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Sur quelques limites
pour les modules des zéros des polynomes

Par Pavr MonTEL, Paris

1. Dans un travail antérieur!), j’ai montré que tout polynome
P(x) =ay+ ayx + --- + a,2? + --- + a,2"

pour lequel les p 4- 1 premiers coefficients sont fixes admet p zéros dont
les modules ne dépassent pas un nombre qui ne dépend que des coeffi-
cients fixés et du nombre des termes figurant effectivement dans le poly-
nome. Cette limite ne dépend donc pas du degré n & moins que le nombre
des termes ne soit égal & n + 1, cas ol le polynome n’admet pas de lacune.
Le résultat demeure exact lorsqu’on fixe les valeurs des coefficients
89, Ay, ' Ap—1, Apyp; P désignant un entier supérieur & 0 et non supé-
rieur & n — p ou lorsqu’on assujettit le polynome a p 4 1 autres condi-
tions convenablement choisies, par exemple en fixant les valeurs du
polynome et de certaines de ses dérivées en un certain nombre de points
donnés. La valeur exacte de la limite supérieure des p zéros de plus petits
modules est en général difficile 4 déterminer. Elle a fait ’objet de recher-
ches dues & MM. Van Vleck, Biernacki, Dieudonné, etc.?). En particulier,
M. Van Vleck a déterminé les limites exactes pour les polynomes sans
lacunes dont on fixe les p premiers coefficients. Il a attiré 1’attention
sur le fait suivant: pour que les modules de p zéros demeurent bornés
lorsqu’on fixe les valeurs de certains coefficients, il faut et il suffit que
ces coefficients soient ay, a,, - 2,4, a,,, (0 <h <n—p).

Montrons que la condition est nécessaire. Supposons d’abord que I'un
des coefficients a, de la suite a,, a,, ---, a,-, soit variable. Laissons fixes
tous les autres coefficients et donnons & | a, | des valeurs augmentant
indéfiniment. Les zéros des polynomes correspondants ont pour limites

P (x)

k

1) Sur les modules des zéros des polynomes (Annales scientifiques de 1'Ecole
Normale supérieure, s. 3, t. XL (1923), p. 1—34).

2) Van Vleck, On limits to the absolute values of the roots of a polynomial
(Bulletin de la Société mathématique de France, t. 53 (1925), p. 105—125).

Biernacki, Sur les équations algébriques contenant des paramétres arbi-
traires (Bulletin de I’Académie polonaise des Sciences et des Lettres (1927), p. 541—685).

Dieudonné, Recherches sur quelques problémes relatifs aux polynomes et
aux fonctions bornées d’une variable complexe (Annales scientifiques de ’'Ecole
Normale Supérieure, s. 3, t. XLVIII, p. 247—358 (1931)).

et, comme k

ceux du polynome x* vers lequel tend le polynome
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est inférieur a p, il y a moins de p zéros de modules bornés. Il est donc
nécessaire de fixer a;, a,, --- 2,,. Si aucun des autres coefficients n’est
fixé, on peut les faire tendre vers zéro et on voit encore qu’il y a au plus
(p—1) zéros dont les modules soient bornés: il faut donc fixer a,,,.

Réciproquement, supposons fixés les nombres a,, a,, -+ a,1, 2y,
(0 < h < n—p). Siles modules de p zéros n’étaient pas bornés pour
tous les polynomes P (z) de degré », admettant ces p + 1 coefficients
donnés, a chaque entier m correspondrait un polynome P, (z) pour
lequel les modules de p — 1 zéros au plus seraient inférieurs & m. Si les
coefficients variables de ces polynomes demeurent bornés, on peut
extraire de la suite P, (x) une suite partielle ayant pour limite un poly-
nome de degré p + h au moins: donc p zéros au moins ont des modules
bornés pour tous les polynomes de cette suite partielle, ce qui contredit
Phypothése lorsque m est assez grand. Si 'un des coefficients variables
augmente indéfiniment, nous diviserons les coefficients des polynomes
P, (x) par le coefficient de plus grand module de ce polynome. Les
nouveaux polynomes auront les mémes zéros et des modules bornés; et
tout polynome limite de la nouvelle suite aura un degré au moins égal
a p, ce qui conduit & la méme contradiction. La condition est donc suffi-
sante. On verrait de la méme maniere que p zéros ont leurs modules bornés
sl ag, ay, *+-, a,-, ont leurs modules bornés supérieurement et si a,,, a
un module borné inférieurement par un nombre positif.

Le raisonnement qui précede pourra étre répété chaque fois que toute
limite de polynomes P (x), normés au besoin en divisant par le coefficient
de plus grand module, est un polynome de degré p au moins. Il en sera
ainsi par exemple lorsqu’on fixe les valeurs de P (x) en p 4 1 points
donnés pourvu que ces valeurs n’appartiennent pas a un polynome de
degré inférieur a p.

