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Elementare Theorie der konvexen Polyeder

Von H. WEYL, Princeton, New Jersey

§ 1. Hauptsatz iiber konvexe Pyramiden

Ist S eine beschrinkte abgeschlossene Punktmenge im (n — 1)-dimen-
sionalen affinen Raum mit den Koordinaten z,, z,, --*, z,_;, 80 kénnen
die Punkte der konvexen Hiille von S in doppelter Weise gekennzeichnet
werden: 1. sie sind Schwerpunkte von Punkten aus S; 2. sie gehoren allen
,,Stiitzen‘ von S an. Eine Stiitze von S ist ein Halbraum

ay Iy + - + Up—1 Tp— + a = O’

in dem alle Punkte von S liegen. Der Hauptsatz iiber konvexe Hiillen
sagt aus, dal beide Definitionen identisch sind. Dabei 148t sich 1. dahin
verschérfen, dafl nur Schwerpunkte aus hochstens n Punkten von S
zugelassen werden, 2. dahin, daB lediglich die ,,extremen‘ Stiitzen heran-
gezogen werden. Der Beweis dieses Satzes wird naturgemaf mit mengen-
theoretischen Hilfsmitteln erbracht; die einfachste Anordnung findet man
wohl in der Einleitung der Arbeit von Carathéodory ,,Uber den Varia-
bilitatsbereich der Fourier’schen Konstanten von positiven harmonischen
Funktionen‘‘, Rend. Circ. Mat. Palermo 32, 1911, S. 198—201.

Besteht S nur aus endlich vielen Punkten, so ist die Hiille ngng‘]ggnvexes

Polyeder. Fiir diesen Fall miissen sich die Hauptsitze auf finite Art her-

“leiten lassen; die iibliche Beweisanordnung leistet dies nicht, weil sie die
Anwendung der mengentheoretischen Schlufweise auf die nach 1. de-
finierte konvexe Hiille mit sich bringt. Es scheint hier eine Liicke in der
Literatur vorzuliegen, die einmal ausgefiillt werden sollte; darum ver-
offentliche ich diese kleine Skizze, zu deren Niederschrift ich durch mein
letztes Seminar in Gottingen im Sommer 1933 veranlaft wurde, das die
konvexen Korper zum Gegenstand hatte. Was wir im Auge haben, kann
auch als eine elementare Theorie endlicher Systeme linearer Ungleichungen
bezeichnet werden. Man geht zweckmaflig von der homogenen Formu-
lierung aus.

Ein Punkt a in R, ist eine Reihe von = reellen Zahlen (a,, a,, -, a,).
Zwei von 0 verschiedene Punkte a und b liegen auf demselben Strahl,
wenn die b, aus den a, durch Multiplikation mit einem gemeinsamen
positiven Proportionalitatsfaktor hervorgehen; solche Punkte brauchen
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im folgenden nicht unterschieden zu werden. Alle Punkte x, welche einer
Ungleichung

(1) o+ ta,x, =0

geniigen, bilden einen Halbraum, der gekennzeichnet ist durch den
, Punkt a = (e, ***, @,) # 0 im dualen Raum P,. Wiederum #andert
sich nichts, wenn alle a; mit einem gemeinsamen positiven Faktor
multipliziert werden.

Gegeben sei ein endliches System S von Punkten a. Es soll nicht-
ausgeartet sein; d. h. die Punkte a sollen nicht alle in einer und derselben
Ebene liegen oder nicht alle einer linearen Gleichung

(2) 1551 x1+ + ay xn=0 [(al’ Y an) #(0! ) O)]

geniigen. (1) ist Stitze an S, wenn alle Punkte x des Systems S jene
Ungleichung erfiillen. Es ist eine extreme Stiifze, wenn fiir n — 1 linear
unabhéngige Punkte x von 8 darin das Gleichheitszeichen gilt. Es ex:-
stieren nur endlich viele extreme Stiitzen an S; man findet sie, indem man
unter den Punkten a von 8 auf alle Weisen n — 1 unabhéngige auswiahlt,
durch sie die eindeutig bestimmte Ebene (2) legt und die beiden zu-
gehorigen Halbraume

(o2 + - +o,2)=0
daraufhin priift, ob sie Stiitzen sind.

Satz 1 (Hauptsatz). Gegeben ewn endliches mnicht-ausgeartetes Punkt-
system S. Hwn Punkt x, fir welchen alle extremen Stiitzungsgleichungen zu
S erfallt sind, lifit sich linear-positiv aus den Punkten a, b, --- des Systems
S kombinieren :

(3) x, = Aa; + pb, + -+ [A=0,u=0,].

