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Uber numerische Schranken im
Schottky’schen Satz

Von A. PFLUGER, Ziirich

1. Der Schottky’sche Satz in qualitativer Form lautet:

Ist f(2) fiir |2| <1 regulir und von 0 und 1 verschieden, so gilt
fir 2| € 1 — ¢ < 1 die Ungleichung

| f(2) | <e?,
wo £ nur von ¢ und | f(0) | abhéngt.

Die beziiglich der Gréflenordnung in & genauesten Abschitzungen
lauten :

Q<0lglf(03}| + 3

und
2—9

e? < (A]f(0)] + 4) * .

Die letztere stammt von Valiron!), die erstere wurde von Landau?) mit
Hilfe der Theorie der Modulfunktionen hergeleitet. Uber die numerische
GroBlenordnung der Konstanten A und C konnte jedoch nichts ausgesagt
werden. Eine numerisch bestimmte Abschitzung von £ und mit elementaren
Methoden hergeleitet, jedoch von schlechterer Gré8enordnung in 9,
stammt von Ostrowski®) und lautet:

Q<20 (gm)- -l 5, m=Maz (e | (0) |)
Durch Kombination der Methode von Bohr-Landau (Methode der
Modulfunktion) mit einer der ,,elementaren‘“ Methoden von Ostrowski
ist es mir gelungen, die folgenden Abschatzungen zu beweisen:

Ist f(z) eine vm Hinheitskreise | z | < 1 reguldre und von 0 und 1 ver-
schiedene Funktion, eine sogenannte Schottky’sche Funktion, so gelten im
Kreis | 2| € 1 — 39 < 1 die Abschitzungen :

1) Vergleiche @. Valiron, Bull. d. Sc. Math., Bd. 62 (1927).

2) Vergleiche H. Bohr und E. Landau, Gott. Nachr., 1910, math.-phys. Klasse, Seiten
303—330.

3) Vergleiche A.Ostrowski, Studien iiber den Schottky’schen Satz, Univer-
sitdtsdruckerei, Basel (1931), Seiten 96—111.
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| {(2) | < et + 9 +19m 5>

< mA+ 10—~
1
<m®Py,
wenn m = Max (e, | f(0) | ) gesetzt wird.

AnlaB zu der vorliegenden Arbeit gaben die Untersuchungen von
W. Saxer iiber den verallgemeinerten Schottky’schen Satz4). Es kénnen
namlich die vorliegenden Resultate, wie in einer Ziircher Dissertation
gezeigt werden wird, auch dazu dienen, die Abschéatzungen von Saxer
numerisch darzustellen.

2. Sei w = A() eine der drei gewodhnlichen Modulfunktionen, d. h.
eine der Funktionen, die das Kreisbogendreieck

(1) R@E)=0,J(t)>0; Rit)=1,J¢)>0; |t —1|=1J({t)>0

konform auf die obere Halbebene J(w) > 0 abbildet, so dal die Punkte
0, 1, oo der ¢-Ebene in die Punkte 0, 1, oo resp. 1, oo, 0 resp. oo, 0, 1 der
w-Ebene iibergehen. Thre inverse Funktion ¢ = v(w) ist auf einer der
ganzen w-Ebene iiberlagerten Riemannschen Flache mit 0, 1 und oo als
einzigen (transzendenten) Windungspunkten, der sogenannten Modul-
fliche, eindeutig und analytisch. f(z) sei eine sogenannte Schottky’sche
Funktion, also im Einheitskreise reguldar und von 0 und 1 verschieden.
Wir wihlen den Punkt w = a; = f(0) £ 0, 1 auf einem bestimmten
Blatte der Modulflache, etwa so, daB »(a,) in den Fundamentalbereich®)
zu liegen kommt. Durch die Funktion
v (@) —¥(a0)

(2) e ()

wird diese schlicht auf das Innere des Einheitskreises der z-Ebene ab-
gebildet. w ( f(z)) bildet also diesen Einheitskreis auf sich selbst ab,
wobei der Nullpunkt in sich iibergeht. Aus dem Schwarz’schen Lemma
folgt daher
lw(fz))] <|z] (3)
%) Vergleiche W.Saxer, Uber eine Verallgemeinerung des Satzes von
Schottky, Compositio math., Vol. 1, 1934, pag. 207—216.

8) Das Kreisbogendreieck (1) und sein Spiegelbild beziiglich der imaginéren Axe bilden
den sogenannten Fundamentalbereich.
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fir alle | 2| < 1. Bezeichnet M (r, a,) den maximalen Betrag der zu w(w)
inversen Funktion

(4) 0 = y(z) = A<zm"“”(3’0))

z—1

im Kreise | 2| <r <1, so folgt aus (3) und y (w (f(z) )) = f(z) die
Ungleichung
(5) | fz) | < M(r,a9) |2z| <.

