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Ûber lineare,
verschiebungstreue Funktionaloperationen und
die Nullstellen ganzer Funktionen

Von Eduabd Benz, Winterthur

Einleitung

Zum ersten Maie hat Laguerre ganze Funktionen als Grenzwerte von
Polynomfolgen untersucht, deren Nullstellen sâmtlich reell bzw. sâmtlieh
von gleichem Vorzeichen (d. h. die nicht versehwindenden sâmtlich
positiv oder sâmtlich negativ) sind1). In der Abhandlung: ,,Ûber zwei
Arten von Faktorenfolgen in der Théorie der algebraischen Gleichungen"2)
werden von den Herren G. Pôlya und J. Schur auf Grund von Ûber-
legungen algebraischen Charakters u. a. notwendige und hinreichende
Kriterien dafûr hergeleitet, daB eine Potenzreihe mit reellen Koeffizienten
eine ganze Funktion darstelle, die die Eigenschaft hat, Grenzwert einer
reellkoeffizientigen Polynomfolge von einer der beschriebenen Arten zu
sein. Das daselbst entwickelte Beweisverfahren gestattet eine Ver-
allgemeinerung der erwâhnten Ergebnisse, d. h. ihre Ausdehnung auf
gewisse ganze Funktionen bzw. Polynomfolgen mit komplexen
Nullstellen, die sâmtlich in einem konvexen Winkelbereich liegen, dessen

Scheitel der Nullpunkt ist3). Die Définition der in Frage stehenden

Funktionsklassen, deren Elemente wir als ,,gerichtete Funktionen" be-

zeichnen wollen, sowie Formulierung und Beweis der sie charakterisieren-
den Hauptsâtze, bilden im wesentlichen den Inhalt des ersten Kapitels
der vorliegenden Arbeit.

Die beiden folgenden Kapitel bringen Untersuchungen uber lineare,
mit der Dérivation vertauschbare Funktionaloperationen, und zwar
handelt es sich in der Hauptsache um den Beweis einiger von Herrn
G. Pôlya in den Comptes Rendus angekûndigten Sâtze4).

Im zweiten Kapitel wird das Operationsfeld gebildet von der Gesamt-

heit der Polynôme einer komplexen Variablen, im dritten von Exponen-
tialsummen. Es werden allgemeinste Funktionaloperationen der er-

*) Laguerre, Œuvres 1.1. p. 174—177, Paris, Gauthier-Villars, 1898.

2) G. Pôlya und J. Schur, Journal f. d. reine u. angew. Math. Bd. 144, S. 89—113.

8) Vgl. auch: G. Pôlya, Journal f. d. reine u. angew. Math. Bd. 145 (1915), S. 224—249.

4) G. Pôlya, Comptes Rendus, Bd. 183 (1926), S. 413—414, 467—468.
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wàhnten Art bestimmt, denen gegeniiber gewisse, die Nullstellen be-
treflfende Eigenschaften von Funktionen des Operationsfeldes invariant
sind. Die ersten Fragestellungen und Ergebnisse in dieser Richtung
stammen gleichfalls von Laguerre5).

I. Kapitel
Qerichtete Funktionen

1. Mit 21 werde im folgenden ein Bereich in der Ebene der komplexen
Zahlen bezeichnet, bestehend aus einer vom Nullpunkt O ausgehenden
Halbgeraden, oder aus einem abgeschlossenen Winkelraum, dessen

Scheitelpunkt in 0 liegt und dessen Ôffnungswinkel co< n ist.
Der Bereieh 95 bedeute eine durch O gehende Gerade oder eine ab-

geschlossene Halbebene, die von einer solchen Geraden begrenzt wird.
cp sei der Winkel, um den die réelle Axe in positivem Sinne gedreht werden
mu8, bis sie erstmals mit der Begrenzung von 95 zusammenfâllt.

2( + c bezeichne denjenigen Bereich, der aus 2t durch Translation um
den Vektor c hervorgeht; analoges gilt fur 95 + c.

2t, 95 seien die bezuglich der reellen Axe symmetrisch liegenden Be-
reiche zu 21 bzw. 95.

2. Die beiden Klassen von Funktionen, die wir als gerichtet bezeichnen
wollen, und denen die Untersuchungen dièses Kapitels gelten, lassen sich

nun folgendermaBen definieren:
a) Unter einer bezuglich 21 gerichteten Funktion verstehen wir eine

ganze (rationale oder transzendente) Funktion

(a)

deren Nullstellen sâmtlich in 2t liegen, und deren Produktzerlegung sich

in der Form

(I) G(«)=^.*.e~«n(l ——ri (v)\ a»

schreiben Iâ8t, wo a eine von Null verschiedene Konstante bedeutet, die

in 2t liegt, oder — durch 0 zu ersetzen ist.
a

*) Vgl. a. a. O. 1), S. 199—202.
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Eine ganze (rationale oder transzendente) Funktion

heiBe bezuglich 95 gerichtet, wenn ihre sâmtlichen Nullstellen in 95 liegen
und ihre Produktzerlegung folgende Gestalt aufweist:

(II) ^
wo y \y\ e~2i(P, \y\ > 0, cp die in Nr. 1 angegebene Bedeutung

bezuglich 95 hat und die nicht verschwindende Konstante /S in 95 liegt

oder-x- durch 0 zu ersetzen ist.
P

1 1 x 1
Setzt man — ~j~ #- + X "ô~ > so soll auch ôx fur jedes « dem

<>x P v=*i Pv

Bereich 95 angehôren oder — 0 sein.
Ox

Das Produkt lTkann, sowohl unter a) als auch unter 6), unendlich viele

oder endlich viele, eventuell iiberhaupt keine Faktoren umfassen ; in dem

letztgenannten, âuBersten Fall ist unter 17 die Zahl 1 zu verstehen. Wenn

das Produkt TT unendlich viele Faktoren umfaBt, wird im Falle b) noch
(V)

gefordert, daB X TTTT* konvergiert*).
(V)

I Pv \

Jede bezuglich 9t gerichtete Funktion ist ersichtlich auch bezuglich 95

gerichtet, sofern % in 95 enthalten ist. Die Konstanten sind spezielle

gerichtete Funktionen.

3. Die so definierten Funktionenklassen werden durch nachstehende
zwei Hauptsâtze vollstândig charakterisiert.

Sata 1. Die notwendige und hinreichende Bedingung dafiir, da/i eine

Potenzreihe

*) Im Falle a) folgt die Konvergenz von X j f schon aus der Konvergenz des

Produktes. Vgl. a. a. O. 7), Bd. I, III 36.
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eine bezûglich 2t gerichtete Funktion darstellt, lafit sich auf zwei verschiedene

Arten formulieren:

1. Es existiert eine Polynomfolge

0.(*) »»o + ^f * + ^f«2 +•••(»= 1> 2, 3, •¦¦)

mit Koeffizienten, die der Bedingung

lim Sbnp Sbv (v 0, 1, 2, •••)

genûgen und deren sâmtliche Nullstellen in 3( Uegen.

2. Sâmtliche Nullstellen der Polynôme

Uegen in 3t.

&at& 2* Die Potenzreihe

stellt dann und nur dann eine bezûglich 35 gerichtete Funktion dar, wenn eine

der beiden folgenden âquivalenten Bedingungen erfullt ist :

1. Es làfit sich eine Polynomfolge

(6J Hn(z) bn0 + ^f-z + bf- z* + (n 1, 2,

angeben mit
lim 6^ 6, (v 0,1,2,

deren sâmtliche Nullstellen im Bereich 35 Uegen.

2. Sâmtliche Nullstellen der Polynôme

(62) hn(z) 60 + (i')6i2;+ (2)62^2+ '•• (n= l>%, •••)

Uegen in 95.
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Sind die »„ (v 0, 1, 2, •••) reell und ist 3f die positive réelle Axe,
so geht Satz 1 uber in den bekannten Satz tiber positiv gerichtete Funk-
tionen. Analog ist in Satz 2 das Kriterium fur reell gerichtete Punktionen
als Spezialfall enthalten, der sich ergibt, wenn sâmtliche bv réelle Zahlen,
95 die réelle Axe bedeuten6).

4. Um den Beweis dieser beiden Sâtze ohne Unterbrechung fiihren zu
kônnen, sollen in diesem Abschnitt einige Hilfssâtze zusammengestellt
werden, die wir zu seiner Durchiûhrung benôtigen.

Hïlfssat& 1. Das hleinste Jconvexe Polygon, das die Nullstellen des

Polynoms f (z) einschliefit, werde mit *p bezeichnet. Dann besitzt f'(z) keine
Nullstelle aufierhalb $. (Satz von Gaufi.)1)

Hilfssatz 2. Bedeutet f (z) ein beliebiges Polynom, c + 0 eine Kon-
stante, so liegen die Nullstellen von

im Meinsten konvexen Polygon, das die Halbstrahlen, die von den
Nullstellen von f (z) ans parallel zum Vektor c gezogen sind, enthàlt8).

