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Ûber die Potenzreihenentwicklung gewisser
mehrdeutiger Funktionen

Von Georo Polya, Zurich

Einleitung

1. Die vorliegende kurze Arbeit liefert einen Beitrag zur Hadamard'-
schen Fragestellung, d. h. zur Untersuchung der Zusammenhânge zwi-
schen den Eigenschaften der Koeffîzientenfolge einer Potenzreihe und den
Eigenschaften der analytischen Funktion, die durch dièse Potenzreihe
definiert ist. Die Hadamard'sche Fragestellung ist sehr vielgestaltig, denn
sowohl von der Koeffizientenfolge, wie von der Funktion kann man
mannigfaltig verschiedene Eigenschaften in Betracht ziehen. Eine in der
allgemeinen Hadamard'schen miteingeschlossene spezielle Fragestellung
ist z. B. die folgende: Von welchen Eigenschaften der Koeffizientenfolge ist
bedingt der Verlauf, den die Riemannsche Flâche der durch die Potenzreihe

definierten Funktion nimmtï
Dièse spezielle Frage ist bisher nur wenig bearbeitet und wohl iiber-

haupt nicht explizite hervorgehoben worden. Ich greife zuerst den folgen-
den noch spezielleren, besonders einfachen Fall heraus: Wie mûssen

beschaffen sein die Koeffizienten der Potenzreihe

(1. 1) a0 + axz + a2z2 + — + anzn + —,

damit die dadurch definierte analytische Funktion die folgenden
Eigenschaften zeige: Sie bleibt eindeutig auf der Riemann'schen Floche von
v

yz—1, sie ist regulàr in allen Punkten aufierhalb der Windungspunkte
z i und z oo dieser Fldche und sie verschwindet im Windungspunkte
z oo. (Hierin bedeutet p eine positive ganze Zahl.) Dièse Frage lâBt
sich einfach und, bei richtiger Benutzung des Vorhandenen, miihelos
beantworten. Die notwendige und hinreichende Bedingung fiir die ver-
langte Beschaffenheit der Koeffizientenfolge aQ, %, a2, ••• besteht darin,
daB dièse Folge sich durch eine meromorphe Funktion H (z) von be-

sonderer Bauart interpolieren lâBt. Es muB H (z) die Form haben
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Hierin bedeuten F± (z), F2 (z), • • • Fp (z) ganze Funktionen, die den Minimal-
typus der Ordnung 1 nicht ubersteigen; d. h. irgend eine F(z) unter
ihnen hat dieEigenschaft, dafi bei beliebig, aber fest gewâhltem positivem
e das Produkt F (z) e~e 'z ' in der ganzen z-Ebene beschrânkt bleibt. Die
durch (1. 2) gegebene Funktion H (z) ist, wegen der bekannten Eigen-
schaften der Gammafunktion, meromorph. Zur verlangten Beschaffenheit
der Koeffizientenfolge ist notwendig und hinreichend, dafi

(1. 3) an H(n) fur n 0, 1, 2, ••• sei.

2. Das eben Ausgesprochene ist ein Spezialfall (der Pall g 0) des

folgenden Satzes:

Satz I. Es sei p eine positive ganze Zahl und 0 ^ g < 1. Die Potenzreihe

(1.1) definiere eine analytische Funktion, welche eindeutig und regulâr

bleibt auf der Floche, welche von der Riemann'schen Flâche von j/z — 1

ûbrigbleibt, wenn davon herausgeschnitten wird diejenige Umgebung des

Windungspunktes z 1, die sich auf die abgeschlossene Kreisscheibe vom
Mittélpunkte z 1 und Radius g projiziert; ferner wird gefordert, dafi die
Funktion im Windungspunkte z oo verschwindet.

Die Zahlenfolge a0, %, a2, • • • kann dann und nur dann die Koeffizientenfolge

einer so beschaffenen Potenzreihe sein, wenn sie durch eine meromorphe
Funktion H(z) interpoliert wird, im Sinne der Gleichung (1. 3), wobei H(z)
gemâfi (1.2) mit ganzen Funktionen F1 (z), F2(z), • • • Fp(z) vom Exponential-
typtts aufgebaut ist, deren Indikatordiagramme enthalten sind im Bilde, das
die Funktion z — log (1 — w) um den Nullpunkt der z-Ebene von dem

Kreis \ w | ^ g der w-Ebene entwirft.
Die Zuordnung des Funktionensystems F1(z),F2(z), ••• Fv(z) zu der

Koeffizientenfolge a0, av a2, • • • ist eineindeutig.
Die Fassung des Satzes I, insbesondere die darin gebrauchte weniger

gelâufige Terminologie, soll in Nr. 3—5 weiter erlàutert werden. Der in
vielen Hinsichten besonders einfache Spezialfall g 0 wurde in Nr. 1

erlàutert. In andern Hinsichten ist der Fall p 1 besonders einfach. In
diesem Fall ist die Blâtterzahl der Riemann'sehen Flàche 1, die durch die
Potenzreihe (1.1) definierte Funktion ist im Kreisaufienraume \z — 11> g

der z-Ebene regulâr und eindeutig (im absoluten Sinne eindeutig), und die
Funktion H(z) ist eine ganze Funktion. Der Fall p 1 ist wohlbekannt,
er ordnet sich in ein von vielen, insbesondere von Carlson untersuchtes
Gebiet ein1). Der àuBerste Spezialfall, in welchem sowohl g 0 wie p 1,

x) Carlson (3), (4); ferner Zitate in (6), S. 553. Die eingeklammerten Zahlen verweisen
auf das Literaturverzeichnis am Ende der Arbeit.
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bildet den Gegenstand eines durch vielfache Anwendungen bekannten
Satzes von Wigert2).