Der absolute Betrag von f(z) vm Kreise | z | < r wird also durch eine nur
von a, abhingige reelle Funktion majorisiert®). Aus dem Schwarz’schen
Lemma folgt weiter, daBl das GQleichheitszeichen in (5) dann und nur dann
eintreten kann, wenn f(z) von der Form y(ze'”), also selbst eine Modul-
funktion 1st.

Ziel der folgenden Untersuchungen ist, fiir M(r, a,) eine numerisch
bestimmte Majorante zu suchen. Zu diesem Zwecke verfahren wir zunichst
nach einer Methode von Bohr-Landau®), die, urspriinglich auf die ellip-
tische Modulfunktion angewandt, fiir den vorliegenden Fall einige
Abéanderungen erfahren mubBte.

3. Sei 4,(t) speziell jene Modulfunktion, welche die Punkte 0, 1, oo
der {-Ebene in die Punkte 0, 1, co der w-Ebene iiberfiihrt; »,(w) sei ihre
Umkehrfunktion. Es werde

(6) M, = Maz | Ay(u + ¢) | = Maz | 4(u + 1) |

O=u=1 —l=u=1

gesetzt. Weil 1,(¢) das Kreisbogendreieck (1) in der angegebenen Weise
schlicht auf die obere Halbebene abbildet, so gilt fiir alle Punkte ¢ des
Fundamentalbereiches mit J(¢) < 1 die Ungleichung

(7) | 4() | < M.

Weil ferner durch z = e*™* der Bereich

(8) J) >0, —1< Rt) <1

schlicht auf den lings der negativen reellen Axe aufgeschnittenen Ein-

heitskreis abgebildet wird, und weil A,(— 1 + ¢v) = A;(+ 1 +¢v), v>0
ist, so ist die Funktion

8) Vergleiche Anmerkung 2.
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(9) f1(2) = f1(€7%) = 4, (t)

im Einheitskreis regular bis auf den Nullpunkt, wo sie einen einfachen
Pol besitzt. Das Maximum von |z - f,(2) | auf dem Kreis | 2| = € 1st
wegen (6) gleich - M, und somitist |z || f,(z) | < M, e " fir|z| <

oder wegen (9) | 4,(t)| € M,-e™+"? fiir J(f{) =v>1 und schhethh
wegen (7)

(10) | 4,@) | € Max{ M,; M,e"*t""}, J(t) =
fiir alle Punkte ¢ im Fundamentalbereich.

Sei nun ¢ ein Punkt aus (8), der nicht zum Fundamentalbereich gehort.
Durch eine geeignete Transformation der Modulgruppe:

at 4 B a=1, =0
i = J — =1, .2
yt+a’a Yﬂ Yy=—=20, 6:1 mOd

wird dieser in einen Punkt ¢ des Fundamentalbereiches iiberfiihrt, so daB

(11) M) = My(t).
Nun ist
A
v =Jd) = e i e)

t = u -+ 1v gesetzt, gibt (yt + 0) (yt + 8) = (yu + 6)% + y? v2. Wegen
492 <1 und wegen y =0,0 =1 (mod 2) ist (yt -+ ) (yt + 9) > 402
und schliefflich

T I
(12) J)=v < L.

Aus (10), (11) und (12) folgt fiir alle ¢ im Bereich (8), die nicht zum
Fundamentalbereich gehoren:

(13) | Ay(t) | < Maw| M,; M6 75 .

Weil aber Max (v, Z%) > ~21~— ist, so ergibt sich fiir alle ¢ im Bereich (8)

(14) | @) | € M, - e
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Wie sich leicht ausrechnen 1at, ist fiir alle z mit | 2| <7

T () oy < (22 = el gy ) ) 1

Entspricht y,(z) bei »,(a,) der Funktion y(z) bei »(a,), so folgt aus (4)
und (14)

1+7
7,2 Maz | nJ(s1(ay)); z
’Xl(z)léMle / .e z 4J(v;(a)) fl-—-r, |z|<T

und schlieBlich nach Nr. 2

147
1—r

. s }
7r)2 Maz ) ©J(vi(20)) ; 4J(v1(a4)) 2

(15) M(r,a0) € M,-e - e

4. Um J(»(a,)) nach oben abzuschitzen, setzen wir

1
f1(z)

(16) m, = Max ! — = Max ! — = Max
o=u=1 I)‘l(u"l" 7’)' -—1<uell Al(u—"‘?’)l lz]=e— 7

