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Uber ein funktionentheoretisches
Seitenstiick eines elementaren, algebraischen
Satzes von Gauss

Von HEeNrRIK L. SELBERG, Oslo

1. Es handelt sich in der vorliegenden Arbeit um die Herleitung eines
funktionentheoretischen Satzes, der als ein Analogon eines bekannten
Gauf’schen Satzes!) iiber Polynome mit ganzzahligen Koeffizienten an-
gesehen werden darf.

Um die Richtungslinien, wonach wir dabei vorgehen wollen, an einem
leichter zugénglichen Satz zurechtzulegen, betrachten wir die ganzen
nicht identisch verschwindenden Funktionen von der Form

1) é T (@) (m< ),

wo die a, reelle oder komplexe Konstanten, die ¢, ganze nicht identisch
verschwindende Funktionen niedrigerer Ordnung als der ganzen positiven
Zahl ¢ sind.

Jede solche Funktion ist als ein reduzierter Ausdruck derselben Form
darstellbar, der lauter verschiedene a; enthalt, und dieser Ausdruck ist
einem bekannten Borel’schen Satz?) zufolge eindeutig bestimmt. Die
reduzierte Form einer Funktion (1) erhalten wir durch Zusammenfassen
der Glieder mit gleichem Wert von a,. Zwei solche Glieder f, und f, wollen
wir dquivalent nennen, im Zeichen f; ~ f,.

Unter einem 7T'eiler einer ganzen Funktion (1) verstehe ich im folgenden

eine ganze Funktion @, die so beschaffen ist, daf}, wenn wir uns den Aus-

druck (1) in reduzierter Form gegeben denken, die Quotienten%, %, -

% ganze Funktionen sind, die fiir keinen Wert von z alle zugleich

verschwinden.

1) H. Weber, Kleines Lehrbuch der Algebra, S. 74 (erste Auflage).
2) E. Borel, Sur les zéros des fonctions entiéres, Acta math. B. 20.
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Es besteht nun der
Satz 1. Sind @ und ¥ Teiler von resp.

m q n q
(2) A = gle“iw ¢; und B= ¥ P Y,

) i
t=1

80 18t @V Teiler des Produlktes

(3) 0=AB=éme.

Zum Beweise werde ich annehmen, daB (2) und (3) in reduzierter Form
geschrieben sind. Sei nun z, ein beliebig gewihlter Wert von x. Mache ich
die erlaubte Voraussetzung?)

R(ag) >R (ag) > - >R (a,)
RB) >R(Ba) > - >R (B,

so konnen zwei kleinste Zahlen ¢, und %, bestimmt werden, fiir welche

2 Vi
lim —2 und lim 0
T—> 2, ¢ Z—> % T

nicht Null sind. Unter den ganzen Funktionen #; von (3) befindet sich
nun eine 7, = @;, ¥, + {, wo { entweder Null ist oder die Form
{ = 2 ¢,y; hat, wo die Differenzen ¢+ — ¢, und k — k, fiir zusammen-
gehorende Indizes ¢ und & nicht beide = 0 sind. Es ist daher

o
Jm Fg =0
und somit
/)
S g 0,

womit unser Satz offenbar bewiesen ist.

2. Diesen Satz wollen wir jetzt mit Hilfsmitteln aus der modernen von
R. Nevanlinna geschaffenen Theorie der ganzen und meromorphen Funk-
tionen als Spezialfall eines weit allgemeineren Satzes erkennen.

3) ;R = Realteil.
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Dazu miissen wir vor allem erwigen, was in weiterem Sinne unter
aquivalenten Funktionen zu verstehen sei. Soll die Tragweite der neuen
Definition iiber das rein Formale hinausreichen, so muf} sie in erster Reihe
auf den Bau der Funktionen im groflen ganzen achtgeben, wihrend
belanglose Unterschiede zu vernachlassigen sind. In der Nevanlinna’schen
Theorie kann die in Frage kommende Abweichung zweier meromorpher
Funktionen f, und f, zweckmafig durch die GroBe?)

()

gemessen werden. Unter den verschiedenen Definitionen, die von dieser
GroBe ausgehend aufgestellt werden koénnen, wollen wir hier diejenige
herausgreifen, die, wenn die eindeutige Darstellbarkeit der zu betrach-
tenden Funktionen in reduzierter Form beibehalten werden soll, beim
heutigen Stande der Nevanlinna’schen Theorie die maximale Aufteilung
in Aquivalenzklassen vertritt.