Die samtlichen Punkte z, welche den extremen Stiitzen gemeinsam
angehoren, bilden eine Figur, die konvexe Pyramide heilen moge. Ein
Punkt «, der aus den Punkten a, b, --- des Systems S durch positive
Kombination (3) gewonnen werden kann, heile kurz ,darstellbar
durch 8. Im inhomogenen Raum existiert wenigstens eine extreme
Stiitze: dies ist ein nicht-triviales Teilresultat des Hauptsatzes. In dem
jetzt in Frage stehenden homogenen Raum aber kann es selbstverstand-
lich vorkommen, daf3 S iiberhaupt keine extreme Stiitze besitzt; dann
sagt der Hauptsatz aus, daB jeder Punkt durch S darstellbar ist. Im
Beweise muB} dieser Fall besonders behandelt werden.
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§ 2. Beweis des Hauptsatzes

a) Erster Fall : es sind extreme Stiitzen vorhanden.

a, B, -+ seien die extremen Stiitzen. Fiir das ,,Zentrum*

e=a+bLt

von S gelten dann die Ungleichungen
(a€) =0a,€; + - + a,¢,> 0, (Be)> 0, ---.

x = p sei der allen extremen Stiitzen angehorige Punkt, fiir welchen
die Darstellbarkeit bewiesen werden soll:

(ap) = 0, (ﬂp) =0, .

Wir bilden ¢=p— Ade. Die extremen Stiitzungleichungen bleiben fiir
q erfiillt, solange

(ap) — Alae) =0, (Bp)— A(Be) =0, -

ist. Wir wahlen also fiir A die kleinste unter den Zahlen

(4) (ap) [ (ae),  (Bp) [ (Be), -

Es sei z. B. A = (ap) [ (ae). Wenn q, das auf einer extremen Stiitzebene
liegt : (aq) = 0, darstellbar ist, so auch p.

Fiir spatere Zwecke ist es gut, diesen ersten Beweisschritt ein wenig zu
modifizieren. Man nehme namlich fiir e nicht das Zentrum von S, sondern
einen geeigneten der Punkte a, b, --- selbst. § sei eine der extremen
Stiitzen. Nicht alle Punkte z = a, b, -+ des Systems S erfiillen die
Gleichung (fz) = 0, es sei etwa (fa)> 0. Ich wahle dann e = a. Die
extremen Stiitzen zerfallen in zwei Klassen: fiir diejenigen der ersten
Klasse a gilt (ae) > 0, fiir die der zweiten Klasse a, aber die Gleichung
(ape) = 0. Die erste Klasse ist nicht leer, weil das §, von dem wir
ausgingen, dazu gehort. 4 werde als das Minimum unter den Zahlen
(4) bestimmt, in denen a, 8, -+ die samtlichen Stiitzen der ersten Klasse
bedeuten. Wiederum bilden wir ¢ = p— Ade. Das Wesentliche ist, dal ¢
allen extremen Stiitzungsgleichungen geniigt, aber wenigstens einer
Stiitzgleichung : (ag) = 0.
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Man kann annehmen, dafl die Gleichung (az) = 0 die Gestalt hat:
z, =0 (¢ =""=a,,=0, a,=1).

g liegt in der durch diese Gleichung gekennzeichneten Stiitzebene
R,_, mit den Koordinaten (x,, ‘:*, x,_,). Der Beweis des Hauptsatzes soll
durch SchluBl von » — 1 auf » erbracht werden, indem man annimmt,
daB er bereits fiir den eben eingefiithrten R,_, gilt. Alle Punkte x von 8
geniigen der Ungleichung xz, = 0. In §, vereinigen wir diejenigen unter
diesen Punkten, fiir welche x, = 0 ist, in 8’ die iibrigen. Wir wissen, daf}
Sy, n — 1 linear unabhéngige Punkte enthilt, da ja x, = 0 eine extreme
Stiitze war. Wir argumentieren nunmehr im Raume R,_, fiir das nicht-
ausgeartete Punktsystem S,. Es sei

(8) Prey + o+ By @ =0

irgend eine extreme Stiitze an dasselbe. Ich behaupte, daf q diese Un-
gleichung erfallt. Um das einzusehen, bilde ich die Ungleichung

(6) Br @y + A Ppy Ty —p 2, 0.

Ist sie fiir alle Punkte von 8’ erfiillt, so gilt sie fiir alle Punkte von 8.
Ich nehme also fiir 4 das Minimum von

(ﬁl Ly + + ﬂn~1 xn—l) / Lo

wo z die endlich vielen Punkte von S’ durchlduft; das Minimum werde
angenommen fiir x = a. Die Ungleichung (6) ist dann eine Stiitze an S;
und zwar eine extreme Stiiize. Denn es gilt das Gleichheitszeichen fiir
n — 2 unabhangige Punkte von S, und fiir den (nicht in R, _, gelegenen)
Punkt a von S’. Also geniigt ¢ in der Tat der Ungleichung (6) und damit
(5). Folglich ist ¢ nach dem Hauptsatz in R,_; darstellbar durch S,, mit-
hin p darstellbar durch S. — Es ist bei diesem Gedankengang gleich-
giiltig, ob das (n — 1)-dimensionale Punktsystem S, extreme Stiitzen
besitzt oder nicht.

b) Zweiter Fall : es sind keine extremen Stiltzen vorhanden.
Wir gehen aus von irgend einem Halbraum 4 :
(7) (Az) =0,

dessen Ebene (Az) = 0 durch n — 1 linear unabhéngige Punkte von S
hindurchgeht. Nach Voraussetzung gibt es wenigstens einen Punkt
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x =-e von § auf der abgewandten Seite: (le) < 0. Wir geben eine
Konstruktion an, welche den Halbraum A durch einen andern ersetzt, der
mindestens einen Punkt von S mehr enthalt. Durch Fortsetzung dieses
Verfahrens landen wir dann wiederum beim Fall a).