Enfin, dans chacun des cas indiqués, il existe une borne supérieure des
modules de p zéros ne dépendant que du nombre des termes de P (x)
lorsque ce polynome a des lacunes. Il suffit, pour le voir, de répéter les
démonstrations du mémoire cité au début. Nous nous limiterons dans
la suite aux polynomes sans lacunes.

Dans le présent travail, je me propose de montrer que la plupart des
régles donnant une limite supérieure des modules des n zéros de P (x)
en fonction des coefficients peuvent étre étendues d’une maniére simple
et donner une limite supérieure de p < n zéros en fonction de p 4 1
coefficients, et du degré n.
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2. Considérons d’abord le polynome

P(x)=ay+ax+ ... +a,q2° 14 ... 4+ 2"

dont le dernier coefficient est égal & 1'unité. Nous désignerons par M,
le plus grand des modules des coefficients a,, a,, --- a,—, et par g un
nombre réel supérieur a 'unité. Ou bien le polynome P (x) a au moins
p zéros dont les modules sont inférieurs a ¢ ou bien n — p + 1 zéros au
moins ont des modules supérieurs ou égaux a p. Plagons-nous dans ce
dernier cas et divisons P (z) par a — x, a désignant un zéro de module
supérieur ou égal a ¢. Le quotient

Py(z) = a2y + a1@ + -+ + 3,y 2771 4 o — g1

a des coefficients donnés par les formules

a
0=
@ | N
Q= &—2‘4"'—“,
y
. ay | & a,
= gttt o

.........

Si k£ ne dépasse pas p— 1, on a

| a's ] < M, o it ) e

Les p premiers coefficients de P, (x) ont leurs modules inférieurs a

0— 1
supérieur ou égal & p donne un polynome P, (z) dont les p premiers

coefficients ont des modules inférieurs & — etc.; au bout de n—p

@—1p
divisions, on obtiendra un polynome P,_, (x), de degré p, dont les p
premiers coefficients ont leurs modules inférieurs a W et dont
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le dernier est + 1. Un tel polynome a tous ses zéros de modules infé-
rieurs a
M
1 vy
To—p»
d’aprées une regle classique. Ecrivons que ce dernier nombre est précisé-
ment égal & g, nous aurons 1’équation

MP
MERRRCE
d’ou, en posant n—p + 1 = g,
q__
o=1 —-i—VMp.

On peut donc énoncer la proposition: Le polynome P (x) a au moins p
zéros dont les modules sont inférieurs aw nombre

q
1+ Vm,.

Pour p = n, ¢ = 1 et on retrouve la regle de Cauchy. La régle précédente
est d’une application commode; il suffit de calculer la suite des nombres:

n n—1

q
VMl ’ VMz [ “.VMp’ ”'VMn—ly Mn

Lorsque M, = 1, la limite est 2. On peut d’ailleurs toujours étre ramené
a ce cas par la substitution x = A2’. Le nouveau polynome

it
A"

a a,—
T = S S ek A s S
v v

aura ses p premiers coefficients de modules inférieurs a un, si 'on prend

n—k
{l[gmax.VI&,c{ k=0,1,2,(p—1).

Donc: le polynome P (z) a au moins p zéros dont les modules sont infé-
rieurs a
n—k
2 max V la ]| .
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M. D. Birkhoff a donné une expression analogue dans le cas ot p = =.

1
Au lieu du facteur 2, il introduit le facteur supérieur ———. 3)

V2—1
Lorsque | a2, | < 1,il y a p zéros au moins de modules inférieurs a 2,
résultat déja obtenu par M. Varopoulos. Dans tous les cas, il y a p zéros

au moins de modules bornés par le plus grand des deux nombres 2 et
1 4 M, donc bornés quel que soit n.

3. Le calcul de a,’, fait au paragraphe précédent, conduit a I'inégalité

ol 1<l Rl a,).
En répétant les divisions, cette inégalité peut étre considérée comme une
inégalité récurrente entre les coefficients de deux polynomes consécutifs.
La loi de formation des coefficients numériques est celle du triangle
arithmétique de Pascal. On en déduit que les coefficients a,(* 1 du
polynome P __, (x) vérifient les inégalités suivantes dans lesquelles le

symbole O, désigne le nombre des combinaisons de r objets pris s a s:

q—2
U a D | < Cyoz | a9 |,

(2) o] a | < 03:3 2| + Oq 2 lay |,

et | <cim el ot Ly r e

p=i p+g-3

Or, on a évidemment

]

—1) ( l) p—2 (g-1)
(q I l q- lx 5. ‘ 3/0 l

(8) 1Py (@)| > |7 —|af
et cette inégalité demeure exacte si on remplace les coefficients des
puissances de | z | par les limites supérieures écrites au-dessus. On obtient
ainsi un polynome qui admet un zéro positif et 'inégalité montre que
P, _, (z) ne peut s’annuler lorsque | x | est supérieur a ce zéro. Si nous
écrivons que ce zéro est égal & o, nous voyons que P(x) a, dans tous les

