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Elementare Théorie der konvexen Polyeder

Von H. Weyl, Princeton, New Jersey

§ 1. Hauptsatz tiber konvexe Pyramiden

Ist S eine beschrànkte abgeschlossene Punktmenge im (n — l)-dimen-
sionalen affinen Raum mit den Koordinaten xv x2, •••, xn_v so kônnen
die Punkte der konvexen Huile von 8 in doppelter Weise gekennzeieh.net
werden: 1. sie sind Schwerjmnkte von Punkten aus 8; 2. sie gehôren allen
,,8tûtzen" von 8 an. Eine Stiitze von 8 ist ein Halbraum

«i #i + — + aw_x xn_1 + a ^ 0,

in dem aile Punkte von S liegen. Der Hauptsatz tiber konvexe Hullen
sagt aus, daB beide Definitionen identisch sind. Dabei làBt sich 1. dahin
versehârfen, daB nur Schwerpunkte aus hôchstens n Punkten von S
zugelassen werden, 2. dahin, daB lediglich die ,,extremen" Stutzen heran-

gezogen werden. Der Beweis dièses Satzes wird naturgemâB mit mengen-
theoretischen Hilfsmitteln erbraeht; die einfachste Anordnung fîndet man
wohl in der Einleitung der Arbeit von Carathéodory ,,Ûber den Varia-
bilitâtsbereich der Fourier'schen Konstanten von positiven harmonischen
Funktionen", Rend. Cire. Mat. Palermo 32. 1911, S. 198—201.

Besteht g nur aus endlichvidenPunkten^soJst, diêJHullejeinkonvexes
Polyeder. Fur diesen Fall mussen sieh die Hauptsâtze auf finite ArtRer-
leiten lassen ; die ubliehe Beweisanordnung leistet dies nieht, weil sie die

Anwendung der mengentheoretisehen SehluBweise auf die nach 1. de-
finierte konvexe Huile mit sich bringt. Es scheint hier eine Lucke in der
Literatur vorzuliegen, die einmal ausgefullt werden sollte; darum ver-
ôffentEche ich dièse kleine Skizze, zu deren Niederschrift ich durch mein
letztesSeminar in Gôfeyjag^ veranlafit wurde, das die
konvexen Kôrper zum Gegenstand hatte. Was wir im Auge haben, kann
auch als eine elementare Théorie endlicher Système linearer Ungleichungen
bezeichnet werden. Man geht zweckmàBig von der homogenen Formu-
lierung aus.

Ein Punkt a in Rn ist eine Reihe von n reellen Zahlen (al9 a2, •••, an).
Zwei von 0 verschiedene Punkte a und b liegen auf demselben Strahl,
wenn die b{ aus den at- durch Multiplikation mit einem gemeinsamen
positiven Proportionalitâtsfaktor hervorgehen; solche Punkte brauchen
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im folgenden nicht unterschieden zu werden. Aile Punkte x, welche einer
Ungleichung
(1) a1x1 + h ana;n â 0

genugen, bilden einen Halbraum, der gekennzeichnet ist durch den
,,Punkt" a (ax, •••, an) ^ 0 im dualen Raum Pn. Wiederum andert
sich nichts, wenn aile at mit einem gemeinsamen positiven Faktor
multipliziert werden.

Gegeben sei ein endliches System S von Punkten a. Es soll nicht-
ausgeartet sem, d h. die Punkte a sollen nicht aile in einer und derselben
Ebene liegen oder nicht aile einer linearen Gleichung

(2) a1x1+ - + awa;w O [(av -, aj # (0, -,0)]
genugen. (1) ist Stutze an S, wenn aile Punkte x des Systems S jene
Ungleichung erfullen. Es ist eine extrême Stutze, wenn fur n — 1 linear
unabhangige Punkte x von S darin das Gleichheitszeichen gilt. Es exi-
stieren nur endlich viele extrême Stiltzen an S, man findet sie, indem man
unter den Punkten a von S auf aile Weisen n — 1 unabhangige auswahlt,
durch sie die eindeutig bestimmte Ebene (2) legt und die beiden zu-
gehorigen Halbraume

± («i*i+ — + «„**) âO

daraufhin pruft, ob sie Stutzen sind.

Satz 1 (Hauptsatz). Gegeben ein endliches nicht-ausgeartetes Punkt-
system S. Ein Punkt x, fiir wdchen aile extremen Stiltzungsgleichungen zu
S erfiillt sind, la/it sich linear-positiv aus den Punkten a,b, ••• des Systems
S kombinieren •

(3) x% Xat + pbt+ ••• [U0,^0, •••].

