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Die Funktionentheorie
der Differentialgleichungen Ju^Q und

mit vier reellen Variablen

Von Rtjd. Fiteter, Zurich

Einleitung

Die folgenden Untersuchungen beruhen auf der wohl noch nicht
bekannten Tatsache, daB die Komponenten bestimmter leicht zu bilden-
der Funktionen der Quaternionenvariablen z, wie z. B. diejenigen von
w — Azn, n eine ganze rationale Zahl, einem System von homogenen
linearen Differentialgleichungen 1. Ordnung genugen (Art. 2). w selbst

befriedigt die Gleichung Aw 0. zn z. B. genugt daher der Gleichung
AAzn 0, wobei die Zl-Ableitung fiir jede Komponente von zn jeweils
zu berechnen ist (Art. 3). Es liegt nahe, aile Funktionen von z zu be-

trachten, die jenem System von Differentialgleichungen genugen, um so

mehr, als jede réelle Lôsung u von Au 0 als Realteil einer solchen

Quaternionenfunktion aufgefaBt werden kann (Art. 2). Es zeigt sich,
daB dièse Funktionen, die ich regulàr nenne, das Analogon zum Liouville'-
schen Satze (Art. 3), zu den beiden Cauchy'schen Sàtzen (Art. 2 und 4),
sowie zur Laurent'schen Reihenentwicklung (Art. 6) besitzen, daB man
also eine Funktionentheorie entwickeln kann, die sogar in sich die Théorie
der gewôhnlichen analytischen Funktionen als Spezialfall (in vier
Dimensionen) enthàlt. Zum Beispiel làBt sich die analytische Fort-
setzung fiir sie durchfûhren (Art. 7).

Ich begnuge mich bei der Betrachtung der Singularitâten dieser

Funktionen mit dem Falle, daB dieselben isolierte, insbesondere Pôle
sind (Art. 8). Es muB einer spâtern Untersuchung vorbehalten bleiben,
die mannigfaltigen Singularitâten zu charakterisieren, die hier auftreten
kônnen, ebenso wie auch die geometrische Eigenschaft der regulàren
Funktionen aufzudecken, die der konformen Abbildung in der gewôhnlichen

Funktionentheorie entspricht.
Die seit Hamilton gemachten zahlreichen Anwendungen1) der Quater-

nionen auf Funktionentheorie zielen meines Wissens nach einer ganz
3) Siehe die Literatur bei: A. Macfarlane: Bibliography of Quaternions and

allied Systems of Mathematics. Dublin, 1904, und J. A. Schouten: Grundlagen
der Vector- und Affinoranalysis, Berlin und Leipzig, 1914.
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andern Richtung, wie die vorliegende Untersuchung. Auch mit den bis-
herigen Ansâtzen zur Aufstellung von Differentialgleichungen2) hat das

Folgende nichts zu tun, wenn anch bei Tait Ansàtze von Integralen zu
finden sind; denn letztere beziehen sich nur auf drei Variable.

1. Hilfsformeln.

Es seien i0 1, iv i2, % die Quaternioneneinheiten 4ind

a Z ak %k

(*)

ein Quaternion, a sein konjugiertes. Unter dem absoluten Betrage | a |

•+¦

versteht man die positive Wurzel ]/^a|. Dann gilt die Formel :

k

|a + 6|^|a| + |6| (1)

Beweis : Es ist :

_
3

ab Z akbk + E Ak ik, Ak reell,

daher :

n(a) n(b) ^ (Zak bk)2 oder J (ab + ba) I ak bk ^ | a | | 6 |,
(*) (*)

und:

n(a + b) n(a) + (ab + ba) + n(b) ^ | a |2 + 2 | a \ \ b \ + \ b |2,

^ | a\ + | b |.

Perner gelten die beiden Gleiehungen:

Zikaik — 2 a (2)

Zikaik 2(a + a) (3)
(*)

Es seien im folgenden stets uk, k 0, 1, 2, 3 vier in einem Hyperraume
If réelle, stetige, endliche und zweimal stetig differentierbare Funktionen
der vier reellen Variablen xk, k — 0, 1, 2, 3.

Man setze:
z Zxkik, w Zukik f(z).

2) Siehe z. B. P. G. Tait: Scientific Papers, Cambridge, 1898, Vol. 1, S. 151,

153, 159.
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w heifie eine Funktion der Quaternionenvariablen z. Unter wih) ver-
stehen wir die Funktion der Differentialquotienten der uk nach xh :

(k) (k) * ^h

Fur die Difïerentiation nach xh gelten die folgenden sofort erkennbaren
Regeln :

(w + w*yh) w{h) + w*{h) (4)

(awb){h) — aw{h) 6, a, b konstante Quaternionen, (5)

Es sei R der Oberflâchenraum des Hyperraumes H und |fcJ k
0, 1,2, 3, die Richtungskosinusse der nach dem Innern von H gerichteten
Normalen in einem Punkte von R. Man setze dann:

dZ (Z£kik) dr,
(k)

wo dr das Raumelement von R ist. Dann kann man den GauB'schen

Integralsatz fur vier Dimensionen so schreiben :

J £w<kHkdh — \wdZ (8)
(H) (k) (R)

Sind w und v zwei Funktionen von z, so folgt aus demselben Satze:

J S (wikvYk) dh — f wdZv
(H) (k) (R)

Nun ist aber nach (5) und (7) :

I(wikv){k) (Zw(k)ik) v + w(Zikv{k)).
(k) (k) (k)

Somit wird:

J (Zw^k)ik)vdh + fw(Zikv<k))dh — J wdZv. (9)
(H)(k) (H) (k) (R)

Dabei ist in verstândlicher Weise :

S jukikdo — Zikjukdo
(k) (o) (*) (o)

gesetzt, wo o irgend ein geometrisches Gebilde ist. Somit gelten auch die

Sàtze, da8 das Intégral einer Summe gleich der Summe der Intégrale ist,
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und da6 ein Links- oder Rechtsfaktor des Integranden, der konstant ist,
nach links oder rechts vor das Intégral genommen werden kann.