Die Begrundung des Satzes I wird in Nr 5—9 gegeben. In den nach-
folgenden Nr. 10—13 wird ein Grenzfall von Satz I, der SatzIV behandelt.
Der Grenzfall betrifft p -> oo, wobei die betrachtete Riemann'sehe Plache
in eine logarithmische Flache ubergeht, die Frage wird jedoch durch
SatzIVnur angeschnitten, nicht erschopft. Die letzte Nr 14 bringt An-
deutungen uber Anwendungen und verwandte Fragen

3. Ich will einige im Satz I gebrauchte Begnffe erlautern und gewisse
damit zusammenhangende Satze zu nachherigem Gebrauch zusammen-
stellen3).

Eine ganze Funktion F (z) heiBt vom Exponentialtypas, wenn ihr An-
wachsen den Mitteltypus der Ordnung 1 nicht ubersteigt, d. h. wenn es

zwei positive Zahlen A und a gibt, so beschafïen, da8 in der ganzen
z-Ebene

\F(z) | <Ae^zl

gilt4). Wenn die ganze Funktion F (z) vom Exponentialtypus ist, so heiBt

îîïnr-nog \F(rel<p) \ h(q>)
r-> oo

der Indikator von F (z). Der Indikator h((p) ist eine stetige Funktion von q>,

periodisch von der Période 2 n. Die Schar der Geraden

x cos cp + y sin (p — h (cp) 0

umhullt einen endlichen konvexen Bereich, der als Indikatordiagramm
von F (z) bezeichnet wird, in folgendem Sinne : Das Indikatordiagramm
hat mit jeder Geraden der Schar einen Punkt gemeinsam und liegt auf
der negativen Seite davon (d. h. in der Halbebene, wo die linke Seite der

Geradengleichung ^ 0 wird). Die in Nr. 1 erwahnten ganzenFunktionen,
deren Anwachsen den Minimaltypus der Ordnung 1 nicht ubertrifït, sind

a) Wigert (10).

8) Beweise und ausfuhrhchere Darstellung bei Pôlya (6), msbesondere S. 571—586, oder
Bern8tem (1), msbesondere Note III

4) Wenn dièse Ungleichung in der Halbebene ÎRz ^ 0 fur eine daselbst analytische
Funktion F(z) gilt, so heifît F(z) vom Exponentzaltypus %n der Halbebene ÏRz ^ 0 Ahnheh
ist die Terminologie fur îrgendemen Wmkelraum
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dadurch eharakterisiert, daB ihr Indikatordiagramm aus dem einzigen
Punkt z 0 besteht.

Man schreibe die Potenzreihe der ganzen Funktion F (z) vom Exponen-
tialtypus in der Form

<* i\ V(\ A ,dxz d%z* dkzk
(3. 1) H d + + H+
und betrachte daneben die in einer Umgebung von z oo konvergente
Potenzreihe

(3.2) nz)ss± + % + É*+...£

Der kleinste konvexe Bereich, auBerhalb dessen die Fortsetzung dieser
Potenzreihe von f(z) regulàr bleibt, ist das Spiegelbild des Indikator-
diagramms von F(z) in bezug auf die réelle Achse und heiBt das konju-
gierte Diagramm vonF(z). Es sind F (z) und f(z) miteinander durch die
beiden, zueinander reziproken Integralformeln

(3.3) ]

(3.4)

verbunden; die Integrationslinie von (3.3) ist die positive réelle Achse, die

von (3. 4) irgendeine doppelpunktlose geschlossene Kurve, welche das

konjugierte Diagramm von F(z) im Innern enthàlt. Die Darstellung (3. 3)

ist in der Halbebene dlz>h(O) gultig, die Darstellung (3. 4) fur aile
Werte von t.

é. Die Funktion

Z lo
w

entwirft von dem Kreis | w \ ^ q der w-Ebene, wobei 0 ^ g < 1, unendlich
viele, zueinander kongruente und gleichgelegene, âquidistante Bilder in
der «-Ebene, von welehem ein bestimmtes den Punkt z 0 enthâlt : dièses

Bild ist im Satz I gemeint und soll im folgenden mit 95^ bezeiehnet wer-
den. Entlang des Randes von 95? gilt also die Gleichung
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Wie leicht zu konstatieren, liegt dieser Bildbereich im Innern des Hori-

zontalstreifens — < 3z < —, sie ist symmetrisch in bezug auf die

réelle Achse, seine auf der reellen Achse gelegenen Randpunkte sind

z —log(l + q), z — log(l — q).