Die samtlichen Punkte x, welche den extremen Stutzen gemeinsam
angehoren, bilden eine Figur, die konvexe Pyramide heiBen môge. Ein
Punkt x, der aus den Punkten a, 6, ••• des Systems 8 durch positive
Kombination (3) gewonnen werden kann, heiBe kurz ,,darstellbar
durch 8". Im inhomogenen Raum existiert wenigstens eine extrême
Stutze: dies ist ein nicht-triviales Teilresultat des Hauptsatzes. In dem

jetzt in Frage stehenden homogenen Raum aber kann es selbstverstând-
lich vorkommen, daB S uberhaupt keine extrême Stutze besitzt; dann
sagt der Hauptsatz aus, daB jeder Punkt durch S darstellbar ist. Im
Beweise muB dieser Fall besonders behandelt werden.
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§ 2. Beweis des Hauptsatzes

a) Erster Fall : es sind extrême Stûtzen vorhanden.

a, /?, ••• seien die extremen Stutzen. Fur das ,,Zentrum"

e a + b + •••

von S gelten dann die Ungleichungen

(ae) a1e1-\ \-anen>0, (0e) >O, -.
x p sei der allen extremen Stûtzen angehôrige Punkt, fur welchen
die Darstellbarkeit bewiesen werden soll :

(ap) ^0, (pp) ^0, •••.

Wir bilden q — p— Ae. Die extremen Stûtzungleichungen bleiben fur
q erfullt, Solange

(ap) — X(ae) ^ 0, (Pp) — A(j8c) ^ 0, —

ist. Wir wâhlen also fur X die kleinste unter den Zahlen

(4) (ap)l(ae), (Pp) I (Pe),-

Es sei z. B. A (ap) / (ae). Wenn q} das auf einer extremen Stûtzebene

liegt: (aq) 0, darstellbar ist, so auch p.
Fur spàtere Zwecke ist es gut, diesen ersten Beweisschritt ein wenig zu

modifizieren. Man nehme nâmlich fur e nicht das Zentrum von S, sondern
einen geeigneten der Punkte a, b, ••• selbst. p sei eine der extremen
Stutzen. Nicht aile Punkte x a, b, • • • des Systems 8 erfûllen die
Gleichung (px) 0, es sei etwa (Pa) > 0. Ich wâhle dann e a. Die
extremen Stutzen zerfallen in zwei Klassen: fur diejenigen der ersten
Klasse a gilt (ae) > 0, fur die der zweiten Klasse a0 aber die Gleiehung
(aoe) 0. Die erste Klasse ist nicht leer, weil das /S, von dem wir
ausgingen, dazu gehôrt. A werde als das Minimum unter den Zahlen
(4) bestimmt, in denen a, p, ••• die sàmtlichen Stutzen der ersten Klasse
bedeuten. Wiederum bilden wir q p—Ae. Das Wesentliche ist, daB q
allen extremen Stùtzungsgleichungen genûgt, aber wenigstens einer
Stijtzgleichung : (aq) 0.
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Man kann annehmen, daB die Gleichung (ax) 0 die Gestalt hat:

xn 0 (a± ••• an_! 0, an= 1).

q liegt in der dureh dièse Gleichung gekennzeichneten Stiitzebene
Rn-X mit den Koordinaten (xv •••, x^^). Der Beweis des Hauptsatzes soll
durch SchluB von n — 1 auf n erbraeht werden, indem man annimmt,
daB er bereits fur den eben eingefiihrten Rn_1 gilt. Aile Punkte x von S

genûgen der Ungleichung xn ^ 0. In So vereinigen wir diejenigen unter
diesen Punkten, fur welche xn 0 ist, in 8' die ûbrigen. Wir wissen, daB

80 n — 1 linear unabhângige Punkte enthâlt, da ja xn ^ 0 eine extrême
Stûtze war. Wir argumentieren nunmehr im Raume Rn-X fur das nicht-
ausgeartete Punktsystem So. Es sei

irgend eine extrême Stûtze an dasselbe. Ich behaupte, daji q dièse

Ungleichung erfilllt. Um das einzusehen, bilde ich die Ungleichung

(6) plXl+...+ p^ Xn_x — flXn^0.
Ist sie fur aile Punkte von 8/ erfullt, so gilt sie fur aile Punkte von 8.
Ich nehme also fur /u das Minimum von

wo x die endlich vielen Punkte von #' durchlâuft; das Minimum werde

angenommen fur x a. Die Ungleichung (6) ist dann eine Stûtze an S;
und zwar eine extrême Stûtze. Denn es gilt das Gleichheitszeichen fur
n — 2 unabhângige Punkte von 80 und fur den (nicht in J2n_1 gelegenen)
Punkt a von 8'. Also genûgt q in der Tat der Ungleichung (6) und damit
(5). Folglich ist q nach dem Hauptsatz in i?n_x darstellbar durch 8Oi mit-
hin p darstellbar durch S. — Es ist bei diesem Gedankengang gleich-
gûltig, ob das (n—l)-dimensionale Punktsystem 80 extrême Stûtzen
besitzt oder nicht.

b) Zweiter Fail : es sind Jceine extremen Stûtzen vorhanden.

Wir gehen aus von irgend einem Halbraum X :

(7) (Xx) ^ 0,

dessen Ebene {Xx) 0 durch n— 1 linear unabhângige Punkte von 8
hindurchgeht. Nach Voraussetzung gibt es wenigstens einen Punkt
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x e von 8 auf der abgewandten Seite: (Xé) < 0. Wir geben eine
Konstruktion an, welche den Halbraum X durch einen andern ersetzt, der
mindestens einen Punkt von S mehr enthâlt. Durch Fortsetzung dièses
Verfahrens landen wir dann wiederum beim Fall a).