3) An elementary double inequality for the roots of an algebraic equation
having greatest absolute value (Bulletin of the American Math. Society, vol. XXI

(1915), p. 494).
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cas, p zéros dont les modules ne dépassent pas la valeur ainsi obtenue.
L’équation dont elle est la racine positive s’obtiendra en égalant & zéro
le second membre de la derniere inégalité aprés y avoir remplacé | z |
par o et les coefficients par leurs limites supérieures. Le coefficient de

— | a; | est
1 - 1 ~k-1
pre [Ce+ O+ - + Chipis| = = ool

L’équation donnant la limite supérieure est donc

0 1 -1
o"—0C,_ la, 4| —C _ la,y|e"t—— C"" lag|=0.

Dans le cas ou
31:&22"':3/1)_1:0, 3/0:1

on retrouve la limite exacte I/Cft:i obtenue par M. Van Vleck. Si, dans

I'inégalité relative a P__, (x), on remplace les coefficients par la limite
M

lus large —>2—— , on est conduit & 1’équation
P g (o — 1)7-1 q

M,

O — e (@7 P e 1) =

ou
(4) o? (e—1)—M,(e*—1)=0
dont la racine positive supérieure a un donne une limite supérieure pour

¢
p zéros plus petite que 1 + ]/ M,. Lorsque p = n, on retrouve I’équa-
tion bien connue

e" =M, ("t + 0"+ - + o+ 1)

4. Supposons maintenant que les coefficients a,, a,, ---, a,-y, a,
soient fixés. On peut toujours admettre que a, est égal a 'unité. Les
égalités (1) donnent

, 11 M,
el 21— (b )= 1=y

, . 1
R R i o
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Nous pouvons supposer que dans le polynome P, (z) tous les coefficients
aient été multipliées par a. Nous continuerons a appeler P, () le nouveau
polynome et & désigner ses coefficients par a;. Nous aurons donc

»?

o—1

M M
” [ | <

la‘;[>l_(()__1)’ ap

s k=0, 1’(27_1)

Au bout de (¢ — 1) opérations, nous aurons des coefficients a, (¢ 1,
vérifiant les inégalités:

| 2,0¢D | >1— M, My, . _ _Mi®
? e—1 (o— 1) (o—-1)o—1
ou
| &, | > I*Mp[(me )q—l—— 1];
o— 1
et

’ a~1
| 2@V | <M“’<FQ——1—> , k=01, (p—1).

Le polynome P _, (x) de degré p admet p zéros dont les modules sont
inférieurs a
M ‘ Q \a—1

? (Q — 1)

0 g-1"
a1, ()

1+

Eecrivons que cette limite est égale a ¢. Le polynome P (x) aura dans
tous les cas p zéros de modules inférieurs a la valeur obtenue. L’équation
s’écrit

/9 — 1y — M P

( e ) 14+ M,°

1
0= q———n-[——-=ep(Mp)-
1__\/___*__2__

1+ M,

Pour p = n, on retrouve encore la limite classique 1 + M ,,.

La limite g, croit avec M, et avec ¢. Si p est fixe et n variable, g croit
de 1 + M, a 'infini lorsque n croit de p a 'infini. On ne peut d’ailleurs
avoir aucune limite supérieure de p zéros qui reste bornée quel que soit
n, comme le montre le polynome
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x?‘ n an?
1+—) =1 . N R il
( +5) =14+ 2
dont tous les zéros augmentent indéfiniment avec n, bien que les p + 1
premiers coefficients soient fixes.
Au contraire, si 'on fixe la valeur de a,, a la place de celle de a,, on a
vu que les modules de p zéros demeurent bornés quel que soit n.

5. Pour obtenir une limite supérieure en fonction des modules des
p + 1 premiers coefficients, on utilisera les inégalités (2), dans lesquelles
il faut ici supprimer le facteur g?-! puisque les coefficients de chaque
polynome ont été multipliés par la racine a correspondante, auxquelles
on adjoindra I'inégalité

(@—1) —2 || -2 |ag| g2 | ap_q|
s> 1—o Ll o D gyl

En portant la limite inférieure de | a,(?"? | et les limites supérieures de
a1V | pour £k = 0, 1, --- (p — 1) dans l'inégalité

|Pyq(2)| =] a,* V| [2]?— |a(;:11)| |z [P~1— ... — | a,e— Y |,

puis, en remplagant comme précédemment | z | par g, on est conduit a
’équation

1 2 _
@p_— On_p.*_l i Ap—-1 [ ()10—1___40"_2)4-2 [ ap—9 { Qp B s e OZ l ) [ =0
dont la racine positive donne une limite supérieure de p zéros de P (x).

Cette équation a déja été obtenue par M. Van Vleck en suivant une
autre voie*). Pour

3 =ay= ' =2a,,=20 a, =1,

p.._
elle donne la limite exacte VOZ.