Man nehme das Koordinatensystem so an, da3 (Ax) = z,, ist und e die
Koordinaten (0,0, --+, 0, — 1) hat. Diejenigen Punkte von S, deren
letzte Koordinate x, = 0 ist, bilden ein Teilsystem S+ von S. Wir proji-
zieren die Punkte von S+ von e aus auf die Trennungsebene (1z) = 0;
dadurch entsteht aus S+ ein gewisses Punktsystem S,in dem R,_, : z,=0.
Und zwar geht durch die Projektion

a=(ay, ", a,-1, 2, Mit a, =0
iber in
a = (31, ) a’n-—l) m Rn—l'

a ist darstellbar durch 8, genauer durch (8+, ¢): 2 = a + a, - e. Ist
(8) (%) = ay 2y + - + Gpy Tpy = 0

eine extreme Stiitze an S, so geniigen dieser Ungleichung alle Punkte
von S+ und auBlerdem e. Die Ebene (az) = 0 geht durch » — 1 unab-
hangige Punkte von S hindurch, namlich durch n — 2 solche Punkte,
deren Projektionen a unabhingig sind in R, ; und den nicht in R, ;
liegenden Punkt e. Der Halbraum (8) enthélt also wirklich wenigstens
einen Punkt von 8 mehr als der Halbraum (7), von welchem wir aus-
gingen.

Das Verfahren versagt jedoch, wenn S, keine extreme Stiitze besitzt.
In diesem Fall ist aber nach dem fiir » — 1 Dimensionen als giiltig vor-
ausgesetzten Hauptsatz jeder Punkt in der Ebene R,_, darstellbar durch
S, folglich auch durch (8+, e). Indem man ein nicht-negatives Multiplum
von e addiert, erkennt man, dafl in der gleichen Weise alle Punkte des
abgewandten Halbraums (A1z) < 0 darstellbar sind. Wenn es iiberhaupt
einen Punkt ¢’ in 8 mit der Koordinate x, > 0 gibt, so erhélt man durch
Addition positiver Multipla von e’ alle Punkte des Halbraums (Ax) = 0
dargestellt durch (S+, e, ¢’). Ein solches ¢’ muf} existieren; denn sonst
wiirden alle Punkte von S der Ungleichung z, < 0 geniigen, und als-
dann wire — x, = — (Az) eine extreme Stiitze entgegen der An-
nahme b).

Zusatz. Der Fall b), tn welchem keine extremen Stiilzen vorhanden
sind, kann dadurch gekennzeichnet werden, daf die Null darstellbar ist:
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0=A4a 4 ub 4 --- mit Koeffizienten A, pu,---, die alle wirklich positiv
(nicht Null) sind. Im Falle b) ist ndmlich jeder Punkt darstellbar;
indem man zum Zentrum e=a-+|b-+ --- eine Darstellung von —e
addiert, erhélt man eine Darstellung der 0 mit lauter Koeffizienten = 1.
Das Umgekehrte ist trivial.

Satz 2 (Verschirfung des Hauptsatzes). Ein allen extremen Stiltzen an-
gehoriger Punkt lift sich aus hochstens n Punkten von S positiv-linear
kombinieren.

Beim Bewetse dieser Verscharfung mufl man im Falle a) so vorgehen,
daB man fiir e nicht den Schwerpunkt, sondern einen geeigneten der
Punkte von S selbst wahlt. Setzt man die Giiltigkeit von Satz 2 fiir
n — 1 Dimensionen voraus, so kann man alsdann ¢ durch héchstens
n—1in R, gelegene Punkte von S darstellen, p also durch héchstens
n Punkte von §.

Im Falle b) erkennt man durch den gleichen InduktionsschluB, daf die
Punkte in (Ax) < 0 durch hochstens n Punkte von S darstellbar sind,
namlich durch n — 1 Punkte von S* und e. Fiir die Punkte von (Az) = 0
benotigt man aber auflerdem e’, so dafl sich hier zundchst nur die Dar-
stellbarkeit durch hochstens n 4 1 Punkte ergibt, namlich durch » — 1
Punkte von S+, e und e’.

Wir betrachten jetzt dieses aus n 4+ 1 Punkten bestehende Punkt-
system 8’ und wenden die Uberlegung von Fall b) auf 8’ statt auf S an.
Alle Punkte von 8’ auBler e haben die letzte Koordinate z, = 0; durch
ihre Projektion von e aus auf die Ebene x, = 0 entsteht das n-gliedrige
Punktsystem §,’. Alle Punkte von 8’ auler ¢’ haben die letzte Koordinate
x, < 0. Besitzt 8" eine extreme Stiitze, so erhalt man nach dem ersten
Teile des Falles b) sogleich eine extreme Stiitze an ganz §’, und dann
weill man nach Fall a), dafl jeder Punkt, der durch die n + 1 Punkte &’
darstellbar ist, auch durch » unter ihnen darstellbar ist. Besitzt aber S’
keine extreme Stiitze, so kann man jeden Punkt mit z, < 0 durch »
Punkte von 8’ darstellen; ein Punkt p mit x, = 0 aber 148t sich positiv-
linear kombinieren aus n — 1 Punkten b, von S,” und e’. Soweit die
Wiederholung. Jetzt kommt das Neue: entweder gehoren alle b, zu 8';
dann ist p dargestellt durch n Punkte von §’. Oder von den Punkten b,
gehoren nur die ersten n — 2 zu 8’, wahrend der letzte die in z, = 0
liegende positiv-lineare Kombination von ¢’ und e ist; dann aber ist p
dargestellt durch (b,, *-, b,—,, €', €).

