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Sur quelques limites

pour les modules des zéros des polynômes

Par Paul Mosttel, Paris

1. Dans un travail antérieur1), j'ai montré que tout polynôme

P (x) a0 + a±x + •• + a9x* + ••• + anxn

pour lequel les p + 1 premiers coefficients sont fixes admet p zéros dont
les modules ne dépassent pas un nombre qui ne dépend que des coefficients

fixés et du nombre des termes figurant effectivement dans le
polynôme. Cette limite ne dépend donc pas du degré n à moins que le nombre
des termes ne soit égal à n + 1, cas où le polynôme n'admet pas de lacune.
Le résultat demeure exact lorsqu'on fixe les valeurs des coefficients

a0, al9 "•, Bp-i, &v+h\ h désignant un entier supérieur à 0 et non supérieur

à n — p ou lorsqu'on assujettit le polynôme à p + 1 autres conditions

convenablement choisies, par exemple en fixant les valeurs du
polynôme et de certaines de ses dérivées en un certain nombre de points
donnés. La valeur exacte de la limite supérieure des p zéros de plus petits
modules est en général difficile à déterminer. Elle a fait l'objet de recherches

dues à MM. Van Vleck, Biernacki, Dieudonné, etc.2). En particulier,
M. Van Vleck a déterminé les limites exactes pour les polynômes sans
lacunes dont on fixe les p premiers coefficients. Il a attiré l'attention
sur le fait suivant: pour que les modules de p zéros demeurent bornés

lorsqu'on fixe les valeurs de certains coefficients, il faut et il suffit que
ces coefficients soient a0, %, •• av-^ ap+h (0 <A <w — p).

Montrons que la condition est nécessaire. Supposons d'abord que l'un
des coefficients ak de la suite &0, %, •• aJ>^1 soit variable. Laissons fixes
tous les autres coefficients et donnons à | ak | des valeurs augmentant
indéfiniment. Les zéros des polynômes correspondants ont pour limites

P (x)
ceux du polynôme xk vers lequel tend le polynôme —— et, comme le

a*
1) Sur les modules des zéros des polynômes (Annales scientifiques de l'Ecole

Normale supérieure, s. 3, t. XL (1923), p. 1—34).
2) Van Vleck, On hmits to the absolute values of the roots of a polynomial

(Bulletin de la Société mathématique de France, t. 53 (1925), p. 105—125).
Biernacki, Sur les équations algébriques contenant des paramètres

arbitraires (Bulletin de l'Académie polonaise des Sciences et des Lettres (1927), p. 541—685).
Dieudonné, Kecherches sur quelques problèmes relatifs aux polynômes et

aux fonctions bornées d'une variable complexe (Annales scientifiques de l'Ecole
Normale Supérieure, s. 3, t. XLVIII, p. 247—358 (1931)).
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est inférieur à p, il y a moins de p zéros de modules bornés. Il est donc
nécessaire de fixer aQ, %, • • • ap-v Si aucun des autres coefficients n'est
fixé, on peut les faire tendre vers zéro et on voit encore qu'il y a au plus
(p— 1) zéros dont les modules soient bornés: il faut donc fixer av+h.

Réciproquement, supposons fixés les nombres aQi a1? ••• ap_1, av+h
(0 < h < n — p). Si les modules de p zéros n'étaient pas bornés pour
tous les polynômes P (x) de degré n, admettant ces p -f- 1 coefficients
donnés, à chaque entier m correspondrait un polynôme PTO(a?) pour
lequel les modules de p — 1 zéros au plus seraient inférieurs à m. Si les
coefficients variables de ces polynômes demeurent bornés, on peut
extraire de la suite Pm(x) une suite partielle ayant pour limite un
polynôme de degré p + h au moins : donc p zéros au moins ont des modules
bornés pour tous les polynômes de cette suite partielle, ce qui contredit
l'hypothèse lorsque m est assez grand. Si l'un des coefficients variables
augmente indéfiniment, nous diviserons les coefficients des polynômes
Pm(x) par le coefficient de plus grand module de ce polynôme. Les

nouveaux polynômes auront les mêmes zéros et des modules bornés; et
tout polynôme limite de la nouvelle suite aura un degré au moins égal
à p, ce qui conduit à la même contradiction. La condition est donc
suffisante. On verrait delà même manière que p zéros ont leurs modules bornés
si &0, av •••, a^.-L ont leurs modules bornés supérieurement et si ap+h a

un module borné inférieurement par un nombre positif.