To

Dann ist Ze-my fur|z| <e " oder | A ()| -m e >e

L
und somit Ig | L,(¢) | + =+ lgm, = mv firv=J(t) = 1. Wirdt = »,(a,)

gesetzt, so ist entweder J(v,(a,))< 1 oder =d (v, (ay)) L lgm, +n+1g | ay|
und somit

(17) nd(v1(ao)) € Max {n; mw + lgmy + lg | ae | }.
1
Um fiir eine obere Grenze zu finden, teilen wir den
4J (v, (a))

Fundamentalbereich in Teilbereiche ein. Den Durchschnitt des Funda-
mentalbereiches mit dem Bereich |u | < 1,v> {resp. |u| <}, v 4
resp. den Bereichen } <u<<l,v << und —1<<u<<—%, v <3
bezeichnen wir mit B, resp. B, resp. Bj. v, (a,) gehort sicher einem
dieser Bereiche an. Liegt »,(a,) in B,, so ist

d < £< 7.
4J ("’1(30) ) 3

(18)

Liegt »,(a,) im Bereich B,, bezeichnet A,(r) die Modulfunktion, welche
die Punkte 0, 1, co der 7-Ebene in die Punkte 1, co, 0 der w-Ebene iiber-
—1

7 " () =t = u + tv, J(v) = w gesetzt, so ist

fithrt und wird 7 = t
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t?-—-?)_ v >1 1
| T @ F 2~ 20" 4v

(19) 4t = ko), w=J() =J[-3
denn im Bereich B, ist | | << ». Setzen wir ferner

fa(2) = f2(€7) = Ay(v),
My = Mazx | Ay(& + 1) | = Max | Ay(§+1) | = Maz | f5(2) | ,

O=(=1 —1=£=1 2] =e™7F

80 ist < M, e oder | Ay(7) | € M, e™ " fiir alle v mit J(v) > 1.

2

} fa(2)

Aus (19) folgt dann
(20)

JU
<lgM, +n—1g| ay |,
4J(Vl(a0)) 2 l Ol

sofern v,(a,) dem Bereich B, angehort.

Im Falle, daB »,(a,) einem der Bereiche B, angehort, verfahren wir
analog. A4(z) bezeichne die Modulfunktion, welche die Punkte 0, 1, oo
der 7-Ebene in die Punkte oo, 0, 1 der w-Ebene iiberfithrt. Wir setzen

rzi%,vl(ao):t=u+iv,J(r)=w. Es ist

M(t) = 25(z)

/ 1—F v 1 1
(21) wzJ(T)ZJ((l—t)(l—f)>=(1——u)2-l—'vz =257 In

denn im Bereich B, ist | 1 — % | <<v. Setzen wir ferner

fa(z) = f:;(eim) = A3(7),
My = Max| A3(& + 9) | = Max | A3(6+1) | =Maz | f3(2) |,

0=§=1 —l=f=1 |z| =e 7

-fi(—z)i:l—l Z (M3+1) e"oder | A;3(r)—1| & (Mz+1) 7% fiir alle

80 ist

7 mit w = J(r) > 1. Aus (21) folgt dann
7
4J(v1(ap))

sofern »,(a,) dem Bereich B; angehort. (15), (17), (18), (20) und (22)
zusammenfassend erhalten wir folgendes Resultat:

(22) Zlg(Ms+ 1) +nm—lg|ay—1],
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(2¢) M(r, a) < My e 2o 17
otlgay|™, lg (Mg+1)+lg| ag—1]| 1}

5. Es bleibt noch fiir die Konstanten M, m,, M, und M, eine obere
Grenze zu finden. Sie sind gleich dem maximalen absoluten Betrag der

, 2_(12)-’ Ao(t) und A4(t) auf der Strecke J(f) =1, 0 <
1

R(t) < 1. Alle diese Funktionen haben im Punkte } + % V'3 den Wert
1+ 573 oderl — iV 3.7) Setzen wirin

Funktionen 4,(?)

;= z2v1(a0) — vi(ay)
z—1

v(a) = % + ¥ 3, so wird der Kreis | z| = 2 — V 3 der z-Ebene auf
den Kreis |t— (3 4+ ¢) | = } der ¢-Ebene abgebildet, wobei der Null-
punkt in den Punkt § + ¥ 3 iibergeht. Da die Strecke J(tf) = 1, 0 <
R(t) < 1 im Bildkreis enthalten ist, so sind die Konstanten M, m,, M,
und M, nach Nr. 2 kleiner gleich (2 —V 3, 3 + £V 3).