Beweis: zv z2, ••• zm seien die Nullstellen von f (z), a bedeute einen
beliebigen Punkt des kleinsten konvexen Polygons, das sie enthàlt. Die
Nullstellen der Ableitung des Polynoms

P(z) (l — —f— f. f(z) (n>0,n ganz),

die nicht mit Nullstellen von P (z) identisch sind, stimmen uberein mit
den Nullstellen der logarithmischen Ableitung von P {z) :

und liegen nach Hilfssatz 1 im kleinsten konvexen Polygon, das die
Punkte zv z2, zm, a-\-ne enthâlt. Durch Grenzûbergang n -> oo

schliefit man, da6 aile Nullstellen von
6) Vgl. a. a. O. 2) und betreffend Benennung dieser Funktionen : 0. Pôlya, Jahresbericht

der deutschen Math. Vereinigung, Bd. 38 (1929), S. 161—168.
7) Vgl. G. Pôlya und G. Szegô, Aufgaben und Lehrsâtze aus der Analysis

(Berlin 1925), Bd. 1, Kap. III, Aufg. 31.
8) Es làBt sich leicht beweisen, daô sâmtliche Nullstellen von g (z) im kleinsten

konvexen Polygon liegen, das $ und ty-\-mc enthâlt, wenn $ die in Hilfssatz 1 angegebene
Bedeutung fur /(z), m seinen genauen Grad bezeichnet. Vgl. a. a. O. 7), Bd. II; V 114.
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c+f(z)
und somit auch diejenigen von

in dem in der Behauptung angegebenen Bereich liegen.

Hil/ssata S. Es sei $ ein unendlicher, Jconvexer Bereich der komplexen
Zahlenebene, der den Nullpunkt, jedoch nicht aile Punkte der Ebene, enthâlt.
Die Menge der von 0 ausgéhenden Halbgeraden, die in $ enthalten sind,
bedeckt einen Bereich, der dis ,,Strahlinhaltii @ von fô bezeichnet werden

moge. @ ist, je nach der Beschaffenheit von $, ein Bereich 3( oder 95.

MU L(x) ^lvxv werde ein Polynom n4en Grades bezeichnet, dessen

m
Nullstellen sâmflich in @, mit f(z) ^a^z^ ein Polynom m-ten Grades,

dessen Nullstellen sâmtlich in $ liegen.

Unter diesen Voraussetzungen hat das Polynom

Iceine Nullstelle auflerhalb S.

Beweis: Wenn L (x) oder / (z) Konstanten sind, ist der Satz trivial.
Im andern Fall kônnen wir, nach passender Verfugung uber einen
konstanten Faktor, setzen :

wobei aile cv in @ liegen.

Es wird somit

L (D) f (z) ^ (1 —cxD) (1 — ctD) (l-cn_rD)f(z),

aus welcher Darstellung hervorgeht, daB dièse Transformierte aus / (z)

durch Wiederholung âhnlicher Schritte erzeugt wird, so daB es genugt,
die Richtigkeit des Satzes fûr n 1 zu beweisen.
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ty habe dieselbe Bedeutung fur / (z) wie in Hilfssatz 1 ; nach Voraus-
setzung ist es demnach in $ enthalten. Infolge der Konvexitât von $
gilt dasselbe auch fur den in Hilfssatz 2 erwàhnten Bereich, wenn c in ©
liegt.

Es sei nun L (x) x, also

Nach Hilfssatz 1 liegen aile Nullstellen von /' (z) in $p, also auch in $.
Ist aber L (x) 1 — ex und liegt c in @, so folgt aus Hilfssatz 2 und

der eben gemachten Bemerkung, da8 sâmtliche Nullstellen von

ebenfalls in $ liegen, womit Hilfssatz 3 vollstândig bewiesen ist.

5. Wir wenden uns nun zum Beweis der beiden Hauptsàtze. Zuerst soll

gezeigt werden, da8 die Kriterien 1) und 2) àquivalent sind.

Es sei

aml am2

eine Polynomfolge (%). Die Anwendung von Hilfssatz 3 mit $ % auf

/ (z) zn ergibt, da6 sâmtliche Nullstellen von

fur jedes m in M liegen. Zufolge eines von Hurwitz herrûhrenden Satzes9)

trifït dièse Eigenschaft auch fur das, durch Grenzubergang m -> oo, unter

Berûcksichtigung von

lim amv av (v 0, 1, 2, •••)

erhaltene Polynom

/B(2) (?(Z>)Z» aoZ»

zu. Aile Nullstellen von

liegen folglich in % und da n beliebig gewâhlt war (n 1, 2, •••),

bilden die Polynôme gn (z) eine Folge (aa).

9) Vgl. a. a. O. 7), Bd. 1, III 170, 201.
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Ist umgekehrt

0«(*O »o+ (j) «i» + ••¦ + a»2re (» 1, 2,

eine derartige Folge, so liefert die Ersetzung von z durch
7

Polynôme, die, wie man sich unmittelbar uberzeugt, eine Folge (%) bilden.

Der Beweis fur die Âquivalenz der Polynomfolgen (b^ und (62) ver-
làuft vollkommen analog.

6. Jede gerichtete Funktion geht durch die Transformation

z' =z-ei* (y> reell)

in eine Funktion vom gleichen Typus uber (s. Définition). Wir kônnen
daher im folgenden ohne Beschrànkung der Allgemeinheit annehmen,
da8 der Bereich 3t bzw. 95 durch passende Drehung um den Nullpunkt
in folgende spezielle Lage gebracht worden sei :

Die positiv-imaginâre Halbaxe soll die Winkelhalbierende von 21 sein
oder mit 21 zusammenfallen je nach Beschafïenheit; 95 sei die réelle Axe
oder die Halbebene 3 z ^ 0 (also y 0).

7. Wir setzen nun voraus, dafi die mit Hilfe der Koeffizienten der
Potenzreihe

(a) 0{z)==llo + h.z+^zz+...

gebildeten Polynôme

eine Folge (a2) darstellen.

sind dann Polynôme einer Folge (a,). Der triviale Fall, da8 aile Koeffizienten

av der Reihe (a) verschwinden, also G (z) 0 ist, soll ausgeschlossen
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werden und ar den ersten von Null verschiedenen Koeffizienten bedeuten.
Rechnet man den Punkt z oo als zu 2( gehôrend und schreibt dem
Polynom (1), falls

ân ~ an-l "• &n-fc+l 0, cln_fc :£ 0,

die &-fache Nullstelle z oo zu, so kann (1) fur jedes ti > r in der
Gestalt

*

dargestellt werden, wobei sâmtliche anv in 31 liegen, mit ihrer Vielfachheit
gezâhlt und nach wachsendem Absolutbetrag, die darin ûbereinstimmen-
den nach wachsendem Argument, geordnet sein sollen.

Es ergibt sich

n (r+l).ar*

n

Aus der speziellen Lage von 2t folgt wegen

n,—a) ïi + co

—^— < arg anv < —y-

COSy

in Verbindung mit (4) folgt also

Ferner geht aus (2) hervor

Somit wird

(6) ïï
n-r
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Wendet man auf (5) und (6) den Satz xiber das arithmetische und
das geometrische Mittel an10), so erhàlt man (nach Division durch n auf
beiden Seiten) leicht die Ungleiehung

(7) fa
n!

1

(n—r)
a,
r! (r + 1)

aus der hervorgeht, daB die Reihe (a) eine ganze Funktion darstellt,
deren Ordnung und Geschleeht hôchstens 1 ist.

Die Polynôme (1) konvergieren, wie man aus der Abschàtzung (7)
leicht ersieht, in jedem endlichen Bereich gleichmâBig gegen G (z).
Bedeuten av (v 1, 2, •••) die von Null verschiedenen, in der vor-
gângig beschriebenen Weise geordneten Nullstellen von G (z), so folgt
deshalb aus dem bereits zitierten Grenzwertsatz von Hurwitz11) in Ver-
bindung mit Ungleiehung (5), daB die ap in 2t liegen und

1 1

(f +
ar+i

Hieraus folgt, auf Grund der Théorie der ganzen Funktionen von end-
licher Ordnung, daB

(8)
r iv) \ avf

Es bleibt nur noch die ùber a gemachte Behauptung zu beweisen xibrig.
Wir schlieBen folgendermaBen :

Aus (8) wird unmittelbar die Gleichung

(r

gewonnen, anderseits gilt fur die Nullstellen anv der Polynôme (1) die
bereits erwàhnte Gleichung

(3)
-r ar+1

(r+l)ar*
l0) Betr. Beweismethode vgl. a. a. O. 2).
u) Vgl. a. a. O. 9).
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Subtrahieren wir (3) von (9), so wird

(10)
a

r-a.'r+l
^i a nfif n>(r+ l)-ar '

Zu jeder vorgegebenen, beliebig kleinen Zahl e > 0, existieren offenbar
zwei ganze, positive Zahlen n0 und ^0 von der Beschaffenheit, dafi die
beiden Ungleichungen

(H)

(12)

erfûllt sind.

n-(r+l)ar

1

€

T
e

T

fiir jedes n > n0

ftir jedes m > v0

Nun werde, was immer môglich ist, die positive Zahl R beliebig grofi,
jedoch so gewàhlt, dafi die Anzahl der Nullstellen von 0 (z) in | z \ < R
die Zahl v0 + r nicht untertrifït und | «„ | 4= JB gilt fiir jedes v. Dièse
Anzahl werde mit N (R) + r bezeichnet; dann làfit sich wegen der

Anordnung der Nullstellen und auf Grund des Satzes von Hurwitz eine

positive ganze Zahl % bestimmen, derart, dafi O*n (z) fur jedes n > nx in
| z | < R dieselbe Anzahl Nullstellen besitzt wie 0 (z) und dafi aufierdem
die Ungleichung

N(R) l 1 1 \
V (— -— I

v=l \CLv Unvj
(13)

fiir jedes n >n1 erfïillt ist.