Le raisonnement qui précède pourra être répété chaque fois que toute
limite de polynômes P (x), normes au besoin en divisant par le coefficient
de plus grand module, est un polynôme de degré p au moins. Il en sera
ainsi par exemple lorsqu'on fixe les valeurs de P (x) en p + 1 points
donnés pourvu que ces valeurs n'appartiennent pas à un polynôme de

degré inférieur à p.

Enfin, dans chacun des cas indiqués, il existe une borne supérieure des

modules de p zéros ne dépendant que du nombre des termes de P (x)
lorsque ce polynôme a des lacunes. Il suffit, pour le voir, de répéter les

démonstrations du mémoire cité au début. Nous nous limiterons dans
la suite aux polynômes sans lacunes.

Dans le présent travail, je me propose de montrer que la plupart des

règles donnant une limite supérieure des modules des n zéros de P (x)
en fonction des coefficients peuvent être étendues d'une manière simple
et donner une limite supérieure de p < n zéros en fonction de p + 1

coefficients, et du degré n.
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2. Considérons d'abord le polynôme

P (x) a0 + axx + + v-x^-1 + + xn

dont le dernier coefficient est égal à l'unité. Nous désignerons par M
le plus grand des modules des coefficients a0, %, ••• a^-! et par q un
nombre réel supérieur à l'unité. Ou bien le polynôme P (x) a au moins

p zéros dont les modules sont inférieurs à g ou bien n — p + 1 zéros au
moins ont des modules supérieurs ou égaux à q. Plaçons-nous dans ce

dernier cas et divisons P (x) par a — x, a désignant un zéro de module
supérieur ou égal à q. Le quotient

Pi (s) »o + *i* + - +a,-i«p"1+ s""1

a des coefficients donnés par les formules

a

+

Si i ne dépasse pas p — 1, on a

?'1 ^ ' ¦

p*

Les p premiers coefficients de Px (x) ont leurs modules inférieurs à

M
2-r-, Une seconde division correspondant à une autre racine de module

supérieur ou égal à q donne un polynôme P2 (x) dont les p premiers

coefficients ont des modules inférieurs à ; *l_, etc.; au bout de n—p

divisions, on obtiendra un polynôme Pn~P (x), de degré p, dont les p

premiers coefficients ont leurs modules inférieurs à p et dont
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le dernier est ± 1. Un tel polynôme a tous ses zéros de modules
inférieurs à

d'après une règle classique. Ecrivons que ce dernier nombre est précisément

égal à q, nous aurons l'équation

M'

d'où, en posant n — p -f 1 q,

On peut donc énoncer la proposition: Le polynôme P (x) a au moins p
zéros dont les modules sont inférieurs au nombre

Pour p n, q 1 et on retrouve la règle de Cauchy. La règle précédente
est d'une application commode; il suffit de calculer la suite des nombres:

n n — 1

Lorsque Mp l, la limite est 2. On peut d'ailleurs toujours être ramené
à ce cas par la substitution x \x'. Le nouveau polynôme

aura ses p premiers coefficients de modules inférieurs à un, si l'on prend

n-k
| X | <max. y | a* | fc 0, 1, 2, {p— 1).

Donc: le polynôme P (x) a au moins p zéros dont les modules sont
inférieurs à

n-k
2 max y | ak |
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M. D. Birkhoff a donné une expression analogue dans le cas où p n.
1

Au lieu du facteur 2, il introduit le facteur supérieur - 3)

Lorsque \ak\ < 1, il y a p zéros au moins de modules inférieurs à 2,
résultat déjà obtenu par M. Varopoulos. Dans tous les cas, il y a p zéros

au moins de modules bornés par le plus grand des deux nombres 2 et
1 + Mp donc bornés quel que soit n.