Man nehme das Koordinatensystem so an, dafi (Xx) xn ist und e die
Koordinaten (0, 0, •••, 0, — 1) hat. Diejenigen Punkte von 8, deren
letzte Koordinate xn ^ 0 ist, bilden ein Teilsystem 8+ von S. Wir proji-
zieren die Punkte von S+ von e aus auf die Trennungsebene (Xx) 0;
dadurch entsteht aus S+ ein gewisses Punktsystem SQ in dem Rn_t : xn 0.

Und zwar geht durch die Projektion

a (at> •••, an-v an) mit an ^ 0

ûber in
à= (%, •••,an-1) in lî^.

a ist darstellbar durch 8, genauer durch ($+, e) : a a -f- an • e. Ist

(8) (a ») % ^ H (- an_x a?B_i ^ 0

eine extrême Stiitze an 80, so genûgen dieser Ungleichung aile Punkte
von 8+ und auBerdem c. Die Ebene (ax) 0 geht durch w— 1 unab-
hângige Punkte von S hindurch, nâmlich durch n — 2 solche Punkte,
deren Projektionen a unabhàngig sind in JRn_1 und den nicht in Rn_1

liegenden Punkt e. Der Halbraum (8) enthâlt also wirklich wenigstens
einen Punkt von 8 mehr als der Halbraum (7), von welchem wir aus-

gingen.
Das Verfahren versagt jedoch, wenn 80 keine extrême Stûtze besitzt.

In diesem Fall ist aber nach dem fur n — 1 Dimensionen als giiltig vor-
ausgesetzten Hauptsatz jeder Punkt in der Ebene Rn-x darstellbar durch
#0, folglich auch durch (8+, e). Indem man ein nicht-negatives Multiplum
von e addiert, erkennt man, daB in der gleichen Weise aile Punkte des

abgewandten Halbraums (Xx) fg 0 darstellbar sind. Wenn es ûberhaupt
einen Punkt e' in S mit der Koordinate xn > 0 gibt, so erhàlt man durch
Addition positiver Multipla von e' aile Punkte des Halbraums (Xx) ^ 0

dargesteUt durch (8+, e, e'). Ein solches e' muB existieren; denn sonst
wïirden aile Punkte von S der Ungleichung xn <£ 0 genûgen, und als-

dann wàre —xn — (Xx) eine extrême Stûtze entgegen der An-
nahme b).

Zusatz. Der Fall b), in welchem keine extremen 8tutzen vorhanden
sind, kann dadurch gekennzeichnet werden, dafi die Null darstellhar ist :
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0 ==Xa + /ib + • mit Koeffizienten A, /u, • die aKe wirklich positiv
(nicht Null) sind. Im Falle b) ist namlich jeder Punkt darstellbar ;

indem man zum Zentrum e=a + 6-f-- eine Darstellung von —e
addiert, erhâlt man eine Darstellung der 0 mit lauter Koeffizienten J> 1.

Das Umgekehrte ist trivial.

Satz 2 (Verscharfung des Hauptsatzes). Ein allen extremen Stiltzen an-
gehoriger Punkt lafit sich aus hôchstens n Punkten von S positiv-linear
kombinieren.

Beim Beweise dieser Verscharfung muB man im Falle a) so vorgehen,
daB man fur e nicht den Schwerpunkt, sondern einen geeigneten der
Punkte von S selbst wahlt. Setzt man die Gultigkeit von Satz 2 fur
n — 1 Dimensionen voraus, so kann man alsdann q durch hôchstens
n — 1 in Rn-X gelegene Punkte von S darstellen, p also durch hôchstens
n Punkte von S.

Im Falle b) erkennt man durch den gleichen InduktionsschluB, daB die
Punkte in (Xx) 5^0 durch hôchstens n Punkte von S darstellbar sind,
namlich durch n — 1 Punkte von 8+ und e. Pur die Punkte von (kx) ^ 0

benotigt man aber auBerdem e', so daB sich hier zunachst nur die Dar-
stellbarkeit durch hôchstens n + 1 Punkte ergibt, namlich durch n — 1

Punkte von $+, e und e'.

Wir betrachten jetzt dièses aus n + 1 Punkten bestehende Punkt-
system 8' und wenden die Ûberlegung von Fall b) auf S' statt auf 8 an.
Aile Punkte von S' auBer e haben die letzte Koordinate xn ^ 0; durch
ihre Projektion von e aus auf die Ebene xn 0 entsteht das w-gliedrige
Punktsystem 80'. Aile Punkte von 8' auBer e' haben die letzte Koordinate
xn fg 0. Besitzt Sq eine extrême Stùtze, so erhalt man nach dem ersten
Teile des Falles b) sogleich eine extrême Stutze an ganz 8', und dann
weiB man nach Fall a), daB jeder Punkt, der durch die n + 1 Punkte S'
darstellbar ist, auch durch n unter ihnen darstellbar ist. Besitzt aber So'
keine extrême Stûtze, so kann man jeden Punkt mit xn ^ 0 durch n
Punkte von 8' darstellen; ein Punkt p mit xn ^ 0 aber laBt sich positiv-
linear kombinieren aus n— 1 Punkten bt von SQ' und e'. Soweit die

Wiederholung. Jetzt kommt das Neue: entweder gehoren aile bt zu S' ;

dann ist p dargestellt durch n Punkte von 8'. Oder von den Punkten bt

gehoren nur die ersten n — 2 zu S', wahrend der letzte die in xn 0

liegende positiv-lineare Kombination von e' und e ist; dann aber ist p
dargestellt durch (6l3 •••, 6n_2, e',e).

