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Uber die Potenzreihenentwicklung gewisser
mehrdeutiger Funktionen

Von GEoRG POLyA, Ziirich

Einleitung

1. Die vorliegende kurze Arbeit liefert einen Beitrag zur Hadamard -
schen Fragestellung, d. h. zur Untersuchung der Zusammenhinge zwi-
schen den Eigenschaften der Koeffizientenfolge einer Potenzreihe und den
Eigenschaften der analytischen Funktion, die durch diese Potenzreihe
definiert ist. Die Hadamard sche Fragestellung ist sehr vielgestaltig, denn
sowohl von der Koeffizientenfolge, wie von der Funktion kann man
mannigfaltig verschiedene Eigenschaften in Betracht ziehen. Eine in der
allgemeinen Hadamard’schen miteingeschlossene spezielle Fragestellung
ist z. B. die folgende: Von welchen Eigenschaften der Koeffizientenfolge ist
bedingt der Verlauf, den die Riemannsche Fliche der durch die Potenzreihe
definierten Funktion nimmt?

Diese spezielle Frage ist bisher nur wenig bearbeitet und wohl iiber-
haupt nicht explizite hervorgehoben worden. Ich greife zuerst den folgen-
den noch spezielleren, besonders einfachen Fall heraus: Wie milssen
beschaffen sein die Koeffizienten der Potenzreihe

(1. 1) ay + a2 + a2> + -+ + a,2" 4 -,

damit die dadurch definierte analytische Funktion die folgenden Eigen-
schaften zeige: Sie bleibt eindeutig auf der Riemann’schen Fliche von

]75: 1, sie st requlir in allen Punkten aupPerhalb der Windungspunkte
z =1 und z = oo dieser Fliche und sie verschwindet im Windungspunkte
z = oo. (Hierin bedeutet p eine positive ganze Zahl.) Diese Frage 148t
sich einfach und, bei richtiger Beniitzung des Vorhandenen, miihelos
beantworten. Die notwendige und hinreichende Bedingung fiir die ver-
langté Beschaffenheit der Koeffizientenfolge a,, a,, a,, -** besteht darin,
daB diese Folge sich durch eine meromorphe Funktion H(z) von be-
sonderer Bauart interpolieren 148t. Es muf3 H (z) die Form haben

F(e45) @+ Tzt 2) @+ + Tz + 3P0

(1.2) H((z)= TGFD)
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Hierin bedeuten ¥, (z), F,(z), * F,(2) ganze Funktionen, die den Minimal-
typus der Ordnung 1 nicht iibersteigen; d. h. irgend eine F(z) unter
ihnen hat die Eigenschaft, daB bei beliebig, aber fest gewahltem positivem
¢ das Produkt F (z)e¢!?! in der ganzen z-Ebene beschriankt bleibt. Die
durch (1. 2) gegebene Funktion H (z) ist, wegen der bekannten Eigen-
schaften der Gammafunktion, meromorph. Zur verlangten Beschaffenheit
der Koeffizientenfolge ist notwendig und hinreichend, daf3

(1. 3) a,=H(m) fir n =0,1, 2, --- set.

2. Das eben Ausgesprochene ist ein Spezialfall (der Fall o = 0) des
folgenden Satzes:

Satz I. Es sei p eine positive ganze Zahl und 0 < p < 1. Die Potenzreihe
(1. 1) definiere eine analytische Funktion, welche eindeutig und regulir

bleibt auf der Fliche, welche von der Riemann’schen Fliche von ]7z———1
tibrigbleibt, wenn davon herausgeschnitten wird diejenige Umgebung des
Windungspunktes z = 1, die sich auf die abgeschlossene Kreisscheibe vom
Mittelpunkte z = 1 und Radius g projiziert; ferner wird gefordert, daf3 die
Funktion im Windungspunkte z = oo verschwindet.

Die Zahlenfolge ay, a,, a,, -+ kann dann und nur dann die Koeffizienten-
folge einer so beschaffenen Potenzreihe sein, wenn sie durch eine meromorphe
Funktion H (z) interpoliert wird, im Sinne der Gleichung (1. 3), wobet H (z)
gemadf (1. 2) mit ganzen Funktionen Fy(z), Fy(2), - F, (2) vom Ezponential-
typus aufgebaut ist, deren Indikatordiagramme enthalten sind im Bilde, das
die Funktion z = — log (1 — w) um den Nullpunkt der z-Ebene von dem
Kreis |w| < g der w-Ebene entwerft.

Die Zuordnung des Funktionensystems F,(z), Fy(z), - F,(z) zu der
Koeffizientenfolge ay, a,, ay, -+ 1t eineindeutiyg.

Die Fassung des Satzes I, insbesondere die darin gebrauchte weniger
gelaufige Terminologie, soll in Nr. 3—5 weiter erlautert werden. Der in
vielen Hinsichten besonders einfache Spezialfall ¢ = 0 wurde in Nr. 1
erlautert. In andern Hinsichten ist der Fall p = 1 besonders einfach. In
diesem Fall ist die Blatterzahl der Riemann’schen Flache 1, die durch die
Potenzreihe (1. 1) definierte Funktion ist im Kreisauflenraume |z — 1|> o
der z-Ebene reguliar und eindeutig (im absoluten Sinne eindeutig), und die
Funktion H (z) ist eine ganze Funktion. Der Fall p = 1 ist wohlbekannt,
er ordnet sich in ein von vielen, insbesondere von Carlson untersuchtes
Gebiet ein!). Der duflerste Spezialfall, in welchem sowohl ¢ = 0 wie p = 1,

1) Carlson (3), (4); ferner Zitate in (6), S. 553. Die eingeklammerten Zahlen verweisen
auf das Literaturverzeichnis am Ende der Arbeit.
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bildet den Gegenstand eines durch vielfache Anwendungen bekannten
Satzes von Wigert?).