3. Le calcul de ak, fait au paragraphe précédent, conduit à l'inégalité

En répétant les divisions, cette inégalité peut être considérée comme une
inégalité récurrente entre les coefficients de deux polynômes consécutifs.
La loi de formation des coefficients numériques est celle du triangle
arithmétique de Pascal. On en déduit que les coefficients afc(s~1) du
polynôme PQ-X (x) vérifient les inégalités suivantes dans lesquelles le

symbole C* désigne le nombre des combinaisons de r objets pris s à s:

(2)

0 «-1 (ff-D I ^ s*-* I a0 I rfl~* I % 1

_i_ i Cq~2

Or, on a évidemment

% 1

^TÏ T"

x
lp-2 ^ (fl-1).

et cette inégalité demeure exacte si on remplace les coefficients des

puissances de | x \ par les limites supérieures écrites au-dessus. On obtient
ainsi un polynôme qui admet un zéro positif et l'inégalité montre que
PP-x (x) ne peut s'annuler lorsque | x \ est supérieur à ce zéro. Si nous
écrivons que ce zéro est égal à q, nous voyons que P(x) a, dans tous les

8) An elementary double inequality for the roots of an algebraic équation
having greatest absolute value (Bulletin of the American Math. Society, vol. XXI
(19J5), p. 494).
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cas, p zéros dont les modules ne dépassent pas la valeur ainsi obtenue.
L'équation dont elle est la racine positive s'obtiendra en égalant à zéro
le second membre de la dernière inégalité après y avoir remplacé | x \

par q et les coefficients par leurs limites supérieures. Le coefficient de

— I a* I est

1 F>g"2 i nq~2 i j-nq~2^ff-l T- •'• -r ^p^j lq-2 rff-l T r p+q-k-3] T^T n-t-l

L'équation donnant la limite supérieure est donc

çn — C° | a,-! | g*-1 — O1
+1

| ap_a | <>*-* (T"1 | a0 | 0.s w-p ' P J- i u n-p+1 ' P « i ^ M-l i u i

Dans le cas où

3*1 &2 z== " ' 3>p—l z= Vf &q 1

on retrouve la limite exacte |/Cf^_1 obtenue par M. Van Vleck. Si, dans

l'inégalité relative à Pq~1 (x), on remplace les coefficients par la limite
M

plus large / "Ag^T s on es^ conduit à l'équation

If*r ^i+^2++1)o
ou

(4) eP(e_l)a_Jfj>(eP_l) 0

dont la racine positive supérieure à un donne une limite supérieure pour
g

p zéros plus petite que 1 + |/i¥3,. Lorsque p n, on retrouve l'équation

bien connue

Qn Mn (e"-i + Qn~2 + ••• + q + 1).

4. Supposons maintenant que les coefficients a0, ax, ••• a3)_1, a^
soient fixés. On peut toujours admettre que ap est égal à l'unité. Les

égalités (1) donnent

o, 1,2, (p-i).
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Nous pouvons supposer que dans le polynôme P1 (x) tous les coefficients
aient été multipliées par a. Nous continuerons à appeler P± (x) le nouveau
polynôme et à désigner ses coefficients par ak. Nous aurons donc

Au bout de (q—1) opérations, nous aurons des coefficients
vérifiant les inégalités:

OU

et

^^y"1, i 0, 1, - (p- 1).

Le polynôme Pq-t (x) de degré ^p admet p zéros dont les modules sont
inférieurs à

\<Z-1

1 +

Ecrivons que cette limite est égale à q. Le polynôme P (x) aura dans
tous les cas p zéros de modules inférieurs à la valeur obtenue. L'équation
s'écrit

q - 1 + M,'
d'où

1

î —

Pour ^) n, on retrouve encore la limite classique 1 + Mn.
La limite gp croît avec M9 et avec #. Si £> est fixe et n variable, q croît

de 1 + Mj, à l'infini lorsque n croît de p à l'infini. On ne peut d'ailleurs
avoir aucune limite supérieure de p zéros qui reste bornée quel que soit

n, comme le montre le polynôme
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dont tous les zéros augmentent indéfiniment avec n, bien que les p + 1

premiers coefficients soient fixes.
Au contraire, si l'on fixe la valeur de an à la place de celle de ap, on a

vu que les modules de p zéros demeurent bornés quel que soit n.