SchlieBlich ist 95Q ein konvexer Bereich5). 95O besteht aus dem einzigen
Punkt 2 0, und 95^ ist in $5Ç+S als Teilbereich enthalten fur

Aus der Symmetrie von 93^, geht hervor, daB das Indikator- und das

konjugierte Diagramm entweder beide in $bç enthalten sind oder keines

von den beiden in 95^, enthalten ist. Betrachten wir den Fall, daB das

konjugierte (also aueh das Indikator-) Diagramm von F(z) in 95^

enthalten ist. Aus der beschriebenen Situation von 95^, und aus seiner

Symmetrie und Konvexitàt folgt, daB

(4.1) A(0) 0mr-1log|-P(r)| ^log-i-
und âhnlich, daB

Beweis des Satzes I

5. Fur die in Satz I beschriebene, aus der Fortsetzung der Potenz-
reihe (1.1) entstehende Funktion ist der Punkt z oo einVerzweigungs-
punkt p-ter Ordnung. (Eventuell bloB von g-ter Ordnung, wo q ein
Teiler von p ist. Man beachte, daB auf der Riemann'schen Floche von

l/ 1 — z die Funktion regulâr sein soll, nicht notwendigerweise in der

6) Dies folgt aus einem bekannten Kritermm (vgl. z. B. (8), Bd. I, Nr. III 108, S. 105

und S. 277), da, cp (w) — log (1 — w) gesetzt,

ist fur \w\ ^ <: 1.
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Ebene.) In der nâchsten Ûberlegung kônnte man die Puiseux'sehe Ent-
wicklung um den Verzweigungspunkt z oo verwenden, ich ziehe jedoch
vor, anders zu schlieBen6).

Man nehme von der Ebene heraus zuerst die Kreisscheibe \z — 11 f£q,
dann die Punkte der positiven reellen Achse von 2=14-{?bisz=co;
in dem ûbriggebliebenen Teil der Ebene defîniert die Potenzreihe (1. 1),
wie in Satz I erwàhnt, einen Funktionszweig g(z). Wenn der variable
Punkt z von der Stelle z 0 ausgehend die Kreisscheibe \z — 1 | fg q
einmal in positivem Sinne umkreist, gehe der Zweig g(z) in den Zweig
g±(z)9 der Zweig gx{z) in g2(z), g2(z) in gs(z), ••• schlieBlich g^z) wieder
in g (z) uber. Dièse zyklische Verbundenheit der Funktionszweige g(z),
9i(z)> *"9v-i(z) drûekt die Voraussetzung von Satz I iiber die Art der
Mehrdeutigkeit aus.

Es sei 0 e^~, l eine der Zahlen 1,2,3, ••• <p, und (1 — z)1^ be-
zeichne denjenigen Zweig, welcher fur ein z des Intervalles 0 < z < 1

positiv ausfâllt. Die Funktion

(5. 1) j (l-z)ë~\g(z) + 0lgi(z) + 0*ig2(z) + .•¦ +0<»-v%-^

kehrt zur Ausgangsbestimmung zuriick, wenn z auf die besehriebene Art
die Kreisscheibe \z— 1| ^q umkreist. Folglich ist ht(z) eindeutig und
regulàr im KreisauBenraum \z — 11 > q, ausgenommen môglicherweise
den Punkt z oo. Wie aile Funktionszweige g(z), g^z), ••• gp_1(z), ver-
schwindet auch hl (z) fur z oo, da l ^ p. Hieraus schlieBt man, daB die
in der Umgebung von z oo eindeutige Funktion ht(z) im Punkte
z oo regulàr ist und verschwindet; somit ist hx (z) regulâr fur \z — 11 > q.

Irgendeine h (z) der Funktionen ^(z), h2(z), ••• besitzt also eine Ent-
wicklung von der Gestalt

fur \z — 11 > g ; folglich ist

(5. 3) ÏÏ
k -*oo

8) Der SchluÛ kommt im Grunde auf einen Beweis der Puiseux'sehen Entwicklung
heraus; es liegt mir dabei daran, die Rolle der vorausgesetzten Art der Mehrdeutigkeit
hervorzuheben.
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Indem man in (5. 1) l 1, 2, ••• p setzt und linear kombiniert, erhâlt
man

(5. 4) g(z) a0 + etxz + a2z2

1-1 1-1
^() +(l

daB eine Funktion dieser Gestalt von der in Satz I erwàhnten Art ist, ist
évident. Somit hàngt der Beweis von Satz I von dem des folgenden
Satzes ab:

Satz II. Es sei 0 <; q < 1, X eine von 0, — 1, — 2, — 3, ••• verschiedene

Zahl, und die Potenzreihe

stelle eine Funktion von der Form

dar, wobei h(z) fur \ z—1 \>q regulâr ist, auch im Punkte z= oo, wo
es verschwindet.

Die Zahlenfolge 60, bv b2, • • • kann dann und nur dann die Koeffizienten-
folge einer so beschaffenen Potenzreihe sein, wenn es eine ganze Funktion
F(z) gibt, deren konjugiertes Diagramm in dem Bereich 95^ enthalten ist,
und die den Gleichungen

genûgt.

In der Tat wird, gemâB (5. 4), durch einen Beweis von Satz II auch
Satz I mitbewiesen, abgesehen von einem Punkt : DaB die Koeffizienten
an die Funktionen F1(z), •"Fp(z) eindeutig bestimmen, muB nachher

(vergl. Nr. 9) noch besonders gezeigt werden. Die Zahl X muB nicht eine
rationale Zahl des Intervalls 0 < X f£ 1 sein, sie kann auch komplex sein.
Der Spezialfall X 1, q 0 des Satzes II fàllt wieder mit dem erwàhnten
Satz von Wigert zusammen.