Aus (1) folgt fur die Abschàtzung der Intégrale die wichtige Formel :

| $wdZv | â J| wdZv\ (10)

2. Regulàre Funktionen.

1. Définition: Eine Funktion w f(z) heifit in H rechts, resp. links-
regulâr, wenn die uk in H réelle, stetige, endliche und zweimal stetig differen-
tierbare Funktionen der xk sind, und wenn die Bedingung erfûllt ist :

Ew{k)ik 0, resp. Eikw{k) 0.
(*) (*)

Die Gleichungen I lauten, im Reellen ausgeschrieben so :

I.

dx0 dxx dx2

du0 3% ^3^2 ^3 __ q
dxx dx0

l

dx3 ^~ '

dux du2 du3

dx2 dx3 dx0 dxx

dux du2 du3
3 x2 dxx

du9

dx0

la. Rechtsregulâr.

du0 3% du2 du3

dx0 dxx dx2 3 x3
'

3 Uq 3 ux du2 v w3

dxx dx0 dx3 dx2
Ib. Linksregulâr.

dun du, duo du»

dx2 dx3 dx0 dxx
9

3uq dux du2 du3

dx3 dx2 dxx dx0

Nimmt man uz 0, u% 0 und uQ und ux nur von x0 und xx, nicht aber

von x2 und x3 abhângig an, so reduzieren sich die Gleichungen auf die

Riemann-Cauchy'schen. Ist u3 0 und sind die iibrigen u nur
Funktionen von drei Variablen xk, k 0, 1, 2, so lauten die Gleichungen:
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dx0

3 #2 3 #2

Ist w sowohl rechts- wie linksregulâr, so muB :

I.c.

dx0 dx2

du2 dus
___

3^2=
3 ^3 ^2

3u0 3us
dx3 dx0

^1 I ^§=0
dx dx '

dx2

I.d.

Im Falle der Gleichungen le ist die Funktionaldeterminante

A | «fc<« |

hôchstens vom Range 3, im Falle der Riemann-Cauchy'schen
Gleichungen vom Range 2. Man spricht daher in diesen beiden Fàllen von
regulâren Funktionen vom Range 3 oder 2. Im allgemeinen darf man
annehmen, da8 es Punkte gibt, fiir die À =£ 0 ist (Rang 4).

1. Satz : Ist w in H redits- oder linksregulâr, so genûgen die uh der

Differentialgleichung :

(h)
0,1,2,3.

Beweis: Differentiert man I nach xhi multipliziert mit ih von rechts
(links) und summiert ùber aile h, so folgt :

S w{kh)iklh 0, resp. Ilhikw{kh) 0.
<*, h) (*, h)

Da die Reihenfolge der Differentiation beliebig ist und fur h ^ k stets

H^h + V& 0 ist, so folgt wegen ikik= 1 :
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2. Satz : Sind w und w* in H zwei rechts- (links-) regulâre Funktionen,
so ist auch w + w* rechts- (links-) regulàr.

Denn nach (4) ist:

E(w + w*)(fc) ik Ew^k)ik + Ew*(k)ik 0.
<*) (k) (*)

3. Satz : Ist w in H rechtsregular, so ist es auch aw ; ist w linksregulàr,
so ist es auch wa, wo a ein konstantes Quaternion ist.

Der Beweis folgt aus (5):

S(awYk)ik aSw^ik 0, Eik(waYk) Eikw^k)a 0.
(*) (t) (*) (*)

I. Hauptsatz : Ist w rechtsregular in H, so ist :

jwdZ 0,
(R)

wo R irgend ein Oberflâchenraum ist, der ganz in H liegt.

Ist w rechtsregular in H, v linksregulâr in H, so ist :

\wdZv 0,

fur jeden in H gelegenen Oberflâchenraum R.

Der Beweis ergibt sich aus Formel (8) und (9). Pur linksregulâre
Funktionen w gilt entsprechend :

\dZw 0.
(R)

Wir werden uns im folgenden auf den Fall der rechtsregulàren
Funktionen beschrânken, doch gilt ailes entsprechend auch fur linksregulâre
Funktionen.

Es fragt sich nun, ob durch die Gleichungen la die Lôsungen der
Gleichung Au 0 eingeschrânkt werden. Dies ist nicht der Fall, wie der
folgende Satz besagt:

4, Satz : Ist u0 irgend eine réelle, in H stetige und zweimal stetig differen-
tierbare Funktion der 4 reellen Variablen xk, die der Differentialgleichung
Auq 0 geniigt, so gibt es drei in jedem einfach zusammenhangenden H
stetige, réelle und zweimal stetig differentierbare Funktionen »uk, k 1, 2, 3

der xk, so dafi
w =¦ Eukik

(k)

in H rechts¦- und linksregulâr ist,
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Mit anderen Worten: Jede Funktion u, fur die au 0, kann als
Realteil eines reehts- oder linksregulàren w gewâhlt werden.