Bedeutet m die grôfite der Zahlen nQi v0 und nt und schreiben wir (10)

in der Form

1

a v=1 \anv av) \av\>RavA>r Vnv n (r + l)ar v=i \

so folgt wegen (11), (12) und (13) fur jedes n>m(e, R)

(14) v^
« i> MR) + l anv

< e

Da sieh dièse Ungleichung fur jedes beliebig klein vorgegebene e > 0
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realisieren lâfit, und mit — auch X —1 in 3t liegt, so folgt aus dieser Dar-

stellung, wenn — ^ 0, da8 a in 21 liegt.

Ist umgekehrt G (z) eine in bezug auf einen Bereich 2t gerichtete
Funktion, so ist die in jedem endlichen Bereich gleichmâBig gegen G (z)

konvergierende Polynomfolge

n r \ naj v==i \ av

von der verlangten Art — d. h. eine Folge (ax) — womit Satz 1 voll-
stândig bewiesen ist.

8. Zum Beweis des Satzes 2 ûbergehend, wollen wir die Potenzreihe

als nicht identisch verschwindend, br als ersten von Null verschiedenen
Koeffizienten voraussetzen. Ferner môgen die Polynôme

h(*)= Si) Kzv (n=l,2f-)v-o\vj

eine Folge (62), somit die Polynôme

eine Folge (b^ bilden. Fur letztere gilt dann eine Darstellung

(15) ^W

wobei die Nullstellen finv in der fruher beschriebenen Weise geordnet
sind und fur jedes n > r und jedes v der Ungleichung

(16) _3_L^0
Pnv

genûgen. Insbesondere kann -^— auch 0 bedeuten.
Pnv
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Aus (15) gewinnt man die Gleichungen :

(17)
br+1

n-r

n (r+l)br*

(nzr)(n-r-l)(r+l)i

(19)

und aus der letzten Gleichung

(20) Y
Beachtet man nun, daB

1 M2

so wird wegen (16), (17) und (18)

1 i (n-r
br¦+1 r + 2

brb,r+2

n—r

(21)

n

n-r
n 'r+1

DieAnwendung des Satzes ûber das arithmetische und das geometrische
Mittel auf (20) und (21) ergibt, wie eine leichte Rechnung zeigt,

Z(n-r) |6r+1|2 + 2(n—r-1) ^
oder

n! '
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wo c eine passend gewàhlte Konstante ist, die nur von r, br, br+1 und
6r+2 abhângt.

Aus dieser Ungleichung kann geschlossen werden, daB die Reihe (6)
eine ganze Funktion von der Ordnung und vom Geschlecht < 2 darstellt,
und daB die Polynôme (15) in jedem endlichen Bereich gleichmâBig gegen
H (z) konvergieren. Bezeichnet man die von Null verschiedenen, geord-
neten Nulktellen der letztern Funktion mit (}v, so ist unter Beriicksich-
tigung des Grenzwertsatzes von Hurwitz wegen (21)

J£ konvergent,
(V) I Pv I

aus (16) und (17) folgt ferner, daB

£ 3 — konvergent und
(") Pv

1 l U

(22)
v r+l or

H (z) lâBt infolgedessen, auf Grund der Théorie der ganzen Funktionen
von endlicher Ordnung, eine Produktentwicklung von der Form

zu, und da hieraus
1 br+1

(r+l)br'
« 1

_
PP r+l br

abgelesen wird, erhellt aus (22), daB

(23) 23-J->3T-

Hieraus folgt die im Abschnitt Nr. 2 unter b) iiber ôk aufgestellte Be-
hauptung.

Die y betreffende Behauptung beweisen wir folgendermaBen :

Aus (-iyH(z) • H(-z) *£,*•-e-«r" n(l-
berechnet man
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(24)

Vôllig analog zum vorangehenden Abschnitt Nr. 7 Iâ8t sich, unter
Beniitzung von (18), zeigen, daB zuzwei positiven Zahlen e, R, (e beliebig
klein vorgegeben, R genûgend groB) eine ganze positive Zahl m (e, R)
bestimmt werden kann, derart, daB die Ungleichung

(25)
1

\Pnv\>Rpt

fur jedes n >m erfullt ist.

Setzt man fi fi' -\- i fi", so folgt

1 ^s*1 _£!_-/*

< e

_J 2/? 3-
3 _2|/?'!/?*

Ferner gilt wegen (16) die Gleichung

Pnv

so daB fur jedes n > m (e, R)

1 1

(26)
\finv\>R\P»v\ \Pnv\>R Pnv \{3nv\>R\Pnv

\Ûnv\>R Pnv <R \Pnv\>RPnv

Auf Grand von (16) und (17) folgt aber

<JLn'~~r<x br+i

n
"r+1

und da R in (25) gewiB als so groB vorausgesetzt werden darf, daB die
rechte Seite von (27) < e ist, gewinnen wir aus (25) und (26)

'—«¦. S2\Pnv\>R \$n*
< s
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giiltig fur jedes n >m (e, B), wie klein auch das vorgegebene e gewâhlt
worden sei. Hieraus kann geschlossen werden, daB y reell und nicht
negativ ist.

LàBt umgekehrt die ganze Funktion eine Produktzerlegung von der
Form (II) zu, so ist es leicht, eine zugehôrige Polynomfolge (6X) anzu-
geben. Man setze

dann ist ersichtlich 3 à,, ^ 0 fur jedes v. Bestimmt man nun nv derart,
daB fur | z \ ^ v

1

< —

so gilt gleichmàBig in jedem endKchen Bereieh

Damit ist auch Satz 2 vollstândig bewiesen.

9. Aus den eben bewiesenen Sâtzen ergeben sich ohne Schwierigkeit
einige Folgerungen.

a,) Ist ^ ^
eine gerichtete Funktion, so ist ihre Ableitung

Û'(z) c1 + f^ + |^+..-
dem gleichen Typus angehorig.

Denn bedeutet Qn{z) (n= 1, 2, •••) eine (sicher existierende) Polynomfolge

mit sàmtlichen Nullstellen in 3( bezw. 95, die in jedem endlichen
Bereieh gleichmàBig gegen Q (z) konvergiert, so besitzt auch die Folge
Q'n (z) nur derartige Nullstellen (Hilfssatz 1) und konvergiert bekannt-
lich in jedem endlichen Bereieh gleichmàBig gegen Q' (z)12).

b) Verschwinden bei einer gerichteten Funktion zwei aufeinander folgende
Koeffizienten cv und cv+v so ist

la) Vgl. z. B. Osgood, Funktionentheorie, Bd. I, S. 257, Satz 5.
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entweder ein Polynom hôchstens vom Orad v — 1, oder es ist z 0 eine
Nullstelle mindestens der Ordnung v + 2.

Da nâmlich als Nullstellenbereich die Halbebene 3 z > 0 angenommen
werden darf, schlieBt man (mit Hilfe eines Satzes von Biehler und Satz 2),
daB, c^ c^ + i c^ gesetzt,

wo Qx (z) und Q2 (z) reell gerichtete Funktionen bedeuten, fur welche
die Aussage zutrifït13). Falls keine von ihnen identisch verschwindet,
zeigt sich als einfache Folgerung aus Satz 2, daB Qx und jQ2 gleichzeitig
beide rational oder beide transzendent sein miissen, womit ailes be-

wiesen ist.

Wenn ferner z.B. cv 0, cv_x =£ 0, c'p+1 ^ 0 ist, gilt

c) Die ganze Funktion

v=o v

sei bezuglich 21 und

negativ gerichtet (d. h. g (— z) positiv gerichtet). Unter diesen Voraus-

setzungen konvergiert die Reihe

bestândig und stellt eine bezuglich 3t gerichtete Funktion dar.

Nach Satz 1 liegen ja die Nullstellen der Polynôme

sàmtlich in % diejenigen von

13) Vgl. z. B. a. a. O. 2).
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sind aile reell und nicht positiv. Mit Hilfe eines Satzes von Grâce14) ge-
langt man zum SchluB, da6 sàmtliche Nullstellen der Polynôme

in 2t liegen, was ailes beweist.

Die Besselsche Funktion

genugt den ûber g (z) zu stellenden Voraussetzungen, somit ist auch

û(»)=J;o(~]p^

eine bezûglich 21 gerichtete Funktion, was eine Ùbertragung des Malo-
schen Satzes auf ganze Funktionen mit komplexen Nullstellen be-
deutet15).

Wie man den Satz fur Funktionen H (z), die bezûglich 95 gerichtet
sind, bzw. fur positiv gerichtete Funktionen zu modifîzieren hat, ist
évident.

IL Kapitel

Ùber lineare, verschiebungstreue Funktionaloperationen
und die Nullstellen der Polynôme

1. Zwischen den Elementen zweier Klassen von Funktionen einer
Variabeln z môge eine Beziehung bestehen von der Art, daB jeder Funktion

der ersten Klasse eine oder mehrere Funktionen der zweiten Klasse

zugeordnet seien. Dièse Beziehung kann aufgefaBt werden als Ergebnis
einer Opération, die, ausgeûbt auf die Funktionen der ersten Klasse, die-

jenigen der zweiten Klasse erzeugt. Eine solche Opération heiBt ein- oder

mehrdeutige Funktionaloperation ; die Klasse 1 von Funktionen, fur
welche sie definiert ist, bildet ihr Operationsfeld. Die Funktionen der

14) Vgl. a. a. O. 7), Bd. II, V 145, betr. Beweisfûhrung : V 151—155.
15) Vgl. a. a. O. 7), Bd. II V 155, 156 und a. a. O. 2).
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Klasse 2 sind die Transformierten der Elemente des Operationsfeldes.
Beispiel einer eindeutigen Funktionaloperation ist elwa die Dérivation D,
die jeder Funktion / (2;) ihres Operationsfeldes — das z. B. aus der
Gesamtheit der ganzen Punktionen bestehe — ihre Derivierte D f (z)

/' (z) zuordnet.
Das Operationsfeld bestehe im folgenden aus der Menge der Polynôme.