6. Wir betrachten nun Satz II. Die dort genannte Eigenschaft von
h (z) làBt sich durch (5. 2) und (5. 3) ausdriieken. Durch eine (vorderhand
rein formale) Rechnung erhalten wir aus (5. 2)
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00

SI
0

*=0

•1)oo oo

XT*/» X7 * ' * ' * ' M

(6.1) =Eq

00

F{n)'z£±~n?oZ r(n+l)
wir haben dabei zur Abkûrzung gesetzt

(6.2) F(z) Zo

Um dièse Rechnung zu einem Beweis von Satz II auszugestalten,
miissen wir zweierlei leisten: Erstens mussen wir von h (z) zu F (z) ge-
langen, zweitens von F(z) zu h (z).

Wenn wir von h (z) ausgehen, haben wir die Voraussetzung (5. 3) zur
Verfûgung und unser Zielpunkt ist das konjugierte Diagramm von F(z).

Wenn wir von F (z) ausgehen, haben wir eine Voraussetzung ûber das

konjugierte Diagramm zur Verfiigung, nàmlich, da6 es in 95? liegt, und
unser Zielpunkt ist (5. 3). Kurzum, wir haben folgendes zu beweisen:

Satz III. Es sei A 4= 0, — 1, — 2, — 3, •••. Notwendig und hinreichend

dafilr, dafi F(z) eine ganze Funhtion vom Exponentialtyjpus sei, dessen

honjugiertes Diagramm in 95? liegt, ist, da/3 F(z) durch die in der ganzen
Ebene Convergente Reihe (6. 2) darstellbar sei, mit Koeffzienten ck, welche

der Bedingung (5. 3) genttgen.

Wenn der Satz III schon bewiesen sein wird, kann die formale Rechnung

unter (6. 1) so gerechtfertigt werden: Wenn ck durch ] o^. j ersetzt
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wird, wird an (5. 3) nichts geàndert. Ersetzen wir ck durch \ck\ und X

durch | A|; dann ergibt sich aus (6. 2) anstatt F(z) eine ganze Punktion
F*(z), deren konjugiertes Diagramm ebenfalls in 95^ liegt. Daher gilt
(4. 1) auch mit F*(z) statt mit F(z). Folglich ist insbesondere fur be-

liebiges e > 0 und fur genligend groBes positives ganzzahliges n

(6.3) F*(n) < e»[-iog(i-p> + «]#

Ersetzen wir in (6. 1) ck, X, z durch \ck\, | A|, \z\ und somit F(n) durch
F* (n), so handelt es sich um die Umordnung einer Doppelreihe mit lauter
positiven Gliedern, die gestattet ist, sobald das Endresultat, die letzte
Zeile von (6. 1), mit F*(n) und \X\ anstatt F(n) und A, konvergiert:
Das ist aber wegen (6. 3) fur \z\ < 1 — q der Fall, und die Anwendung
des Weierstrafi'schen Doppelreihensatzes beendigt die Ùberlegung.

Satz III ist, allerdings in ziemlich verschiedener Formulierung, schon

von Carlson7) aufgestellt worden. Ich gebe im folgenden einen vôllig
neuen Beweis, der auf Grund der in Nr. 3 zusammengestellten Tat-
sachen ohne irgendwelche mtihsamen Abschâtzungen, bloB durch Auf-
stellung geeigneter Formeln, zum Ziele gelangt. Die Natur der aufzu-
stellenden Formeln lâBt sich voraussehen: Wie die Formeln (5. 2), (6. 2),
(3. 3) lehren, ist die Funktion h (z) mit der Zahlenfolge c0, cl9 c2, •••, dièse

Zahlenfolge mit der ganzen Funktion F(z), und F(z) mit der Funktion
f(z) linear verbunden. Durch passende Elimination druckt man zunâchst

/(z) durch h (z), dann h(z) durch f(z) linear aus, und erschlieBt Satz III
aus dem Aufbau der erhaltenen Ausdrûcke.

7. Gegeben ist die Funktion h(z), durch ihre Entwicklung (5. 2), und
wir gehen aus von (5. 3) als Voraussetzung. Wir wollen zunâchst F(z),
dann f(z) konstruieren, und zu einer Aussage uber das konjugierte
Diagramm gelangen.

Die Voraussetzung (5. 3) besagt, daB die Reihe

welche wir hier statt (5. 2) betrachten wollen, fur \w\ > q konvergiert.
Aus der Produktdarstellung der Gammafunktion (oder, weniger elemen-

tar, auch aus der Stirling'schen Formel) folgt, daB flir le -> oo

7) Carlson (4), S. 60.
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h\

Daher hat die Reihe

h*(l )^ Ai kle*

denselben Konvergenzkreis, wie (7. 1), ist also fur \w\ > q konvergent8).
Es sei q < g + e < 1 ; dann ist, die Intégration entlang des Kreises
\w\ q + e im positiven Sinne erstreckt

-J-(fiy y klc* 1 (z+X)(z+X+l)-(z +X+l-l)

Zur Rechtfertigung der vollzogenen gliedweisen Intégration genugt es, zu
bemerken, daB die Doppelreihe auf der Integrationslinie | w \ q + e

absolut und gleichmàBig konvergiert, ebenso wie die beiden Reihen,
deren Produkt sie ist. Der zweite dieser Faktoren, die Reihenentwicklung
von (1 —w)~*~\ stellt den Hauptzweig dar, d. h.

g— {z+X) log {1-w)

mit derjenigen Bestimmung von log (1 — w), die fiir w 0 verschwindet.