Si on remplace les coefficients | a,!?~1 | par les limites plus larges du
paragraphe précédent, on est conduit a 1’équation

M
(5) pr— ot (Q"‘“l)q—“rl_—gﬂ;(ewl““l):()

dont la racine supérieure & un donne une limite plus petite que ¢, ().

4) loc. cit. p. 115.
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6. Supposons enfin que les coefficients fixés soient a,, a,, ---, a,,
apin (0 < h < n—p) avec a,,, = 1. Désignons par a,., le premier
coefficient suivant a,_, dent le module ne soit pas inférieur & un. Le
nombre A’ est au plus égal & k. On est ainsi ramené au cas précédent,
p étant remplacé par p + &' et M, par le plus grand des deux nombres
1 et M, Le polynome a donc toujours au moins p + A > p zéros
dont les modules ne dépassent pas ¢, (M,) <o, (M,) si M, >1 ou
Opin (1) <o, (1) si M, <1 En définitive: Le polynome P (x) a
toujours p zéros au mowns dont les modules sont inférieurs a o, (M,) lorsque
M, > 1, ou g, (1) lorsque M, < 1.

Un raisonnement semblable permet de calculer une limite supérieure
en fonction des coefficients donnés. On raméne la question a celle du
paragraphe précédent en remplacant par l'unité les coefficients a,,
8pi1s + + > Apyy. Pour chaque valeur possible de 2’, on obtient ainsi une
limite supérieure. La plus grande de ces limites lorsque 4’ prend toutes
les valeurs 0, 1, ..., kA convient dans tous les cas.

On peut d’ailleurs toujours adopter la limite

1 p+h—Fk
1 max.]/lakf,k:O,l,m(p——l).

n—p+1 -

V2
comme on le voit par un raisonnement en tous points semblable & celui
de la fin du paragraphe 2.

1—

7. On doit a Hurwitz le théoréme suivant: Si les coefficients du poly-
nome

Pxy=a,+a,2+ -+ a, 2"

sont réels et positifs, les modules des zéros sont compris entre le plus
petit et le plus grand des rapports
29 _’%L &p—1 (5)

ce e
H b b

a’l &2 a’n

Ce théoreme a été étendu par M. Anghelutza au cas ou les coefficients
ne sont plus soumis a la restriction d’étre positifs8). Il suffit de se borner

8) The Téhoku Mathematical Journal, vol. 4 (1913), p. 89; Mathematische
Werke, Bd. II, S. 627.

) Sur une extension d’un théoréme de Hurwitz (Bulletin de I’Académie rou-
maine, XVIe année (1934), p. 119).
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a la limite supérieure, la limite inférieure s’en déduisant par le change-
1 ..
ment de x en = Si s est la plus grande valeur des modules des rapports

précédents, M. Anghelutza montre que 2s est une limite supérieure des
modules des zéros et plus précisément, qu’il en est de méme de g5, o,
désignant la racine positive de 1’équation

" =" "4 ot

qui est inférieure a 2.

Ce dernier résultat peut étre étendu au cas de p zéros en considérant
seulement les p 4 1 premiers rapports. Soit donc s la plus grande valeur
des modules des rapports

A A a

b

b
a A a,

en supposant qu’aucun de ces coefficients ne soit nul. On a
la’p—ll < s a,l, !a’m~2| <s*la, ], s [agl < s | a, |

et, la substitution de s¥’ a4 z dans le polynome P (x) conduit, apres

division par s”a,, au polynome

a a a,—
L L M At 3 L B
S$a

D p—1
sa, s'la, -

Les p premiers coefficients ont leurs modules inférieurs & l'unité. Ce
dernier polynome a donc p zéros au moins dont le module est inférieur
a la racine r,, supérieure a un, de I’équation (5), dans laquelle M, a été
remplacé par l'unité. Cette racine r, est inférieure au nombre

e () = ———

] —
q.___
V2
qui est lui-méme inférieur & 2¢q. On a en effet
1 1\¢
e (1 ——
2 < ( 2q>
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comme le montre aussitét le développement du second membre par la
formule du binome. On en déduit

1 1
—_—— ]
q_ 2
Ve '

et par suite
1
i < 2q.

1 —

D’ou la proposition:
St s désigne le plus grand module des rapports

T T et |
9 b

3
a  a a

D
le polynome

a -+ ax -+ .- -+ aﬂxp _l_ -ee o+ a,nx"
a auw moins p zéros dont les modules sont inférieurs o 2 (n — p + 1) s.