Beweis : Man seize in Id :

in den v:

ein tester Punkt ini/ ist. Dann lauten die Gleiohungen Id

+ l +dxx dx2 dxs

3 v2 3 v3 3 v3 3 vt 3 vx 3 v2

dx3 dx2* dxx dxsf dx2 3 x±

Dabei setzen wir voraus, die vk seien von xQ unabhângig, was wir naeh
diesen Gleichungen, in denen x0 nicht mehr vorkommt, dûrfen. Differen-
tiert man die erste Gleiehung nach xx und beriicksichtigt die ûbrigen,
so folgt fur vx :

Man wàhlt fur vt als Funktion der ^ k 1, 2, 3 ein beliebiges, in Jï
stetig und zweimal stetig differentierbares partikulâres Intégral dieser

Differentialgleichung und setzt:

Dann wird:

(b) l
dx2 ' dx2 dx3

wobei wir die tk als nur von xk, k 2, 3 abhàngig voraussetzen. Nun
folgt wieder :

dxodxj.,-.,

und t2 sei ein in H stetiges und zweimal differentierbares partikulâres
Intégral dieser Differentialgleichung. Man setzt :
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£fc genugen dann fur & 2, 3 den Gleichungen (b), vk, k 1, 2, 3 den
Gleichungen (a), und die %, jfc 0, 1, 2, 3 den Gleichungen Id.

3. Erzeugung regularer Funktionen.

Die Quaternionenfunktionen sind ein hervorragendes Mittel, um
Lôsungen der Gleichung Aw 0 zu erzeugen. In einer fruhern Arbeit3)
habe ich gezeigt, wie man aus den gewôhnlichen analytischen Funktionen
wie ez, zn solche Funktionen erzeugen kann. Aile dièse Funktionen genugen
der Gleichung AAW 0.

Es sei £ + irj eine beliebige analytische Funktion von x0 + iy in o,
fur die also :

dx0 dy' dy dx0 ' dx\ dy2 dx\ dy2

Man setze y 1/J; X2 Dann ist :

1
W Ç(x0, y) H rj(xo,y) (x1i1 +x2i2 +xsi3)=F(z)

y

eine Funktion von z £xkik in einem bestimmten Bereiche H. Ist n eine
(*)

ganze rationale Zahl und (x0 + iy)n die analytische Funktion, so ist

W zn. Fur aile dièse Funktionen gilt nun der merkwûrdige Satz :

5. Satz : Aile aus einer analytischen Funktion erzeugten Funktionen W
sind so beschaffen, da/i in H AW eine sowohl rechts-, wie linksregulâre
Funktion ist.

Es genugt also z. B. Azn den Gleichungen Id, n 0, + 1, ±2, ±3,
Insbesondere ist wegen des 1. Satzes:

AAzn 0.

8) Rud, Fuet&r: Analytische Funktionen einer Quaternionenvariablen.
Dièse Zeitsehrift Bd. 4, S. 13.
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Beweis: Es ist wegen (d):

dy2y2 dy y dyy*

î dr] 1 drjSxl 1 3a??
I ___ Yi

1

y} -

dy2 y3 dy y1 dy y1 'y3 yb

Somit
PU 1 /^ 1 rj\

(H)

~2 Zl Vf ^r ^ [- I ^ x "5 5 ^ #i î-i "T" «^2 ^2 I «^3 ^3/ j

(d2rjxk
l37

Bedenken wir jetzt, daB (a?ih + ^2*2 + xzH)2 — 2/2' 80

wegen (d):

Wegen (5) ist auch -_J(aIF) rechtsregulâr, aber im allgemeinen nicht
mehr linksregulâr, wo a ein konstantes Quaternion ist. Jede konvergente
Reihe : ^

W Zanzn

hat daher die Eigenschaft, da8 A W rechtsregulàr ist (nach (4)). Man sieht
welche groBe Zahl rechtsregulârer Punktionen dadurch erzeugt wird.
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6. Satz : Ist W eine linear gebrochene Funktion von z :

W=(az + p) (yz + ô)-\ 7^0,
so ist A(Wy) eine rechtsregulàre Funktion, also AAW — 0. Der Bereich
von W ist jeder Hyperraum H, der — y-1 ô nicht enthâlt.

Beweis : Man darf schreiben :

W (ay-1 + r(yz + ô)-1), r=p — ay-1 ô.

Nach (4), (5), (6) wird:

_ r(yz + ô

2T(yz

daher wegen (2) :

und weiter:

(AW)M= érn(y)n(yz+ô)-i (2(yz + ô)~1yik(yz +ô

somit :

ih ±rn(y)n(yz + ô)'1 (— 4n(yz+ ô)-1 n(y) +
+ 4 n (y) n (yz + ô)-1) 0.

In jedem Falle genûgt daher W der Differentialgleichung :

AAW 0.

Die andere lineargebrochene Punktion:

W=(zy + (5)"1 (za + P)

ist so besehafïen, da6 A (yW) linksregulâr ist, jedenfalls aber wieder
AAW 0 sein muB.