[Diesen krummen Umweg uber 81 im Falle b) habe ich nicht aus-
schalten kônnen. ]
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§ 3. Folgerungen ans dem Hauptsatz ;

Système linearer homogener Ungleichungen

Den Punkten a, b, • • • des Systems 8 ordnen wir zu das System 8
linearer Ungleichungen :

(af) =axi
(9) S:

| ist dann und nur dann eine Stiitze an das Punktsystem S, wenn | den
Ungleichungen S geniigt, oder, wie wir sagen wollen: wenn | zu (8)
gehôrt. Hier figuriert (S) als Bezeichnung fur den durch die Ungleichungen
definierten Teil des dualen Raumes Pn. Wir nannten S nicht-ausgeartet,
fails es kein f auBer 1 0 gibt, fur welches in allen Ungleichungen 8 das
Gleichheitszeichen eintritt. Wir teilen den Hauptsatz in zwei Teile:
erstens behaupten wir, dafi jeder Punkt p, der allen Stiitzen angehôrt,
durch S darstellbar ist. Dièse Bedingung ist trivialerweise nicht nur hin-
reichend, sondern auch notwendig ; denn ein durch 8 darstellbarer Punkt
gehôrt offenbar allen Stiitzen von 8 an. Im Hinblick hierauf kann dann
zweitens hinzugefligt werden, da8 ein Punkt notwendig allen Stiitzen
angehôrt, wenn er den extremen Stiitzen angehôrt. Fur das System S
linearer Ungleichungen ergeben sich so die folgenden Aussagen:

Satz 3. Durch endlich viele Ungleichungen 8, (9), sei das Gebiet (S) des

dualen Raumes abgegrenzt. Ist (p£) 2^ 0 in ganz (8), so lafit sich die Form
(pi) der Variablen | positiv-linear hombinieren aus den Formen (af),
(&!), '" àe8 Systems S.

Satz 4. | heiflt eine extrême Lôsung des Systems 8, wenn inn — 1 linear
unabhdngigen unter diesen Ungleichungen das Gleichheitszeichen eintritt.
Ist 8 nicht-ausgeartet, so gilt (pi) ^ 0 fur aile | in (8), falls es fur die
extremen £ gilt.

Der Hauptsatz war bewiesen unter der Voraussetzung, daB S nicht-
ausgeartet ist. Aber die Teilaussage Satz 3 ist davon unabhângig; man
operiere nâmlich in dem linearen Unterraum Rm von niederster Dimen-
sionszahl m, der aile Punkte a, 6, ••• des Systems S enthàlt. In der
Teilaussage Satz 4 aber kommt die Dimensionszahl n explizite vor; darum
ist hier die Voraussetzung des Nicht-entartet-seins wesentlich.
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Herstellung der Dualitdt.
I. Es gibt nur eine endliche Anzahl extremer Lôsungen f der Un-

gleichungen S — wenn wir, was natûrlich ist,

(e^-sef») (e><>)

als die gleiche Lôsung wie (iv ••-, |J betrachten. Wie fruher môgen dièse
extremen Lôsungen mit a, fl, ••• bezeichnet werden. Da8 der Punkt x den
extremen Stûtzen angehôrt, driickt sich in dem zu S ,,dualen" System
von Ungleichungen aus:

| (ax) =a1x1-\ \-anxn ^0,
(10) Zl

Man merke sich, daB die Ungleichungen bestehen

(aa) ^0, (a6) ^ 0, -,
(fia) ^0, (0b) SO, —,

Darum kônnen wir Satz 4 so aussprechen :

Satz ô. Liegt p in (27) und n in (S), so ist (pn) ^ 0.

Und genauer:

Satz 6. p gehôrt zu (Z) dann und nur dann, wenn (pÇ) ^0 ist fur
aile | in (S).

Daraus folgt der ,,duale"

Satz 7. n gehôrt zu (S) dann und nur dann, wenn (xn) ^0 fur aile

x in (Z).
Denn die Ungleichung (xn) à 0 fur ein n in (S) und ein x in (Z) ist

durch Satz 5 gewàhrleistet. Erfullt umgekehrt ein festes n die Ungleichung
(xn) ^ 0 fiir aile x in (Z), so gilt insbesondere {an) à 0, (bn) ^0, —,
d. h. n gehôrt zu (S).