Nous avons supposé différents de zéro les p + 1 premiers coefficients-

. : ag—1 Ay
Si 'un d’eux a, est nul, on remplacera les rapports et 2
: k+1
. a’k*l . , .
par le rapport unique et rien ne sera changé aux raisonne-
Aty

ments. Plus généralement, si les coefficients a,, a;,1, -, @3,,—1 sont
nuls, on remplace les I + 1 rapports

Ap—1 A ki1
>
Ay Ar+1 Ap+y
1
. a’k -1 I+1
par le rapport unique .
Aty |

On peut remarquer que le nombre s est supérieur aux termes de la suite

p—1

p———~—.— e P
V'a’ol ’V'a’ll » 1T V%—-z ’3’1’~1 4

en supposant pour simplifier a, = 1. Mais inversement, si s est le plus
grand terme de cette suite, il n’est pas nécessairement supérieur aux
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modules des p rapports considérés. Il suffit, pour s’en rendre compte, de
supposer que deux coefficients consécutifs aient des modules dont ’ordre
de grandeur est tres différent. Il en résulte que, dans ’énoncé précédent
comme dans celui du théoréme de Hurwitz, il est plus avantageux de
remplacer la suite des rapports par la suite, d’ailleurs moins simple, des
radicaux.

Au lieu des coefficients a,, a,, ---, a, on peut faire intervenir la suite
g, A1y Ap—15 Bpyp, (0 < B << — p). Supposons par exemple h = n — p.
On considérera la suite des rapports

_1_
4 A ap-1\1
()
et I'on démontrera de la méme maniere la proposition: St s est le plus
grand module des rapports précédents, le polynome a auw moins p zéros dont
les modules sont inférieurs a 2s.

11 suffit d’observer qu’il y a au moins p zéros de modules inférieurs & la
racine 7, supérieure a un de 'équation (4) dans laquelle on a fait M, = 1.
Cette racine est d’ailleurs inférieure a 2.

Si on considere la suite a,, --- a,_4, a,,,, il faut prendre les rapports
1
/
B I By (?@:i)"“
b b 4 .
4 Ay Ap—-1 \p+n,

On verra de la méme maniére qu’il y a au moins p zéros de modules
inférieurs & 2 (n — p + 1) s, s désignant le plus grand module des p rap-
ports.

8. Désignons par §,, la somme des puissances m*™* des modules des
coefficients a,, a,, --- a,—; du polynome

P (x) =ay, + ax + -+ + a,2° + --- + ™.
J’ai démontré que le nombre
- 1 m—1
m—1 m

est une limite supérieure du module des zéros, lorsque le nombre m est
supérieur & I'unité?). Lorsque m croit indéfiniment, I'expression précé-

7) Surlalimitesupérieuredumoduledesracinesduneéquationalgébrique
(Comptes-Rendus de la Soc. des Sciences et des Lettres de Varsovie, XXIV (1931),
P. 317—326).
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dente a pour limite, 1 4 M ,; lorsque m tend vers I'unité, elle a pour
limite le plus grand des deux nombres 1 et

Si=1lag|+ a4+ +lam;

on retrouve ainsi des limites connues; pour m = 2, on a la limite

V|30|2+la1|2+"'+I&n—-llz—f“l

qui a déja été obtenue par MM. Carmichael et Masons8).

1 . \ A 4
Lorsque 1 <m < 2, le nombre y = p— est supérieur a un; 'iné-

galité
1+Ar <A+ A A4>0

entraine
1

R, <(148,)m;

on peut donec prendre comme limite supérieure

R,=Viag|™+|a|™+  + |25 [" + 1.

Lorsque m > 2, puisque u < 1, on a l'inégalité,

14 Ak 14+ 4\»
ou

1 4 Ar <211 (1 4 A)* < 2 (1 4+ A)+,

on peut alors adopter la limite supérieure

2R, =2.V]ag ™+ -+ |2,y ™+ L

Nous allons voir que les expressions correspondantes portant sur les
p premiers coefficients vont nous permettre d’obtenir des limites supé-
rieures pour les modules de p < n zéros. Les égalités (1) donnent

a a a
o bl 4 1oy L]

8) Note on theroots of algebraic equations (Bulletm of the American Mathema-
tical Society, vol. XXI (1915), p. 14—22).
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Soient m et m’, deux nombres positifs, vérifiant I’égalité

1 1
w T =
L’inégalité
k k m ,:7 k m' \m’
0 tam<(taf (b

valable pour les nombres positifs 4;, B;, entraine

1 1
! < d mn —1;,; ¥ 1 W
o< Zle )" (X pvow
Or,
k p—1
Sla "< X|a;|"=8n,,
i=0 i=0
k 1 = 1 1
i=20 pT+im’ <i=209(1+i)m’ = P
Par conséquent
1
! m
] A I < Sm,l’(eml _ 1)m—1

et

p_ll ’ | S' S p
a o —— < - o

Au bout de (¢ — 1) opérations, nous aurons

-1
(@—1) p?
Sm,p < Sm'p (Qm’_ 1) (a—-1) (m—1) °*

Appliquons toujours la méme méthode; si P («) a moins de p zéros dont
les modules sont inférieurs & p, nous effectuerons les ¢ — 1 divisions qui
conduisent a un polynome P, ,(x) dont le terme de degré le plus élevé
est 4 2?. Ce polynome a certainement p zéros de modules inférieurs &

1

[ [

13 Commentarii Mathematici Helvetici 191



Ecrivons que le nombre obtenu en remplacant dans cette expression
-1 .. . e . . .
Sﬁ:’; par sa limite supérieure est égal a p. Nous obtiendrons 1’équation

p‘I—l m—1 m!
1 + [Sm,p (Qm’ —_ 1) (ga—1) (m-—l)] =@

ou
(er - 1)‘1 (m—1) — Sm’p pq-—l’

d’o1 on tire
1 -1
q_l PO J———
p— q (m—1)
Q-[l—f—p‘” —1) Smp :l .