5. Pour obtenir une limite supérieure en fonction des modules des

p + 1 premiers coefficients, on utilisera les inégalités (2), dans lesquelles
il faut ici supprimer le facteur g*-1 puisque les coefficients de chaque
polynôme ont été multipliés par la racine a correspondante, auxquelles
on adjoindra l'inégalité

En portant la limite inférieure de | a3>(a~1) I et les limites supérieures de

l^fc**"1*! pour h 0, 1, ••• (p— 1) dans l'inégalité

puis, en remplaçant comme précédemment | x \ par q, on est conduit à

l'équation

dont la racine positive donne une limite supérieure de p zéros de P (x).
Cette équation a déjà été obtenue par M. Van Vleck en suivant une
autre voie4). Pour

^1 z=: ^2 ==: " ' :== *^p—l *^P s=z '

jo

elle donne la limite exacte \CV -
n

Si on remplace les coefficients | afc(«-1) | par les limites plus larges du

paragraphe précédent, on est conduit à l'équation

M
(5) pP-.+l(g_l)a_T_£_(eP+l_l)=s=0

dont la racine supérieure à un donne une limite plus petite que qp (Mp).

4) loc. cit. p. lis.
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6. Supposons enfin que les coefficients fixés soient a0, av • • •, a>p-1,

ap+n (0 ^h ^n — p) avec ap+h 1. Désignons par a,p+h, le premier
coefficient suivant b,p-.x dont le module ne soit pas inférieur à un. Le
nombre h! est au plus égal à h. On est ainsi ramené au cas précédent,
p étant remplacé par p -\- h' et Mp par le plus grand des deux nombres
1 et Mp. Le polynôme a donc toujours au moins p + hf > p zéros
dont les modules ne dépassent pas QP+h, (M^) < qp {Mv) si Mp >1 ou
Qv+h' (*) < Qp (*) s* Mp ^ 1. En définitive: Le polynôme P {x) a
toujours p zéros au moins dont les modules sont inférieurs à qp (Mp) lorsque

Mp ^ 1, ou qp (1) lorsque Mp ^ 1.

Un raisonnement semblable permet de calculer une limite supérieure
en fonction des coefficients donnés. On ramène la question à celle du
paragraphe précédent en remplaçant par l'unité les coefficients ap>

ap+1, aP+h. Pour chaque valeur possible de h\ on obtient ainsi une
limite supérieure. La plus grande de ces limites lorsque h' prend toutes
les valeurs 0, 1, h convient dans tous les cas.

On peut d'ailleurs toujours adopter la limite

j p+h-k
max.y|afc| 4 0,1, -(p—1).

n—p + 1

comme on le voit par un raisonnement en tous points semblable à celui
de la fin du paragraphe 2.

7. On doit à Hurwitz le théorème suivant: Si les coefficients du
polynôme

P (x) â0 + % x + + an xn

sont réels et positifs, les modules des zéros sont compris entre le plus
petit et le plus grand des rapports

Ce théorème a été étendu par M. Anghelutza au cas où les coefficients
ne sont plus soumis à la restriction d'être positifs6). Il suffit de se borner

5) The Tôhoku Mathematical Journal, vol. 4 (1913), p. 89; Mathematische
Werke, Bd. II, S. 627.

6) Sur une extension d'un théorème de Hurwitz (Bulletin de l'Académie
roumaine, XVIe année (1934), p. 119).
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à la limite supérieure, la limite inférieure s'en déduisant par le changement

de x en —. Si s est la plus grande valeur des modules des rapports

précédents, M. Anghelutza montre que 2 s est une limite supérieure des
modules des zéros et plus précisément, qu'il en est de même de çn8, Qn

désignant la racine positive de l'équation

Qn Qn-1 + Qn-2 + + ^ + 1?

qui est inférieure à 2.

Ce dernier résultat peut être étendu au cas de p zéros en considérant
seulement les p + 1 premiers rapports. Soit donc s la plus grande valeur
des modules des rapports

en supposant qu'aucun de ces coefficients ne soit nul. On a

et, la substitution de sx' à x dans le polynôme P (x) conduit, après
division par s^a^ au polynôme

Les p premiers coefficients ont leurs modules inférieurs à l'unité. Ce

dernier polynôme a donc p zéros au moins dont le module est inférieur
à la racine rp, supérieure à un, de l'équation (5), dans laquelle Mv a été

remplacé par l'unité. Cette racine rp est inférieure au nombre

qui est lui-même inférieur à 2q. On a en effet
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comme le montre aussitôt le développement du second membre par la
formule du binôme. On en déduit

et par suite

1 <1- *

J/T

i — i < 2g.

D'où la proposition:

Si s désigne le plus grand module des rapports

le polynôme

anxn

a au moins p zéros dont les modules sont inférieurs à 2 (n — p + 1) s-

Nous avons supposé différents de zéro les p + 1 premiers coefficients-

Si l'un d'eux ak est nul, on remplacera les rapports

par le rapport unique 1/

et

H+i
et rien ne sera changé aux raisonnements.