6. Um von dieser Konstanten eine obere Grenze zu finden, verfahren
wir nach einer Methode von Ostrowski8), die wir jedoch ganz auf den vor-
liegenden Spezialfall zuschneiden wollen. Sie stiitzt sich wesentlich auf
die Borel-Hadamard’sche Ungleichung?):

Fiir eine im Kreise | z | < r requlire und von 0 verschiedene Funktion
f(z), die dort uberall absolut < M, gult

o
/(o) ( >
25 ,o < |zl =p <.
(20) o | = (T % =e
Sei nun f(z) fiir | z| << 1 reguldr, von 0 und 1 verschieden und f(0) =
1 + £V 3 ; es geniigt dann auch 7(};) diesen Voraussetzungen. Wir setzen
(26) Maz | {z) | = M(r), Maz | — E m(r)
lz|=7 lz]=r
Max (€%, M(r )) = , Max (65 m(r) ) = m(r).

7) Vergleiche L. Bieberback, Lehrbuch der Funktionentheorie, Bd. 2, 1931,
Seiten 97—103.

8) Vergleiche Anmerkung 3.
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Hilfssatz: Far 0 <p <r <1 gult

(~]

— — 20 7+
1. m(p) € Max {e5; 10102 (3,729 M(r))r—e-(0,9568)r—o}

r+ ¢
1. M(p) <€ Max { e; 1,0102 (3,72 lg m( r)) (0.9568) r — 9}

Beweis: Wegen der Symmetrie der Voraussetzungen und Behauptungen

in bezug auf die Vertauschung von f und — , geniigt es I zu beweisen.

I
Man kann beim Beweis m(p) = m(p) > €5 annehmen, da sonst I trivial

wiire. s sei etwa fiir |zg] = o | f(z) | :7%)-)- <e5. Wir bilden die
Hilfsfunktion f*(z) = p( 1—(1—f(z) )1/”) , p = lg M(r), wo der in

der Umgebung von z, durch die Entwicklung
1—1/) (21

@1) D) = f2) + o2 1 () +

definierte Zweig zu nehmen und wegen (26) p = lg M(r) > 5 ist. Da fiir

la] <e®

] —1 ] 1 9 __1
[a—{————-2!/”a2+( /”)3§ /")a3+...|<

la|Q+]a|l+ a2+ ...) <1-—Ial< =5 < 1,0102- | a]

ist, liefert die Entwicklung (27) fiir | f(z) | = = < e5

1
1*(2)
" ~m(p)
(28) m*(e) > 15103’

Tn_i( ) < 1,0102
VST =) 1S

Z 1,0102 Ma:v = 1,0102 - m*(p),

lz| =

wobei m* (p), M*(p) bei f*(z) den GroBen m(p), M(p) bei f(z) entsprechen
sollen. Ebenso folgt leicht

(29)

M*r) < p (L +( 1+Mr)) ) S WH() (1+ (1+¢5%) < 3,72l (),
M*(r) < 3,72 1lg M(r).
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Endlich ist wegen f(0) = é— + --;waf

%) | = | p(A— () F 1/2V3>)
!

6p 30

(30)

Aus (28), (29), (30) und (25) angewandt auf f*(z) folgt dann

20 2 r+o
: M*(r) \r-e _ ey L e
1)1 me) < () mre < e e T
_ 2o r+o
O (3791 T(r)) - (0,9568) °,

1,0102

womit der Hilfssatz bewiesen ist.

7. Wir behaupten nun, da8

1 1
Sty = 1
(31) M(l'—"ﬁ)<em‘9lﬂ ‘9,0<0/<’16
. 1 LY L )
gilt. Denn ware fiir ein ¢ mit 0 < ¢ < o M (1—9) > P , Bowiirde

J
aus II, wenn p=1—% und r= 1-—~~—— gesetzt wird, wegen e ~"‘ W > €8

folgen:
20 1—4
— 9 10 2_5 10.1_17.1_
1,0102 (3,72-lg m(1—% ) - (0,9568) o (2~ 1o )>e 8
20
oder _— o \o% 10;10—1%
(1,0102 - 3,72 - 0,9568 - lg m(1 — "1'6)> >e
oder
! m(l——~£—>>02781 el
g 10
1\2 10 10 1
Da aber <?> > 0,217 Fy lgg— fir 0 <9 & < 10 % folgt
— 0) 251010 10, 10 10, 10
1— a2l > 102 lg== -
lgm( 10) > 0,06 - ¢ ,9Z929>0,919,9
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Wegen der Symmetrie der Formeln I und II in bezug auf M und m ergibt

19 10 - 129 g&
sich hieraus weiter M (1 — —16—0—) > e % 7 % und daher allgemein
100" 1007
M/1—~ ) 10 == t—5—
( 1007/~ € ’

>__> oo, wenn n— oo, wahrend M(r) fiir 0 <r < 1

7

so daB M<1 — 1007

stetig ist. Damit ist (31) bewiesen.