[Diesen krummen Umweg iiber §’ im Falle b) habe ich nicht aus-
schalten konnen. ]
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§ 3. Folgerungen aus dem Hauptsatz ;
Systeme linearer homogener Ungleichungen

Den Punkten a, b, --- des Systems S ordnen wir zu das System S
linearer Ungleichungen:

(88) = ay8 + - + 3,£, 20,
(9) S:{ (08 =by&y+ - + b, 20,

& ist dann und nur dann eine Stiitze an das Punktsystem S, wenn & den
Ungleichungen S geniigt, oder, wie wir sagen wollen: wenn & zu (S)
gehort. Hier figuriert (S) als Bezeichnung fiir den durch die Ungleichungen
definierten Teil des dualen Raumes P,. Wir nannten S nicht-ausgeartet,
falls es kein & auller £ = 0 gibt, fiir welches in allen Ungleichungen S das
Gleichheitszeichen eintritt. Wir teilen den Hauptsatz in zwei Teile:
erstens behaupten wir, dafl jeder Punkt p, der allen Stiitzen angehért,
durch § darstellbar ist. Diese Bedingung ist trivialerweise nicht nur hin-
reichend, sondern auch notwendig; denn ein durch S darstellbarer Punkt
gehort offenbar allen Stiitzen von S an. Im Hinblick hierauf kann dann
zweitens hinzugefiigt werden, dafl ein Punkt notwendig allen Stiitzen
angehort, wenn er den extremen Stiitzen angehort. Fiir das System S
linearer Ungleichungen ergeben sich so die folgenden Aussagen:

Satz 3. Durch endlich viele Ungleichungen S, (9), sei das Gebiet (S) des
dualen Raumes abgegrenzt. Ist (p&) = 0 in ganz (S), so lift sich die Form
(p&) der Variablen & positiv-linear kombinieren aus den Formen (ag),
(bé&), -+ des Systems S.

Satz 4. £ heifit eine extreme Losung des Systems S, wenn tn n — 1 linear
unabhingigen unter diesen Ungleichungen das Gleichheitszeichen eintriit.
Ist S micht-ausgeartet, so gilt (p&) = 0 fir alle & in (8), falls es fir die
extremen & gilt.

Der Hauptsatz war bewiesen unter der Voraussetzung, dafl S nicht-
ausgeartet ist. Aber die Teilaussage Satz 3 ist davon unabhéingig; man
operiere niamlich in dem linearen Unterraum R,, von niederster Dimen-
sionszahl m, der alle Punkte a, b, --- des Systems § enthilt. In der Teil-
aussage Satz 4 aber kommt die Dimensionszahl » explizite vor; darum
ist hier die Voraussetzung des Nicht-entartet-seins wesentlich.
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Herstellung der Dualitiit.
I. Es gibt nur eine endliche Anzahl extremer Losungen & der Un-
gleichungen § — wenn wir, was natiirlich ist,

(01 =5 06,) (> 0)

als die gleiche Losung wie (&;, -+, &,) betrachten. Wie friiher mogen diese
extremen Losungen mit a, 8, --- bezeichnet werden. Dafl der Punkt x den
extremen Stiitzen angehort, driickt sich in dem zu § ,,dualen* System
von Ungleichungen aus:

J (ax) =a,2; + - +a,2, =0,
(10) 2 ‘ (Bx) = pr2y + - + Bax, 20,

Man merke sich, daf3 die Ungleichungen bestehen

(aa/) = 0, (ab) =0, -,
(Ba) =0, (Bb) =0,

Darum kénnen wir Satz 4 so aussprechen:
Satz 5. Liegt p in (X) und 7t in (8), so ist (pz) = 0.

Und genauer:

Satz 6. p gehort zu (X) dann und nur dann, wenn (p&) = 0 st fir
alle & in (8).

Daraus folgt der ,,duale

Satz 7. 7 gehort zu (8) dann und nur dann, wenn (xm) = 0 fir alle
x wm ().

Denn die Ungleichung (z z) = 0 fiir ein 7 in (S) und ein z in (X) ist
durch Satz 5 gewihrleistet. Erfiillt umgekehrt ein festes = die Ungleichung
(x7) = 0 fiir alle x in (X), so gilt insbesondere (ax) = 0, (bn) = O, ---,
d. h. & gehort zu (9). '

Es war nicht ganz zutreffend, wenn wir die Sétze 6 und 7 als zu-
einander dual bezeichneten. Denn wohl sind a, f§, --- die extremen
Losungen des Ungleichungssystemes S, aber es sind nicht a, b, --- die
extremen Losungen des Systems 2. Um die volle Dualitat herzustellen,

297



miissen wir beweisen, dal die extremen Losungen des Systems X unter
den Punkten a, b, --- enthalten sind. Dafiir bediirfen wir

II. der Kennzeichnung der extremen Punkte a,f, -+ innerhalb (8):

Satz 8. 7 ist in (S) extrem dann und nur dann, wenn die einzige Zer-
legung von 7= wn zu (S) gehorige Summanden & + £" + --- die triviale 1st,
ber welcher &', &, --- auf demselben Strahl wie x liegen :

Ei=0'mp E=0"my (00 20,0" 20,5 ¢ "+ =1).