On peut d’ailleurs remplacer ce nombre par un nombre plus grand.
On a d’abord

g—1 1 Jm—
am (m—1)| m
e P [1+Sf;:np ] :
Sil<m<K 1-{——
1 1

q (m— 1) ¢ (m—1)
14+ 8" V< (1 + 8,

On prendra donc la limite

g—1 gm

p Viag "+ -+ |2, "+ 1.

1
Si1+~q~<m,ona

1 1
4(m a (m—1)

14+ 80770 < 2 (14 8u,»)

et I’on pourra adopter la limite

q—l
am

Vlaolm+ I e

1 . .
Par exemple lorsque p<n, 1 + —ig 2 et on a, pour m = 2, la limite

q—lzq

2
2p " Va2 +  + [ap-1|® + 1.
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En résumé: Le polynome P (x) a p zéros au moins dont les modules sont
inférieurs a

-1
.q__.qm

me ]/]&o|m+"'+|%—1|m+1

; 1
pour toute valeur de m comprise entre 1 et 1 4 rE Ils sont inférieurs a

-1

2p"" VTa " + - F 2,00 " + 1

. . 1
lorsque m est supérieur a 1 4 rk

g=1
Pour p = n, ¢ =1, le facteur p ¢ se réduit a l'unité et I’on retrouve
les limites connues valables pour tous les zéros de P (x).

Lorsque m augmente indéfiniment, on retrouve la limite 1 -+ ;/M;
établie au paragraphe 2.

Nous avons laissé de c6té I’hypothese m = 1. Dans ce cas, on verra
aisément que P (z) admet au moins p zéros dans le cercle-unité lorsque

1
p-?

lag |+ | ay] + -+ a,—1 | <

et p zéros au moins de modules inférieurs a
g—1

TQI
p Vial + - +1ay—|

dans le cas contraire.

Les égalités (1) donnent en effet

| ag | < ——, o=1

On en déduit

et, aprés ¢ — 1 opérations,
a1
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En égalant a g cette valeur supérieure, on obtient

¢—1 ¢

Q=P a - VSl,p

d’olt 'on conclut le résultat précédent. On peut aussi remarquer que
, 11 1 1
S, <| a | (?+§E+ )+ | all(‘g——f——gi-{— >+

"1 1
+ 2y | (?"‘EE"{" ) °
¢’est-a-dire 81 < Si,p .
o—1

Le méme procédé conduit a I’équation

Sl’p

—nmi e

d’ou

g
o=1+Vl]a|+la |+ -+ 1a,—|

Il y a donc toujours p zéros au moins de modules inférieurs a la valeur

q
L+ Viagl+ a4+ oo + 2y |-
Si ’'on fait le méme calcul en prenant ¢ = 2, on voit que
8y <8y,

Au bout de ¢ — 1 opérations, on obtient un polynome de degré p dont le
coefficient de z? est + 1 et pour lequel

(g—1)
ST <810

Les zéros de ce polynome ont des modules inférieurs au plus grand des

deux nombres 1 et S(llf;l); donec, au plus grand des deux nombres 1,
8;, ,- Par conséquent le polynome P (x) a p zéros au moins de modules
inférieurs au plus grand des nombres 1, 2, 8, ,, ¢’est-a-dire au plus grand
des deux nombres 2 et §;, ,. En particulier, si

lag |+ a4+ oo+ lapa <2

le polynome P (x) a au moins p zéros de modules inférieurs ou égaux a 2.
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Nous avons trouvé une limite qui convient & tous les cas: c’est le

1 ..
—— > la limite 1 est

n

¢
nombre 1 + VS, ,; lorsque 8, , est inférieur &

P | L., ¥l
plus avantageuse. Lorsque S; , est supérieur a =t la limite p ¢ ]/ S;.,
q 1
est plus avantageuse tant que J/S; _ ne dépasse pas ————; elle de-
pe —1

vient ensuite moins avantageuse. Pour les grandes valeurs de 7, il faut

q
prendre la limite 1 + ]/SL ,5 cette limite tend vers 2 pour » infini

9. Si 'on remplace le polynome P (x) par le polynome

Q@) =00—2) P (x) =2y + (a3 —2g) & + -~ + (3,-3— 3, 9)2" "% +
e —— xn+1’
on pourra appliquer au nouveau polynome chacun des résultats précé-
dents en remplagant les coefficients a,, a,, --- a,, respectivement par
Ay @) — gy "7t Ay — Ay
Par exemple, le polynome @ (x) a tous ses zéros inférieurs en modules
a I'expression

m

Vlao Im_+_ la’l_a’o Im + ws + la’n—l——a’n—2 |m+ ]lﬁa’n—llm“{_l’

lorsque 1 <m < 2. Il en est donc de méme pour le polynome P (x).
Le cas de m = 2 a déja été considéré par M. Williams®).