Die Reihe in der letzten Zeile von (7. 2) ist, wie aus der Rechnung her-
vorgeht, fur aile Werte von z konvergent ; sie ist, in Ûbereinstimmung mit
(6. 2), als die Définition von F(z) anzusehen; F(z) ist somit eine ganze
Funktion. F(z) ist sogar vom Exponentialtypus, da aus

8) Mit Hinsicht auf anschliefiende, spâter (in Nr. 14, unter b) zu erlâuternde Fragen ist
wesentlich zu bemerken, dafi ^(1—w) und h*(l—w) dieselben singulàren Punkte haben,
mindestens bei Fortsetzung entlang von Halbstrahlen, die von w — oo gegen w 0
laufen; dies ergibt sich durch zweimalige Anwendung des bekannten Hadamard''schen
Satzes ûber die Multiplikation der Singularitâten.
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(7.3) F{z)

leicht die Abschâtzung

mit einer passenden positiven Konstanten A folgt.

Wir erhalten aus (3. 3) und (7. 3)

f(z) J -^(f) h*{l—w) {l — wyt-^dw - e~izdt

2i7l i %y 0

Die Reehnung gilt, und insbesondere ist die Ânderung der Reihenfolge
der Integrationen wegen absoluter Konvergenz erlaubt, wenn

(7.5) mz> log-
l-

I — q — e

ist; in der Halbebene (7. 5) ist f(z) sicher regulàr. Die Formel (7. 4) zeigt,
daB / (z) noch weiter regulâr bleibt, nâmlich solange z sich auBerhalb der
Kurve bewegt, welche — log (1 —w) beschreibt5wenn w den Integra-
tionskreis \w\ g + s durchlâuft. Somit bleibt f(z) regulàr auBerhalb
des Bereiches 95(3+£ : da s beliebig klein ist, haben wir die eine Hàlfte des
Satzes III bewiesen. (Auch daB /(z) eine Reihenentwicklung von der
Form (3.2) besitzt, kann man leicht der Formel (7. 4) entnehmen.)

8, Nun haben wir einen Weg zu finden, der dem in der vorangehenden
Nr. 7 befolgten entgegengesetzt lâuft.

Gegeben ist nun die Funktion /(z), durch ihren Zusammenhang mit der
ganzen Funktion vom Exponentialtypus F(z), und wir gehen aus von der
Voraussetzung, daB f(z) auBerhalb %>Q regulàr ist. Wir wollen zunàchst
die Koeffizienten ck, dann h(z) konstruieren und zu der Aussage (5. 3)
gelangen.

Von den beiden, zwischen f(z) und F(t) vermittelnden Formeln (3. 3)
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und (3. 4) benûtzen wir jetzt, nicht wie vorher die erste, sondern die
zweite; sie kann entlang desRandes vom Bereich SB^, der 35^ umschlieBt,
erstreckt werden; es gilt somit auf der Integrationslinie von (3. 4)

(8.1) | 1—er*| e + e<l.

Unter der Bedingung (8. 1) gilt auch

ezt _ e-zXez(t+X) e-z\(e-z

|;

und zwar absolut und gleichmâBig in z. Somit ergibt Einsetzen in (3. 4)
und gliedweise Intégration

fur aile Werte von t. Dièse Formel definiert die ck. In der Tat, soll die
Formel (6. 2) fur aile Werte von z bestehen, dann kann man darin
z — X, — A— 1, A— k setzen, und die Koeffizienten

rekursive durch

F{— X), F(— X - 1), F{- X — 2), .- F(— X — k)

ausdriicken. Daher ergeben (6. 2) und (8. 2)

(8-3)

Wirdcfcaus (8. 3) in (7. 1) eingesetzt, so erhalten wir, falls nur \w\ > q + e,
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Vergessen wir nicht, da8 entlang der Integrationslinie in (8. 4), wie in
(8.3) und (8.2), die Gleichung (8. 1) gilt. Somit bleibt h(l — w) fur
Iw I > Q + e> un(i, da e beliebig klein, fur | w | > q regulâr. Fur die Ent-
wicklung (7. 1) gilt somit (5. 3) und so ist auch die zweite noch aus-
stehende Hâlfte von Satz III bewiesen.

9. Die letzte, bisher noch unbewiesene Behauptung des Satzes I besagt
im wesentlichen dies: Wenn die Indikatordiagramme der ganzen Funk-
tionen Fx(z), F2(z), ••• Fv(z) in î&Q enthalten sind, und die durch (1. 2)
gegebene Funktion H(z) fur z 0, 1, 2, 3, ••• verschwindet, so verschwindet
jede der Funktionen F1(z), F2(z), ••• Fp(z) identisch.

Dies folgt aber leicht aus einem wohlbekannten, fur âhnliehe Zwecke
oft angewendeten Satz von Carlson9), der dies besagt: Eine Funktion
H(z), die fur z 0, 1, 2, ••• verschwindet, in der Halbebene 91 z à 0 vont
Exponentialtypus ist10), und deren Indikator der Bedingung

genûgt, verschwindet identisch.