Die Begriindung des Satzes I wird in Nr. 5—9 gegeben. In den nach-
folgenden Nr. 10—13 wird ein Grenzfall von Satz I, der SatzIV behandelt.
Der Grenzfall betrifft p — oo, wobei die betrachtete Riemann’sche Flache
in eine logarithmische Fliche iibergeht; die Frage wird jedoch durch
Satz IV nur angeschnitten, nicht erschopft. Die letzte Nr. 14 bringt An-
deutungen iiber Anwendungen und verwandte Fragen.

3. Ich will einige im Satz I gebrauchte Begriffe erlautern und gewisse
damit zusammenhangende Satze zu nachherigem Gebrauch zusammen-
stellen3).

Eine ganze Funktion F (z) heilt vom Exponentialiypus, wenn ihr An-
wachsen den Mitteltypus der Ordnung 1 nicht iibersteigt, d. h. wenn es
zwei positive Zahlen 4 und a gibt, so beschaffen, dafl in der ganzen
z-Ebene

| F(z) | < Ae*!?!

gilt?). Wenn die ganze Funktion F'(z) vom Exponentialtypus ist, so heil3t

lim 7 log | F (re®) | = h(p)
der Indikator von F (z). Der Indikator % (p) ist eine stetige Funktion von ¢,
periodisch von der Periode 2 n. Die Schar der Geraden

xcosp + ysing —h(p) =0

umhiillt einen endlichen konvexen Bereich, der als Indikatordiagramm
von F (z) bezeichnet wird, in folgendem Sinne: Das Indikatordiagramm
hat mit jeder Geraden der Schar einen Punkt gemeinsam und liegt auf
der negativen Seite davon (d. h. in der Halbebene, wo die linke Seite der
Geradengleichung < 0 wird). Die in Nr. 1 erwahnten ganzen Funktionen,
deren Anwachsen den Minimaltypus der Ordnung 1 nicht iibertrifft, sind

) Wigert (10).
3) Beweise und ausfiihrlichere Darstellung hei Pdlya (6), insbesondere 8. 571—586, oder
Bernstein (1), insbesondere Note III.

4) Wenn diese Ungleichung in der Halbebene Rz — 0 fiir eine daselbst analytische
Funktion F(z) gilt, so heiBt F(z) vom Exzponentialtypus in der Halbebene Rz —— 0. Ahnlich
ist die Terminologie fiir irgendeinen Winkelraum.
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dadurch charakterisiert, daBl ihr Indikatordiagramm aus dem einzigen
Punkt 2z = 0 besteht.

Man schreibe die Potenzreihe der ganzen Funktion ¥ (z) vom Exponen-
tialtypus in der Form
dk z"

3.1) Fly=do+ B2 435 B8

und betrachte daneben die in einer Umgebung von z = co konvergente
Potenzreihe

3.2) =ty byl b

Der kleinste konvexe Bereich, aulerhalb dessen die Fortsetzung dieser
Potenzreihe von f(z) regular bleibt, ist das Spiegelbild des Indikator-
diagramms von F'(z) in bezug auf die reelle Achse und heiflt das konju-
gierte Diagramm von F (z). Es sind F(z) und f(z) miteinander durch die
beiden, zueinander reziproken Integralformeln

(3. 3) f@)=[F ) e=tdt,
(3. 4) F(t)=§§7¢f(z) e*tdz

verbunden ; die Integrationslinie von (3. 3) ist die positive reelle Achse, die
von (3. 4) irgendeine doppelpunktlose geschlossene Kurve, welche das
konjugierte Diagramm von F (z) im Innern enthélt. Die Darstellung (3. 3)
ist in der Halbebene Rz > h(0) giiltig, die Darstellung (3. 4) fur alle
Werte von ¢.

4. Die Funktion

z=log1_1

entwirft von dem Kreis |w| < ¢ der w-Ebene, wobei 0 < ¢ < 1, unendlich
viele, zueinander kongruente und gleichgelegene, dquidistante Bilder in
der z2-Ebene, von welchem ein bestimmtes den Punkt z = 0 enthélt: dieses
Bild ist im Satz I gemeint und soll im folgenden mit ¥, bezeichnet wer-
den. Entlang des Randes von B, gilt also die Gleichung

|1—e2|=p.

204



Wie leicht zu konstatieren, liegt dieser Bildbereich im Innern des Hori-
7
2
reelle Achse, seine auf der reellen Achse gelegenen Randpunkte sind

zontalstreifens — — < Yz < —725— , sie ist symmetrisch in bezug auf die

2= —log (1l + o), 2= —log (1 —p).

SchlieBlich ist B, ein konvexer Bereich®). B, besteht aus dem einzigen
Punkt z = 0, und 9B, ist in B,,, als Teilbereich enthalten fiir

O=o<o+e<.

Aus der Symmetrie von B, geht hervor, dal das Indikator- und das
konjugierte Diagramm entweder beide in %, enthalten sind oder keines
von den beiden in B, enthalten ist. Betrachten wir den Fall, dal das
konjugierte (also auch das Indikator-) Diagramm von F(z) in B, ent-
halten ist. Aus der beschriebenen Situation von B,, und aus seiner
Symmetrie und Konvexitat folgt, dafl

(4. 1) k(0)=1lim r1log | F(r)| < log

r->oco ]-_'Q ’

und dhnlich, daf

him) <log(1+¢) , h(-g-)<g, h(—~’2‘—)<i;—.