Es war nicht ganz zutrefïend, wenn wir die Sàtze 6 und 7 als zu-
einander dual bezeichneten. Denn wohl sind a, p, ••• die extremen
Lôsungen des Ungleichungssystemes 8, aber es sind nicht a, 6, • • • die

extremen Lôsungen des Systems Z. Um die voile Dualitàt herzustellen,
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mûssen wir beweisen, daB die extremen Lôsungen des Systems 27 unter
den Punkten a, b, ••• enthalten sind. Dafûr bediirfen wir

II. der Kennzeichnung der extremen Punkte a, /5, ••• innerhalb (8)

Satz 8. n ist in (8) extrem dann und nur dann, wenn die einzige Zer-
legung von n in zu (8) gehorige Summanden f + f " + "' die triviale ist,
bei welcher f', £", ••• auf demselben Strahl wie n liegen :

Beweis. a) tt sei eine der extremen Lôsungen a, /?, •••. Es gibt n — 1

unabhângige Punkte a, b, • • • in 8, fur welche die Gleichungen gelten :

(a») 0, (6») 0, -
In

(a») (af)

sind aber die einzelnen Summanden ^ 0; daram folgt aus (an) 0:

ebenso

usw. Die » — 1 linearen unabhângigen Gleichungen

0, (61') 0,-
haben bis auf einen Proportionalitàtsfaktor nur die eine Lôsung n\ mit-
hin gilt

Ç% Q n» s% Q ^v '"-

Fur wenigstens einen Punkt c des Systems 8 besteht die Ungleichung
(7tc)>0. Da (f'cJ^O, •••, ergeben sich die Faktoren q',q"9*" als

nieht-negativ.

b) Erlaubt n in (8) nur die triviale Zerlegung, so ist n eine der extremen
Lôsungen a, /?, •••. Man wende nàmlich Satz 3 nicht an auf das System
der Ungleichungen 8, sondern auf 27; so erkennt man, daB eine Dar-
stellung môglich ist :

nt la{ + mp% + •••; l ^ 0, m ^ 0, —.

293



In unserem Falle mussen nach Voraussetzung Gleichungen gelten

la, gnt, mpt ant, ••• (g ^ 0, a ^ 0, •••; £ + a + — 1).

Einer der Faktoren g, a, ••• ist von 0 verschieden, z. B. g, und dann

haben wir, wie behauptet, 7tt — • at.

III. Um das System E von Ungleichungen dual zu dem System S be-
handeln zu kônnen, mussen wir wissen, daB jenes wie dièses nicht-aus-
geartet ist. Wir fûhren zu diesem Zweck die zusdtzliche Voraussetzung ein,
daB (S) einen inneren Punkt enthâlt, d. i. einen Punkt £°, der den
Ungleichungen

(af°)>o, (6|°)>0,-
genugt.

Satz 9, Ist S nicht-ausgeartet und enthalt (S) einen inneren Punkt, so ist
auch S nicht-ausgeartet.

Es gelte nâmlich fur x p in den sàmtlichen Ungleichungen E das
Gleichheitszeichen :

(11) (ap) 0, (Pp) 0, -.
Alsdann gehôrt p sowohl wie — p zu (E), es bestehen die beiden
Ungleichungen

(pi) ^0 und —(pi) â0

und damit die Gleichung (pi) 0 fur aile | in (S). Insbesondere ist
(p £<>) $ p i8£ darstellbar durch S :

pt U% + fibt + •••; A ^0,/* ^0, •••.

Darum liefert die Gleichung (p f°) 0 :

=0.

Da nach Voraussetzung die einzelnen Faktoren (ai0), (bi°), ••• positiv
sind, mussen die nicht-negativen Koeffizienten X, ju, • • • sâmtlich ver-
schwinden. Das liefert ^=^0: die Gleichungen (11) haben also keine

Lôsung auBer p 0.

Wir fiigen hinzu, daB unter den Voraussetzungen von Satz 9, die fur
den Rest dièses Paragraphen beibehalten werden, auch (E) innere Punkte
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enthalt: das Zentrum a + b + ••• von 8 ist z. B. ein solcher innerer
Punkt.

IV. Die extremen Losungen von Z seien a', 6', •••.

Satz 10. Der durch die zu Z dualen Ungleichungen

definierte Bereich (8') ist mit (8) identisch. Die Punkte a', 6', ••• sind eine
Auswahl unter den Punkten a,b, • • • von 8.

Der erste Teil der Aussage: (S) (8') folgt, wenn man Satz 6 auf Z
statt auf S anwendet und mit Satz 7 vergleicht. Weil a' zu (Z) gehort,
besteht eine Darstellung

a/ Xat + jubt + ••, A ^ 0, ^ ^ 0, •••.

Weil aber a' extrem in (Z) ist, folgt daraus mit Hilfe der Kennzeichnung
II. wie im Beweise des Teiles b) von II., daB ar (bis auf einen positiven
Proportionalitatsfaktor) mit einem der Punkte a,b, • • • identisch sein
mu6.

Z war gebildet mit den extremen Losungen a, /?, • • • von 8, umgekehrt
S' mittels der extremen Losungen a',br, ••• von Z. Nun muBte man
wiederum die extremen Losungen von S' betrachten: a', /S', •••. Dièse
sind aber nicht bloB eine Auswahl unter den a, /?, • • •, sondern die extremen
Losungen von /S" sind mit den extremen Losungen von S identisch:

Satz 11. Die Système von Ungleichungen Sf und Z sind wechselseitig
zueinander dual.