Es soll die allgemeinste Funktionaloperation bestimmt werden, die

folgende drei Forderungen erfullt :

a) Jedem Polynom / (z) werde eindeutig zugeordnet ein Polynom
f*(z). Symboliseh

Lf(z) f*(z).

b) L sei linear, d. h. wenn / (z) und g (z) beliebige Polynôme, c eine

beliebige Konstante bedeuten, gelte.

c) Jj sei verschiebungstreu, d. h. wenn

i/(*) /*(*),

so soll bei beliebiger Wahl der Konstanten c

Lf(z + c) f*(z + c)

gelten.
Man erkennt ohne weiteres, da6 z. B. die Dérivation D diesen

Forderungen genugt.
Fur Polynôme liefert der Taylorsche Satz eine einfache Identitat, so

da8 wir die dritte Bedingung in der Form

sehreiben konnen, oder zufolge der Linearitat von L

Die Koeffizientenvergleiehung dieser in c identischen Polynôme lâBt er-

kennen, dafi
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gilt, d. h. die gesuchte Funktionaloperation ist vertauschbar mit der
Dérivation.

Da die Konstanten dem Operationsfeld angehôren, folgt aus dem
Gesetz der Linearitàt

X (/ (z) + 0) X / («) + XO und somit

10 0;

d. h. die Transformierte von Null ist Null.

Diejenige von zn werde bezeichnet mit

Sie ist nach Voraussetzung a) ein Polynom in z. Wegen der Vertauseh-
barkeit mit der Dérivation gilt

Lnzn-1 n Lzn-1 £ (3) n |n_i (3).

fn geht also aus $n-x hervor durch Intégration. Zufolge dieser Bemerkung
ergibt sich als Transformierte von 1 wegen

L D 1 L 0 fo (z) 0 :

Z< 1 £0(z) constans,

womit feststeht, daB die Transformierte von zn ein Polynom vom
Grad ^ n sein mu6. Durch sukzessives Integrieren findet man, daB die
Polynôme |n (z) ein System von sogenannten Appellsehen Polynomen
bilden, so daB

Unter Verwendung des Symbols D fur die Dérivation ist dièse Dar-
stellung gleichbedeutend mit der folgenden :

Lzn J£ JjDvzn= X —Dvzn (n 1,2,—).

Da aber aile Polynôme lineare Kombinationen von speziellen
Polynomen von der Form zn sind, bleibt die letztere Darstellung auf Grund
der Forderung der Linearitàt von L fur beliebige Polynôme giiltig, so
daB wir zu folgendem Ergebnis gelangen :
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Die allgemeinste Funktionaloperation L, welche den Forderungen a),
b) und c) genugt, ist eindeutig bestimmt durch eine unendliche Folge
von Konstanten l0, ll9 Z2, •••, vermôge welcher ein beliebiges Polynom
/ (z) transformiert wird in

Fûhren wir noch die (nicht notwendig konvergierende) Reihe

ein, so kann auch geschrieben werden

Lf(z) L (D) f (z),

wo wieder D als Symbol fur die Dérivation dient16).

2. Wir wollen jetzt die allgemeinste Funktionaloperation ZJ bestimmen,
die einen vorgegebenen, konvexen Bereich $ erhàlt, in dem Sinne, daB,
wenn aile Nullstellen eines sonst beliebigen Polynoms / (z) in $ liegen,
auch samtliche Nullstellen der Transformierten L f (z) in $ liegen17).
Eine derartige Transformation môge bezuglich $ gerichtet heiBen. Um
Trivialitâten zu vermeiden, setzen wir voraus, daB nicht aile Koeffizienten
von L (x) verschwinden und daB $ nicht die ganze Ebene umfafit.

Wenn der Bereich $ endlich ist, lautet die Losung :

8at& 3. Die Funktionaloperation L ist dann und nur dann in bezug auf
einen endlichen konvexen Bereich $ gerichtet, wenn samtliche Koeffizienten
der Reihe

L(x) Z±x>

verschwinden, mit Ausnahme eines einzigen.

Der Beweis fur die Notwendigkeit der Bedingung verlâuft indirekt :

Es sei lr (r ^ 0) der erste, lr+k (k > 1) der zweite von Null verschiedene
Koeffizient von L (x). Wir nehmen vorlâufig an, $ bestehe aus einem
einzigen Punkt c. Das Polynom

16) L ist sogar die allgemeinste emdeutige, lineare Funktionaloperation, welche mit der
Dérivation vertauschbar ist; vgl. (auch fur die andern Ausfuhrungen dièses Abschnitts,)
S. Pincherle und U. Amaldt, Le operazioni distributive, S. 122 (Zanichelh, BoJogna
1901).

17) Problem und Losung stammen von Herrn Pôlya; vgl. a. a. O. 4), S. 413—414.
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/(*) (* —<Or+*

genligt den Voraussetzungen ; seine Transformierte

fr4-k
i(3_c)r+fc==^ -r

aber hat offenbar Nullstellen, die sàmtlich auf der Kreisperipherie

z—c lr + k

also nicht in $, liegen.
Nun existiert sicherlich eine Gerade g durch den Punkt c, die keine

dieser Nullstellen enthâlt, so daB mindestens eine der beiden, durch g be-

stimmten, abgeschlossenen Halbebenen Q± und (S2, z. B. (£v eine solche
Nullstelle im Innern aufweist.

Bedeutet nun $ einen beliebigen, aber endlichen, konvexen Bereich,
so darf die erwàhnte GrôBe c als passend gewàhlter Randpunkt von jî
vorausgesetzt werden, derart, daB $ ganz in @2 enthalten ist (passende
Parallelverschiebung von g). L (z — c)r+k besitzt dann mindestens eine
Nullstelle auBerhalb Jî; die Voraussetzung, daB L (x) mehr als einen von
Null verschiedenen Koeffizienten aufweise, ist somit nicht haltbar.

DaB aber die angegebene Bedingung hinreicht, folgt ohne weiteres aus
dem Satz von GauB (Hilfssatz 1).

Falls S unendlich ist, darf ohne Verlust an AUgemeinheit vorausgesetzt

werden, daB der Nullpunkt 0 in $ enthalten ist ; andernfails wâre
ja auf Grund der Verschiebungstreue von L erlaubt, dièse Bedingung
durch eine passende Parallelverschiebung von $ zu realisieren. Mit ©
werde wieder der Strahlinhalt von $ bezeichnet (vgl. Hilfssatz 3). Wir
beweisen

8at& 4. Die notwendige und hinreichende Bedingung dafûr, daji die

Funktionaloperation L in bezug auf einen unendlichen, konvexen Bereich $
gerichtet ist, besteht darin, daft die Beihe

(v) VI

bestandig konvergiert und eine bezûglich @ gerichtete Funktion darstellt.

Beweis : Aus den beiden Hauptsàtzen des ersten Kapitels geht hervor,
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daB die fur L (x) angegebene Bedingung àquivalent ist damit, daB

sàmtliche Nullstellen der Polynôme

fur jedes n in @ liegen, oder, was dasselbe bedeutet, daB aile durch die

Transformation x — —daraus hervorgehenden Polynôme

fur n 1, 2, 3, nur Nullstellen in @ besitzen.

DaB aile Nullstellen von L zn fur jedes n in 5$ liegen mussen, ist évident.
Es existiere nun fur n n0 > 0 eine solche Nullstelle z0, die nicht in @

liegt; dann trifft die Halbgerade 0 z0 den Rand von ^ in einem Punkte c

(denn nach der eben gemachten Bemerkung soll angenommen werden

8^8). Das Polynom

genugt ofïenbar den zu machenden Voraussetzungen, das transformierte

Lf{z) L (z-c)n° l0 {z-cf- + (fy lAz-cr-i + -
jedoch hat sicher u. a. die Nullstelle

welche auBerhalb $ liegt. Die Reihe L(x) muB daher notwendig von der
bezeichneten Art sein.

Die Bedingung ist aber auch hinreichend, denn auf Grund der beiden

Hauptsâtze des ersten Kapitels existiert zu jeder solchen Reihe L(x)
eine Polynomfolge

die in jedem endlichen Bereich gleichmàBig gegen L(x) konvergiert und
deren sàmtliche Nullstellen in © liegen.

Ist f(z) ein beliebiges Polynom, etwa vom Grade m, das nur
Nullstellen in $ besitzt, so finden wir in Anwendung von Hilfssatz 3, daB

auch das Polynom
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LH{D)f(z) l

fur jedes n aile seine Nullstellen in $ hat. Da aber die Bedingung

limZnv= lv (v 0, 1,2, •••)

erfullt ist, zeigt der Grenzûbergang n -> oo, daB dièse Eigenschaft zu-
folge des Satzes von Hurwitz auch auf das Polynom

lof(z) + nz) +

zutrifït, womit der Beweis vollstândig erbracht ist.