Die Punktion H(z), auf welche sich die eingangs dieser Nr. 9 ausge-
sprochene Behauptung bezieht, erfûllt aber dièse Bedingungen. Der
Quotient

v-"' r(z+l)~ n ~or(n+l)
(wobei A reell, 0 < X < 1) bleibt nâmlich, wie es z. B. aus der ange-
schriebenen Partialbruchzerlegung ersichtlich ist, in der Halbebene
dlz ^ 0 beschrânkt; es ist ljp X gesetzt. Die Funktionen Ft(z) sind

vom Exponentialtypus; da das Indikatordiagramm von Ft(z) in 95^,

enthalten und die Breite von 9£>Q senkrecht zur reellen Achse kleiner als

n ist, gilt fur die hier betrachtete Funktion (1. 2) nicht bloB (9. 1),

sondern es kônnte sogar das 2 n an der rechten Seite durch n ersetzt
werden. Somit folgt aus H(0) H(l) H(2) ••• 0, daB identisch

H(z) 0.

Es darf also H(z) keine Pôle haben. Durch die Betrachtung der Pôle von
r(z + l/p) folgt fur l 1, 2, ••• p — 1, daB

9) Carlson (3), S. 58. Vgl. ferner (6), S. 607.

10) Vgl. Fufinote 4).
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Die Anwendung des Carlsonsehen Satzes auf Ft(— Ijp — z) (hier wurde
auch ein schwàeherer Satz genugen) ergibt, da6 F^z) identisch ver-
schwindet, fur l 1, 2, — p — 1. Mit H(z), Fx(z), — F^z) mu8 schlieB-
lich auch Fv(z) verschwinden, womit Satz I restlos bewiesen ist.

AnschlieBende Fragestellungen

1O. Fur p-> oo geht die Riemann'sche Flâche von j/l—z in die

von log (1 — z) iiber; es schlieBt sich der hier durch Satz I gelôsten Frage
die weitere an: Welchen Bedingungen mUssen die Koeffizienten einer Po-
tenzreihenentwicklung (um den Punkt z 0) genilgen, damit die dar-
gestéllte Funktion auf der Riemanrischen Flâche von log (1 — z) eindeutig
und regulâr seiï

Eine Funktion der erwàhnten Art hat die Gestalt

(10. 1)

wobei F(w) eine ganze Funktion von w ist. Einen Teil der gestellten Frage
beantwortet der folgende

Satz IV: Die Potenzreihe (1.1) stelle eine Funktion von der Gestalt (10. 1)

dar, wobei F(w) eine ganze Funktion von w bedeutet, deren Anwachsen den

Mitteltypus der Ordnung 1 nicht ûbertrifft.
Die Zahlenfolge a0, al9 a2, • • • kann dann und nur dann die Koeffizienten-

folge einer so beschaffenen Potenzreihe sein, wenn, abgesehen vielleicht von
endlich vielen Werten von n,

an H(n)

ist, wobei die Funktion H (z) die folgende Gestalt hat :

die Zahlenfolge Ao, Ax, A2, ••• ist nur der einen Bedingung unterworfen, da/3

* •
(10. 3) lim ]/\An\ R

endlich ist.
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Die Funktion H(z), wie auch die Zahlenfolge Ao, Av A2, ••• sind durch
ao,ava2,-~ eindeutig bestimmt. Jedoch H(z) bestimmt die Zahlenfolge
&o>%>a2>"# nicht vôllig eindeutig, sondern mûssen zwei Zahlenfolgen
a0, %, a2, •••, die zu demselben H(z) gehôren, erst von einem bestimmten
Index angefangen miteinander ûbereinstimmen.

Es sind hier einige Bemerkungen uber die Gestalt (10. 2) von H(z)
angebracht.

a) Man beschreibe um jeden Pol von F(z), d. h. um jeden der Punkte
2 0, — 1, — 2, ••• einen Kreis vom Radius R. Diejenigen Punkte der
Ebene, die der Vereinigungsmenge der so entstandenen, als abgeschlossen
aufgefaBten Kreisscheiben nicht angehôren, bilden ein ofïenes zusammen-
hângendes Gebiet @. Irgend ein Punkt z von @ hat von jedem Pol von
F(z) einen Abstand, der grôBer ist als R. Wenn also z zu @ gehôrt, konver-
giert fiir ein passend klein gewâhltes positives e die Reihe

ièo il
absolut, und somit konvergiert, wegen (10. 3), auch die Reihe (10. 2).
Es ist leicht zu sehen, dafi (10. 2) in jedem abgeschlossenen Teilbereich
von ® gleichmàBig konvergiert und somit eine in @ regulâre und ein-
deutige Funktion definiert.

AuBerhalb @ braucht H(z) ûberhaupt nieht zu existieren11). Nur wenn
der Punkt z n in @ gelegen ist (wa| ja fur aile ganzen n mit hôchstens
endlich vielen Ausnahmen zutrifït), hat die Gleichung an H (ri) einen
Sinn.

Man beachte hierzu, daB das Weglassen eines Einzelgliedes der Reihen-
darstellung der Funktion (10. 1) die Subtraktion einer ganzen Funktion
vom Mittdtypus der Ordnung 1 von F(w) bedeutet. In der Tat, wird
— log (1 — z) w gesetzt, so ist

b) Die Formel (10. 2) ist ein Grenzfall der Formel (1. 2), wenn in der
letzteren p unendlich wird und Fx(z), ••• Fp{z) Polynôme bedeuten,
deren Koeffizienten sich mit wachsendem p passend ândern, deren Grade

jedoch unter einer von p unabhângigen Schranke bleiben.