Denn in II. sind die extremen f gekennzeichnet auf Grund des Be-
reiches (S) aller f, die Bereiche (S) und (S') sind aber identisch. Das
Résultat mag man fur die konvexen Pyramiden so aussprechen :

Satz 12. Durch eine extrême Kante gehen n — 1 unabhangige StUtz-

ebenen, in einer extremen StUtzebene liegen n — 1 unabhangige extrême
Kanten.

Es ist danach gleichgultig, ob man bei der Définition einer konvexen
Pyramide von endlichvielen Punkten a, 6, • • • ausgeht, wie oben geschah,
oder von endlichvielen Stutzen a, /S, •••.
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V. Eine Konsequenz der vollstândigen Dualisierung ist der

Satz 13. Der Durchschnitt zweier konvexen Pyramiden ist wiederum eine
konvexe Pyramide.

Man kennzeichne nàmlich jede der beiden gegebenen Pyramiden
durch ihre endlichvielen extremen Stiitzungleichungen und vereinige
dann beide Système von Stiitzungleichungen in ein einziges: durch
dièses System wird wiederum eine konvexe Pyramide erklârt. Wollen wir
sie aus endlichvielen Punkten a, b, ••• entspringen lassen, so miissen
wir fur a, b, ••• die extremen Lôsungen des vereinigten Systems von
Stiitzungleichungen wàhlen. —

Nach dem Beweis des Hauptsatzes sind aile dièse Folgerungen trivial.
Der Dienst, den unsere ausfiihrliche Darlegung leisten soll, ist lediglich
die Aufzàhlung dieser Konsequenzen in der richtigen Reihenfolge, in der
sie auseinander logisch hervorgehen.

§ 4. Konvexe Polyeder, inhomogene lineare Ungleichungen

I. Konvexes Polyeder als Hiille eines endlichen Punktsystems.

Aus dem homogenen Bn entsteht der inhomogene (n — l)-dimensionale
Bn-V indem man xn — 1 setzt. Ist 8 ein nicht-ausgeartetes System
von endlichvielen Punkten a, b, ••• in !?„_! {an bn ••• — 1), so ist
jetzt der Fall b) des Hauptsatzes unmôglich, in welchem jeder Punkt
darstellbar ist. Denn fur jeden darstellbaren Punkt x :

(12) xt kat + fjib, + ••• (A ^ 0, jli ^ 0, •••; i 1, •••, n)

gilt nunmehr notwendig — xn â 0. Darum ist stets eine extrême Stûtze
vorhanden. Will man auch fur die dargestellten Punkte die Normierung
xn — 1 einhalten, so miissen die nicht-negativen Parameter A, ju, •••

in der Darstellung (12) der Bedingung % + /*+•••= 1 unterworfen
werden. Die durch S darstellbaren Punkte im i?n_! bilden die konvexe
Hiille H von 8, das aus S entspringende ,,konvexe Polyeder". Es kann
durch die endlich vielen extremen Stiitzungleichungen gekennzeichnet
werden.

Die zusàtzliche Voraussetzung (siehe III. in § 3), daB auch das duale

System nicht-ausgeartet sei, ist nach Satz 9 hier erfiillt, weil die sàmt-
lichen Punkte x a, 6, ••• von 8 der Ungleichung genûgen:

0 • xx + ••• + 0 • xn.x—l -xn>0.
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Sind a1? •••, an_x beliebig vorgegebene Zahlen, so bilde man das

min (at xt + ••• + an^ xn_x) an,

worin x (xv •••, a:w_x) die endlichvielen Punkte von S durchlàuft;

(13) ax xx + — + an_! xn.x — an ^ 0

ist dann eine Stiitze an 8. Es gibt also Stutzen an S zu beliebig vorgege-
benen av •••, (*„_!, und zwar solche, deren Ebene durch einen Punkt des

Systems S hindurchgeht.
Fur eine extrême Stiitze (13) von S ist niemals (av •••, an-x) (0, •••, 0) ;

denn ihre Ebene enthâlt wenigstens einen Punkt von S, so daB das Ver-
schwinden von a1? •••, an-x auch das von an nach sich zôge.

Nennen wir die extremen Stutzen von S Seitenflàchen, die extremen
Lôsungen des dualen Systems E Ecken von H, so gilt der Satz : Durch
jede Ecke des konvexen Polyeders H gehen wenigstens n — 1 unabhangige
Seitenflàchen hindurch, in jeder Seitenflâche liegen mindestens n — 1

unabhangige Ecken.

II. Konvexes Polyeder als Durchschnitt endlichviéler Halbràume.

Endlichviele Ungleichungen

(ax) a1x1+ ••• + an_! xn^ — an ^ 0, (fix) ^ 0, •••

definieren ein Teilgebiet H des Raumes Rn-X. Wenn n: (tzx) ^0 eine
Stiitze an H ist, muB naeh dem Hauptsatz n sich darstellen lassen durch
die Punkte a, ($, • • • des Systems E. Nach dem Résultat von I. kann H ein
konvexes Polyeder nur dann sein, wenn im homogenen R>n-x mittels der
endlichvielen Punkte

(14) a (av -, an^), 0' (0V -, fi^), -
jeder Punkt ri (tzv •••, ^w~i) darstellbar ist, wenn also im Rn-X das

Punktsystem (14), E', keine extrême Stiitze besitzt [Fall b) des Haupt-
satzes]. AuBerdem muB H einen inneren Punkt besitzen, d. h. es muB
ein Punkt c im Rn-X existieren von der Art, daB

(15) (ac)>0,
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gilt. Dies ist aber auch hinreichend. Zum Beweise nehme man den Punkt
c als Nullpunkt; dann hat man

«n<0, j3n<0, •••.