Beweis. a) z sei eine der extremen Losungen a, f, ---. Es gibt n — 1
unabhingige Punkte a, b, --- in 8, fiir welche die Gleichungen gelten:

(amw) =0, (bm) =0, ---
In
(am) = (a&’) + (a&") + -

sind aber die einzelnen Summanden = 0; darum folgt aus (ax) = 0:

(ag’)=0, (a&")=0,-;
ebenso

(b&') =0, (b&") =0,
usw. Die » — 1 linearen unabhéngigen Gleichungen
(ag’)=0, (b&)=0,-

haben bis auf einen Proportionalitatsfaktor nur die eine Losung 7; mit-
hin gilt
Ei=0'm & =0"m

Fiir wenigstens einen Punkt ¢ des Systems § besteht die Ungleichung
(me)> 0. Da (&'c) =0, ---, ergeben sich die Faktoren g’, ¢, - als
nicht-negativ.

b) Erlaubt =z in (S) nur die triviale Zerlegung, so ist z eine der extremen
Losungen a, 8, ---. Man wende namlich Satz 3 nicht an auf das System
der Ungleichungen S, sondern auf X; so erkennt man, dafl eine Dar-
stellung moglich ist:

ni’——“-lai-l-mﬂ,--l—“'; lgO, mgo, °cc.
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In unserem Falle miissen nach Voraussetzung Gleichungen gelten
la; = o, mf;=omy, - (20,620, e+o+ - =1).

Einer der Faktoren g, o, -+ ist von 0 verschieden, z. B. ¢, und dann
haben wir, wie behauptet, n, = -—;—— ca;.

III. Um das System X von Ungleichungen dual zu dem System S be-
handeln zu koénnen, miissen wir wissen, dafl jenes wie dieses nicht-aus-
geartet ist. Wir fithren zu diesem Zweck die zusdtzlicke Voraussetzung ein,
daBl (S) einen snneren Punkt enthilt, d.i. einen Punkt &°, der den Un-
gleichungen

(ag% >0, (b&)>0,--
geniigt.

Satz 9. Ist S nicht-ausgeartet und enthdilt (S) einen inneren Punkt, so ist
auch X nicht-ausgeartet.

Es gelte namlich fiir x = p in den samtlichen Ungleichungen X' das
Gleichheitszeichen:
(11) (ap) = 0, (ﬁp) =0, .

Alsdann gehort p sowohl wie — p zu (X), es bestehen die beiden Un-
gleichungen
(pf) =20 und — (pé) =0

und damit die Gleichung (p¢) = 0 fiir alle & in (S). Insbesondere ist
(p&°) = 0. p ist darstellbar durch S:

p;=Aa; + pb,+ 5 A =0, =0,
Darum liefert die Gleichung (p£°) = O:
A@&) +puBé) + .- =0.

Da nach Voraussetzung die einzelnen Faktoren (a£9), (b£°), --- positiv
sind, miissen die nicht-negativen Koeffizienten 4, u, --- sémtlich ver-
schwinden. Das liefert p = 0: die Gleichungen (11) haben also keine
Losung auller p = 0.

Wir fiigen hinzu, dafl unter den Voraussetzungen von Satz 9, die fiir
den Rest dieses Paragraphen beibehalten werden, auch (X)) innere Punkte
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enthilt: das Zentrum a -+ b 4 - von S ist z. B. ein solcher innerer
Punkt.

IV. Die extremen Losungen von X' seien a’, b’, ---.

Satz 10. Der durch die zu X dualen Ungleichungen
8 :(@é =0, ('8 =0, -

definierte Bereich (8') st mit (S) identisch. Die Punkte a’, b’, --- sind eine
Auswahl unter den Punkten a, b, -+ von S.

Der erste Teil der Aussage: (S) = (8’) folgt, wenn man Satz 6 auf 2
statt auf § anwendet und mit Satz 7 vergleicht. Weil a’ zu (X) gehort,
besteht eine Darstellung

a/ = Aa; +pb,+ 5 AZ0,pu =0, -

Weil aber a’ extrem in () ist, folgt daraus mit Hilfe der Kennzeichnung
II. wie im Beweise des Teiles b) von II., daBl a’ (bis auf einen positiven
Proportionalitatsfaktor) mit einem der Punkte a, b, --- identisch sein
mul.

2 war gebildet mit den extremen Losungen a, f, --- von §; umgekehrt
S’ mittels der extremen Loésungen a’, b’, --- von 2. Nun miilte man
wiederum die extremen Losungen von 8’ betrachten: a’, ', ---. Diese
sind aber nicht blof} eine Auswahl unter den a, g, ---, sondern die extremen
Losungen von S’ sind mit den extremen Losungen von S identisch:

Satz 11. Die Systeme von Ungleichungen S’ und X' sind wechselseitig
zueinander dual.