u) Um dies mit Beispielen zu belegen, vgl. (6), S. 604, den Satz der Nr. 42 (in der
letzten Zeile lies *F* (z) statt *¥{z)). Fur die vorangehende Ûberlegung vgl. daselbst
S. 598—604.
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Dies sieht man in zwei Schritten ein. Erstens kann man, wenn Fl (z)

ein Polynom von hôchstens m-ten Grade ist,

setzen, mit passenden Konstanten Bo, Bv ••• Bm. Zweitens ist, wenn G

irgend eine Konstante bedeutet,

und eine lineare Kombination solcher Reihen hat stets die Gestalt der
Reihe in Formel (10. 2).

c) Wird

A+4f + - + + -
gesetzt, so ist, wegen (10. 3), G(z) eine ganze Funktion hôchstens vom
Mitteltypus der Ordnung 1 (vom Exponentialtypus, vgl. Nr. 3), wie die

vorgelegte ganze Funktion F (z) selber, und es ist

(10.5) r(z+l)H(z) jG(logt)tz~1e-tdt;
o

dièse Formel gilt sicherlich, wie leicht zu sehen, in der Halbebene 9îz>2?.
Der Beweis von Satz IV soll nun in drei Schritten, aber mit weniger

Einzelheiten als der des Satzes I, dargelegt werden.

11* Gegeben ist die ganze Funktion F(z), und wir gehen aus von der

Voraussetzung, daB F(z) vom Exponentialtypus ist (vgl. Nr. 3).
Dieser Voraussetzung gemàB stellen wir F(z) mittels Formel (3. 4) dar,

und wir erhalten, wenn wir unter log (1 — z) den Hauptzweig verstehen,

(11.1) F (log JL_j 2^i$f (M) e~u l°g(1'Z) du

$ f{u){l~z)~udu
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Wir setzten dabei

Dièse Formel hat nicht fur aile Werte von z einen Sinn und sie stellt
nicht notwendigerweise fur aileWerte von z, fur welche sie einen Sinn hat,
dieselbe analytische Funktion von z dar. Wenn aber z von der negativen
reellen Achse (von den Polen der Gammafunktion) genûgend weit ent-
fernt ist, kann F(z + u) nach Potenzen von u in eine entlang der ganzen
Integrationslinie von (11. 1) gleichmâBig konvergente Reihe entwickelt
werden, und wir erhalten in einem Gebiet der z-Ebene, das den Charakter
von den in Nr. 10 unter a) erwàhnten Gebiet @ hat,

i-o l

in Ûbereinstimmung mit (10. 2). Es wurde

gesetzt, fur l 0, 1, 2, •••. Wenn die Integrationslinie von (11. 3) der

Kreis | z | P ist, gilt offenbar bei passender Wahl von M

[Ail <MPl fur 1 0, 1,2, •••.

Hiemit ist (10. 3) erreicht und eine Behauptung des Satzes IV be-

wiesen.

12. Gegeben ist nun die Zahlenfolge Ao, Av A2, ••• und wir gehen aus

von der Voraussetzung (10. 3). Wir haben F(z) zu konstruieren, oder,

was wegen (3. 1) auf dasselbe hinauskommt, die Reihe (3. 2) fur f(z).

Infolge der Voraussetzung (10. 3) besitzt die Reihe EA^'1-1 ein Kreis-
âuBeres als Konvergenzgebiet. Im Innern dièses Konvergenzgebietes

liège der Punkt z — m, wobei m eine (genûgend groBe) natûrliche

ganze Zahl sei. Die Funktion r(z)ZAlz~1-1 ist im Kreisring

m < \z\ < m + 1
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regulàr und eindeutig; wir schreiben ihre Laurent'sche Entwicklung in
der Form

S C.Ï»+ /<«).
0M=0

f(z) ist somit wie in Formel (3. 2) dargestellt und dièse Darstellung
konvergiert sicherlich ftir | z | > m. Es folgt

das zweite Glied auf der rechten Seite ist sicherlich regulâr fur \z\ <m+'.
und folglich gilt

I /aJI /_\ ../ J „
^fiirJ O, 1,2, •••;

die Intégration ist entlang des Kreises \z\ m + \ erstreckt. Somit
haben wir die Formel (11. 3) der vorangehenden Nr. erreicht und
von diesem Punkte aus haben wir den dort eingeschlagenen Weg einfach
riickwârts zu verfolgen: Die Zahlenfolge Ao, Al9 A2, ••• definiert jetzt
die Funktion H(z); die Reihe £H(n)zn wird zuerst angesetzt und sie

wird dann hinterher, mit Hilfe der von unten nach oben durchzunehmen-
den Rechnung (11.1), als die Entwicklung von F(—log (1—z)) erkannt.

13. Es bleibt nur noch die Eindeutigkeit der Zuordnung zwischen der
Zahlenfolge a0, av a2, ••• und der Funktion H(z) zu untersuchen. Es soll
hier eine Skizze geniigen. Wir haben eine Folgerung aus dem Umstande
zu ziehen, daB H (n) 0 fur aile ganzen Zahlen n von einer gewissen an.
Wir verifizieren die Erfiillung der Bedingungen des in Nr. 9 zitierten
Carfeow'schen Satzes fur H (m + z), wo m eine geniigend groBe Zahl ist,
was mit Hilfe der Darstellung (11. 2) ohne Schwierigkeit geht, und die

Folgerung lautet: H(z) verschwindet identisch.

Wenn aber die Voraussetzung (10. 3) çrfullt und auch die Gleichung

identisch in z erfûllt ist, miissen aile Konstanten Ao, Av A2, ••• ver-
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schwinden: Denn (13. 1) bedeutet das identische Verschwinden der
rechten Seite von (10. 5), woraus, etwa mit Hilfe der MeMm'schen
Umkehrformel, das identische Verschwinden der Funktion O(log t), also,
vgl. (10. 4), das Verschwinden der Koeffizienten At folgt.