Zunàchst folgt jetzt, da8 S nicht-ausgeartet ist, d. h. dafi es keine
Zahlen (dv •••, dn-l9 dn) ^ (0, •••, 0,0) geben kann, fur welche die sâmt-
lichen Gleichungen

aidl+ + andn==0, p1d1 + - + |M» 0, -
bestehen. Indem man 0 dureh die Punkte (14) im Rn-X darstellt und
den ,,Zusatz" zum Hauptsatz beachtet, wùrde daraus nàmlich eine

Gleichung folgen: nndn 0 mit negativem Koeffizienten nn. Aber nach-
dem man in ihnen dn 0 gesetzt hat, widersprechen die angenommenen
Gleichungen dem Umstand, daB durch Sr aile Punkte (nv •••, nn^ dar-
stellbar sind und nicht nur solche, welche der Gleichung

™i di + '•• + *V-irfw_! 0

geniigen. Das zu S duale System S ist nicht-ausgeartet, wie aus
Satz 9 zufolge der Voraussetzung (15) hervorgeht. Wir mûssen noch

zeigen, daB S aus Punkten im Rn^1 besteht.

Fur eine Lôsung x der Ungleichungen

(16) •«!#!+ - + anxn^0, P1x1+»>+pnzn^0,-

ist notwendig xn ^ 0. Denn sie ergeben nach dem gleichen SchluB, der
eben auf die entsprechenden Gleichungen angewendet wurde, nnxn ^ 0.

Ist die Lôsung x extrem, so ist xn < 0 ; denn im Falle xn 0 hâtte man
entgegen der Voraussetzung eine extrême Lôsung der Ungleichungen

% xx + ••• + ev_! xn_.x ^ 0, p± xx + -" + /?„_! xn-x ^ 0, —

im homogenen i2w_i- Mithin kann fur eine extrême Lôsung x die Koordi-
nate xn — 1 gewàhlt werden, so daB wir von den homogenen (16) auf
die inhomogenen Ungleichungen (13) zurûckfallen : ihre extremen
Lôsungen bilden ein endliches Punktsystem S im inhomogenen ^n~v
Und jeder Punkt x, der den sâmtlichen Ungleichungen (13) genugt, laBt
sich durch S darstellen; oder H ist identisch mit der konvexen Huile
von 8. Die Punkte von 8 sind die Eckpunkte dièses konvexen Polyeders,
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III. Normalenkegel.

Der Punkt (av •••, an_x) im homogenen Rn-X heiBt Normale zum Eek-
punkt a eines gegebenen konvexen Polyeders, wenn

%%+••• + «w-i ^n-i min (a1x1+ — + an_x a^)
oder

(17) Oi (^ — %)+••• + an_! (a?^ — an_x) ^ 0

ist; hier durchlauft x die samtlichen Eckpunkte a, b, c, ••• des Polyeders.
Die extremen Losungen des endlichen Systems von Ungleichungen (17)
werden genau geliefert durch die extremen Stutzebenen des Polyeders,
welche durch den Eckpunkt a gehen. Da es n — 1 unabhangige solche
Ebenen gibt, bilden die extremen Losungen von (17) im Rn_1 ein nicht-
ausgeartetes Punktsystem. Durch sie laBt sich jede Normale mittels
positiver linearer Kombination darstellen: der ,,Normalenkeger' ist eine

nicht-ausgeartete konvexe Pyramide im Rn-V
Jeder Punkt (al9 •••, aw-i) gehort dem Normalenkegel wenigstens eines

Eckpunktes an ; denn wenn x die Ecken a, b, c, • • • durchlauft, so wird das
Minimum von a1x1-\- • • • + an-i xn-i ^ur ©inen dieser Punkte ange-
nommen. Dabei sind die Normalenkegel der verschiedenen Ecken in
ihren inneren Punktendurchweg verschieden. (av •• -, an-^) ist namlich ein
innerer Punkt des Normalenkegels zu a, wenn in allen Ungleichungen
(17) fur x 6, c, ••• das Zeichen > gilt, also z. B.

Fur einen dem Normalenkegel von b angehorigen Punkt gilt aber gerade
umgekehrt

«î h + '" + «n-i K-i ^ «î % + '•• + aw_! an_x.

