Familie Ax von A in P/ kann man, nach Définition
der ,,Familie", durch einen in F verlaufenden, zu B fremden Weg, also
auch durch einen ebensolchen Streckenzug, verbinden. Man kann die
Familien aber auch rein kombinatorisch durch die folgende Eigenschaft

18



charakterisieren : je zwei Eckpunkte x und xf von Ax kann man durch
einen zu B fremden Kantenzug von P' miteinander verbinden.

In der Tat: 8 sei ein zu 2? fremder, in P' verlaufender Streckenzug von
x nach x' ; bei Durchlaufung von 8 notiere man in jedem Augenblick das

Simplex hôchster Dimension von P', in dem man sich befindet; die so
entstehende Simplexreihe sei

X Xx, X2, j Xn X

In dieser Reihe sind je zwei aufeinanderfolgende Simplexe inzident,
d.h. es ist immer entweder x{ Seite von xi+1 oder xi+1 Seite von #t-; daraus
folgt: ist et irgend ein Eckpunkt von xi9 ei+1 irgend ein Eckpunkt von
xi+1, so bestimmen e{ und ei+1 eine Kante von P7. Nun enthâlt jedes x{
einen Punkt, der nicht zu B gehôrt, nâmlich einen Punkt von S; folglich
kônnen, wie wir oben bemerkt haben, nicht aile Ecken von x{ zu B
gehôren. Wir verstehen nun fur jedes i unter c4 eine nicht zu B gehôrige
Ecke von xt ; insbesondere ist ex x, en x' ; dann bilden die Kanten
ex e2, e2es, en__1 en einen Kantenzug, der die Behauptung erfullt.

Analog definiert man die y,Familien von B in P"' als die Durchschnitte
von B mit den Komponenten von Pf—A ; man kann dann je zwei
Eckpunkte einer solchen Familie durch einen zu A fremden Kantenzug von
P' verbinden.

Wir betrachten insbesondere die Familien von A und B in z. Da z ein
einfach geschlossenes Polygon ist, wechseln bei Durchlaufung von z die
Familien von A mit denen von B ab; ihre Anzahlen sind daher gleich.
Dièse Familien seien Ai9 B{ (i 1, 2, m).

Nun kann es vorkommen, daB zwei verschiedene Familien in z, etwa
Al9 A2, zur gleichen Familie in P gehôren. Einen solchen Zustand wollen
wir beseitigen; dies gelingt auf Grund des folgenden Hilfssatzes:

Hilfssatzl: Die Voraussetzung des Satzes B2' sei erfullt; Ax und A2
seien zwei verschiedene Familien in z, die zu derselben Familie in P
gehôren. Dann gibt es einen Zyklus zxc P mit den folgenden beiden Eigen-
schaften : a) er wird durch / mit einem von 0 verschiedenen Grade abge-
bildet; b) die Anzahl der Familien von A und B in zx ist kleiner als die
Familienzahl in z.

Beweis: av a2 seien Eckpunkte von Ax bezw. A2\ da Ax und A2
derselben Familie in P angehôren, kônnen wir ax mit a2 durch einen ein-
fachen Kantenzug W verbinden, der fremd zu B ist. Wir verstehen unter
einer ,,Brucke" in W einen Teilstreckenzug von W9 dessen Anfangs- und
Endpunkt auf z liegen, und der im ubrigen fremd zu z ist. Wx sei die erste
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Brûcke, die man bei Durchlaufung von W in Richtung â^a% antrifft.
Dureh ihren Anfangspunkt p und ihren Endpunkt q wird z in zwei ein-
fache Streekenzûge zerlegt:

Z 8X + S2.

Von den beiden Zyklen

H H + W\, z2 s2 +*WX

wird, da z zx + z2 ^> wenigstens einer durch / mit von 0 versehiedenem
Grade abgebildet ; es habe etwa zx dièse Eigenschaft, von der wir ûbrigens
erst spâter Gebrauch machen werden.

Im Augenblick ist fur uns die folgende Eigensehaft wichtig: Die
Anzahl der Familien von A in zx ist nicht grôBer als die Familienzahl in z;
in der Tat: wenn p', <( die ersten Punkte von B sind, die man von p
bezw. von q aus auf sx erreicht, so liegt auf dem Streckenzug p' c[ von zv
der Wx enthâlt, hôchstens eine Familie A'x von A in zx, aber auf dem
Streckenzug p' q[ von z, der s2 enthâlt, mindestens eine Familie von A
in z, nâmlich gewiB Ax. Wir unterscheiden nun zwei Fàlle :

1. zx besitzt weniger Familien als z. In diesem Fall ist der Hilfssatz
bereits bewiesen.