3. Die abgeschlossene Halbebene 9?z >0 werde kurz als rechte, 9tz
als linke Halbebene bezeichnet. Eine ganze Funktion, die bezûglich der
rechten oder der linken Halbebene gerichtet ist, heiBe redits bezw. links
gerichtet. Die Funktionaloperation L sei rechtsschiebend genannt, wenn
das Minimum der Realteile der Nullstellen fur jedes Polynom f(z) nicht
grôBer ist als der entsprechende Zahlenwert fur die Transformierte.

Als einfache Folgerung aus Satz 4 gewinnen wir nun :

Satz 5» Die Transformation L ist dann und nur dann rechtsschiebend,

wenn die Beihe

L(z) Z±z"
(v) VÏ

eine redits gerichtete Funktion darstellt.

Der Beweis fur die Notwendigkeit ergibt sieh leicht aus der Betrachtung
der Transformierten der Polynôme

f(z) z\
Dièse Polynôme

haben nach Voraussetzung ftir jedes n sâmtliche Nullstellen in der
reehten Halbebene. Daraus folgt nach Satz 2, dass L(x) eine reehts
gerichtete Funktion darstellen muss.

Die zweite Hàlfte des Beweises gelingt auf Grund der Versehiebungs-
treue von X. Sei L(x) eine reehts gerichtete Funktion, f(z) ein beliebiges
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Polynom. Eine seiner Nullstellen mit minimalem Realteil sei z0. Dann
liegen die Nullstellen von / (z + z0) sàmtlich in der rechten Halbebene und
zufolge Satz 4 auch sâmtliche Nullstellen von

Wegen
L{D)f(z) f*(z)

folgt ersichth'ch, dass f*(z) keine Nullstelle links der Geraden

haben kann.

Die Funktionaloperation L soll rechtsstreuend heiBen, wenn das

Maximum der Realteile der Nullstellen der Transformierten nie kleiner
ist als der entsprechende Wert fur das ursprungliehe Polynom, wie auch
dasselbe gewâhlt werde. Es gilt :

Sat& 6. Die Funktionaloperation ist dann und nur dann rechtsstreuend,

wenn l0 ^ 0 und die Reïhe

(v) VI

die Rezijwohe einer ganzen, links gerichteten Funktion darstellt.

Beweis: Wir zeigen vorerst auf indirektem Wege, dass l0 dp 0 sein mu8.
Ist nàmlich l0 0 und lr (r > 0) der erste, nicht verschwindende Koeffi-
zient, so setze man

f(z) zr(z — a)

wo a eine positive Konstante bedeutet.

Die Transformierte

L(D)f(z) lr-[(r+l)z
hat die einzige Wurzel

Nun ist
3îa<a,

sobald
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und dies ist durch passende Wahl von a stets zu erreichen. Also kann L
nicht rechtsstreuend sein, wenn l0 0.

Hat aber L dièse Eigenschaft, so lassen sich jetzt, zufolge l0 $ 0,
unendlich viele Zahlen a0, av ••• an, ••• mit Hilfe des folgenden Glei-
chungssystems bestimmen :

1 a010

2Toi"n n+ °2i'

Wir behaupten, daB aile Nullstellen sàmtlicher Polynôme

in der linken Halbebene liegen. Dies folgt nàmlich sofort aus der Tat-
sache, da8

«)+p;(z)+i

Nach Satz 1 konvergiert somit die Reihe

bestândig und stellt eine links gerichtete Funktion dar.
Jetzt sei umgekehrt G (x) eine derartige Funktion, die fiïr x 0 nieht

verschwindet. Um zu zeigen, da6 die lineare Funktionaloperation
L(D) G~X(D) rechtsstreuend ist, betrachten wir die Polynôme

Wegen der Verschiebungstreue der betrachteten Transformationen dûrfen
wir annehmen, da6 das Maximum der Realteile der Nullstellen von g(z)
gleich Null sei. Dièses Maximum kann aber bei der Transformation

O(D)g(z) f(z),

wie in Satz 4 gezeigt wurde, nicht zunehmen, und damit ist ailes bewiesen.
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4. Wir beschlieBen dièses Kapitel mit dem Hinweis, daB das dem Satz 4

zugrunde liegende Operationsfeld einer gewissen Erweiterung fàhig ist.
Wir beweisen nàmlieh noch den folgenden

OO n
Sat& 4*. Die ganze Funktion G (z) £ —j zt* set bezûglich 2(, die

oo 7

ganze Funktion L (x) J£ ~^-xv bezûglich % gerichtet, Dann steïlt die Reihe
»>=o v\

(1)

eine ganze, bezûglich % gerichtete Funktion dar.

Wir erbringen vorerst den Nachweis, daB die Reihe (1) fur jedes z kon-
vergiert. Bedeutet lr den ersten nicht verschwindenden Koeffizienten der
Potenzreihe L(x), so geniigen auf Grund der Voraussetzung die nach-
folgenden Koeffizienten der Ungleichung (7) des ersten Kapitels:

lr+1
r, r+

Speziell gilt, wenn r 0 ist,

Nun gehôren nach § 9 desselben Kapitels sàmtliche Ableitungen
zum gleichen Typus wie L(x), so daB sich im Palle r > 0 ohne Schwierig-
keit die Ungleichung

(2) lr 7 ùi
lr • cos^-

gewinnen làBt. Zieht man jetzt in Betracht, daB mit G(z) auch die
Potenzreihe

00 I a I
_ _ | O/fA, I

in der ganzen Ebene konvergiert, so gelangt man zum Ergebnis, daB die
Reihe (1) von der stets konvergenten Reihe

majorisiert wird.
v 0 VI
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Zum Beweis, daB die ganze Funktion L(D)O(z) beziiglich 2( gerichtet
ist, ordnen wir kraft des WeierstraBschen Doppelreihensatzes nach
Potenzen von z und erhalten

(4) L(D)Q(z)= S ^¦

Fur die Koeffizienten c^ ergeben sich bei dieser Umordnung die Reihen

(5) cè v\

deren Konvergenz absolut ist, was die Ungleichungen (2) in Verbindung
mit der ganzen Funktion (3) ohne weiteres erkennen lassen.

Die Wurzeln der Polynôme

«•<•>-s(:M
liegen nach Satz 1, diejenigen der Polynôme

nach Satz 4 sâmtlich in 9(. Fiir die Koeffizienten cntt findet man die

Darstellung

2

n v\ W>>> >

(Fiir ju,-\- v Oist das Differenzenprodukt durch 1 zu ersetzen.)

Die absolute Konvergenz der Reihen (5) làBt nun den SchluB zu, daB

fur jedes fz die Grenzwertgleichung

(6) lim cnfl c^
n-> oo

erfiillt ist und nach Satz 1 ist damit die Behauptung in vollem Umfang
bewiesen.

Anmerkung. Der eben durchgefuhrte Beweis lâBt ohne weiteres die

Richtigkeit der folgenden Behauptung erkennen :

a) Die ganze Funktion G (z) sei bezûglich eines Bereiches 35, die ganze
Funktion L(x) bezûglich eines Teilbereiches 3t von 95 gerichtet. Dann
stellt die Reihe (1) eine ganze, beziiglich 35 gerichtete Funktion dar.
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Ferner làBt sich zeigen:

b) Ist die ganze Funktion G(z) beziiglich 2t, die ganze Funktion L(x)
beziiglieh eines Bereiches 95 gerichtet, der 3( enthâlt, so stellt die Reihe (1)
eine ganze, beziiglich 95 gerichtete Funktion dar.

Wir begniigen uns mit dem Konvergenzbeweis fur die Reihe (1). Mit
G (z) und L(x) sind auch

Mx(z) £ ^z* und M2(x) J£ 1^-Uv
0 II V\

ganze Funktionen. Zufolge der Voraussetzung geniigen sàmtliche Koeffi-
zienten von G(z) der Ungleichung (2)

In I <^"" T/> In IL (a __ f\ 1 O ...\

wo i1 und Jc2 positive, von ju unabhângige Konstanten bedeuten. Somit
werden die Potenzreihen G(z) und G(v)(z) (v 1, 2, 3, •••) auch durch

;i ~^7 zfA ^ie^2 0 bzw.

I ^^>\ —— Z* jU*' pKnZ\& I —• A/1 A/o v^ "

majorisiert. Mit

M D) M (?\ — v ' ' M(ï') /"z^ h pKz v I
v

I ^2

konvergiert demnach auch

in der ganzen Ebene.

c) Sind die ganzen Funktionen G(z) und L(x) beziiglich 95 bzw. S
gerichtet, so braucht die Reihe (1) nicht notwendig zu konvergieren. In
einer bereits zitierten Abhandlung*), die den hier beriihrten Fragen-
komplex fiir reell gerichtete Funktionen erledigt, hat Herr Pôlya das

Funktionenpaar
es8

e 2

Vgl. a. a. O. 3), S. 238—244.
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angegeben von der Eigenschaft, daB die daraus gebildete Reihe

z*

L(D)G{z) e 2 e 2

fur c ^ 1 in keiner Umgebung von z 0 konvergiert.
Es laBt sich aber beweisen, da6 die Reihe (1) eine ganze, bezuglich 95

gerichtete Funktion darstellt, sofern sie in einem noch so kleinen Kreise
i z I < Q (Q > 0) konvergiert. Dièse Tatsache laBt sich fur die dureh
formale Umordnung erhaltene Potenzreihe (4) schon zeigen, wenn man
nur die Konvergenz samtlicher Reihen (5) voraussetzt.