Plus généralement, si les coefficients ak, a

nuls, on remplace les l + 1 rapports
ak+l-1 sont

a7c-1

ak-l
ah+l

&k

i
i+ i

par le rapport unique

On peut remarquer que le nombre s est supérieur aux termes de la suite

p p-i
|/|a0 I > V Kl > — V»*-« ' **-i '

en supposant pour simplifier av 1. Mais inversement, si s est le plus
grand terme de cette suite, il n'est pas nécessairement supérieur aux
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modules des p rapports considérés. Il suffit, pour s'en rendre compte, de

supposer que deux coefficients consécutifs aient des modules dont l'ordre
de grandeur est très différent. Il en résulte que, dans l'énoncé précédent
comme dans celui du théorème de Hurwitz, il est plus avantageux de

remplacer la suite des rapports par la suite, d'ailleurs moins simple, des
radicaux.

Au lieu des coefficients a0, %, • • •, ap on peut faire intervenir la suite
a0, av • • • a^-!, a,p+h (0 < h ^n — p). Supposons par exemple In — n — v.
On considérera la suite des rapports

o i

et l'on démontrera de la même manière la proposition: Si s est le plus
grand module des rapports précédents, le polynôme a au moins p zéros dont
les modules sont inférieurs à 2s.

Il suffit d'observer qu'il y a au moins p zéros de modules inférieurs à la
racine rn supérieure à un de l'équation (4) dans laquelle on a fait Mv 1.

Cette racine est d'ailleurs inférieure à 2.

Si on considère la suite &0, ••• ap-l9 &v+h> il faut prendre les rapports

On verra de la même manière qu'il y a au moins p zéros de modules
inférieurs à 2 (n — p + 1) s, s désignant le plus grand module des p
rapports.

8. Désignons par Sm la somme des puissances mèmes des modules des

coefficients a0, %, ••• an_x du polynôme

P (x) ao + a±x + ». + *9x* + ••• + xn.

J'ai démontré que le nombre

est une limite supérieure du module des zéros, lorsque le nombre m est

supérieur à l'unité7). Lorsque m croît indéfiniment, l'expression précé-

7) Sur la limite supérieure du module des racines d'une équation algébrique
(Comptes-Rendus de la Soc. des Sciences et des Lettres de Varsovie, XXIV (1931),
p. 317—326).
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dente a pour limite, 1 + Mn ; lorsque m tend vers l'unité, elle a pour
limite le plus grand des deux nombres 1 et

si I H I + I % | + ••• + | aw_! |;

on retrouve ainsi des limites connues; pour m 2, on a la limite

qui a déjà été obtenue par MM. Carmichael et Mason8).

Lorsque 1 < m < 2, le nombre a est supérieur à wra; l'iné-
171 1

galité
1 + A* < (1 + A)* A > 0

entraîne

£w < (1 + 8n)^;

on peut donc prendre comme limite supérieure

K V I ao lm + I % lm + ••' + I an

Lorsque m > 2, puisque // < 1, on a l'inégalité,

2

ou

on peut alors adopter la limite supérieure

m

2 K 2 V|aolm+ •••+ |a«-ilm+l-

Nous allons voir que les expressions correspondantes portant sur les

p premiers coefficients vont nous permettre d'obtenir des limites
supérieures pour les modules de p < n zéros. Les égalités (1) donnent

\n'\^\âo\ 1 % 1

| |

1 â1c 1

^

8) Note on the roots of algebraio équations (Bulletin of the American Mathema-
tical Society, vol. XXI (1915), p. 14—22).
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Soient m et m', deux nombres positifs, vérifiant l'égalité

m m'

L'inégalité
i i

k / k \~ / k
(6) X Ai Bi^ (^ A i ^ B\

valable pour les nombres positifs Ai9 Biy entraîne

Or,
k p-1

t*=0

Par conséquent

et

Au bout de (^ — 1) opérations, nous aurons

Appliquons toujours la même méthode; si P (x) a moins de p zéros dont
les modules sont inférieurs à q, nous effectuerons les q — 1 divisions qui
conduisent à un polynôme Pg_1(o;) dont le terme de degré le plus élevé
est ± xp. Ce polynôme a certainement p zéros de modules inférieurs à