2. zx besitzt ebenso viele Familien wie z. In diesem Fall liegt auf dem
oben genannten, Wx enthaltenden Streckenzug p' q' von zx gewiB ein
Eckpunkt a'x von A'x; ferner liegt auf dem anderen, also Wx nicht
enthaltenden, Bogen p' c[ von zx die ganze Familie A2, also der Punkt a2.

Nun sei W der folgende Weg von a[ nach a2: man lâuft von a[ auf pr qf

in Kichtung a[ q, bis man das erste Mal W trifft — dies geschieht spâ-
testens in q —, und dann auf dem Rest von W bis a2. Dieser Streckenzug

W' spielt fur zx dieselbe Rolle wie W fur z. Die Anzahl der Bnicken
von W ist aber bestimmt kleiner als die Anzahl der Brûcken von W, da

ja insbesondere der Streckenzug Wx die Eigensehaft einer Brucke ver-
loren hat.

Wir haben also, wenn wir z durch zx ersetzen, entweder — Fall 1 —
die Anzahl der Familien vermindert, oder — Fall 2 — wir sind bei gleich-
bleibender Familienzahl zu einem, B vermeidenden, A[ mit A2 verbin-
denden Kantenzug W' gekommen, der weniger Brûcken enthâlt als der
ursprtingliche Verbindungsweg W zwischen Ax und A2. Wiederholen wir
das Verfahren mehrere Maie, so kann der Fall 2 nur endlich oft eintreten,
da W nur endlich viele Brûcken enthâlt; es tritt also gewiB einmal der
Fall 1 ein.
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Damit ist der Hilfssatz I bewiesen. Durch seine wiederholte Anwendung
gelangt man zu einem Zyklus z mit den folgenden Eigensehaften : 1) z wird
durch / mit von 0 verschiedenem Grade abgebildet; 2) sind At und Aj
zwei voneinander verschiedene Familien in z, so gehôren sie auch nicht
zu derselben Familie in P, und das Analoge gilt fur die Familien von B.

Hilfssatz II : P sei durch / simplizial auf B abgebildet, und es gebe
einen Zyklus z t P mit den eben genannten Eigensehaften 1) und 2);
dann lassen sich zwei Punkte p und g in P und zwei Teilpolyeder U und F
von P mit den folgenden drei Eigensehaften angeben: a) U und F sind
zueinander fremd; /?) p und q werden weder durch U noch durch F
voneinander getrennt; y) p und q werden durch U-\-V voneinander getrennt.

Beweis: Das einfach geschlossene Polygon B wird durch die Punkte
a und b in zwei Bôgen Lx und L2 zerlegt. Unter den Bôgen, in die z durch
die zu A-\-B gehôrigen Punkte zerlegt wird, unterscheiden wir zwei
Arten: die ,,unwesentlichen" Bôgen, von denen beide Endpunkte zu A
oder beide zu B gehôren, und die wesentlichen" Bôgen, von denen je
ein Endpunkt zu A, der andere zu B gehôrt. Jeder unwesentliche Bogen
wird, da seine Endpunkte auf a (bezw. 6), aber keine seiner Punkte auf b

(bezw. a) abgebildet werden, mitdem Grade 0 auf einen echtenTeil von B
abgebildet; jeder wesentliche Bogen wird entweder auf Lx oder auf L2
mit dem Grade + 1 abgebildet. Aus der Eigenschaft 1) von z folgt daher:
es gibt sowohl wenigstens einen wesentlichen Bogen L\, der auf Lv als
auch wenigstens einen wesentlichen Bogen L'2, der auf L2 abgebildet
wird. Es muB daher bei der Durehlaufung von z ein solchesPaar L'v L\
geben, zwischen denen kein weiterer wesentlicher Bogen liegt; dann liegt
zwischen ihnen auBer etwa vorhandenen unwesentlichen Bôgen genau
eine Familie von A oder eine Familie von B; wir durfen annehmen, es
sei die Familie Av Ferner sei B± die an L[ anschlieBende Familie von B.

Jetzt seien p und q innere Punkte von L[ und l!% ; U und F seien die-
jenigen Familien von A und B in P, zu denen Ax bezw. Bx gehôren. Wir
behaupten, daB p, g, Z7, F die in dem Hilfssatz genannten Eigensehaften
a, j8, y besitzen. a folgt unmittelbar aus U c A, V c J5.

Beweis von /?: Infolge der Eigenschaft 2) von z sind Ax und Bx die
Durchschnitte von U bezw. F mit z. Daher ist derjenige Bogen p q von 2,

welcher Ax nicht enthâlt, fremd zu U, derjenige Bogen p q, welcher Bx
nicht enthàlt, fremd zu F.