Denn in II. sind die extremen & gekennzeichnet auf Grund des Be-
reiches (S) aller &; die Bereiche (S) und (S’) sind aber identisch. Das
Resultat mag man fiir die konvexen Pyramiden so aussprechen:

Satz 12. Durch eine extreme Kante gehen n — 1 unabhingige Stiitz-
ebenen, in einer extremen Stiitzebene liegen n — 1 unabhdngige extreme
Kanten.

Es ist danach gleichgiiltig, ob man bei der Definition einer konvexen
Pyramide von endlichvielen Punkten a, b, --- ausgeht, wie oben geschah,
oder von endlichvielen Stiitzen a, 8, - .
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V. Eine Konsequenz der vollstandigen Dualisierung ist der

Satz 13. Der Durchschnitt zweier konvexen Pyramiden ist wiederum eine
konvexe Pyramide.

Man kennzeichne namlich jede der beiden gegebenen Pyramiden
durch ihre endlichvielen extremen Stiitzungleichungen und vereinige
dann beide Systeme von Stiitzungleichungen in ein einziges: durch
dieses System wird wiederum eine konvexe Pyramide erkliart. Wollen wir
sie aus endlichvielen Punkten a, b, --- entspringen lassen, so miissen
wir fir a, b, --- die extremen Losungen des vereinigten Systems von
Stiitzungleichungen wahlen. —

Nach dem Beweis des Hauptsatzes sind alle diese Folgerungen trivial.
Der Dienst, den unsere ausfiihrliche Darlegung leisten soll, ist lediglich
die Aufzihlung dieser Konsequenzen in der richtigen Reihenfolge, in der
sie auseinander logisch hervorgehen.

§ 4. Konvexe Polyeder, inhomogene lineare Ungleichungen

I. Konvexes Polyeder als Hiille exnes endlichen Punktsystems.

Aus dem homogenen R, entsteht der inhomogene (» — 1)-dimensionale
R,_,, indem man x, = — 1 setzt. Ist S ein nicht-ausgeartetes System
von endlichvielen Punkten a, b, -+ in B,_, (a,=b, = - = — 1), so ist
jetzt der Fall b) des Hauptsatzes unmoglich, in welchem jeder Punkt
darstellbar ist. Denn fiir jeden darstellbaren Punkt x :

(12) €, =Aa, + ub, + -+ A =0, u=0,:; =1, - n)

gilt nunmehr notwendig — x, = 0. Darum ist stets eine extreme Stiitze
vorhanden. Will man auch fiir die dargestellten Punkte die Normierung
x, = — 1 einhalten, so miissen die nicht-negativen Parameter 4, u, -
in der Darstellung (12) der Bedingung A + x + --- = 1 unterworfen
werden. Die durch S darstellbaren Punkte im E,_, bilden die konvexe
Hiille H von 8, das aus S entspringende ,,konvexe Polyeder. Es kann
durch die endlich vielen extremen Stiitzungleichungen gekennzeichnet
werden.

Die zusitzliche Voraussetzung (siehe III. in § 3), dal auch das duale
System nicht-ausgeartet sei, ist nach Satz 9 hier erfiillt, weil die samt-
lichen Punkte « = a, b, --- von S der Ungleichung geniigen:

O 2+ -+0-2,,—1-2,>0.
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Sind @y, ‘-, a,—; beliebig vorgegebene Zahlen, so bilde man das
min ((11 Xy + - + ay— xn—l) = Ay,

worin ¥ = («,, ***, %,—,) die endlichvielen Punkte von S durchlauft;

(13) 0%+ 0y Xy —a, =0
ist dann eine Stiitze an S. Es gibt also Stiitzen an S zu beliebig vorgege-
benen a,, ***, a,—;, und zwar solche, deren Ebene durch einen Punkt des
Systems S hindurchgeht.

Fiir eine extreme Stiitze (13) von 8 ist niemals (a,, -*+, a,—;) = (0, **+, 0);
denn ihre Ebene enthalt wenigstens einen Punkt von §, so dal das Ver-
schwinden von a,, -+, a,_; auch das von «a, nach sich zoge.

Nennen wir die extremen Stiitzen von S Seitenflichen, die extremen
Losungen des dualen Systems 2’ Ecken von H, so gilt der Satz: Durch
jede Ecke des konvexen Polyeders H gehen wenigstens n — 1 unabhingige
Seutenflichen hindurch, vn jeder Seitenfliche liegen mindestens n — 1
unabhingige Ecken.