13 Commentera Mathematici Helvetici 191



Ecrivons que le nombre obtenu en remplaçant dans cette expression

8{^l par sa limite supérieure est égal à g. Nous obtiendrons l'équation

i
1 4- \S ff*-1 1m-i^ m,

I m>Q (nmf l\(fl—1) (m —1) I «
L Vtf L) J

OU

d'où l'on tire

Q

I _^3 (wî —1) I wî
— I 1 1 /yyQ (m — 1) ,v I

On peut d'ailleurs remplacer ce nombre par un nombre plus grand.
On a d'abord

g-l r 1 lm-1

Si 1 < m < 1 + —

î

On prendra donc la limite

g— 1 qm_

p qm y i

Si 1 H < m, on a

1

w*, p

et l'on pourra adopter la limite

^^ VI%IM+ ••• + la^-ih + l.

Par exemple lorsque p <n, 1 H ^ 2 et on a, pour m 2, la limite
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En résumé: Le polynôme P {x) a p zéros au moins dont les modules sont
inférieurs à

q-l qm
qm *,/-

pour toute valeur de m comprise entre 1 et 1 -) Ils sont inférieurs à

q-l- qm
q m

V\*o\m + ••• + | a,-i I"* + 1

lorsque m est supérieur à 1 -\
q

Q-l
Pour p n, q 1, le facteur p * se réduit à l'unité et l'on retrouve

les limites connues valables pour tous les zéros de P (x).
« _

Lorsque m augmente indéfiniment, on retrouve la limite 1 + ]/Mp
établie au paragraphe 2.

Nous avons laissé de côté l'hypothèse m 1. Dans ce cas, on verra
aisément que P (x) admet au moins p zéros dans le cercle-unité lorsque

et p zéros au moins de modules inférieurs à

P Vl*ol +- + l»p-il
dans le cas contraire.

Les égalités (1) donnent en effet

I ai | < ^ ç>l
4 0, 1,2, ••• (p—l).

On en déduit

S[,P<^-^-,

et, après q — 1 opérations,
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En égalant à q cette valeur supérieure, on obtient

d'où Ton conclut le résultat précédent. On peut aussi remarquer que

c'est-à-dire
-" Q—L

Le même procédé conduit à l'équation

/0_1l)g~i===g~1<g
d'où

II y a donc toujours p zéros au moins de modules inférieurs à la valeur

1 + V I a0 | + | %T+ +1 «„_! |7~

Si l'on fait le même calcul en prenant g 2, on voit que

Au bout de q — 1 opérations, on obtient un polynôme de degré p dont le
coefficient de xp est i 1 et pour lequel

Les zéros de ce polynôme ont des modules inférieurs au plus grand des

deux nombres 1 et $^~ ; donc, au plus grand des deux nombres 1,

Sv v. Par conséquent le polynôme P (x) a p zéros au moins de modules
inférieurs au plus grand des nombres 1, 2, Slpi c'est-à-dire au plus grand
des deux nombres 2 et 8îp. En particulier, si

le polynôme P (x) a au moins p zéros de modules inférieurs ou égaux à 2.
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Nous avons trouvé une limite qui convient à tous les cas: c'est le
Q inombre 1 + ySltP ; lorsque 8l!P est inférieur à

n_p la limite 1 est

l qf± q

plus avantageuse. Lorsque S-^
19

est supérieur à -^ la limite p Q j/^
11

est plus avantageuse tant que j/^ v ne dépasse pas —p± ; elle de-

pQ — 1

vient ensuite moins avantageuse. Pour les grandes valeurs de n, il faut
Q

prendre la limite 1 + j/ S1, v ; cette limite tend vers 2 pour n infini

9. Si l'on remplace le polynôme P (x) par le polynôme

Q (x) (1 — x) P (x) a0 + (ax — a0) x + ••• + (ap^ — ap.2)x*>-* +

on pourra appliquer au nouveau polynôme chacun des résultats précédents

en remplaçant les coefficients a0, av • • • &v-x respectivement par
^o» ^i ^o» ' " ' ^p—i np— 2*

Par exemple, le polynôme Q (x) a tous ses zéros inférieurs en modules
à l'expression

m

V|aolm+ l*i —»olm+ •• + 1»,,-! —an-2lm+ |1—»w-ilm + F,

lorsque 1 < m ^ 2. Il en est donc de même pour le polynôme P (x).
Le cas de m 2 a déjà été considéré par M. Williams9).