Désignons par O, 4,, 4,, --- A, 4, --- A, les points du plan d’affixes
0, &g, @y, ***> 3p—y, -+ &, = 1. Les nombres | a, — a,_, | représentent les
longueurs des cotés de la ligne brisée O 494, --- 4, --- 4, 0.

Supposons m = 1; soit L, la longueur de la ligne brisée O 4, 4, ---

. . 5y g s xy 4
A,,. Daprés ce qui précede, si L, est inférieur ou égal a r le poly-

nome @ (x), donc aussi le polynome P () a au moins p zéros de mo-
dules inférieurs a I'unité.

Si p=n-1, on a toujours L,,, >1 & moins que les points 4,, 4,,---4,
ne soient rangés sur le segment (0,1) dans I'ordre de leurs indices. Dans
ce cas, les nombres a,, a,, .. a,-, sont réels et positifs et vérifient les
inégalités

0 < <.. <, <1

9) Bulletin of the American Mathematical Society, vol. XXVIII (1922), p. 394.
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les modules des zéros sont inférieurs ou égaux a un. C’est le théoréme de
M. Kakeyal?).

Les résultats précédents permettent d’en donner une extension. Sup-
posons 2, a4, -, a,—4 réels et positifs vérifiant les inégalités

0<a, <9 < <%—l<ﬁ’
les autres coefficients demeurant arbitraires, sauf le dernier qui est tou-
jours égal a I'unité. Le polynome @ () a alors p zéros au moins de modules
inférieurs & I'unité: il en est donc de méme de P (x). On peut d’ailleurs

1
supposer a,_, =~p—q-. En d’autres termes:

Le polynome
P(x)=ay+ a2+ -+ +apq2* 1+ .- + 2"

dans lequel les coefficients ay, a,, --- a,—, sont réels et vérifient les inégalités :

1
0<3'o<3/1<"'<%—1<‘ﬁ

a au moins p zéros de modules inférieurs a Uunité.

Si p=mn-1, la derniére inégalité peut s’écrire a,,=1 et 1’on retrouve
le théoreme de M. Kakeya.

Si ’on suppose seulement
O <ao <3;1 < '“&”_1 <2,

on voit, d’aprés la proposition finale du paragraphe 9, que P (x) a au
moins p zéros de modules inférieurs & 2.

10. Nous venons d’obtenir des extensions de théoréme de M. Kakeya
en laissant arbitraires les coefficients a,, a,,;, --- 8,—,. On peut obtenir
une extension d’une autre nature en supposant que tous les coefficients
restent réels. On est conduit au théoréme de M. Kakeya en supposant
que le polygone O 4, 4, --- A, O s’aplatit sur le segment (0,1). Admettons
maintenant que ce polygone s’aplatisse sur le c6té O 4, sans que tous les
sommets demeurent & l'intérieur de ce segment. Nous obtiendrons ainsi

10) On the limits of the roots of an algebraic equation with positive coeffi-
cients (The T6hoku Mathematical Journal, vol. 2 (1912), p. 140).
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un théoréme déja démontré par M. L. Berwald comme conséquence d’une
proposition plus générale!!). Voici une démonstration directe simple de
ce théoréme. Nous aurons des inégalités telles que

U1 K2 < X2, K03 <3, < <4y

la valeur absolue de a, peut étre laissée arbitraire. Le polynome

Q (x) = %o + (al T 3/0) T + + (3’2? _a’p'—l) P — (a’p'—"a’p+1) Pl +
+ (@p 02— 8p4q) BPTE 4 oo 4 (—a,) 2" HL

présente deux variations. Comme il admet le zéro 1, il y a un autre zéro
positif &. Le polynome est négatif lorsque = est dans l'intervalle (1, &)
et positif lorsque = est a ’extérieur de cet intervalle. On a

QM) =P(1)=a,+a + - +a,

Si P (1) est négatif, @ (x) décroit quand =z, en croissant, traverse la valeur
1, et & est supérieur & 1. Si P (1) est positif, & est inférieur & 1. Soit

f()=ag+ (2, —a)) &+ -+ (8, —a,—1) ° + (80— 8y 4q) 272 +

vt (—ag) 2", g (x) = (8, — ay4y) T

Dans le premier cas, soit p un nombre trés voisin de un dans l'inter-
valle (1,§). Ona 1 <p < & et f(p) <g (o). Pour | x| = g, on a l'iné-
galité

f (2)

<@
g (x)

g (o)

Dong, le polynome @ (x) = f (x) — g (=) et le polynome g (x) ont le méme
nombre de zéros dans le cercle |  |< g, soit p 4+ 1; par conséquent,
P (z) a p zéros dans ce cercle, puisque @ (z) admet le zéro x = 1.