Beweis des Satzes |

5. Fiir die in Satz I beschriebene, aus der Fortsetzung der Potenz-
reihe (1. 1) entstehende Funktion ist der Punkt z = oo ein Verzweigungs-
punkt p-ter Ordnung. (Eventuell bloB von g-ter Ordnung, wo ¢ ein
Teiler von p ist. Man beachte, daB auf der Riemann’schen Fliche von

p
J 1—=z die Funktion regulir sein soll, nicht notwendigerweise in der

5) Dies folgt aus einem bekannten Kriterium (vgl. z. B. (8), Bd. I, Nr. IIT 108, S. 105

und 8. 277), da, ¢ (w) = — log (1 — w) gesetzt,
@ (w)\ 1 1—Rw
m(””’ cp'(’w)) =Ry = —wp "

ist fur [w|=9<1,
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Ebene.) In der nichsten Uberlegung konnte man die Puiseux’sche Ent-
wicklung um den Verzweigungspunkt z = oo verwenden, ich ziehe jedoch
vor, anders zu schlieBen$).

Man nehme von der Ebene heraus zuerst die Kreisscheibe |z — 1| <,
dann die Punkte der positiven reellen Achse von z = 1 + p bis 2 = oo;
in dem iibriggebliebenen Teil der Ebene definiert die Potenzreihe (1. 1),
wie in Satz I erwahnt, einen Funktionszweig g(z). Wenn der variable
Punkt z von der Stelle z = 0 ausgehend die Kreisscheibe [z — 1| <p
einmal in positivem Sinne umkreist, gehe der Zweig ¢(z) in den Zweig
g, (2), der Zweig g, (2) in g,(2), g;(2) in g3(2), :-- schlieflich g,_, (z) wieder
in g(z) iiber. Diese zyklische Verbundenheit der Funktionszweige g(z),
g1(2), *** 9, (2) driickt die Voraussetzung von Satz I iiber die Art der
Mehrdeutigkeit aus.

27t

Es sei ©=¢?, | eine der Zahlen 1,2,3, - p, und (1 —2)¥? be-
zeichne denjenigen Zweig, welcher fiir ein z des Intervalles 0 <2z < 1
positiv ausfallt. Die Funktion

l
(5. 1) % (1—2)p " [g(2) + Olgy(2) + Oy (2) + - +-OW-Dlg, | (2)]=Mhy(2)

kehrt zur Ausgangsbestimmung zuriick, wenn z auf die beschriebene Art
die Kreisscheibe |z — 1| < ¢ umkreist. Folglich ist A,(z) eindeutig und
regulir im KreisauBenraum |z — 1| > p, ausgenommen moglicherweise
den Punkt z = co. Wie alle Funktionszweige ¢(2), ¢,(2), -** 9, (2), ver-
schwindet auch A, (?) fiir z = oo, da ! < p. Hieraus schliet man, daB} die
in der Umgebung von z = oo eindeutige Funktion %,(2) im Punkte
z = oo reguldr ist und verschwindet ; somit ist h,(z) regular fir |z — 1| > o.
Irgendeine A (z) der Funktionen A, (z), ky(2), --- besitzt also eine Ent-
wicklung von der Gestalt

_ %
 l—=

1
(1—=2)?

Cy

tTo—p T

(5. 2) h(2) +

fir |z — 1| > p; folglich ist

I 7
lim Yle, T <o.

k> oo

(5. 3)

6) Der SchluB kommt im Grunde auf einen Beweis der Puiseux’schen Entwicklung
heraus; es liegt mir dabei daran, die Rolle der vorausgesetzten Art der Mehrdeutigkeit
hervorzuheben.
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Indem man in (5.1)] =1, 2, -+ p setzt und linear kombiniert, erhalt
man

(5 4:) g(z) = &, -+ a2 + 3222 +4 e

= (01— PRy () + (1—2) P hy(z) + -+ (1—2) P (2)

daBl eine Funktion dieser Gestalt von der in Satz I erwihnten Art ist, ist
evident. Somit hangt der Beweis von Satz I von dem des folgenden
Satzes ab:

Satz II. Esser 0 < p <1, Aeinevon 0, — 1, — 2, — 3, -+ verschiedene
Zahl, und die Potenzreihe

by + byz + by2® + -

stelle eine Funktion von der Form
(1 —2)-2 h(2)

dar, wobes h(2) fur | z—1 | >p reguldr ist, auch im Punkte z = oo, wo
es verschwindet.

Die Zahlenfolge by, by, by, -+ kann dann und nur dann die Koeffizienten-
folge einer so beschaffenen Potenzreihe sein, wenn es eine ganze Funktion
F (z) gibt, deren konjugiertes Diagramm in dem Bereich B, enthalten ist,
und die den Gleichungen

bn=7]:-((—:i—j__—%lf’(n) (n=0,1,2,3,--)
geniigi.

In der Tat wird, gemaB (5. 4), durch einen Beweis von Satz II auch
Satz I mitbewiesen, abgesehen von einem Punkt: Dall die Koeffizienten
a, die Funktionen F,(z), :-- F',(z) eindeutig bestimmen, mufl nachher
(vergl. Nr. 9) noch besonders gezeigt werden. Die Zahl A muB} nicht eine
rationale Zahl des Intervalls 0 < 4 < 1 sein, sie kann auch komplex sein.
Der Spezialfall A = 1, p = 0 des Satzes II fillt wieder mit dem erwahnten
Satz von Wigert zusammen. ‘

6. Wir betrachten nun Satz II. Die dort genannte Eigenschaft von
h (z) 148t sich durch (5. 2) und (5. 3) ausdriicken. Durch eine (vorderhand
rein formale) Rechnung erhalten wir aus (5. 2)
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F=0
=) 0 A ... S
Y e N ES S | B R TR
k=0  n—=0 . e N
2 & F(Z—}—k-{—n) o
(6.1) =& TOF ) T ”

_ 32 2 °\';I’(n+2—|-k)c
o l'n+1)i=y I'A+k 7F

e I'(n+2) %

—-5:' Tk 1) & of(l-i-k) (r4+A4) (m+A41) - (n+A-+k—1)
2 T'in+4)

—n§0z P('IZ+ I)F( )’

6.9 FO=3 g G+HE+A+ D @+1+k—1).

Um diese Rechnung zu einem Beweis von Satz II auszugestalten,
miissen wir zweierlei leisten: Erstens miissen wir von A (2) zu F (z) ge-
langen, zweitens von F (z) zu h(z).