III. Kapitel

Uber lineare, verschiebungstreue Funktionaloperationen
und die Nullstellen von Exponentialsummen18)

1. Ûbt man die — symbolisch durch die Reihe L(x) ]£—.xvge-

gebene — Funktionaloperation L auf die Exponentialfunktion

f(z) aeXz

aus, so erhalt man rein formai als Transformierte

L(D)f(z) *

ein Ergebnis, das sinnvoll ist, wenn die Reihe L(x) fur x X konvergiert.
Linearitat und Verschiebungstreue der Transformation bleiben auch fur
Exponentialsummen bestehen, wenn L(x) fur die in den Exponenten auf-
tretenden Faktoren konvergiert.

Das Operationsfeld bestehe in diesem Kapitel aus den Exponentialsummen

von der Form:

(1) /(«)=i;ave^;
i> 0

n bedeutet eine naturliche Zahl, a0, al9 ••• an sind réelle Koeffizienten,
Ao, A1? ••• An réelle Zahlen, die einem vorgegebenen Intervall J angehoren.

18) Vgl. a. a. O. 4), S. 467—468.
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Die lineare Funktionaloperation L sei bestimmt durch eine im Intervall

J analytische, reellwertige Funktion L(x) und transformiere die
Exponentialsumme (1) in

n

Wir schlieBen die trivialen Fâlle, in welchen J sich auf einen Punkt
reduziert, oder L(x) in J identisch verschwindet, aus und beweisen

Sat& 7. Die Transformierte (2) besitzt dann und nur dann nicht weniger
réelle Nullstellen als (1), gleichgûltig wie (1) innerhalb des Operationsfeldes
gewâhlt werde, wenn L(x) eine reell gerichtete Funktion ist, die im Intervall J
nirgends verschwindet.

Beweis: Da L(x) in / analytisch vorausgesetzt ist, mûBten die
Nullstellen, die daselbst etwa vorhanden wâren, isoliert sein. Dies môge zu-
treffen fur den Wert x a; dann ist jedenfalls eine réelle Zahl ô be-

stimmbar, derart, daB a + ô in J liegt und L(a + à) ^ 0 ist. Die
Transformierte der Exponentialsumme

lautet

und hat ofïenbar weniger réelle Nullstellen als f(z), was im Widerspruch
steht zu der an L gestellten Forderung. Somit darf L(x) in J nirgends
verschwinden.

Um zu zeigen, daB L(x) eine reell gerichtete ganze Funktion sein muB,
betrachten wir Exponentialsummen von der Gestalt :

(3) /(»)= e«z(ebz— l)n= jb(—

n ist eine naturliche Zahl, a gehôrt dem Intervall J an, a + n ô ebenfails
(ein solehes ô ist sicherlich zu jedem Zahlenpaar n9 a bestimmbar).
Dièse Exponentialsummen (3) besitzen die maximale Anzahl reeller
Nullstellen (Descartessche Zeichenregel), die auBerdem aile in einem
Punkt zusammenfallen, und charakterisieren auf Grund der Forderung,
daB L aile dièse Nullstellen nur auf die réelle Axe streuen darf, weit-
gehend die Funktion L(x).

Die Transformierte der Funktion (3),

(4) L(D)f(z)= jb (— l
v 0 \vl
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stellt nun gerade die n-te Differenz der Funktion L(x)e?°z bezuglich x an
der Stelle x a dar, wobei A x à gesetzt ist, und da L(x) in J ana-
lytisch vorausgesetzt wird, ergibt iterierte Anwendung des Mittelwert-
satzes der Difïerentialrechnung

(5) L(D)f(z)==ô4^L(x)e**\

(l (x) a» + (^jLf (x) z-

Wenn die Transformation L die Nullstellen erhalten soll, muB das

Polynom Pn(z, ô), das wegen Nichtverschwindens des Koeffizienten von
zn vom genauen Grad n ist, n, d. h. lauter réelle Wurzeln besitzen. LâBt
man nun in (5), nach Division durch ôn, die Zahl ô monoton gegen 0

streben, so folgt auf Grund des Grenzwertsatzes von Hurwitz, daB auch
das Polynom

(6) Pn(z) L(a)zn-

das wegen L (a) 4= 0 nicht identisch verschwinden kann, lauter réelle
Nullstellen hat. Dasselbe gilt dann auch fur das Polynom

(7)

Weil aber dièse Tatsache fur jede naturliehe Zahl n zutrifft, muB die
Reihe

r L' (a) L" (a) 9 rL<^+x +^x2+'" L(a + x)

nach Satz 2 bestàndig konvergieren und eine ganze, reell gerichtete
Punktion darstellen; mit L(a + x) ist aber ersichtlich auch L(x) zu
diesem Typus gehôrend.

DaB die fur L(x) angegebene Bedingung auch hinreichend ist, wird
zunàchst fur einen Linearfaktor

Lx(x) x — A
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aus einer zweckdienlichen Fassung des Satzes von Rolle gefolgert19). Die
Exponentialsummen

n

f(z)= ^Eâve vZ
0

(8) e~Xsf (z)

weisen dieselbe Anzahl reeller Nullstellen auf. Liegt nun A, wie wir vor-
aussetzen, auBerhalb des Intervalls /, so tritt fur F (z) eine der beiden
Alternativen

limiez) 0, limiez) 0
0->-f oo z->— oo

ein, so da8 die Anzahl der reellen Nullstellen von

und damit von L1(D)f(z), nicht kleiner ist als diejenige von F (z), also
auch von /(z). Durch Itération erschlieBt man die Gultigkeit dieser Aus-
sage, wenn L(x) ein Polynom mit lauter reellen Nullstellen auBerhalb /
bedeutet, und da jede reell gerichtete, ganze Funktion ohne Nullstellen
in J gleichmàBig durch Polynôme der besagten Art approximiert werden
kann (Satz 2), gelangt man durch den oft ausgefuhrten Grenzûbergang
zum gewiinschten Ergebnis.

Das Problem, die allgemeinste Transformation L zu bestimmen,
welche die Eigenschaft hat, die Anzahl der reellen Nullstellen in keinem
Fall zu vermehren, wird gelôst durch

Satz 8. Die Transformierte L(D)f(z) besitzt dann und nur dann nicht
mehr réelle Nullstellen als f (z), wo f (z) jede beliebige Funktion des Opérations-
feldes sein kann, wenn L(x) die Reziproke einer reell gerichteten, in J
nirgends verschwindenden ganzen Funktion H(x) darsteïlt.

Wir beweisen vorerst, daB L(x) in J keine Nullstellen haben darf.
Zufolge der Voraussetzung der Analytizitât von L(x) miiBten derartige
Nullstellen isoliert sein. Ist x a eine solche, dann lâBt sich eine réelle
Zahl ô % 0 bestimmen, derart, daB a + 2 ô in J liegt und das abge-
schlossene Teilintervall [a, a + 2ô] keine weitere Nullstelle von L(x)
enthâlt, so daB dieselbe daselbst von konstantem Vorzeichen ist. Nun hat

19) Vgl. a. a. O. 7), Bd. II, V 16.

19 Comraentarii Mathematici Helvetici 275



/(S) eocz(e28z_eSz+l)

keine réelle Nullstelle, wàhrend die Transformierte

L(D)f(z) L(a + 2ô)e«*+

wegen sgL (a + 2 ô) sgL(a-\- ô)

offenbar genau eine réelle Nullstelle aufweist, im Widerspruch zu der
gestellten Forderung.

n

Nun sei (1) f(z)= JS avex*z

eine beliebige Exponentialsumme (1). Die Anzahl ihrer reellen Nullstellen
môge mit w bezeichnet werden. Die Funktionaloperation L besitze die in
Satz 8 ausgesprochene Eigenschaft, die Funktion L(x) sei also regulàr in J
und (wie eben bewiesen) daselbst ohne Nullstellen. Auch ihre Reziproke

L(x)

ist dann im Intervall J regulàr und nicht verschwindend. Bedeutet r die
Anzahl der reellen Nullstellen von

g(z) H(D)f(z) jr^j- f(z)

so mu6 wegen
L(D)g(z) f(z)

die Ungleichung w < r statthaben. Da dies aber fur jede beliebige
Exponentialsumme f(z) des Operationsfeldes zutrifft, folgt aus Satz 7, daB

H{x) eine reell gerichtete ganze Funktion sein mu6, die in J nirgends
verschwindet.

Bezeichnet man umgekehrt mit H(x) eine beliebige derartige Funktion,
so ist

L{x) H(x)

in J ebenfalls regulàr und nicht verschwindend. Ist f(z) irgend eine

Exponentialsumme (1), und bedeutet w die Anzahl der reellen
Nullstellen von
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so folgt auf Grund von Satz 7, daB die Anzahl r der reellen Nullstellen von

H(D)g(z) f(z)
der Bedingung

w

geniigt, womit auch die zweite Hâlfte von Satz 8 bewiesen ist.

Laguerre ist zu einem Ergebnis gelangt, das in passender Formulierung
besagt, da6 die Euler'sche Funktion F(x-\-1) die in Satz 8 von L(x) ge-
forderten Eigenschaften besitzt, wenn mit J das offene Intervall 0< x< oo
bezeichnet wird20). Vermôge der Funktionalgleichung F(x +1) xF(x)
trifït das ersichtlich auch zu fur F(x). Satz 8 làfit nun den SchluB zu, da8
dièse Funktion die Reziproke einer negativ gerichteten, ganzen Funktion
darstellt, ein Résultat, das bestbekannt ist.