Um der GroBlenordnung von (4) einen Sinn zu geben, fithren wir eine
positive mit » monoton gegen unendlich wachsende Vergleichsfunktion
S (r) ein. Den Aquivalenzbegriff definiere ich jetzt folgendermaBen :

Zwei nicht identisch verschwindende meromorphe Funktionen f, und
f. sind als dquivalent zu betrachten, im Zeichen f, ~ f,, wenn fiir jedes
positives ¢ die Ungleichung

)
>

(5) ! <r A
S (r)

&

hochstens fiir eine Wertemenge von r von endlichem MaB erfiillt ist.

Wegen T <r, ?f;‘) == ( 7, %) + O (1) diirfen in der Ungleichung (5) f,
und f, Platze tauschen.
Es gilt offenbar:
a) aus f, ~ f, und f, ~ f; folgt f, ~ fs.
b) aus f; ~f,und f; + f, == 0 folgt f, ~f, + fa.

4) Beziiglich Bezeichnungen und Satze aus der Nevanlinna’schen Theorie verweise ich
auf: R. Nevanlinna, Le théoréme de Picard-Borel et la théorie des fonctions
méromorphes (Gauthier-Villars, Paris 1929).
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Denn es ist

und somit
fs)
T\r, 2
(" h
S (7)
kleiner als ¢, wenn
o) TR
N2/ 11/
s s
beide kleiner als % sind. Hiermit ist a) bewiesen. Da ferner
7(r, 2EB) — 2(p, ) 10,
h . h

so ist auch b) richtig.
3. Wir betrachten jetzt Funktionen von der Form
m
(6) = /i (2) (m < o),
=

wo die f, ganze Funktionen sind, deren Nullstellendichte so gering ist,
daB fiir jedes positive ¢ die Ungleichung

5 )

(7) ——S—(—r>8

hochstens fiir eine Wertemenge von » von endlichem MaB erfiillt ist.

Durch Zusammenfassen aquivalenter Glieder 148t sich jede solche
Funktion als einen reduzierten Ausdruck (6) darstellen, der also lauter
indquivalente Funktionen f, enthélt.

Dadurch, daB wir uns bei der Definition der reduzierten Form auf
Funktionen vom Typus (6) beschrankt haben, haben wir erreicht, dafl die
eindeutige Darstellbarkeit in reduzierter Form beibehalten wird. Es gilt
namlich folgender Satz, der eine fast unmittelbare Konsequenz eines

allgemeinen Satzes von R. Nevanlinna ist®):

5) 8. 116 des in der FuBinote 4) zitierten Buches von R. Nevanlinna.

174



Satz 2. Zwei in bezug auf dieselbe Vergleichsfunktion S (r) reduzierte
Ausdricke (6), welche dieselbe ganze Funktion darstellen, miissen identisch
sein.

Unter einem Teiler einer Funktion (6) verstehe ich jetzt eine ganze
Funktion F, die so beschaffen ist, daB, wenn wir, was erlaubt ist, den
Ausdruck (6) in reduzierter Form gegeben voraussetzen, die Quotienten
hifa | n
F F °F
werden. Durch diese Forderung sind die Nullstellen der Teiler einer
Funktion (6) sowohl der Lage wie der Multiplizitdt nach vollkommen

bestimmt.

ganze Funktionen sind, die nicht alle gleichzeitig Null

4. Wir sind jetzt imstande, die in Aussicht gestellte Erweiterung von
Satz 1 zu bewerkstelligen. Wir beweisen den

Satz 3. Sind F und G in bezug auf die Vergleichsfunktion S (r) Tesler
von resp.

(®) A= 3/ (2) md B= Sq,(a),
i=1 i=1
80 1st H = FG Teiler in bezug auf S (r) von
9) C—=AB= Sh,(a).
i=1

Wenn wir die Beweismethode aus Nr.1 auf diesen Satz anwenden
wollen, so begegnet uns die Schwierigkeit, dal unsere Funktionen f, und
g; nicht wie dort sozusagen von vornherein sachgeméifl geordnet er-
scheinen. Diesem Ubelstand wollen wir im folgenden abhelfen, indem wir
die Funktionen mit einer Rangordnung versehen wollen, die den vor-
liegenden Bediirfnissen Rechnung tragt.