Wenn wir von %(z) ausgehen, haben wir die Voraussetzung (5. 3) zur
Verfiigung und unser Zielpunkt ist das konjugierte Diagramm von F (z).

Wenn wir von F'(z) ausgehen, haben wir eine Voraussetzung iiber das
konjugierte Diagramm zur Verfiigung, némlich, dafl es in B, liegt, und
unser Zielpunkt ist (5. 3). Kurzum, wir haben folgendes zu beweisen :

Satz III. HEs set A+0, — 1, — 2, — 3, *--. Notwendig und hinreichend
dafir, daf F(z) eine ganze Funktion vom Exponentialtypus sei, dessen
konjugiertes Diagramm in B, liegt, ist, daf F (2) durch die in der ganzen
Ebene konvergente Reihe (6. 2) darstellbar sei, mit Koeffzienten c,, welche
der Bedingung (5. 3) geniigen.

Wenn der Satz ITI schon bewiesen sein wird, kann die formale Rech-
nung unter (6. 1) so gerechtfertigt werden: Wenn ¢, durch |c,| ersetzt

208



wird, wird an (5. 3) nichts gedndert. Ersetzen wir ¢, durch |c,| und 4
durch |4|; dann ergibt sich aus (6. 2) anstatt F (z) eine ganze Funktion
F*(z), deren konjugiertes Diagramm ebenfalls in &, liegt. Daher gilt
(4. 1) auch mit F*(z) statt mit F (). Folglich ist insbesondere fiir be-
liebiges ¢ > 0 und fiir geniigend groBes positives ganzzahliges n

(6. 3) * (n) < enl-log(1- ¢)+¢] .

Ersetzen wir in (6. 1) ¢;, 4, z durch |c,|, | 4], |2] und somit F(n) durch
F*(n), so handelt es sich um die Umordnung einer Doppelreihe mit lauter
positiven Gliedern, die gestattet ist, sobald das Endresultat, die letzte
Zeile von (6. 1), mit F*(n) und |A| anstatt F(n) und A, konvergiert:
Das ist aber wegen (6. 3) fiir |2| <1 — p der Fall, und die Anwendung
des Weierstrafy’schen Doppelreihensatzes beendigt die Uberlegung.

Satz III ist, allerdings in ziemlich verschiedener Formulierung, schon
von Carlson?) aufgestellt worden. Ich gebe im folgenden einen vollig
neuen Beweis, der auf Grund der in Nr. 3 zusammengestellten Tat-
sachen ohne irgendwelche miihsamen Abschitzungen, blof durch Auf-
stellung geeigneter Formeln, zum Ziele gelangt. Die Natur der aufzu-
stellenden Formeln 148t sich voraussehen: Wie die Formeln (5. 2), (6. 2),
(3. 3) lehren, ist die Funktion % (2) mit der Zahlenfolge ¢, c,, ¢5, ***, diese
Zahlenfolge mit der ganzen Funktion F(z), und F (z) mit der Funktion
f(2) linear verbunden. Durch passende Elimination driickt man zunéchst
f(2) durch % (z), dann k(z) durch f(z) linear aus, und erschliet Satz III
aus dem Aufbau der erhaltenen Ausdriicke.

7. Gegeben ist die Funktion A (z), durch ihre Entwicklung (5. 2), und
wir gehen aus von (5. 3) als Voraussetzung. Wir wollen zunéchst F(2),
dann f(z) konstruieren, und zu einer Aussage iiber das konjugierte
Diagramm gelangen.

Die Voraussetzung (5. 3) besagt, daB} die Reihe

(7. 1) h(l—w):%_}.%.}_..._;_&%%_,t_... ,

welche wir hier statt (5. 2) betrachten wollen, fiir |w| > o konvergiert.
Aus der Produktdarstellung der Gammafunktion (oder, weniger elemen-
tar, auch aus der Stirling’schen Formel) folgt, daB fiir k — oo

') Carlson (4), S. 60.
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IF'k+2) ~ k! kM1,
k
V k! )
Th+a

¢, 1 klc 1
W (1—w) = 50 st trEspwm

denselben Konvergenzkreis, wie (7. 1), ist also fiir |w| > p konvergent8).
Es sei p<p + €< 1; dann ist, die Integration entlang des Kreises
|w| = ¢ + € im positiven Sinne erstreckt

(7. 2) 1

*(1__ —ap\—2—A —_
i h (1—w) (1 w) dw

1 £ % k!c, 1 (2+44) (2+A+1)--- (z+A+1—1)
s ;Eozzo.l—'(k-{—l)wk“ I

wdw

Zur Rechtfertigung der vollzogenen gliedweisen Integration geniigt es, zu
bemerken, dafl die Doppelreihe auf der Integrationslinie |w| = p + ¢
absolut und gleichmaBig konvergiert, ebenso wie die beiden Reihen,
deren Produkt sie ist. Der zweite dieser Faktoren, die Reihenentwicklung
von (1 — w)~2-A, stellt den Hauptzweig dar, d. h.

e—-(z+/\) log (1—w)

mit derjenigen Bestimmung von log (1 — w), die fiir w = 0 verschwindet.