Man kann nach (11) A W fur W zn ausrechnen. Man findet fur
positives n:

A{zn) —4 ((n— l)^"2 + (n — 2)zn-*z+ (n — Z)zn~*z2 + •••);
(12)

A (z-n) — 4 (nz^V1 + (n — l)z~nz'2 + (^—2) ^w+1^"3+ • • • + aTV
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Man darf die lineargebrochenen Punktionen und die aus analytischen
Funktionen erzeugten Funktionen kombinieren. Wir wollen dies auf
spâter verschieben, und nur den wichtigen Fall behandeln, daB man in
W F (z) an Stelle von z die GrôBe z — £ setzt, wo £ ein beliebiges von z

unabhàngiges Quaternion ist. Man sieht sofort die Riehtigkeit des Satzes
ein:

7. Satz : Ist W F(z) eine nach dem 5. Satze erzeugte Funktion, so ist
auch AzF(z — J) eine redits- und linksregulàre Funlction von z.

Dabei bedeutet Az9 daB die Differentialquotienten in bezug auf die

Komponenten von z zu nehmen sind. Wir werden von nun an stets so

schreiben, wenn Zweideutigkeit môglich ist.

Fur den Fall W (z — £)-1 wollen wir den Satz direkt durch Reeh-

nung kontrollieren :

AZW 4 ((z — C)-1) - — 4 n (z — C)"1 (z — C)"1 (13)

(A.W)M ±n(z— C)"1 (2 (z — C)"1^ — f)"1 + ~ikn(z — C)'1

ZAz(WYkHk ZikAz(Wyk) ±n{z — C)-1 (— 4 n (z — C)"1 +

8. Satz : Ist K eine beliebige Hyperkugél um 0 und n eine ganze rationale
Zahl, so ist :

nz,n — 1.
(K)

Beweis. Fur n > 0 ist nach Hauptsatz I und Satz 5 nichts zu beweisen.

Ist n die négative Zahl — v, und setzt man C rf, wo r der Radius der

Kugel ist, so wird nach (12) :

also wenn Kx die Einheitskugel um 0 ist :

(K)

Da der Wert des Intégrais aber von r unabhàngig sein muB nach

Hauptsatz I, ist der Wert 0, falls v ^ 1. Fur v 1 ist der Wert 8 n2

(siehe die Berechnung auf den folgenden Seiten).
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4. Folgerungen.

Mit Hilfe der Ausfuhrungen 3 kônnen die in H regulàren Funktionen
durch ihre Randwerte dargestellt werden.

II. Hauptsatz : Ist w in H rechtsregulâr und R ein in H liegender Ober-

flàchenraum, der den Punkt z im Innern enthàlt, so ist :

W /(Z) 8^ f
wobei das Intégral ûber f zu nehmen ist.

Beweis : Man lege um z eine bo kleine Hyperkugel K mit dem Radius r,
da8 K ganz in R liegt. H' sei der Hyperraum zwischen K und R. Wir
nehmen jetzt in der zweiten Formel von Hauptsatz I fur R den Ober-
flàchenraum von H', fur w unsere Funktion und fur v:

Nach Satz 7 ist v linksregulâr, somit sind aile Bedingungen erfiillt, und
Hauptsatz I ergibt :

f f
(R) (K)

Im zweiten Intégral ist die Normale von K nach z gerichtet voraus-
gesetzt. Dièses Intégral ist von r unabhângig. Wir berechnen es, indem
wir setzen :

f — z r (eos (p cos \p cos & + sin y cos \p cos â i^-f-sin rp cos # i2 +sin â i3).

Dann ist n(Ç — z) r2 und nach Définition:

dZ — (£ — z) r"1 do — (f — z) r2 cos \p cos2 ^ dydipdê.

Ferner kann man fur kleine r setzen :

/(£) =/(*)+r/'Ct),

wo lim /' (f) existiert und endUch ist. Daher wird:

2?r 2 2Jç(C— z)-1) 4/ J /(/(«)+r/'(0) cos
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Da r beliebig klein sein darf, und das Intégral von r unabhângig ist, wird
der Wert rechts 8 n2 f(z). Setzt man dies oben ein, so folgt die Formel
des II. Hauptsatzes.

Aus dem II. Hauptsatze folgt sofort, daB die Komponenten einer
regulàren Funktion in H beliebig oft nach den xk differentierbar sind.

Nun ist :

Man darf daher im Hauptsatz II auch A
z statt A^ schreiben. Ist R ein

fester Oberflâehenraum in H, der z im Innern enthàlt, der aber von z

unabhângig ist (also z. B. keine Hyperkugel um z), und setzt man:

so wird:
w f(z) AW AzF(z).

W hat somit die Eigenschaft, daB A W rechtsregulàr ist.

2. Définition : Bine Funktion W =F(z) heijie in H rechts- resp. links-
holomorph, wenn ihre Komponenten Uk in H réelle, stetige, endliche und
zweimal stetig differentierbare Funktionen der xk sind, und wenn AZW in
H eine rechts-, resp. linksregulâre Funktion ist.

Somit gilt der

9, Satz : Ist w in H rechtsregulàr, so ist w die Deltaableitung einer in H
rechtsholomorphen Funktion.

Ist umgekehrt W in H rechtsholomorph, so setze man w AZW
f(z). w ist in H rechtsregulàr, also nach Satz 9 w A W, wo:

f

und jR irgend ein fester, von z unabhângiger Oberflâehenraum in H ist,
der z im Innern enthâlt. Daher ist A (W — W) 0, und W lâBt sich in
der Form darstellen:

—z)-1, wo
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10. Satz : Ist W F (z) in H rechtsholomorph, und R ein fester, von z

unabhângiger Oberflâchenraum in H, der z im Innern enihàlt, so ist :

wo v(z) eine bestimmte Lôsung von Azv(z) 0 ist.