Dans le second cas, prenons g voisin de & dans l'intervalle (&, 1). On
aura & < ¢ < 1 et on verra de la méme maniére que P (x) a p 4 1 zéros
dans le cercle | # | < p, donc dans le cercle | x | < §.

Si enfin P (1) = 0, on pourra considérer ce cas comme limite du précé-
dent. Dans tous les cas, P (z) a p zéros au moins dans le cercle-unité.
En définitive: Le polynome & coefficients réels

) Uber einige mit dem Satz von Kakeya verwandte Satze (Math. Zeitschrift,

Bd. 37, (1935) p. 61—76). — Je dois cette indication bibliographique & 1'obligeance de
M. Pélya.
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ag+a, -+ +a,x*+ .. +a,z"
dans lequel
By N0 K .. K2, <08, < .. <,

a p zéros au moins dans le cercle unité.
Si p = n, on retrouve le théoréme de M. Kakeya.

11. Les expressions §,, introduites au paragraphe 9, sont liées aux
moyennes d’ordre m de M. Hardy relatives au polynome P (x). On sait
que la moyenne M, (r) de la fonction f (x), holomorphe dans le cercle
| z | < r, est le nombre

1
m

[gf e mao |".

Nous supposons m > 0. La moyenne M, (1) sera désignée par M,,:
Le nombre M, (r) croit constamment avec m; lorsque m croit indéfini-
ment, M, (r) tend vers le module maximum M (r) de f (x) pour | z | < r;
lorsque m tend vers zéro, il tend vers la moyenne géométrique

2 '
1 _[log | 1 (rew) lde
27 0

MWy (r) =€

Pour m = 1, on a la moyenne arithmétique
1 2r
_ i6
Ry (1) = 5 [ 1 (re)| do.
0

La moyenne quadratique M, () est donnée par 1’égalité

9)?2(1')=V|a,0|2—|—l3,1|27~2+ "+|3m|272p+”' N
8i

f(x)=ay+a,24+ - +a,2? 4 - (2] <r).

Considérons les moyennes },, du polynome P (x) sur la circonférence
unité. La moyenne quadratique n’est autre que la somme m
introduite précédemment. D’ailleurs, si m > 1, I'inégalité (6) donne
pour |z | =r < 1,
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1 1 1 1

1 1 .
avec — -+ — = 1. On en déduit
m  m

1
M, < Bo(n+1) m"<n+1)R,.

Nous allons voir que ¢, est, quel que soit m, une limite supérieure
du module des zéros de P (z). En effet, soient r,, 7,, .. r,, les modules
des zéros de P (x) intérieurs au cercle-unité. La formule de Jensen

2n
10g__|_P_(_92_.|-=~2.1}f10g | P(e'®)|db
0

9’1 1’2 e rh
donne
LAl e =<
= Thp41 0 Ty = Wy S Ve s
7’1 7’2 e Th
en désignant par r,.,, --- r,, les modules des autres zéros. Or, on a évi-
demment

Thyr " Tw = Ty
si r, est un zéro de plus grand module; donc

7w <M,
D’autre part,

ay |
7‘127‘17‘2"’7'"2}%0 .
m

On en déduit la proposition suivante:
Les modules des zéros du polynome

a+ a2+ -+ a, 2"
sont compris entre les nombres °

Ia’Ol 9)‘zm
et
W,  la,|’
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M ,. désignant une moyenne d’ordre positif du polynome sur la circonfé-
rence-unité12).

|30| M
t
M a,

En particulier, les modules des zéros sont compris entre
désignant le module maximum dans le cercle-unité.

On peut remplacer le cercle-unité par un cercle | x| = r arbitraire.
. - M, (r)
On voit aussitét, en supposant a, =1, que le nombre—;;T est une
borne supérieure des modules des zéros. Lorsque r varie de zéro a l'infini,
cette expression a un minimum qui donne la meilleure limite du type
considéré.

(»)

Si I'on se borne a la moyenne M, relative au polynome

ag+ a4+ .. + a,— 271,

un raisonnement tout a fait semblable & celui qui a été utilisé maintes

fois dans ce travail, montre que le polynome P (z), dans lequel on suppose

fixée la moyenne précédente et un coefficient a, , (0 <h < n—p),
1

a p zéros au moins dont les modules sont inférieurs & 2 + [9)22’)]7 , par
exemple lorsque a, = 1.

(Regu le 14 octobre 1934.)

12) Pour m=2, voir aussi Ed. Landau. Sur quelques théorémes de M. Petroviich
relatifs aux zéros des fonctions analytiques. (Bulletin de la Soc. Math. de
France, t. 33 (1905), p. 251—261).
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