Die Reihe in der letzten Zeile von (7. 2) ist, wie aus der Rechnung her-
vorgeht, fiir alle Werte von z konvergent; sie ist, in Ubereinstimmung mit
(6. 2), als die Definition von F(z) anzusehen; F(z) ist somit eine ganze
Funktion. F (z) ist sogar vom Exponentialtypus, da aus

8) Mit Hinsicht auf anschlieBende, spéter (in Nr. 14, unter b) zu erlauternde Fragen ist
wesentlich zu bemerken, da8 % (l1—w) und A*(1—w) dieselben singuldiren Punkte haben,
mindestens bei Fortsetzung entlang von Halbstrahlen, die von w = oo gegen w = 0
- laufen; dies ergibt sich durch zweimalige Anwendung des bekannten Hadamard’schen
Satzes tiber die Multiplikation der Singularititen.
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(7. 3) 2n@¢k* (1—w) (1 —w)—2~dw
leicht die Abschatzung

| Flo) | < Ao (mlo8U—0=0)+T) 12
mit einer passenden positiven Konstanten 4 folgt.

Wir erhalten aus (3. 3) und (7. 3)

f(z) = Z 5% h*(1 —w) (1—w)—t=Adw - e—t2d¢

*®(1__ . A [p—tlz+log(1 —w)]
2n%=¢h 1—w) (1—w)~ fe J dt- dw,

h*(1—w) (1—w)—2
1
l—w

(7. 4) fz) = dw .

— Zam

z—log

Die Rechnung gilt, und insbesondere ist die Anderung der Reihenfolge
der Integrationen wegen absoluter Konvergenz erlaubt, wenn

1

ist; in der Halbebene (7. 5) ist f(2) sicher regulir. Die Formel (7. 4) zeigt,
daf} f(z) noch weiter regular bleibt, nimlich solange z sich auBerhalb der
Kurve bewegt, welche — log (1 — w) beschreibt,wenn w den Integra-
tionskreis |w| = p + ¢ durchlduft. Somit bleibt f(z) regular auBerhalb
des Bereiches B, ,: da ¢ beliebig klein ist, haben wir die eine Halfte des
Satzes IIT bewiesen. (Auch dafl f(z) eine Reihenentwicklung von der
Form (3.2) besitzt, kann man leicht der Formel (7. 4) entnehmen.)

8. Nun haben wir einen Weg zu finden, der dem in der vorangehenden
Nr. 7 befolgten entgegengesetzt liuft.

Gegeben ist nun die Funktion f(z), durch ihren Zusammenhang mit der
ganzen Funktion vom Exponentialtypus F (z), und wir gehen aus von der
Voraussetzung, daB f(z) auBerhalb B, regular ist. Wir wollen zunéchst
die Koeffizienten c,, dann k(z) konstruieren und zu der Aussage (5. 3)
gelangen.

Von den beiden, zwischen f(z) und F () vermittelnden Formeln (3. 3)
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und (3. 4) beniitzen wir jetzt, nicht wie vorher die erste, sondern die
zweite ; sie kann entlang des Randes vom Bereich 9, ,, der B, umschlieft,
erstreckt werden; es gilt somit auf der Integrationslinie von (3. 4)

(8. 1) |1 —e?|=p+e< 1.

Unter der Bedingung (8. 1) gilt auch
e?t — =2 p2(t+A) — g—2 2 (e—z)—(t+ A)
= g2 A [1—(1—e?) ]- @+

'—’G—ZAZ (t—}—}.) (t—l_l"{" )k' (t+l+k'——l) (1_e—z)k

und zwar absolut und gleichméafig in z. Somit ergibt Einsetzen in (3. 4)
und gliedweise Integration

(8.2)

@ (t--4) (tHA+1)--(t-+A+k—1) T(l+4) o
F)=% TTa) k'2m¢f e (l—e =)z

fiir alle Werte von £. Diese Formel definiert die c,. In der Tat, soll die

Formel (6. 2) fiir alle Werte von z bestehen, dann kann man darin
z2=—), — A—1, -+ — A— [k setzen, und die Koeffizienten

Co» €1, Cg5 ***  Cp
rekursive durch
F(—A), F(—A—1), F(—i1—2),: F(—A—k)

ausdriicken. Daher ergeben (6. 2) und (8. 2)

I'(k+2)
(8. 3) =7 2_;@ ‘¢‘f e—A2 (1—e—2)kdz,

Wird ¢, aus (8. 3) in (7. 1) eingesetzt, so erhalten wir, falls nur |w| > o+ ¢,

pa—w) =5 £ TOED @ et (e,

2mwk_
(8. 4) h(l—w)——zmwﬁf( '\2(1—- e“z) dz.
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Vergessen wir nicht, daBl entlang der Integrationslinie in (8. 4), wie in
(8.3) und (8. 2), die Gleichung (8. 1) gilt. Somit bleibt A(1 — w) fiir
|w| > ¢ + &, und, da e beliebig klein, fiir [w| > p regulir. Fiir die Ent-
wicklung (7. 1) gilt somit (5. 3) und so ist auch die zweite noch aus-
stehende Hélfte von Satz 111 bewiesen.

9. Die letzte, bisher noch unbewiesene Behauptung des Satzes I besagt
im wesentlichen dies: Wenn die Indikatordiagramme der ganzen Funk-
tionen Fy(2), Fy(2), -+ F,(2) wn B, enthalten sind, und die durch (1. 2)
gegebene Funktion H (z) fir z = 0, 1, 2, 3, -+ verschwindet, so verschwindet
jede der Funktionen F,(z), Fy(2), -+ F,(2) tdentisch.