Désignons par 0, Ao, Av ••• A^v ••• An les points du plan d'affixes
0, a0, av •••, &„_!, ••• an= 1. Les nombres | ah — ak-x \ représentent les

longueurs des côtés de la ligne brisée 0 A$A1 • • Av^x ••• AnO.
Supposons m 1 ; soit Lv la longueur de la ligne brisée 0 Ao Ax • •

Av_x. D'après ce qui précède, si Lv est inférieur ou égal à—-, le

polynôme Q (x), donc aussi le polynôme P (x) a au moins p zéros de
modules inférieurs à l'unité.

Si p~n-\-l, on a toujours Ln+1 >1 à moins que les points Ao, Al9--•^4W_1

ne soient rangés sur le segment (0,1) dans l'ordre de leurs indices. Dans
ce cas, les nombres a0, %, an_x sont réels et positifs et vérifient les

inégalités
0 < a0 < % ^ < &n-x < 1 ;

9) Bulletin of the American Mathematical Society, vol. XXVIII (1922), p. 394.
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les modules des zéros sont inférieurs ou égaux à un. C'est le théorème de
M. Kakeya10).

Les résultats précédents permettent d'en donner une extension.
Supposons &a, av ", ap-t réels et positifs vérifiant les inégalités

0<f a <f st <~ <f s» -<•^ ^0 ^= **1 ^ <5; **j)-l ^ ~^ î

les autres coefficients demeurant arbitraires, sauf le dernier qui est
toujours égal à l'unité. Le polynôme Q (x) a alors p zéros au moins de modules
inférieurs à l'unité: il en est donc de même de P (x). On peut d'ailleurs

supposer ap-x =—^« En d'autres termes:

Le polynôme

P (x) a0 + axx + + ap-x x»-1 + ••• + xn

dans lequel les coefficients a0, av • • • ap-.± sont réels et vérifient les inégalités :

a au moins p zéros de modules inférieurs à Vunité.

Si p n-\~], la dernière inégalité peut s'écrire an l et l'on retrouve
le théorème de M. Kakeya.

Si l'on suppose seulement

0 ^ a <C a ^ .•• a <C2

on voit, d'après la proposition finale du paragraphe 9, que P (x) a au
moins p zéros de modules inférieurs à 2.

10. Nous venons d'obtenir des extensions de théorème de M. Kakeya
en laissant arbitraires les coefficients ap, ap+v «•• an_1. On peut obtenir
une extension d'une autre nature en supposant que tous les coefficients
restent réels. On est conduit au théorème de M. Kakeya en supposant
que le polygone O Ao Ax • • -An O s'aplatit sur le segment (0,1). Admettons
maintenant que ce polygone s'aplatisse sur le côté O An sans que tous les

sommets demeurent à l'intérieur de ce segment. Nous obtiendrons ainsi

10) On the limits of the roots of an algebraic équation with positive coefficients

(The Tôhoku Mathematical Journal, vol. 2 (1912), p. 140).
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un théorème déjà démontré par M. L. Berwald comme conséquence d'une
proposition plus générale11). Voici une démonstration directe simple de

ce théorème. Nous aurons des inégalités telles que

Vu < Vh2 < ••• < an < 0 < a0 < ax < • •• < aP;

la valeur absolue de an peut être laissée arbitraire. Le polynôme

Q (x) a0 + (a± — aQ) x + -• + (ap — ap^x) x* — (a, — ap+1) x

présente deux variations. Comme il admet le zéro 1, il y a un autre zéro

positif f. Le polynôme est négatif lorsque x est dans l'intervalle (1, f)
et positif lorsque x est à l'extérieur de cet intervalle. On a

Si P (1) est négatif, Q (x) décroît quand x, en croissant, traverse la valeur
1, et £ est supérieur à 1. Si P(l) est positif, £ est inférieur à 1. Soit

I / q \ /y»Tt *T" x /y f />• i / q o l <mP *t* 1

Dans le premier cas, soit £ un nombre très voisin de tm dans l'intervalle

(1, £). On a 1 < £ < £ et / (g) < g (q). Pour | a; | q, on a
l'inégalité

Donc, le polynôme Q (x) f (x) — g (x) et le polynôme g (x) ont le même
nombre de zéros dans le cercle | x |< q, soit p + l; par conséquent,
P (x) a p zéros dans ce cercle, puisque Q (x) admet le zéro x 1.