2. In diesem Abschnitt bestehe das Operationsfeld aus den Exponential-
summen vom Typus

(9) f(z)= Z(ave^ + lve-Kz) a, • âv - | a, |2
0

wo die Koeffizienten av reell oder komplex sein kônnen und das réelle
Intervall J, dem die kv angehôren, den Nullpunkt zum Mittelpunkt hat.
Die Funktion L(x) sei analytisch in J.

Der in Kapitel I und II angewandten Ausdrucksweise entspreehend,
heiBe eine ganze Funktion H(x) imaginàr gerichtet, wenn H(ix) reell
gerichtet ist, die Funktionaloperation L dagegen fuhre dièse Bezeichnung,
wenn sie jede imaginàr geriehtete Exponentialsumme (9) in eine solche

vom selben Typus transformiert.

Wir fûgen hier die Bemerkung an, daB die ganzen Funktionen

(9) / (z) Z (a, eV + », e~X*z)
v 0

n

2 J£ (mav • eos (iXvz) + 3av • sin (ikvz)

von Ordnung und Gesehlecht 1 sind und auf der imaginâren Axe ùberall

2<>) Vgl. a. a. O. 1), S. 30.
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réelle Werte annehmen. Palis sie auBerhalb derselben keine Nullstellen
besitzen, sind sie also imaginâr gerichtet.

Wir beweisen jetzt

8at# 9. Die notwendige und hinreichende Bedingung dafûr, daji die

Transformation IL imaginâr gerichtet ist, lautet :

Es mufï L(x) eine imaginâr gerichtete ganze Funktion sein*).

Die maBgebenden Funktionen zur Fiihrung des Notwendigkeits-
beweises,

(10) f(z) (— 2 sin (iôz))n (— i)n(e8* — e~hz)n

geniigen bei passender Wahl von ô > 0 offenbar den gestellten Bedingun-
gen, besitzen sie doch nur die w-fachen Nullstellen

Tctt

zk i-^ (i=0, ±1, ±2,.-),

welche aile auf der imaginâren Axe liegen. Die Nullstellen der Trans-
formierten

(11)

miissen also nach Voraussetzung ebenfalls sàmtlich auf dieser Geraden
angeordnet sein. LâBt man jetzt in (11), nach Division durch (— 2iô)n, ô

gegen Null streben (die Bedingungen fur die Zulàssigkeit dièses Grenz-

ûbergangs sind ersichtlich erfûllt), so findet man in analoger Weise wie
im Beweis von Satz 6, daB die Polynôme

*) Vgl. hierzu O. Pôlya, Journal fur die reine und angewandte Mathematik, Bd. 158,
S. 6—18.
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nur reinimaginàre Nullstellen haben kônnen. Satz 2 erlaubt aus dieser
Tatsache den SehluB, daB die Reihe

bestàndig konvergiert und eine imaginâr gerichtete ganze Funktion
darstellt.

Fur die zweite Hâlfte des Beweises sei angenommen, daB die ganze
Funktion (9) imaginâr gerichtet sei. Dasselbe gilt dann auch fur die ganze
Funktion

F(z) e-*"f(z),

wo a eine beliebige réelle Zahl bedeutet. In Kapitel I, 9 wurde aber
bewiesen, daB dièse Eigenschaft auch auf die Derivierte

F'(z) lf'(z)-iaf(z)]-er*"°
ûbergeht. Nun iBt

S \ av {K—ia)

nichts anderes als die Transformierte L(D)f(z) von (9), wenn

L(x) x — ia

gesetzt ist. Vôllig analog zum Beweis von Satz 7 findet man dureh
Itération und Grenzubergang die Bestàtigung der Behauptung, wenn
L(x) eine beliebige ganze, imaginâr gerichtete Funktion bedeutet.

3. Operationsfeld, Intervall J und Funktion L(x) sollen im folgenden
wieder dieselben Voraussetzungen erfûllen wie im ersten Abschnitt
dièses Kapitels. Bevor wir dazu ubergehen, die allgemeinsten Trans-
formationen L zu bestimmen, welche die Exponentialsummen (1)
konstanten Vorzeichens erhalten, bzw. die grôBte réelle NullsteUe un-
gerader Ordnung nicht nach rechts streuen, sollen die Hilfssàtze zu-
sammengestellt werden, die wir fur dièse Untersuchungen benôtigen.

Wir betrachten Potenzreihen
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mit lauter reellen Koeffizienten. Die aus den letztern gebildeten Hankel-
schen Determinanten seien bezeichnet mit

h
h+i
h+2

h+1 h+2 '" h+r-l

lk+r+1

h+r-1 h+r h+2r-2

Es gilt dann

Hilf88at& &. Die Determinanten H^r) môgen den Bedingungen

1.) H{q > 0 fur r 1, 2, 3, — n

2.) #(or) =0 fur r>n
genilgen. Dann stellt die Potenzreihe (12) eine Exponentialsumme der Form

(13) L (x) £ Afi eV5

dar, deren Koeffizienten A^ sâmtlich positiv und deren Exponenten f^
sâmtlich reell sind.

Beweis: Zufolge der gemachten Voraussetzungen stellt bekanntlich
die Reihe

(14) *(*)=£-Si

eine echt gebrochene rationale Funktion von x dar, mit reell-koeffizien-
tigenPolynomen (n—l)-ten und n-ten Grades als Zàhler bzw. Nenner21).
Ihre Pôle sind sâmtlich reell und einfach, die zugehôrigen Residuen
positiv22), so daB ihre Partialbruchzerlegung die Gestalt aufweist:

(15) wo/ fur ix 1,2, - - - n.
(ii reell r

Auf Grund dièses Ergebnisses gewinnt man aber fur die Reihe (12) mit
Hilfe von (14) die folgende Integraldarstellung :

21) Vgl. a. a. O. 7), Bd. II, VII Aufg. 17—29.
22) Vgl. J. Grwnmer, Ganze transzendente Funktionen mit lauter reellen

Nullstellen. Journal f. reine u. angew. Math. Bd. 144, S. 114-166, insbes. S. 124, Satz 1.
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(16) L(x)

wobei das Intégral làngs eines Kreises | u \ R zu nehmen ist, der einen
so groBen Radius besitzt, daB sàmtliche Pôle von (14) im Innern der
abgeschlossenen Kreisflàche liegen. Denn unter diesen Bedingungen ist
die Reihe (14) làngs des Integrationsweges ofïenbar absolut und gleich-
mâBig konvergent, so daB die élémentaren Vertauschungsregeln der
Analysis angewendet werden diïrfen. Man erhâlt

OO /y. V OO

Setzt man nun in (16) fiir l(u) nach (15) die Summe ^v £_- ein, so

ergibt sich wie behauptet

2 17V

Hilfssatz 5. Die in (13) auftretenden Exponenten ^ sind sàmtlich
nichtnegativ, wenn au/ier den Voraussetzungen von Hïlfssatz 4 die zusâtz-
lichen Bedingungen

#f >0 fur r= l, 2, •••w— 1,

erfilllt sind.
Jïf =o fur r > n

Zur Begrundung genugt der Hinweis, daB unter den so erweiterten
Voraussetzungen die Pôle der rationalen Funktion nient negativ sein

kônnen, wie folgende Ûberlegung zeigt :

io_4_ A, A _, y 4*
x

"*" x2 "*" x* ^ ""
a=i x — fu '

— ^- ___ ^ ^
——

X ' X'& ' X* ' lT^î X 'Eu u^-\ X c

wo Afiijn ^0 d. h. ifj, ^ 0.
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Wir wollen jetzt die Exponenten f^ nach ihrer GrôBe geordnet vor-
aussetzen, so da8

und definieren die réelle, nirgends abnehmende Funktion W(u) in fol-
gender Weise:

W{u) 0 fur
y(u) Ax fur Si

fur St

fur

Dann làBt sich die Exponentialsumme (13) als Stieltjessches Intégral
in der Form

(17) L(x)=+f exudW(u)
— 00

darstellen, wenn unter demselben mit Stieltjes der (in unserm Fall offen-
siehtlich existierende) Grenzwert der Summe

verstanden wird, wobei die Lange jedes Teilintervalles mit wachsender
Anzahl m gegen Null strebt.

Bedeutet a irgend eine réelle Zahl und geniigen die Koeffizienten der
Potenzreihe

(12*) .L(x)=S^(x-a)»

den Voraussetzungen des vierten Hilfssatzes, so folgt aus diesem fur
L(x) die Darstellung

L(x) £ A» e^u""a) ]e<x-*»d¥(u)

u
Fiihrt man jetzt die nirgends abnehmende Funktion 0(u) Je~

— 00

ein, so wird
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(18)

Erfullt die Potenzreihe (12*) die Voraussetzungen von Hilfssatz 5, so
tritt fur die Funktion &(u) der Integraldarstellung (18) wegen f x ^ 0 die
zusàtzliche Einschrànkung

0(u) 0 fur u < 0 auf.

In engstem Zusammenhang mit den gewonnenen Ergebnissen stehen
die beiden nachfolgenden Grenzwertsàtze.

Die Funktion L(x) sei regulàr und reellwertig im Innern eines auf der
reellen Axe gelegenen Intervalls J : a < x < b. Es sei x a ein innerer
Punkt dièses Intervalls und

(12*) L{x)=Z ^f(*-a)"
v 0 VI

die Potenzreihenentwicklung von L(x) an der Stelle x a.