Dies folgt aber leicht aus einem wohlbekannten, fiir &hnliche Zwecke
oft angewendeten Satz von Carlson®), der dies besagt: Eine Funktion
H (z), dve fiir z = 0,1, 2, --- verschwindet, in der Halbebene Rz = 0 vom
Ezxponentialtypus ist'®), und deren Indikator der Bedingung

9.1 ___“_> B (=
(9. 1) h( )+ h(F)<2m
geniigt, verschwindet identisch.
Die Funktion H (z), auf welche sich die eingangs dieser Nr. 9 ausge-

sprochene Behauptung bezieht, erfiillt aber diese Bedingungen. Der
Quotient

(9. 2) I'z4-2) _sinzmd & I'(n+4) 1

r'e+1) a = I'n+1l)z+n+i’

(wobei 4 reell, 0 < A< 1) bleibt nimlich, wie es z. B. aus der ange-
schriebenen Partialbruchzerlegung ersichtlich ist, in der Halbebene
Rz = 0 beschrinkt; es ist !/p = A gesetzt. Die Funktionen F,(z) sind
vom Exponentialtypus; da das Indikatordiagramm von F,(z) in B,
enthalten und die Breite von B, senkrecht zur reellen Achse kleiner als
n ist, gilt fiir die hier betrachtete Funktion (1.2) nicht bloB (9. 1),
sondern es konnte sogar das 2z an der rechten Seite durch m ersetzt
werden. Somit folgt aus H(0) = H(1) = H(2) = --- = 0, dal} identisch
H(z) = 0.

Es darf also H (z) keine Pole haben. Durch die Betrachtung der Pole von
I'(z+1/p) folgt firl =1, 2, --- p— 1, daBB

e M S

%) Carlson (3), S. 58. Vgl. ferner (6), S. 607.
10) Vgl. FuBlnote 4%).
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Die Anwendung des Carlson’schen Satzes auf F,(— I/p — z) (hier wiirde
auch ein schwicherer Satz geniigen) ergibt, daB F,(z) identisch ver-
schwindet, fir !l =1, 2, --- p— 1. Mit H (z), F, (z), -*- F,—, (2) muB} schlief3-
lich auch F,(2) verschwinden, womit Satz I restlos bewiesen ist.

AnschlieBende Fragestellungen

10. Fiir p - oo geht die Riemann’sche Fliche von f/m in die
von log (1 —z) iiber; es schlieB3t sich der hier durch Satz I gelésten Frage
die weitere an: Welchen Bedingungen miissen die Koeffizienten einer Po-
tenzrethenentwicklung (um den Punkt z = 0) geniigen, damit die dar-
gestellte Funktion auf der Riemann’schen Fliche von log (1 — 2z) eindeutig
und regulir sev?

Eine Funktion der erwahnten Art hat die Gestalt

; 1
(10. 1) F(logl_z>,

wobei F (w) eine ganze Funktion von w ist. Einen Teil der gestellten Frage
beantwortet der folgende

Satz IV : Die Potenzrethe (1. 1) stelle exne Funktion von der Gestalt (10. 1)
dar, wobei F (w) eine ganze Funktion von w bedeutet, deren Anwachsen den
Mitteltypus der Ordnung 1 nicht ibertrifft.

Die Zahlenfolge a,, a,, a,, -+ kann dann und nur dann die Koeffizienten-
folge einer so beschaffenen Potenzreihe sein, wenn, abgesehen vielleicht von

endlich vielen Werten von n,
a, = H(n)

18t, wober die Funktion H (z) die folgende Gestalt hat :

1 = 4,T%(

(10-2) BHO=rerns—m ¢

die Zahlenfolge A,, A,, A,, +*- ist nur der einen Bedingung unterworfen, daf

- -

n
(10. 3) lim J[4.] =R

n-»oco

endlich ist.
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Die Funktion H (z), wie auch die Zahlenfolge A, A,, A,, -+ sind durch
Qg; 21, 8, *** eindeuttg bestimmt. Jedoch H (z) bestimmt die Zahlenfolge
ag, 2y, 8y, *+* nicht wvollig eindeutig, sondern miissen zwei Zahlenfolgen
ags Ay, Ay, ***, die zu demselben H (z) gehioren, erst von einem bestimmien
Index angefangen miteinander ibereinstimmen.

Es sind hier einige Bemerkungen iiber die Gestalt (10.2) von H (z)
angebracht. -

a) Man beschreibe um jeden Pol von I'(z), d. h. um jeden der Punkte
z2=0,—1,—2, -+ einen Kreis vom Radius R. Diejenigen Punkte der
Ebene, die der Vereinigungsmenge der so entstandenen, als abgeschlossen
aufgefaliten Kreisscheiben nicht angehéren, bilden ein offenes zusammen-
hingendes Gebiet . Irgend ein Punkt z von & hat von jedem Pol von
I'(2) einen Abstand, der groBer ist als B. Wenn also z zu @ gehort, konver-
giert fiir ein passend klein gewéhltes positives ¢ die Reihe

2 (B+e)T0()

=0 l!

absolut, und somit konvergiert, wegen (10. 3), auch die Reihe (10. 2).
Es ist leicht zu sehen, dafl (10. 2) in jedem abgeschlossenen Teilbereich
von & gleichméafig konvergiert und somit eine in & regulére und ein-
deutige Funktion definiert.

Auflerhalb & braucht H (z) iiberhaupt nicht zu existieren!'). Nur wenn
der Punkt z = 7 in @ gelegen ist (wag ja fiir alle ganzen % mit hochstens
endlich vielen Ausnahmen zutrifft), hat die Gleichung a, = H (n) einen
Sinn.

Man beachte hierzu, daf3 das Weglassen eines Einzelgliedes der Reihen-
darstellung der Funktion (10. 1) die Subtraktion einer ganzen Funktion
vom Mitteltypus der Ordnung 1 von F (w) bedeutet. In der Tat, wird
—log (1 — 2z) = w gesetzt, so ist

a,2m=a,, (1 —e¥)™

b) Die Formel (10. 2) ist ein Grenzfall der Formel (1. 2), wenn in der
letzteren p unendlich wird und F,(z), - F,(2) Polynome bedeuten,
deren Koeffizienten sich mit wachsendem p passend dndern, deren Grade
jedoch unter einer von p unabhingigen Schranke bleiben.