Um M(1—) fir 0 <@ < 1 abzuschitzen, setzen wir wieder in II

g:l——'ﬁ,rzl——?

16’ 5° daf3 {%( 1 und deshalb fiir m(r) wegen

10
der Symmetrie unserer Annahmen tiiber f und ~L die Abschatzung (31)

gilt. Es folgt

20 1-$ 10 2 11«9
10. 10\ & 5’5( ~10 )
M(1—3) << Max{eb;1,0102 (3,72 . loglg—u . (0,9568)

)

Fiir & = J 83— 1 ist der zweite Ausdruck in der geschweiften Klammer
< €™ und deshalb M(2 —7} 3) < €™,

Dieses Resultat wurde hergeleitet unter der Annahme, dafl f(z) fiir
| z | <1 reguldrsei. Istiiber f(z) nur bekannt, dafl es in |z| <1 regular sei,
go betrachte man ¢(z) = f(rz) fir 0 <r < 1. Da fir g(z) im Kreise
2] <2 — ]/—3_die obige Abschatzung gilt, so folgt durch den Grenziiber-
gang r — 1 dasselbe fiir f(z). Esist also M(2—2, § £ §}3) <™.

Setzen wir r = 1 — ¥, so gilt nach (24), (5) und Nr. 5 fiir alle Schottky’
schen Funktionen f(z) in dem Kreis |z| << 1—¢ die Abschétzung

7

5,786 -1 -1y 12=¢
5,786 — 2t [n 419> 1) + Mao{ g 1ai), 121 T 018 -1} ]

| f(2) |<e

(32) < M1+ [s,0376 + az {1glacl,to1 301 ™, tg12s—11 7"} 1 252
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8. Setzen wir in (32) wieder a, = § 4- {)/3, so ist
Max(lg| ag|,l9| a9~ L 1lg| ag—1|"1) = 0.

Da ferner
1 1 2—9

7,6 - ~ﬁ—lg 5 = = 4,2153 + 8937BT

firo<d = —1%, so erhalten wir folgende Verscharfung von (31)

1 1 1

Daraus folgt aber weiter
20 1 3 }9(9 11 )

10 =N 9o\" " 10
€5;1,0102 (3,72 7,6 > . (0,9568)

M(1—9) < Max 19 lg p

Fir # = }/3 — 1 ist der zweite Ausdruck in der geschweiften Klammer
<€ und somit M(2— 3,4 £ §3) <. Analog wie (32) folgt
weiter

=1 —-1112-9
| @) | < A+873 + Mastigia g1 T tyla— 1] }]ﬁ,: 2|21,

Ist also | a5 | > e, so gilt
2—9
(34) @) <et TP <1 —9.

Ist el<|a,| <eund |a,—1[1<e, so gilt

-9
44(8,73+1) %_5'—

(35) 112) | <e 2| <1—9.

Ist | ay | < e und wird f — 1 = @ gesetzt, so ist e1 < | ¢(0) | £ ¢ und
| p(0) — 1 |1 < e. Es gilt also fiir ¢ die Abschatzung (35) und deshalb

fir f die Abschitzung

29
448,73+ 1)—5—

(36) /@] <l4]f&—1]<e + 1z <1—9.
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Ist |ay,— 1| <e?!und wird f — 1 = y gesetzt, so ist | p(0) | <el. Es
gilt also fiir y die Abschitzung (36) und deshalb fiir f die Abschatzung

2—-9 2—9

4+4(8,73+1) 448,74 +1) —5—

37) [ <1+ f)—1|<e T r2<e

(34), (35), (36) und (37) ergeben somit wegen lgm >1

A
L4 BT+ lgm)IS"

| f(2) | <e 2] <1—38,m= Maz (e, ] f(2) |),

woraus schlieBlich die gesuchten Abschétzungen folgen:

Ist f(z) eine vm Einheitskreise regulire und von 0 und 1 verschiedene
Funktion und wird m = Mazx (e, | f(0) |) gesetzt, so gelten fir f(z) in dem
Kreis | z| € 1 — O die Abschitzungen

2—-3
4+ (9+1lgm) —g—

| f2) | < e

2—9
CHER [
g

< m

1
20
< m Y.

(Eingegangen den 18. September 1934.)
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