Hilfssatz 6. Sind die ans den Koeffizienten lv der Potenzreihe (12*)
gebildeten HankeUchen Determinanten Hff sâmilich positiv, so ist L(x)
Grenzwert von Exponentialsummen (13) mit lauter positiven Koeffizienten9
d. h, es folgt die Existenz einer fur — oo < u < + °° definierten reellen,
nirgends abnehmenden Funktion &(u), derart, dafi L(x) in jedem abge-
schlossenen Teilintervall von J durch dos dort absolut und gleichmâfiig
Jconvergente Stieltjessche Intégral

(18) L(x) ]e*ud0(u)
— 00

dargestellt wird.

Hilfssatz 7* Sind aufier den Determinanten H^auch die Determinanten

H^ positiv fur jedes r, so ist die Funktion L(x) Grenzwert von Exponentialsummen

mit positiven Koeffizienten und positiven Exponenten, d. h. sie lâflt
eine Integraldarstellung von der Gestalt (18) zu, wobei <P(u) der Zusatz-
bedingung

0{u) const. fur u ^0
genugt%z).

n) Betreffend die Hilfssâtze 6 und 7 vgl. H. Hamburger, Bemerkungen zu einer
Fragestellung des Herrn Pôlya. Math. Zeitschrift, Bd. 7, 1920 (Berlin, Springer),
S. 302—322, insbes. S. 310.
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4. Nachdem so die nôtigen Vorbereitungen getroffen worden sind,
beweisen wir

8at& 10. Die allgemeinste Transformation L, die die Exponential-
summen (1) von konstantem Vorzeichen erhalt, in dent Sinn, dafï mit f(z)
auch L(D)f(z) keine reellen Nullstellen von ungerader Ordnung besitzt, lâfit
sich im Intervall J als daselbst gleichmàflig Convergentes Stieltjessches

Intégral in der Gestalt

(18) L(x) fexud<P(u)
— oo

darstellen,wo &(u) eine réelle, monotoneFunktion bedeutet, die streckenweise

konstant sein kann.

Der triviale Fall L(x) 0 sei naturlich wieder ausgeschlossen. Dann
existiert a im Innern von J, derart, daB L(a)$0, und zwar durfen wir
unbeschadet der Allgemeinheit L(a) >0 annehmen, da wir andernfalls
[—L(x) ] an Stelle vonL(x) betrachten wurden. Zufolge der Analytizitàt
von L(x) Ià6t sich sodann eineUmgebung U von a angeben, die ganz in J
enthalten ist, von der Eigenschaft, da8 L (x) > 0 gilt in U.

Um nun die Notwendigkeit der Darstellbarkeit von L(x) als Intégral
(18) darzutun, betrachten wir folgende, in unserem Operationsfeld ent-
haltenen Quadrate, die ofiEenbar den Voraussetzungen des Satzes geniigen :

(19) / (z) e«*(e8*— l)2™ (TV

r-l r-1 2m /O«n
X S cVc*S (— l)2m"x

0 0 0

wo m und r beliebige natiirliche Zahlen bedeuten und ô — was immer
môglich ist — so bestimmt sei, daB a + 2 (m + r — l)<Hni7 liegt.

Wenn auch die Transformierte

(20)

L(D)f(z)=2 X CvCnZ(-l)2m-*( ]L(a+(v+iu+7c)ô)exp([a+(r+ju+H)ô]z)
v==0 ft O x 0 \ 9C j

von konstantem Vorzeichen sein soll, gilt imFalle desNichtverschwindens,
wie man ftir absolut genugend groB gewâhlte, réelleWerte von z feststellt:
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Setzt man insbesondere in (20) z 0, so muB demnach die quadra-
tische Form

2m

positiv sein. Die als Koeffizient von cv c^ auftretende Summe ist aber
gerade die Differenz A2mL (a + (v + ju) ô), gebildet fur den Zuwachs ô, so
daB wir schreiben kônnen

(21)

Die Déterminante von (21),

f2m

0 ..r-1

ist nach dem Vorausgegangenen nicht negativ und geht — wenn immer v

den Zeilen-, ju, den Kolonnenindex bezeichnet — bei passender linearer
Kombination der Zeilen unter Berûcksichtigung der Beziehung

tiber in

'2m A2m+vL(a+/uô)

0...T-1

und dureh analoge Kombination der Kolonnen in

J2m

Zufolge der Regularitâtsvoraussetzung tiber L{x) istderMittelwertsatz
der Diflferentialrechnung samt beKebig hâufiger Itération anwendbar, so
daB wir die Determinanten schlieBKch in der Gestalt

2m

schreiben kônnen, wobei fur (*„,„ folgende Alternative besteht:
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a<
(22)

a > av+fl >a+(2m+

Nach Division durch den positiven Faktor (Sr(2m+r'1) und Grenzûber-

gang <5->0 erhalten wir unter Berûcksichtigung von (22)

L
(2«»+

l2m 9

wobei mit lk die Koeffizienten der Potenzreihenentwicklung von L(x)
an der Stelle x a bezeichnet sind.

Weil aber die quadratische Form (21) fur jedes genûgend kleine |^|
positiv sein soll, folgt

r =1,2,3,.-
das heifit : Sâmtliche Hauptdeterminanten der unendlichen Matrix :

l0 lx l2 t3 fr4-

h h h h h'
(23) | h h h •• •

sind nichtnegativ. Unter Zuhilfenahme der Identitàt24)

gelangt man jetzt leicht zum Ergebnis, da8 die Determinanten Hq ent-
weder die Voraussetzungen von Hilfssatz 4 oder dann von Hilfssatz 6

erfiillen miissen, woraus die Existenz der Integraldarstellung (18) fur
L(x) hervorgeht.

Fur die zweite Hàlfte des Beweises sei dièse Eigenschaft von L(x)
vorausgesetzt und

dem Operationsfeld angehôrend und von konstanten Vorzeichen, sonst

u) Vgl. Kowalew8ki, Einfûhrung in die Determinantentheorie, Leipzig, 1909.
S. 90, 109.
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beliebig. Auch die Transformierte kann dann fur réelles z das Vorzeichen
nicht weehseln, wie ihre Integraldarstellung

L(D)f(z)
v — Q

f k^v
— oo\ v=0

ohne weiteres erkennen làBt.

11. Die allgemeinste Transformation L von der Eigenschaft, da/3

die grô/ite réelle Nullstelle ungerader Ordnung von L(D)f(z) die entspre-
chende Nullstelle von f(z) nicht ûbertrifft, là/it imlntervallJ eine
Integraldarstellung (18) zu, mit der Zusatzbedingung &(u) const. fur u < 0.

Beweis: Es sei f} eine beliebig vorgegebene positive Zahl, f(z) die

Exponentialsumme (19), dann ist immer eine réelle Zahl e $ 0 bestimm-
bar, daB auch sâmtliche Koeffizienten von z in den Exponenten von

(25) g(z) (e^-l)f(z) e**z^f{z)-f{z)

derUmgebung U von a angehôren. Die einzige réelle Nullstelle ungerader

Ordnung von g(z) ist einfach und negativ. Fur z > — — gilt g (z) > 0.

Die Transformierte von (25),

O...r-1 2m /2m^ v(l)2wz

(2m

erweist sich als positiv fur hinreichend groBes z ; die quadratische Form,
die man fur z 0 erhâlt, darf somit nicht negativ sein, d. h.

Da dièse Ungleichung fur jedes hinreichend kleine \e\ gûltig ist, bleibt
sie beim Grenzubergang \e\ ->0 bestehen; es wird also

— 1) EC
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Der erste Faktor auf der linken Seite ist aber wegen f} > 0 positiv, so daB,
wie im Beweis zu Satz 10, geschlossen werden kann, daB sâmtliche Haupt-
determinanten der Matrix (23) nichtnegativ sind.

Die Funktion

/ r-l
(26) h(z) ôeOÙZ(e8z—l)2m+1l J£

\p 0

O...r-1 2m+l

bei der a und ô in gleicher Weise bestimmt seien wie in (19), hat die einzige
réelle Nullstelle ungerader Ordnung z 0 und ist nicht negativ fur
z ^ 0. Die Transformierte

0.../-1 2m+l /2tw+l
(Dyh(z)=ô Ecvcn £ (- l)*">+i-W "t+

ist ersichtlieh positiv fur genugend groBes z, darf also auch nicht negativ
werden fur z > 0. Insbesondere muB fur z 0

i
gelten. Vôllig gleichartig wie im Beweis zu Satz 10 wird daraus gefolgert,
daB sâmtliche Hauptdeterminanten der unendlichen Matrix

h h h h h
h h h h

(27) | l3 h

nichtnegativ sein mûssen.

Die Bedingungen fur die Matrices (23) und (27) fuhren nun in Ver-
bindung mit der Determinantenrelation (24) ohne Schwierigkeit zum
Ergebnis, daB die Koeffizienten der Potenzreihenentwicklung von L(x)
an der Stelle x a den Voraussetzungen von Hilfssatz 5 oder 7 genûgen
mûssen, womit der Notwendigkeitsbeweis erbracht ist.
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Gilt aber fur L(x) eine Darstellung

L(x) Jexud0(u)
— oo

mit 0(u) const. fur u < 0, und ist

v 0

eine Funktion des Operationsfeldes, so ist die groBte Wechselstelle 2;0 von
f(z) nicht kleiner als die entsprechende der Transformierten, wie deren
Gestalt

L(D)f(z) ] f(z + u)d0(u)
— oo

zur Evidenz zeigt, ist doch

sgf(zQ+£ + u) sgf(zo + e) fui u > 0

wenn e > 0, sonst beliebig klem ist.

(Eingegangen den 28. Dezember 1934.)
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