1) Um dies mit Beispielen zu belegen, vgl. (6), S. 604, den Satz der Nr. 42 (in der

letzten Zeile lies ¥*(z) statt ¥(z)). Fir die vorangehende Uberlegung vgl. daselbst
S. 598—604. :
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Dies sieht man in zwei Schritten ein. Erstens kann man, wenn F,(z)
ein Polynom von héchstens m-ten Grade ist,

I'(z -+ L)F,(z)ngyl"(z +—l——l—y>
P pu=0 p

setzen, mit passenden Konstanten B, B,, --- B,,. Zweitens ist, wenn C
irgend eine Konstante bedeutet,

”°° ' ()]

und eine lineare Kombination solcher Reihen hat stets die Gestalt dér
Reihe in Formel (10. 2).

¢) Wird
A )
(10. 4) A+ P AT g

gesetzt, so ist, wegen (10. 3), G'(2) eine ganze Funktion hochstens vom
Mitteltypus der Ordnung 1 (vom Exponentialtypus, vgl. Nr. 3), wie die
vorgelegte ganze Funktion F' (z) selber, und es ist

(10. 5) rz+1)H@) =°f:G(logt)tz—1e—tdt;

diese Formel gilt sicherlich, wie leicht zu sehen, in der Halbebene 2> R.
Der Beweis von Satz IV soll nun in drei Schritten, aber mit weniger
Einzelheiten als der des Satzes I, dargelegt werden.

11. Gegeben ist die ganze Funktion F (z), und wir gehen aus von der
Voraussetzung, da ' (z) vom Exponentialtypus ist (vgl. Nr. 3).

Dieser Voraussetzung geméaf stellen wir F (z) mittels Formel (3. 4) dar,
und wir erhalten, wenn wir unter log (1 — z) den Hauptzweig verstehen,

1—2

(11.1) F(log 1 ) -L f(u) e uloe(-2) gy

fu) (1—2)"%du

27w
* u(u+l) (w+n—1)
27m f(w) n! 2 du
3" (v+m)
e 0n'2nz¢f - TI'(w) T
=,}3H(n)zn
n=0
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Wir setzten dabei
u)
(11. 2) H(z)= 2m(¢}, I'u+2)

Diese Formel hat nicht fiir alle Werte von z einen Sinn und sie stellt
nicht notwendigerweise fiir alle Werte von 2, fiir welche sie einen Sinn hat,
dieselbe analytische Funktion von z dar. Wenn aber z von der negativen
reellen Achse (von den Polen der Gammafunktion) geniigend weit ent-
fernt ist, kann I'(2 4 ) nach Potenzen von  in eine entlang der ganzen
Integrationslinie von (11. 1) gleichméaBig konvergente Reihe entwickelt
werden, und wir erhalten in einem Gebiet der z-Ebene, das den Charakter
von den in Nr. 10 unter a) erwiahnten Gebiet & hat,

I(e 1) H (z) = l'ﬁi(u; 3 F(l)l(?)wdu

27

in Ubereinstimmung mit (10. 2). Es wurde

1 fu)uldu
(11.3) 2ni.¢ I'(u) =4

gesetzt, fiir [ = 0, 1, 2, ---. Wenn die Integrationslinie von (11.3) der
Kreis |z| = P ist, gilt offenbar bei passender Wahl von M

IA;! < MP! fir ] = O, 1’ 2’ ves

Hiemit ist (10.3) erreicht und eine Behauptung des Satzes IV be-
wiesen.

12. Gegeben ist nun die Zahlenfolge 4,, 4;, 4,, - und wir gehen aus
von der Voraussetzung (10. 3). Wir haben F(z) zu konstruieren, oder,
was wegen (3. 1) auf dasselbe hinauskommt, die Reihe (3. 2) fir f(z).

Infolge der Voraussetzung (10. 3) besitzt die Reihe 24,2~ ein Kreis-
auBeres als Konvergenzgebiet. Im Innern dieses Konvergenzgebietes
liege der Punkt z = — m, wobei m eine (geniigend groBe) natiirliche
ganze Zahl sei. Die Funktion I'(z) X 4,2~ ist im Kreisring

m<|z|<m-+41
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regular und eindeutig; wir schreiben ihre Laurent’sche Entwicklung in

der Form

A, d,
re) Sih=Se+X 2%

— 'éocnz" + 1 (2).

f(z) ist somit wie in Formel (3.2) dargestellt und diese Darstellung
konvergiert sicherlich fiir |z| > m. Es folgt

fo) =4, 1 N
TG) = i r(z)E“

das zweite Glied auf der rechten Seite ist sicherlich regular fiir | 2| < m + 1

und folglich gilt
1 f(z)2ldz o .
2ni,¢ @) =A4,tir’=0,1,2,---;

die Integration ist entlang des Kreises |2| = m -+ } erstreckt. Somit
haben wir die Formel (11.3) der vorangehenden Nr. erreicht und
von diesem Punkte aus haben wir den dort eingeschlagenen Weg einfach
rickwarts zu verfolgen: Die Zahlenfolge 4,, 4,, 4,, -+ definiert jetzt
die Funktion H (z); die Reihe X' H(n)z" wird zuerst angesetzt und sie
wird dann hinterher, mit Hilfe der von unten nach oben durchzunehmen-
den Rechnung (11.1), als die Entwicklung von F (—log (1—z2)) erkannt.

13. Es bleibt nur noch die Eindeutigkeit der Zuordnung zwischen der
Zahlenfolge a,, a,, a,, -*- und der Funktion H (z) zu untersuchen. Es soll
hier eine Skizze geniigen. Wir haben eine Folgerung aus dem Umstande
zu ziehen, dafl H (n) = 0 fiir alle ganzen Zahlen n von einer gewissen an.
Wir verifizieren die Erfiillung der Bedingungen des in Nr. 9 zitierten
Carlson’schen Satzes fiir H (m + z), wo m eine geniigend groBle Zahl ist,
was mit Hilfe der Darstellung (11. 2) ohne Schwierigkeit geht, und die
Folgerung lautet: H (z) verschwindet identisch.