Dans le second cas, prenons q voisin de £ dans l'intervalle (£, 1). On

aura | < q < 1 et on verra de la même manière que P (x) a p -f- 1 zéros

dans le cercle | x \ < q, donc dans le cercle | x \ ^ £.

Si enfin P (1) 0, on pourra considérer ce cas comme limite du précédent.

Dans tous les cas, P (x) a p zéros au moins dans le cercle-unité.
En définitive: Le polynôme à coefficients réels

u) Ûber einige mit dem Satz von Kakeya verwandte Sàtze (Math. Zeitschrift,
Bd. 37, (1935) p. 61—76). - Je dois cette indication bibliographique à l'obligeance de
M. Pôlya.
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ao + a1x+ "- +a9xp + + an xn
dans lequel

Vu < a*+2 < • • < an < 0 < a0 < < a,,

a jt? zéros au moins dans le cercle unité.

Si p n, on retrouve le théorème de M. Kakeya.

11. Les expressions 8m, introduites au paragraphe 9, sont liées aux
moyennes d'ordre m de M. Hardy relatives au polynôme P(x). On sait
que la moyenne 50?m (r) de la fonction / (x), holomorphe dans le cercle
| x | ^ r, est le nombre

2/r 1

Nous supposons m ^ 0. La moyenne 5Km (1) sera désignée par SD?W:

Le nombre SKW (r) croît constamment avec m; lorsque m croît indéfiniment,

SDîm (r) tend vers le module maximum M (r) de / (x) pour | # | < r;
lorsque m tend vers zéro, il tend vers la moyenne géométrique

-Lîhg\f (rei0)\de

Pour m 1, on a la moyenne arithmétique

271

La moyenne quadratique 3R2 (r) ©st donnée par l'égalité

si

Considérons les moyennes 9RW du polynôme P (x) sur la circonférence
unité. La moyenne quadratique n'est autre que la somme |/l -f- S2

introduite précédemment. D'ailleurs, si m > 1, l'inégalité (6) donne

pour | x | r ^ 1,
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1 1 1

I P{x) \<\ £ I a* 1-1" \krk"" \m'< (» + 1)""(1 + Sm)
'

avec 1 r 1. On en déduit
m m

ÇSRm < 24 (n + 1) "< (n + 1) R'm.

Nous allons voir que 5Dîm est, quel que soit m, une limite supérieure
du module des zéros de P (x). En effet, soient rv r2, rh, les modules
des zéros de P (x) intérieurs au cercle-unité. La formule de Jensen

log
1 P (0)

donne

en désignant par rh+l9 ••• rn, les modules des autres zéros. Or, on a
évidemment

rh+l " ' rn ^ rn

si rn est un zéro de plus grand module; donc

D'autre part,

On en déduit la proposition suivante:

Les modules des zéros du polynôme

ao + axx+ ••• -f anxn

sont compris entre les nombres '
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3RTO désignant une moyenne d'ordre positif du polynôme sur la
circonférence-unité12).

I

a0 | M
En particulier, les modules des zéros sont compris entre et M

M |an I

désignant le module maximum dans le cercle-unité.

On peut remplacer le cercle-unité par un cercle | x \ — r arbitraire.
èft (r)On voit aussitôt, en supposant an 1, que le nombre—™\ est une

borne supérieure des modules des zéros. Lorsque r varie de zéro à l'infini,
cette expression a un minimum qui donne la meilleure limite du type
considéré.

Si l'on se borne à la moyenne SJîjfrelative au polynôme

un raisonnement tout à fait semblable à celui qui a été utilisé maintes
fois dans ce travail, montre que le polynôme P (x), dans lequel on suppose
fixée la moyenne précédente et un coefficient ap+h (0 ^ h < n — p),

a p zéros au moins dont les modules sont inférieurs à 2 + [9JR(p)| « par
exemple lorsque an 1.

(Reçu le 14 octobre 1934.)

12) Pour m=2, voir aussi Ed. Landau. Sur quelques théorèmes de M. Petrovitch
relatifs aux zéros des fonctions analytiques. (Bulletin de la Soc. Math, de
France, t. 33 (1905), p. 251—261).
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