Ândert man in dieser Darstellung R so, daB die Bedingungen ûber R
erhalten bleiben, so àndert sich nur v(z).

11. Satz : Àndert man in

R unabhângig von z so ab, dafi z im Innern bleibt, so ândert sich der Wert
des Intégrales nur um eine additive Funktion v(z), die der Gleichung genugt
Azv{z) 0.

5. Der Punkt Unendlich.

Wir fassen in der Punktionentheorie der regulâren Funktionen das

Unendliche als punktfôrmig auf. Dazu dient der

12. Satz: Ist w f(z) in H eine rechtsregulâre Funktion, und ist t ein
reeller Parameter, so ist w* f(tz) rechtsregulàr in H* tH.

Der Beweis folgt sofort aus la.

3. Définition: Die Funktion w — f(z) heiflt im Punkte oo rechtsregulàr,
wenn es

1. ein e > 0 gibt, so daji fur aile Werte des reellen Parameters r, fur den

0<r< e, fl—I eine rechtsregulâre Funktion von z ist fur aile z, deren

absoluten Betrâge zwischen beliebigen festen, endlichen positiven Grenzen

(> 0) liegen, und wenn:

2. der Grenzwert

lim / — / (oo) existiert und von z unabhângig ist.

Naeh dieser Définition ist z. B. Az~x — 4 n(z)~1z~1 in oo rechtsregulàr
und Hat den Wert null.

320



III. Hauptsatz : Ist w f(z) im ganzen Hyperraume Ré mit Einschlu/3
des Punktes oo rechtsregulàr, so ist w ein konstantes Quaternion.

Beweis : Es sei z ein beliebiger endlicher Punkt. Wir wàhlen e positiv

so klein, daB | z | < —, und legen um 0 eine Hyperkugel K mit einem
c

Radius —, fur den 0 < r < s ist. Dann muB nach Hauptsatz II :

f
sein, und das Intégral ist von der Wahl von r innerhalb der Grenzen
unabhângig. Falls daher der Grenzwert r -+ 0 des Intégrales existiert,
so ist:

1

(i,

Letzteres ist aber der Fall. Wir setzen C —£'• Dann ist C' irgend ein

Punkt der Hypereinheitskugel K1 : n(Ç') 1, und dZ wird: dZ=-^dZ\
wo dZf das entsprechende Elément von Kx ist. Wir fùhren ferner wie
unter 4. Kugelkoordinaten ein:

t, ' cos (p cos xp eos & + sin (p cos \p cos & it + sin xp cos # i2 + sin i? is.

Dann ist dZf — C do und es wird:

Jf(C) dZA
(K)

Nun aber ist nach Annahme :

lim /( — / (od) und von C' unabhângig,

lim f n(Ç' — rz)-1 (Ç' — rz)-1 1, da w(f) 1 ist,
f0

somit ist:

w

mit ist:

f(z) lim-^ Çf(Ç)dZA,((Ç—z)-1) -L /(oc) rcosv, cos*&d(pdy)d&

Da /(^) an jeder Stelle den Wert /(oo) hat, ist es ein konstantes
Quaternion.

Auch fur die rechtsholomorphen Funktionen definieren wir die Rechts-
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holomorphie in oo genau wie oben, es ist unter 2. nur rechtsregulàr durch
rechtsholomorph zu ersetzen. Dann gilt :

Zusatz zu Hauptsatz III : Ist W F (z) im ganzen Hyperraume J?4 mit
Eimchlufi des Punktes oo rechtsholomorph, so ist W ein Jconstantes Quater-
nion.

Beweis: Wir setzen AW w — f(z). Dann ist nach Annahme w im
ganzen endlichen Hyperraume i?4 rechtsregulàr. Ferner ist :

lim / — limr2^; ^- 0.
r-M) \ r ] r_yo (k) dxZ,

Somit ist w auch in oo rechtsregulàr und 0; nach Hauptsatz III ist
somit w 0, d. h. A W 0. Man sieht jetzt leicht, da6 man jede Kom-
ponente von W als Realteil einer rechtsregulàren Funktion annehmen
darf (Satz 4), die im ganzen Hyperraume inklusive oo rechtsregulàr ist,
also konstant sein mu6.

6. Rei}ienentwicklungen.

Nach Satz 9 ist jede in H rechtsregulâre Funktion durch eine rechts-
holomorphe Funktion erzeugt. Es wird einfacher, wenn wir die Ent-
wicklungen daher fur die rechtsholomorphen Funktionen durchfuhren.
Dazu dient folgende, der Zahlentheorie entnommene Rechnungsart.
Wir schreiben :

W 0 (mod. A), faUs AW 0,

W W2 (mod. A), faUs A (W± — W2) 0

ist. Da Av — 0 eine lineare, homogène Differentialgleichung ist, folgt dar-
aus sofort : Ist

Wt W%9 W[ W2 (mod.J),
so folgt:

cW± + c'W'i =cW2 + c'W2 (mod. J),

fur beliebige konstante Quaternionen c, c\ Aus:

Wt W2 (mod. A), folgt: Wf Wf (mod. A), k 0, 1, 2, 3.