Wenn aber die Voraussetzung (10. 3) erfiillt und auch die Gleichung

AP’() AF“’()

(13. 1) I'(z) +

+oe + =0

identisch in 2 erfiillt ist, miissen alle Konstanten A4, 4,, 4,, -+ ver-
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schwinden: Denn (13.1) bedeutet das identische Verschwinden der
rechten Seite von (10.5), woraus, etwa mit Hilfe der Mellin’schen
Umkehrformel, das identische Verschwinden der Funktion G (log ¢), also,
vgl. (10. 4), das Verschwinden der Koeffizienten A4, folgt.

Wir haben somit gefunden, daBl die Funktion I'(z), die bekanntlich
keiner algebraischen Differentialgleichung geniigt, auch keiner linearen
homogenen Differentialgleichung unendlicher Ordnung von der Qestalt (13. 1),
mit der Nebenbedingung (10. 3), genilgt (natiirlich ausgenommen den Fall,
wenn alle 4, verschwinden).

14. Zum SchluB einige Bemerkungen, die nicht ins einzelne ausgefiihrt
werden sollen.

a) Man betrachte die Funktion (I1.2) unter der Voraussetzung der
Nr. 1, daB die ganzen Funktionen F,(z), Fy(2), --* F,(z) den Minimal-
typus der Ordnung 1 nicht iibersteigen. Dann ist H (z), wie leicht zu
sehen, vom Minimaltypus der Ordnung 1 in dem Winkelraum

(14. 1) —rte<arcz<<m—e

bei jedem &> 0. Dasselbe Resultat findet man auch fiir die Funktion
(10. 2), nur muB man eine passende endliche Umgebung des Nullpunktes
vom Winkelraume ausschlieBen. Hieraus folgt'?), dafl die Anzahl der
verschwindenden unter den n Zahlen H (1), H(2), --- H(n) von kleinerer
Ordnung ist, als n. Mit Riicksicht auf die Satze I und IV gelangt man so
zu der folgenden, zwar nicht unerwarteten 13), aber wohl neuen Tatsache:

Die Potenzreihe (1. 1) soll eine Funktion darstellen, welche eine der beiden
folgenden Bedingungen erfillt :

p_
Entweder ist die Funktion auf der Riemann’schen Fliche von ]/ 1—2
mit Ausnahme des Windungspunktes z = 1 requldr und eindeutig, und ver-
schwindet tm Windungspunkte z = oo.

Oder es ist die Funktion von der Gestalt (10. 1), wobei F (w) eine ganze
Funktion von w, héchstens vom Mitteltypus der Ordnung 1 bedeutet.

In beiden Fillen kann man behaupten, daff die Dichte der nichtverschwin-
denden Koeffizienten der Potenzreihe 1 ist.

12) Vgl. Miss Cartwright (5), S. 166, Theorem IL.
13) Vgl. (7), insbesondere Satz X.
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b) Der ganze Beweis von Satz I, insbesondere aber die beiden, zueinander
reziproken Formeln (7. 4) und (8. 4), erlauben die durch Satz I geloste
Frage mit Leichtigkeit in einer gewissen Richtung zu verallgemeinern:
Anstatt, wie hier geschehen, eine kreisformige, soll eine beliebig gestaltete
Umgebung des Punktes z = 1 aus allen Blattern der Riemann’schen

»
Flache von ]/z——l ausgeschnitten werden, und es sollen, dhnlich wie hier,
die Koeffizienten der Potenzreihenentwicklung einer auf der verbleiben-
den Flache eindeutigen und reguldren Funktion charakterisiert werden.

c) Es soll wie in Nr. 1, das Anwachsen der ganzen Funktionen
F,(z), -~ F,(2) den Minimaltypus der Ordnung 1 nicht iibertreffen.
Wenn man die Funktion (1. 2) durch

1

2
(14. 2) H*z)=2P 'Fy(z) +27 F,(z) + - + z%“‘Fp (2)

ersetzt, so wird das asymptotische Verhalten fiir groles positives z nur
wenig abgedndert, jedoch kann, wie es aus Satz I in Verbindung mit dem
in Nr. 9 zitierten Carlson’schen Satz leicht folgt, die durch die Potenzreihe

(14. 3) H*(1)z 4+ H*(2)2% + -+« 4+ H*(n)2" + -+

definierte Funktion nicht auf der, in 2 = 1 punktierten, Riemann’schen

Flache von i}/E‘:i regulir und eindeutig sein, ausgenommen den Fall
p =1 und den (nicht wesentlich verschiedenen), in welchem F,(z),
Fy(z), -+ F,_, (z) identisch verschwinden: Denn sonst ist ja H*(z) keine
meromorphe Funktion, sondern eine mehrdeutige.

Mit Benutzung der Untersuchungen von Braitzew und Subbotin'?) kann
man jedoch eine Riemann’sche Fliche angeben, auf welcher die durch
(14. 3) definierte Funktion eindeutig bleibt: Sie hat nur Verzweigungs-
punkte, die iiber den drei Punkten z = 0, 1, co liegen, und zwar sind die
iiber z = 1 gelegenen Verzweigungspunkte algebraisch von (p — 1)-ter
Ordnung, die iiber z = 0 und z = oo gelegenen Verzweigungspunkte
sind hingegen unendlicher Ordnung; in solchen Punkten der Riemann’-
schen Fliche, die iiber keinem der drei Punkte liegen, bleibt die durch
(14. 3) definierte Funktion regulir. Durch welche Eigenschaften die
Entwicklungskoeffizienten einer Potenzreihe ausgezeichnet sind, die
eine analytische Funktion mit den eben beschriebenen Fortsetzbarkeits-
und Regularititseigenschaften definiert, ist noch nicht bekannt.

1) Vgl (2), (9).
(Eingegangen den 4. Dezember 1934.)
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