Wir haben somit gefunden, daB die Funktion F(z), die bekanntlich
keiner algebraischen Differentialgleichung genugt, auch keiner hnearen
homogenen Differentialgleichung unendlicher Ordnung von der Gestalt (13. 1

mit der Nebenbedingung (10. 3), genugt (naturlich ausgenommen den Fall,
wenn aile Ax verschwinden).

14. Zum SchluB einige Bemerkungen, die nicht ins einzelne ausgefuhrt
werden sollen.

a) Man betrachte die Funktion (1. 2) unter der Voraussetzung der
Nr. 1, daB die ganzen Funktionen F1(z), F2(z), ••• Fv(z) den Minimal-
typus der Ordnung 1 nicht ubersteigen. Dann ist H{z), wie leicht zu
sehen, vom Minimaltypus der Ordnung 1 in dem Winkelraum

(14. 1) — n + e < arc z < n — e

bei jedem e > 0. Dasselbe Résultat findet man auch fur die Funktion
(10. 2), nur muB man eine passende endliche Umgebung des Nullpunktes
vom Winkelraume ausschlieBen. Hieraus folgt12), daB die Anzahl der
verschwindenden unter den n Zahlen H(l), H(2), ••• H(n) von kleinerer
Ordnung ist, als n. Mit Rucksicht auf die Satze I und IV gelangt man so

zu der folgenden, zwar nicht unerwarteten 13), aber wohl neuen Tatsache :

Die Potenzreihe (1.1) soll eine Funktion darstellen, wélche eine der beiden

folgenden Bedingungen erfullt :
v

Entweder ist die Funktion auf der Riemann'schen Floche von y 1—z
mit Ausnahme des Windungsjmnktes z 1 regular und eindeutig, und ver-
schwindet im Windungspunkte z oo.

Oder es ist die Funktion von der Gestalt (10. 1), wobei F(w) eine ganze
Funktion von w, hôchstens vom Mitteltypus der Ordnung 1 bedeutet.

In beiden Fallen kann man behaupten, dafi die Dichte der nichtverschwin-
denden Koeffizienten der Potenzreihe 1 ist.

12) Vgl. Miss Cartwright (5), S 166, Theorem II
13) Vgl. (7), insbesondere Satz X.
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b) Der ganze Beweis von Satz I, insbesondere aber die beiden, zueinander
reziproken Formeln (7. 4) und (8. 4), erlauben die durch Satz I geloste
Frage mit Leichtigkeit in einer gewissen Richtung zu verallgemeinern :

Anstatt, wie hier gesehehen, eine kreisformige, soll eine beliebig gestaltete
Umgebung des Punktes 2=1 aus allen Blattern der Riemanrischen

v
Flaehe von ]/z—1 ausgeschnitten werden, und es sollen, ahnlichwie hier,
die Koeffizienten der Potenzreihenentwicklung einer auf der verbleiben-
den Flaehe eindeutigen und regularen Funktion charakterisiert werden.

c) Es soll wie in Nr. 1, das Anwachsen der ganzen Funktionen
F1(z), "-Fp(z) den Minimaltypus der Ordnung 1 nicht ubertrefïen.
Wenn man die Funktion (1. 2) durch

(14. 2) #*(z)=z* "V^z) +zï~1F2(z) + •• +Ïp~1F0(z)

ersetzt, so wird das asymptotische Verhalten fur groBes positives z nur
wenig abgeandert, jedoch kann, wie es aus Satz I in Verbindung mit dem
in Nr. 9 zitierten Carlson'schen Satz leicht folgt, die durch die Potenzreihe

(14. 3) H*(l)z + H*(2)z2 H h H*(n)zn + •••

definierte Funktion nicht auf der, in z 1 punktierten, Riemann'schen
v

Flaehe von j/z—1 regular und eindeutig sein, ausgenommen den Fall
p — 1 und den (nicht wesentlich verschiedenen), in welchem F1(z),
F2(z), ••*Fp-.1(z) identisch verschwinden: Denn sonst ist ja H*(z) keine
meromorphe Funktion, sondern eine mehrdeutige.

Mit Benutzung der Untersuchungen von Braitzew und Subbotin1*) kann
man jedoch eine Riemann'sche Flaehe angeben, auf welcher die durch
(14. 3) definierte Funktion eindeutig bleibt: Sie hat nur Verzweigungs-
punkte, die uber den drei Punkten z 0, 1, oo liegen, und zwar sind die
uber z 1 gelegenen Verzweigungspunkte algebraisch von (p— l)-ter
Ordnung, die uber z 0 und z ¦= oo gelegenen Verzweigungspunkte
sind hingegen unendlicher Ordnung; in solchen Punkten der Riemann'-
schen Flaehe, die uber keinem der drei Punkte liegen, bleibt die durch
(14. 3) definierte Funktion regular. Durch welche Eigenschaften die

Entwicklungskoeffizienten einer Potenzreihe ausgezeichnet sind, die
eine analytische Funktion mit den eben beschriebenen Fortsetzbarkeits-
und Regularitatseigenschaften definiert, ist noch nicht bekannt.

") Vgl. (2), (9).

(Eingegangen den 4. Dezember 1934.)
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