Ist AW w f(z), so ist nach Satz 10:

fur jede in H rechtsholomorphe Funktion W und jeden von z unabhângi-
gen Oberflâchenraum R in H, der z im Innern enthâlt. Das Intégral ist
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daher (mod. A) von R unabhângig. Wir sagen, die rechtsholomorphe
Funktion ist durch die rechtsregulàre Funktion f(z) erzeugt. Es fragt sich,
ob verschiedene rechtsregulàre Funktionen dieselbe rechtsholomorphe
Funktion W erzeugen kônnen. Dann mûBte :

j — z)-i= 0 (mod. A)

môglich sein, ohne daB f(z) 0 wàre, wobei f(z) nach Satz 2 wieder
rechtsregulàr wâre. Daraus folgt aber:

gegen Annahme. Es besteht zwischen einer reehtsholomorphen Funktion
W und der sie erzeugenden rechtsregulàren Funktion w ein sich (mod. A)
gegenseitig eindeutiges Bedingen.

13. Satz : Ist W F (z) eine rechtsholomorphe Funktion in H und

-z)-i (mod. A),j
wow f(z) in H rechtsregulàr ist, so mufi AW w sein.

Es sei jetzt z c ein endlicher Punkt von H, und W F(z) in H
rechtsholomorph. Kr sei eine Hyperkugel mit dem festen Radius r um c,
die ganz in H liège. Dann ist fur jedes z in Kr:

w=-^2ff(t;)dz(ç-z)-i (mod> A)>A w w=
iKr)

Nach Annahme ist \z — c | < | £ — c | r. Somit konvergieren die
absoluten Betràge der Reihe :

also auch die Komponenten selbst gleichmâfiig und absolut in jedem
in Kr liegenden Bereiche. Es folgt :

W= i;J-2 f(C)dZ(C—c)-1((z—c)(C—c)-1)h(mod.A)y (14)
». n O 71 *sn^^v / ht \

J C-c)-^f) (14a)
(Kr)
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Ist g der Abstand desjenigen Punktes, der nicht mehr H angehôrt und c

am nàchsten liegt, so muB r < q sein, q heiBt der Konvergenzradius und
(14) konvergiert fur aile z, fur die \z— c\<r< q, gleichmàBig und
absolut. Fur (14a) sieht man die Konvergenz ein, wenn man bedenkt,
daB wegen (12):

|4 (((z — c)(C—c)"1)*)) | ^niC — cr^hih—l) | (z — c)(Ç — c)-i |*~2

sein muB. Nun sind aber die Intégrale von r unabhângig; denn man sieht
aus obiger Reihenentwicklung, daB :

(f—c)-M, (((z—c) (f—c)-1)*)=Jç ((C-c)-i ((z-c) (C—c)-i)*-»),*^2,
0, h 0, 1,

ist, und rechts- und linksregulâr sein muB als Funktion von f. Somit darf
Hauptsatz I angewendet werden. Die Wahl von r < q ist somit beliebig.

14. Satz : Ist W F(z) in z — c rechtsholomorph, so lâfit sich W in die
Beihe (14), w f(z) AW in die Reihe (14a) entwickeln, die fur jedes z,

\z — c | < g absolut konvergiert, wo q der Minimalabstand von c der Punkte
ist, die nicht zum Bereiche von w gehoren.

Die Intégrale der Reihe (14) kann man berechnen. Differentiert man
(C — z)~x A-mal nach xk xk • • • xkh, so wird nach (6) :

((f—s)-1) <*•*¦•¦•*»> 2; (C—sr1»*,,^—z>~1**r,""*Wf~z)'1'
(rn)

wo die Summe liber die h\ Permutationen der Indizes rn von 1 bis h zu
erstrecken ist. Somit wird:

(mod.zl).

Man sieht daraus, daB auch die Komponenten von W unbeschrànkt
differentierbar sind. Wir setzen in der erhaltenen Formel z c Sck ik,
wo c die vorige Bedeutung hat, multiplizieren sie mit (xki — ck) (xki — ckj
"' (xkh — ckh) un(i addieren iïber aile kr von 0 bis 3, bei festgehaltenem h;
es wird :

{)(k—ckl) (xk—ckt) .- (xkh-ckh)
{kr)

f /(^)^Z(fc)1 (°) (fc)"1)* (mod-

(*r)
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womit die Intégrale berechnet sind. Setzt man dies in (14) ein, so erhàlt
man die Taylor'sche Entwicklung:

die fur aile \ z — c\<r konvergiert. Allein die Koeffizienten durfen nicht
willkiirlich gewàhlt werden, sondern sie miissen den Gleichungen der
rechtsholomorphen Funktionen genùgen. Dies sind die Gleiehungen I
und aile aus ihnen durch Differentiation nach den xk abzuleitenden,
falls man w AW nimmt. Umgekehrt sieht man, daB wenn die
Koeffizienten diesen Bedingungsgleiehungen genûgen und (15) in einer
Hyperkugel um c konvergiert, die Reihe in derselben auch eine reehts-
holomorphe Funktion darstellt.

Mit denselben Mitteln kann man das Analogon zum Laurent'schen
Satze erhalten. Es sei c ein beliebiger endlieher Punkt, um den es zwei
Hyperkugeln Kr und KR gebe, r < R, so daB W F(z) im Hyperraume
auf und zwischen Kr und KR rechtsholomorph ist. Setzt man w f(z)
AW und

CKr)

wo beidemal die Normalrichtung gegen c gewàhlt wird, so folgt aus
Satz 10 fur jedes z: r < \ z — c\< R:

W F(z) J1 — J2 (mod. A), r<\z — c\<R.
Wie vorhin wird (14):

c)(f—c)-y

und die Reihe konvergiert fur jedes z, fiir das \z — c \< R ist.