Beweis von y : W sei ein Streckenzug in P, der p mit q verbindet ; wir
haben zu zeigen, daB er U+ F trifift. Da von den Punkten / (p), f (q) der
eine in Ll9 der andere in L2 liegt, liegt wenigstens einer der Punkte a und 6
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auf / (W), folglich wird A+B von W getroffen; bei der Durchlaufung von
W in Eichtung pq sei s der erste Schnittpunkt mit A+B, Ist s c A, so
kann man von s auf W zuruck bis p und dann auf L[ bis Ax laufen, ohne
B zu trefïen; folglich gehôrt s zu U. Ist se B, so laufe man ebenfalls auf
W zuruck bis p und dann auf L[ bis B±; da man dabei ^4 nicht trifift,
gehôrt s zu F.

Damit ist der Hilfssatz II bewiesen. Der folgende Hilfssatz liefert un-
mittelbar den Beweis des Satzes B'2.

Hilfssatz III11) : In dem zusammenhàngenden Polyeder P gebe es ein
Punktepaar p, q und zwei Teilpolyeder U, V mit den im Hilfssatz II
genannten Eigenschaften a, (i, y. Dann gibt es eine Zerlegung P P1-{-P2
in Teilpolyeder Pl9 P2, so daB jedes von ihnen zusammenhângend, ihr
Durchschnitt P1 • P2 nicht zusammenhângend ist.

Beweis: U und F gehôren einer festen Simplizialzerlegung von P an,
an der nichts geândert wird. Unter allen, aus Simplexen dieser Zerlegung
aufgebauten Teilpolyedern von U+ V, welche auch noch die Eigenschaft
haben, p von q zu trennen, sei S eines mit môglichst wenig Simplexen.
Ol9 O2) Om seien die Komponenten von P — S, und zwar sei ptGv
qtG2; die abgeschlossene Huile von Oi nennen wir wie ublich Gt\ sie ist
ein Polyeder. Wirsetzen Px Ol9 P2 ^2 + • • • @m un(i werden zeigen,
daB Px und P2 die Behauptung erfûllen.

P± + P2 P ist selbstverstàndlich. Ferner ist klar, daB Px zusammenhângend

ist. Zu zeigen bleibt zweierlei: 1) P2 ist zusammenhângend,
2) Px • P2 ist nicht zusammenhângend.

Fur jedes i gilt
(6) G, — G, cS

sowie infolge des Zusammenhanges von P

(7)

aus (6) und

folgt

(8)

ll) Man vergleiohe C. Kuratowski, Fund. Math. XIII (1929), p. 309 (U 4).

22



Dariiber hinaus ergibt sich aus der Minimaleigenschaft von 8

(9) Gx • G2 S;

denn wàre Gx • G2 ein echter Teil von S, so wàre er, da aile auftretenden
Polyeder aus Simplexen derselben festen Zerlegung von P bestehen, ein
echtes Teilpolyeder von 8, welches p und q trennte, im Widerspruch zu
der Définition von 8.

Nach (6) und (7) enthâlt jedes 6?t einen Punkt von S, also nach (9)
einen Punkt von G2 ; daher folgt aus der Tatsache, daB G2 zusammen-
hângend ist, der Zusammenhang von P2 G2 + + Gm.

Aus (8) und (9) folgt P1- P2 8, und wir haben zu zeigen, daB S
nicht zusammenhàngend ist. Nun folgt aus S C U + V-

(10) 8 8- U + 8- F;

da U und F zueinander fremd sind, ist (10) eine Zerlegung von S in zwei
fremde Polyeder, und wir haben uns nur noch davon zu ûberzeugen, daB
keines von ihnen leer ist. Aber wàre etwa S • U 0, so wâre S 8 • F,
im Widerspruch zu der Tatsache, daB p von q zwar durch 8, aber nicht
durch F, also erst recht nicht durch 8 • F getrennt wird.

Damit ist der Hilfssatz III bewiesen, und zugleich ist der Beweis des
Satzes Bg erbracht. Denn, um den Beweisgang zusammenzufassen, es

ergibt sich aus den Voraussetzungen von B'2 auf Grund des Hilfssatzes I
zunàchst die Existenz eines Zyklus z, der die beiden Voraussetzungen des

Hilfssatzes II erfiillt; infolgedessen existieren Punkte p, q und Polyeder
U, F, auf die wir den Hilfssatz III anwenden kônnen; die Behauptung
dièses Hilfssatzes ist mit der Behauptung des Satzes B'2 identisch.

(Eingegangen den 5. Mai 1934.)
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