IV. Polyederscharen.

Nach Minkowski kann man aus mehreren konvexen Polyedern Hl9 •••,
Hh eine lineare Kombination A2 Hx + • • • + Xn Hh H mit positiven
Zahlkoeffizienten À bilden; H ist wiederum ein konvexes Polyeder. Der
ProzeB kann in zwei Schritten ausgefuhrt werden: 1. Multiplikation mit
einem positiven Zahlfaktor A, 2. Addition. Ein dritter Schritt ist, dafi
man bei fest gegebener Basis Hl9 ~',Hh die Zahlkoeffizienten Xt im
Bereich Xt > 0 als variabel betrachtet : H durchlauft dann eine Polyeder-
schar.
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Multiplikation des konvexen Polyeders H mit einem positiven Zahl-
faktor A. H sei die konvexe Huile des endlichen Punktsystems S : a, b, c,

(aus welchem man unbeschadet diejenigen Punkte weglassen kann,
welche keine Ecken sind). Das schon oben benutzte Minimum

min (ax x1 + ••• + an.t xn-x) h (av —, aw_x)
x a,b, c,

heiBt nach Minkowski die Stûtzfunktion.

«i x1 + h an^ xn^ — an ^ 0

ist eine Stutze an S (oder H) dann und nur dann, wenn

an ^ h(al9 •••, an_i).

Aiï entsteht aus JÏ, indem man jeden Punkt x (xv •••, ^.j) von .H

durch Xx (Àxv •••, Aa^) ersetzt. AJÏ ist die konvexe Huile der Punkte
A a, X 6, Ac, •••. Dem steht die duale Erklàrung gegenliber: XH ist das

Polyeder mit der Stûtzfunktion Xh. Die Normalenkegel der verschiedenen
Ecken Aa, A6, Xc, ••• von A-ff sind die gleichen wie die Normalenkegel der
entsprechenden Ecken a, b, c, ••• von H.

Addition. H mit der Stûtzfunktion h sei die Huile von S : a, b, c, ••*,

H' mit der Stiitzfunktion h' die Huile von /S' : a', &', c', •••. In ZT + Z?'

werden aile Punkte von der Form x + x' aufgenommen, wo x ein be-

liebiger Punkt von H, x' ein beliebiger Punkt von H' ist. Dièse trans-
finite kann sofort durch die folgende finite Konstruktion ersetzt werden :

aus jeder Kombination (a, a') eines Punktes a von S und eines Punktes
a' von 8' bilde man a + a' ; so entsteht ein Punktsystem S -\- Sf. Das

Polyeder H + H' ist die Huile von /S + S'. In der Tat, jede positive
lineare Kombination

Zfx(a + a') Ijua + Z/ua' (fi ^ 0, Z> 1)

ist? wie die rechte Seite zeigt, die Summe eines Punktes x von H und
eines Punktes xf von H'. Gehôrt umgekehrt x zu H : x 27/^a, und #'
zu ^?' : a;' Zp'a,' (fi^O,^ ^ 0 ; 27//= 1, Efi' 1), so ist

a; + a;' Z1//// (a + a').

Wiederum steht dem die duale Auffassung gegenùber: H -\- H' i&t das

konvexe Polyeder mit der Stûtzfunktion h' -\- h'. In der Tat folgt aus
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h (a) min. {axxt-\ \- a^x^), h' (a) min. (a^' + — + «n-i
x=a,b,c,... x' a'tb',?...

die Beziehung

h(a) + h'{a) min. {a1(x1 + xt') + — + <V-i(#«-i + *»-i)}.

Wie man daraus die endlichvielen extremen Stiitzungleichungen ausliest,
welche zur Abgrenzung von H -\- H' genûgen, wissen wir aus der allge-
meinen Théorie.

AufschluBreicher ist aber der Durchgang durch die Polarfigur. Der
homogène Rn-x ist einerseits in die Normalenkegel von H, anderseits in
diejenigen von H' eingeteilt. Auf Grund des Satzes 13 ergibt die Ûber-
lagerung dieser beiden Einteilungen eine neue Einteilung von jRn_x in
konvexe Pyramiden: das ist die Normalenfigur von H + H''. Die Kom-
bination einer Ecke a von H und einer Eeke a' von H' gibt nâmlich nur
dann AnlaB zu einer Ecke a + af von H -\- H', wenn die Normalenkegel
von a in H und von a' in H' innere Punkte gemein haben, und der
Durchschnitt ist alsdann der Normalenkegel von a -\- a' in H -\- H'.
Die extremen Punkte der Normalenkegel von H + H' liefern die ,,Nor-
malen" (av •••, an-^) der extremen Stiitzen an H + H'.

Auf Grund dieser Bemerkungen iiberblickt man die Verhâltnisse in
einer ,,8char" konvexer Polyeder wie À H -j- XH', die man durchlàuft,
wenn X und V im Bereiche X > 0, X' > 0 frei variieren. Denn die
Normalenfigur von H ândert sieh dureh Multiplikation mit X nicht. Infolge-
dessen ergibt sich, daB die Normalenfigur eines Polyeders der Sehar nieht
variiert mit den Werten von X und A', daB insbesondere weder die Nor-
malen der extremen Stûtzen von A und X' abhàngen, noch diejenigen
Kombinationen (a, a') einer Ecke a von H und einer Ecke a' von H', die

zu einer Ecke Xa + X' a1 von XH + X' H' AnlaB geben. Das kombina-
torische Schéma der Ecken und extremen Stutzebenen, das angibt, wie
die einen sich auf die andern verteilen, ist innerhalb der Schar ebenfalls
konstant.

THE INSTITUTE FOR ADVANCED STUDY,
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