In e/2 setzen wir:

(C - s)"1 — (C — c)"11 ((C — c) (z — c)-1 )\
h l

eine Reihe, die fiir aile \ z — c | > r absolut und gleiehmâBig konvergiert.
Somit wird :

J% — 2-^-2 f f(Ç)dZ(Ç — c)-i (f_c) {z—c)-i)h (mod.zl).
* 1 S7t

{Kr)
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Schreibt man fur h : — h und setzt Jx und J2 oben ein, so wird :

W= Y,

+ £~( f(C)dZ(Ç—c)-mz — c) (C—c)-1)* (mod.J). (16)

Wâhlt man eine Hyperkugel Kç, wo r ^ g ^ R ist, und ersetzt man
in (16) Kr und KR durch KQ, so ândern sich die Intégrale (mod. A)
nach Hauptsatz I nicht. Allein die Konvergenz kann jetzt aufhôren.
Bildet man jedoch w AW, so bleiben die Intégrale gleich und man
erhâlt :

g^j f (i6a)

15. Satz : 7s£ IF jF(2) /tir aile z, fur die r ^ | z — c [ ^ E ist, rechts-

holomorph und w f(z) AW somit rechtsregulâr, so lassen sich W und w
in die absolut Jconvergenten Reihen (16) und (16a) entwickeln, wo KQ eine

Hyperkugel um c ist, fur die r ^g t^R ist. Umgekehrt stellt jede Reihe (16)
resp. (16a) in dem Bereiche, in dem sie konvergiert, eine rechtsholomorphe,

resp. rechtsregulâre Funktion dar.

Dièse Entwicklung làBt die Reihenentwicklung um oo erkennen, fails w
in oo regulàr ist. Nach Définition 3 kann man R so klein wàhlen, daB w
zwisehen den Hyperkugeln KR-i und Kr-i um c 0 mit den Radien
R-1 und r-1, wo r beliebig, aber < R sein muB, rechtsregulâr ist. Daher
folgt aus (16) fur jedes z, fur das R-1 < \ z \ < r"1,

JE g^ Jf(t)dZC-*AM((zÇ-*p)+2 -^ f
h °

(*r-l) * 1
(ijR-1)

Man setze in jedem Intégral der ersten Summe C

wo das Intégral jetzt ûber die Einheitskugel K1 um 0 zu nehmen ist, und
dZ' rzdZ ist. Jedes Intégral ist aber von r unabhângig; wir kônnen r

/£'\beliebig klein wâhlen. Da aber lim /1 — existiert und von C' unabhângig
r->0 V r /

ist, so muB :
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<«r-)

sein. Fur h 0, 1 ist aber Az ((zf-1)*) 0, und fiir h 2 wird das

Intégral /(oo) c0. Somit mu8:

^-2 f /(C)dZ^J.((2^)») (16b)

sein.

16. Satz: Is£ w f(z) im Punkt oo rechtsregulàr, so làflt sich w fur
\z\>R"1 in die absolut konvergente Reihe (16b) entwickeln, wo R so klein
ist, dafi w filr aile \z\> R~x rechtsregulâr ist ; umgekehrt stellt jede solche

Reihe im Bereiche, in dem sie konvergiert, eine in oo rechtsregulàre Funktion
dar.

7. Analytische Fortsetzung.

Der entscheidende Gedanke ist, die analytische Fortsetzung nicht fur
die rechtsregulàre Funktion w, sondern fur die ihr zugeordnete reehts-
holomorphe Funktion W durchzufûhren.

Es sei w eine rechtsregulàre Funktion in H, c ein Punkt im Inneren von
H, g der Konvergenzradius von w in c. Man wàhle als Hyperkugel Kr eine
solche, deren Radius r < q, aber beliebig nahe bei q liegt und setze :

W=^-2 Jf(C)dZ(C—z)-\ wo w A W ist.
71

(Kr)

Es sei cx ein weiterer Punkt in Kr, um den man eine Hyperkugel Kr
lege, wo r1 r — \c — cx \ ist. Ist z im Innern von Kr so muB fur
jedes z von Kr^

I z — ci I < i C — cx |, \z — c1\<r1,
sein. Also konvergiert die Reihe (absolut und gleiehmâBig) :

(C - Z)"1 (C — Ci)-1 Z ((z - Ci) (C — cx)-i)\
und es ist:

W= i -^-2 f f(Ç)dZ(Ç-Cl) ((z-Cl) C-eJ-»)*.
^'8îtM

Ersetzt man hier Jfr durch Jf so bleibt die Reihe konvergent und die
Summe ândert sich nicht (mod. A). Daher ist:
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—cJri ((z—cj (C—cj-i)» (mod.A), \z-Cl\<rv

Bildet man hier die Deltaableitung, so erhâlt man die Reihenentwiek-
lung von w um cv Ist qx der zu c-l gehôrige Konvergenzradius, so wird
dièse Reihe in der Hyperkugel KQi konvergieren. In dem gemeinsamen
Teil von KQ und KQi stimmen die Funktionen ûberein. So kann man fort-
fahren und erhâlt aile Reihenentwicklungen von w. Kennt man w nur in
Kç, so kann man dadurch H selbst durch dièses Verfahren der analyti-
schen Fortsetzung bestimmen. Wie man sieht, besteht das Verfahren
darin, da8 man die Taylor-Entwicklung von W um c umstellt auf die-

jenige um cv

8. Pôle.
Im folgenden sollen die eindeutigen rechtsregulàren Funktionen und

ihre punktfôrmigen Singularitàten studiert werden.