Wir nehmen an, daB die Summen (8) und (9) in reduzierter Form vor-
liegen.

Lils

fi

(j+k). Daf,undf, nicht 4quivalent sind, konnen wir eine positive, mog-

licherweise unendlich grofe Zahl o, , (j, k) finden derart, daB (x =rei?)

1 1A
r-l-l-;noomflog fk
ei:k (T)

Es bezeichne 0, , (r) denjenigen Teil des Kreises | z| =7, wo

A0 =a;, (. k) >0

ist, wenn 7 innerhalb einer Wertemenge 9, , von 7 von unendlich gro3em
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Maf gegen unendlich konvergiert. Diese Wertemenge 1483t sich offenbar
so bestimmen, daB in 9, , die Grenzwerte

’1 dﬁ__a (g, 05) (3,55 =1,2, - ,m)

lim
r—) co S ( f log

J,k(r)
r——>ooS() » irk \"1 2 1> Y2 ) < ’
0;,% ()

existieren, wobei als Grenzwerte 4+ oo und — oo vorkommen diirfen.

In derselben Weise bezeichne ich mit Z; , (r) denjenigen Teil von
9:

k
Wertemengen ¢, ;, von r von unendlich groem Ma@ bestimmen, inner-

| x| =7r,wo

> 1(j + k). Wie bei den Funktionen f, lassen sich jetzt

halb deren die endlichen oder unendlichen Grenzwerte

lim f]
r——)oo )

9,k (7‘)

gzl

ig

dﬁ"‘ya k(7’137’2) (il"l:2:l’ 2""’77')

existieren und y; ; (7, k) > 0 ist.

Jedem Funktionspaare f; und f;, (¢; +1,) habe ich in dieser Weise
2m (m—1) Zahlen a; ; (7, t5) und a; ; (45, ¢;) zugeordnet, wo a; ; (¢1,%,)
= — a;, 1 (%3, 4;). Nicht alle diese Zahlen konnen Null sein, denn jeden-
falls ist a; 4, (4;,9y) > 0. Wir erteilen jetzt f, hoheren Rang als f,,,
wenn fiir den kleinsten Index k, wofiir die Zahlen

al,k(il’iz)s az,k(":p’;z), RERY am,k(i17i2)

nicht alle Null sind, die erste von Null verschiedene positiv ist. Dagegen
gebe ich der Funktion g, hoheren Rang als g;,, wenn fiir den kleinsten
Index k, wofiir die Zahlen

(10) ﬂl,k (7:1: iz)a ﬂz,k (7;1’ 7:2): e 5m,k (il’ 7’2)

nicht alle Null sind, die erste von Null verschiedene positiv ist. Sind aber
die Zahlen (10) fir alle k = 1, 2, . ..., m gleich Null, so lese ich die Rang-
folge aus den Zahlen
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'J’l,k(ilaiz)’ 72,14:(?:1’?:2)’ SRR '}’n,k(il,";z)

ab. Wenn fiir den kleinsten Index k, wofiir diese Zahlen nicht alle Null
sind, die erste von Null verschiedene positiv ist, so gebe ich g, hoheren
Rang als g,, .

Durch dieses Ordnungsverfahren ist die Beweismethode aus Nr. 1
wieder leistungsfahig gemacht worden.

Es sei z, ein beliebig gewahlter Wert von x. Es gibt dann zwei wohl-
bestimmte Funktionen f; und g,, von niedrigstem Range, fiir welche

" ; . 9%
lim -° und lim =2
T—> T, F T—> T, G’

nicht Null sind. Ich betrachte nun die Funktion %, = f, ¢, + &, wo @
entweder Null ist oder die Form @ = X' f, g, hat, wo die Addenden unter
dem Summationszeichen alle mit dem Produkte f; g,, &quivalent sind.
Ist aber ein Produkt f; g, mit f, g,, d4quivalent, so kann nicht zugleich f;

von hoherem Range als f, und g, von hoherem Range als g,, sein. Es ist
daher '

Q

Iim == =0
x>z, G
und somit
k N
x——) onG

womit unser Satz offenbar bewiesen ist.

(Eingegangen den 4. Oktober 1934.)
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