II. Konvexes Polyeder als Durchschnitt endlichvieler Halbrdume.
Endlichviele Ungleichungen
(ax)=ay2y + +a,y2,3—0a, =0, (fz) =0, -
definieren ein Teilgebiet H des Raumes R, ;. Wenn n: (zz) = 0 eine
Stiitze an H ist, muBl nach dem Hauptsatz = sich darstellen lassen durch
die Punkte a, §, --- des Systems X. Nach dem Resultat von I. kann H ein

konvexes Polyeder nur dann sein, wenn im homogenen R,_, mittels der
endlichvielen Punkte

(14) a = (ag, **, an—l)’ .BI = (131’ '"a lgn—-l)’

jeder Punkt n’ = (m,, **, ®,—,;) darstellbar ist, wenn also im R, ; das
Punktsystem (14), 2, keine extreme Stiitze besitzt [Fall b) des Haupt-
satzes ]. AuBerdem mufl H einen inneren Punkt besitzen, d. h. es mul}
ein Punkt ¢ im R,_, existieren von der Art, da8

(15) (ac)> 0, (Be)> 0, ---
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gilt. Dies ist aber auch hinreichend. Zum Beweise nehme man den Punkt
¢ als Nullpunkt; dann hat man

aﬂ<0, ‘Bn<0’ ses,

Zunichst folgt jetzt, daBl 2’ nicht-ausgeartet ist, d. h. daB es keine
Zahlen (d,, -**,d, 4, d,) # (0, -*-, 0,0) geben kann, fiir welche die samt-
lichen Gleichungen

ald1+"'+andn’——0, ﬂld1+"'+ﬂndn=0,”'

bestehen. Indem man 0 durch die Punkte (14) im R,_;, darstellt und
den ,Zusatz’‘ zum Hauptsatz beachtet, wiirde daraus namlich eine
Gleichung folgen: =, d, = 0 mit negativem Koeffizienten n,. Aber nach-
dem man in ihnen d, = 0 gesetzt hat, widersprechen die angenommenen
Gleichungen dem Umstand, dal durch 2" alle Punkte (s, -, #,_,) dar-
stellbar sind und nicht nur solche, welche der Gleichung

mdy+ o+ WAy =0

geniigen. Das zu X duale System § ist nicht-ausgeartet, wie aus
Satz 9 zufolge der Voraussetzung (15) hervorgeht. Wir miissen noch
zeigen, daB S aus Punkten im E,_, besteht.

Fiir eine Losung « der Ungleichungen

(16) g+t a2, 20, o+ o+ 6,2, 20,

ist notwendig z, < 0. Denn sie ergeben nach dem gleichen Schluf}, der
eben auf die entsprechenden Gleichungen angewendet wurde, =, x, = 0.
Ist die Losung x extrem, so ist z,<<0; denn im Falle x, = 0 hitte man
entgegen der Voraussetzung eine extreme Losung der Ungleichungen

%+ a2, =20, fa4 B2 20,

im homogenen R,_;. Mithin kann fiir eine extreme Losung x die Koordi-
nate x, = — 1 gewahlt werden, so dafl wir von den homogenen (16) auf
die inhomogenen Ungleichungen (13) zuriickfallen: ihre extremen
Losungen bilden ein endliches Punktsystem § im inhomogenen R,_,.
Und jeder Punkt «, der den siamtlichen Ungleichungen (13) geniigt, 148t
sich durch S darstellen; oder H ist identisch mit der konvexen Hiille
von S. Die Punkte von S sind die Eckpunkte dieses konvexen Polyeders.
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I1I. Normalenkegel.

Der Punkt (ay, **+, a@,—;) im homogenen E,_, heilt Normale zum Eck-
punkt a eines gegebenen konvexen Polyeders, wenn

@ &+ A Gy By =N (@) ) + 0+ Uy Byy)
oder

(17) a (T —ay) + g (X —a,4) =0

ist; hier durchlauft x die simtlichen Eckpunkte a, b, ¢, --- des Polyeders.
Die extremen Losungen des endlichen Systems von Ungleichungen (17)
werden genau geliefert durch die extremen Stiitzebenen des Polyeders,
welche durch den Eckpunkt a gehen. Da es n — 1 unabhéngige solche
Ebenen gibt, bilden die extremen Lésungen von (17) im R, ; ein nicht-
ausgeartetes Punktsystem. Durch sie laf3t sich jede Normale mittels
positiver linearer Kombination darstellen: der ,,Normalenkegel ist eine
nicht-ausgeartete konvexe Pyramide im R,_,.

Jeder Punkt (a,, -*+, a,—,) gehort dem Normalenkegel wenigstens eines
Eckpunktes an; denn wenn « die Ecken a, b, ¢, --- durchlauft, so wird das
Minimum von o, %, + *** + a, #,, fir einen dieser Punkte ange-
nommen. Dabei sind die Normalenkegel der verschiedenen Ecken in
ihren ¢nneren Punkten durchweg verschieden. (a,, ***, a,—;) ist ndmlich ein
innerer Punkt des Normalenkegels zu a, wenn in allen Ungleichungen
(17) fiir x = b, ¢, --+ das Zeichen > gilt, also z. B.

o by + - +a 0, 3>+ a8,

Fiir einen dem Normalenkegel von b angehorigen Punkt gilt aber gerade
umgekehrt
o bl + ot a bn—l S o+t Oy g

IV. Polyederscharen.

Nach Minkowski kann man aus mehreren konvexen Polyedern H, ---,
H, eine lineare Kombination 4, H, + - + A, H, = H mit positiven
Zahlkoeffizienten A bilden; H ist wiederum ein konvexes Polyeder. Der
Prozel kann in zwei Schritten ausgefiihrt werden: 1. Multiplikation mit
einem positiven Zahlfaktor A, 2. Addition. Ein dritter Schritt ist, daf}
man bei fest gegebener Basis H,, ---, H, die Zahlkoeffizienten 1, im
Bereich 4; > 0 als variabel betrachtet: H durchlauft dann eine Polyeder-
schar.
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Multvplikation des konvexen Polyeders H mit einem positiven Zahl-
faktor A. H sei die konvexe Hiille des endlichen Punktsystems S : a,b,¢c, --
(aus welchem man unbeschadet diejenigen Punkte weglassen kann,
welche keine Ecken sind). Das schon oben benutzte Minimum

min (al 2y + o + Op— mn-—l) =h (a1> B an—l)
z=a,b,ec, ...

heiBt nach Minkowski die Stiitzfunktion.