4. Définition : Man sagt, w f(z) hat an der nicht zu seinem Régula-
ritâtsbereiche gehôrenden Stelle 2 c^oo einen Pol n-ter Ordnung
(n ^ 0), wenn es um z c zwei Hyperkugeln KR und Kr mit den Radien
R und r<R gibt, so daji w im Hyperraume zwischen KR und Kr rechts-

regulâr ist, wie hlein auch r gewàhlt wird, und wenn der Grenzwert :

Um |(« —c)»/(z)|
Z-+-C

existiert und nicht null ist. w hat an der nicht zum Regularitàtsbereich
gehôrenden Stelle z oo einen Pol n-ter Ordnung, wenn es zwei Hyperkugeln
KR_1 und Kr_x mit den Radien R~x und r~x > R-1 gibt, so dafi, wie klein
auch r gewdhlt werde, w im Hyperraume zwischen den beiden Hyperkugeln
regulâr ist, und wenn der Grenzwert :

lim
r->0

existiert, nicht null und von z unabhângig ist.

Hat w in z c =fi oo einen Pol n-ter Ordnung, so dûrfen wir Formel
(16a) anwenden. Wir integrieren bei positiven h ûber KR, bei negativen
h liber K :h liber Kr
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Wir setzen in den Integralen der zweiten Summe £ — c r£', dZ
rzdZ' und integrieren uber die Einheitskugel K1 um c :

J* $ f(Ç)dZ (Ç — c)~1Az ((z — c) (C—c)"1)^)
(Kr)

Man kann jetzt r &o klein wahlen, daB fur aile f auf i£x :

| r'/(c + r£') | < s, falls l > n ist,

wo s beliebig klein angenommen werden kann. Nach (10) wird:

\Jh\<e j\Az (((^ — c) C'-1)74) | ^o, falls — h> n — 2,\dZ' \ do ist.

Das Intégral rechts ist von r unabhangig, somit ist

Jh 0, h — (n—l), —n,—(n+ l), •••,

und w hat um c die Entwicklung :

»= S ^r2 f/(?)dZ(f—c)-M,(((»-c)(f-c)-i)»). (17)

Fur c oo fuhrt dieselbe Ûberlegung zu der Entwicklung :

w= £ -5-5 f/(Orf^C~1^z((^~1)^). (17a)

17. Satz : Hat w in z c einen Pol n-ter Ordnung, so là/it sich w um
z c in die Reihe (17), resp. (17a) entwickeln. Umgekehrt stellt jede solche
Reïhe im Bereiche, in dem sie konvergiert, eine rechtsreguldre Funktion
mit einem Pol in z — c dar. Es gibt imEndlichen keine Pôle 0., 1., 2.

Ordnung, im Unendlichen kein Pol 0. Ordnung.

Efe war notwendig, auch Pôle 0. Ordnung als moglich anzunehmen, da
w sich hatte verhalten konnen wie zazr1, a, ein konstantes Quaternion,
in z 0 (was allerdings keine rechtsregulare Funktion ist).

Aus Satz 17 folgt sofort wegen Hauptsatz I, daB die einzigen Funk-
tionen, die in dem ganzen Hyperraume rechtsregular sind, und in oo einen
Pol n-ter Ordnung besitzen, durch:
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(2 C-T) (18)

gegeben sind, also bestimmte ganze rationale Funktionen der xk sind.
AUe Funktionen w, die im ganzen Hyperraume rechtsregulâr sind, mit
Ausnahme von (endlich vielen) Punkten, wo sie Pôle haben, lassen sich
entsprechend mit Hilfe von Hauptsatz III allgemein darstellen. Es sind
bestimmte rationale Funktionen der xk

-1

wo iiber aile endlichen Pôle ct zu summieren ist. Tritt auch oo als Pol auf,
so ist noch eine Summe (18) hinzuzufûgen. Die Kugeln Kx sind um die
Pôle cx mit so kleinem Radius gelegt, daB im Innern oder auf dem Ober-
flàchenraume kein anderer Pol liegt. C ist ein konstantes Quaternion.

Man kann die Théorie der Pôle auch auf die holomorphen Punktionen
iibertragen. Man erhàlt Pôle von allen Ordnungen > 0.

9. Ein Differentialoperator.

Ist w irgend eine Quaternionenfunktion, die in H der Gleichung Aw 0

geniigt, so ist:

in H reehtsregulàr. Denn es ist :

2()h2 ^kh y

da fur h =fi k stets ihik + ikih 0 ist.

Ist z. B. w w(z)-1, also Aw 0, so ist Dw — — 2 n(z)-1z~1

| Aizr1). Geniigt W in H der Gleiohung AAW 0, so ist somit DW
rechtsholomorph in H. Fur W %lg n(z), das der Bedingung geniigt,
ist DW zr1. Fur den Realteil W jeder nach Satz 5 erhaltenen Funktion
ist DW rechtsholomorph und gleich der Ableitung der erzeugenden

analytischen Funktion. Darin liegt eine Berechtigung, den Operator mit
D zu bezeichnen.

(Eingegangen den 10. April 1935.)
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