0T+ Ay Ty —a, =0
ist eine Stiitze an S (oder H) dann und nur dann, wenn

a, é k(al? ) an-1)'

AH entsteht aus H, indem man jeden Punkt z = (2, *--, ®,—,) von H
durch Az = (A#,, -+, Ax,_,) ersetzt. A H ist die konvexe Hiille der Punkte
Aa, Ab, Ac, ---. Dem steht die duale Erklarung gegeniiber: AH ist das
Polyeder mit, der Stiitzfunktion Ak. Die Normalenkegel der verschiedenen
Ecken Aa, Ab, Ac, -+ von AH sind die gleichen wie die Normalenkegel der
entsprechenden Ecken a, b, ¢, -+ von H.

Addition. H mit der Stiitzfunktion % sei die Hiille von S: a, b, c, -,
H’ mit der Stiitzfunktion 2’ die Hiille von 8’ : a’, b’,¢’, -~. In H + H’
werden alle Punkte von der Form z + a’ aufgenommen, wo x ein be-
liebiger Punkt von H, x’ ein beliebiger Punkt von H’ ist. Diese trans-
finite kann sofort durch die folgende finite Konstruktion ersetzt werden:
aus jeder Kombination (a, a") eines Punktes a von S und eines Punktes
a’ von 8’ bilde man a + a’; so entsteht ein Punktsystem § 4 8’. Das
Polyeder H + H’ ist die Hiille von § 4 §’. In der Tat, jede positive
lineare Kombination

Zu@a+a')=2ua+2ua’ (u=0, 2u=1)

ist, wie die rechte Seite zeigt, die Summe eines Punktes x von H und
eines Punktes 2’ von H’. Gehort umgekehrt z zu H: x = Xua, und a’
zuH 2’ =2u'a (Ww=0,u =0; Zu=1,2u" = 1), soist

x+x =Zuu (a4 a’).

Wiederum steht dem die duale Auffassung gegeniiber: H 4 H’ ist das
konvexe Polyeder mit der Stiitzfunktion # + A’. In der Tat folgt aus
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h(a)= min. (ay 2y + *** + @, Zpy), A’ (a) = min. (e, 2" + " + a, 1)
z=a, b,¢, ... o =a,b,¢ ..

die Beziehung
h(a) + &' (a) = min. {a; (2, + %;") + =* + @4 (%,y + x;a—1)}-

z =a,b,c, ...

z’'=a’,b',c’,...
Wie man daraus die endlichvielen extremen Stiitzungleichungen ausliest,
welche zur Abgrenzung von H + H’ geniigen, wissen wir aus der allge-
meinen Theorie.

AufschluBreicher ist aber der Durchgang durch die Polarfigur. Der
homogene R,_, ist einerseits in die Normalenkegel von H, anderseits in
diejenigen von H’ eingeteilt. Auf Grund des Satzes 13 ergibt die Uber-
lagerung dieser beiden Einteilungen eine neue Einteilung von R, ; in
konvexe Pyramiden: das ist die Normalenfigur von H 4+ H’. Die Kom-
bination einer Ecke a von H und einer Ecke a’ von H’-gibt namlich nur
dann AnlaB zu einer Ecke 2 4+ a’ von H + H’, wenn die Normalenkegel
von a in H und von a’ in H’ innere Punkte gemein haben, und der
Durchschnitt ist alsdann der Normalenkegel von a + a” in H + H'.
Die extremen Punkte der Normalenkegel von H + H’ liefern die ,,Nor-
malen (a,, ***, a,—,) der extremen Stiitzen an H + H’.

Auf Grund dieser Bemerkungen iiberblickt man die Verhaltnisse in
einer ,,Schar* konvexer Polyeder wie AH + A’ H’, die man durchlauft,
wenn A und A’ im Bereiche 4> 0, 2’ > 0 frei variieren. Denn die Nor-
malenfigur von H éndert sich durch Multiplikation mit A4 nicht. Infolge-
dessen ergibt sich, dafl die Normalenfigur eines Polyeders der Schar nicht
variiert mit den Werten von 4 und A’, daf3 insbesondere weder die Nor-
malen der extremen Stiitzen von 4 und A’ abhingen, noch diejenigen
Kombinationen (a, a’) einer Ecke a von H und einer Ecke a’ von H’, die
zu einer Ecke Aa + A’a’ von AH + A’ H’ AnlaBl geben. Das kombina-
torische Schema der Ecken und extremen Stiitzebenen, das angibt, wie
die einen sich auf die andern verteilen, ist innerhalb der Schar ebenfalls
konstant.

THE INSTITUTE FOR ADVANCED STUDY,
PRINCETON, NEW JERSEY.

(Eingegaingen den 2. Marz 1935.)
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