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Uber die Kriimmung einer
zweidimensionalen Mannigfaltigkeit im vier-
dimensionalen Euklidischen Raum

Von W. ScHERRER, Bern

Das Gaufi’sche Krimmungsma8 einer Fliche im dreidimensionalen
Euklidischen Raum 148t sich bekanntlich sehr anschaulich definieren
als das Verhéltnis des Flichenelements der sphérischen Abbildung zum
Flachenelement der gegebenen Fliche. Diese Definition 148t sich iiber-
tragen auf (n—1)-dimensionale Mannigfaltigkeiten, welche in einen
n-dimensionalen Euklidischen Raum eingebettet sind!). Wesentlich
anders liegen aber die Verhiltnisse, sobald die Dimensionszahl der ein-
gebetteten Mannigfaltigkeit um mehr als eine Einheit von der Dimen-
sionszahl des Einbettungsraumes abweicht?). Der einfachste Fall dieser

1) Eine Darstellung dieser Analogie findet man im sechsten Kapitel des absoluten
Differentialkalkial von Levi-Civita (Springer, Berlin 1928). Entgegen einer Behaup-
tung dieses Autors ist das dabei gewonnene KriimmungsmaB nur von den Koeffizienten
der ersten Fundamentalform abhéngig. Damit ist allerdings noch nicht gesagt, da8 eine
neue absolute Invariante vorliegt, denn in mehr als 3 Dimensionen haben die die ,,Flache‘
darstellenden Koordinatenfunktionen noch den Einbettungsrelationen zu geniigen.
Ubrigens 1a8t sich fir (n — 1)-dimensionale Mannigfaltigkeiten im #-dimensionalen
Euklidischen Raum die Analogie zum klassischen Fall wesentlich weiterfithren, wie ich
bei anderer Gelegenheit zeigen méchte. Bekanntlich existiert in diesem Falle eine dem
klassischen Falle vollkommen entsprechende zweite Hauptform. Nun kann man, gestitzt
auf die Simultaninvarianten der beiden Hauptformen im ganzen n-—1 Kriimmungs-
maBe aufstellen, von denen n—2 effektiv nur von den Koeffizienten der ersten Haupt-
form abhéngen. Ebenso gilt der Satz von Rodrigues iiber Kriimmungslinien und der
Satz von Dupin tiber Orthogonalsysteme.

2) Herr H. Hopf, Ziirich, hatte die Freundlichkeit, mich darauf hinzuweisen, da schon
W. Killing in seinem Buche iiber ,,Die Nichteuklidischen Raumformen in
analytischer Behandlung‘ (Teubner, Leipzig 1885) dieses Problem in einer Weise
behandelt hat, die eventuell Interesse verdient. Killing gelangt auf anderem Wege zur Auf-
stellung der in Anmerkung 1) erwiahnten Kriimmungsmafe und gibt hierauf eine Methode
an, um entsprechende Groflen fiir eine m-dimensionale Mannigfaltigkeit zu berechnen, die
in einen n-dimensionalen Euklidischen Raum eingebettet ist. Diese Methode laBt sich
kurz folgendermafien charakterisieren: Die Tangentialhyperebene E,, in einem bestimmten
Punkte P der zu untersuchenden Hyperfliche @, wird mit Hilfe eines nicht in E,, liegenden
Vektors y) erweitert zu einer (m - 1)-dimensionalen Hyperebene E, ., (y). Hierauf wird
die Hyperfliche ®@,, normal projiziert auf diese Hyperebene. Die erhaltene Projektion i,
ist also eine m-dimensionale Hyperfliche, die in den (m -+ 1)-dimensionalen Raum
E,, .1 (p) eingebettet ist. Nun kann man die unter Anmerkung 1) erwahnten Kriimmungs-
gré-lgen berechnen, deren Zahl jetzt natiirlich m ist und die bezeichnet sein mogen durch
K, (9), K3 (9), ... K, (). Aus diesen GroBen gewinnt Killing durch geeignete Mittel-
bildung seine KriimmungsmaBe K, K,, ... K_ und weist nach, da8 dieselben mit Aus-
nahme eines einzigen nur von den Koeffizienten des Linienelements der Hyperflaiche ab-
hiangen. Dabei konstatiert der Autor, da@ ein Teil dieser GréBen — diejenigen mit geradem
Index — unabhiingig ist von der Differenz n-—m. Fir diese GréBen wire damit die unter 1)
aufgeworfene Frage nach der Existenz absoluter Invarianten in positivem Sinne be-
antwortet, denn man kann die Dimensionszahl n des Einbettungsraumes immer so hoch
annehmen, daf keine Einbettungsbedingungen mehr nétig sind.
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Art liegt offenbar vor, wenn eine zweidimensionale Mannigfaltigkeit in
einen vierdimensionalen Euklidischen Raum eingebettet wird. Diesen
Fall, der iiberdies durch besondere Symmetrieverhiltnisse ausgezeichnet
ist, wollen wir hier betrachten und zeigen, daB sich fiir ihn Kriimmungen
definieren lassen, die in gewissem Sinne der eingangs erwiahnten Definition
an die Seite gestellt werden konnen.

Es sei also eine zweidimensionale Mannigfaltigkeit — eine Flache, wie
wir in Zukunft kurz sagen wollen — in einem vierdimensionalen Eukli-
dischen Raum mit Hilfe der Parameter » und v dargestellt durch ihren
Ortsvektor

x = 33 (u: 'U) = [.’L']_ (’LL, ’0), Lo (u, ,U)J L3 (u7 'U), .’IC4 (’LL, ’U)] (1)

Die Tangentialebene dieser Fliache 1aBit sich dann charakterisieren mit
Hilfe des Flachentensors

(sz) — (F12’ F13’ F14, F23, F24’ F34) (2)
dessen Komponenten gegeben sind durch die Determinanten der Matrix

dxy, Jday Jdag OJm,
du ’ du C du  Ju
da;, Jdxy OJdzg duy
dv v 3w ’ dw (3)

Die Hochstellung der Indizes in (2), die ja der Indexstellung in (1)
entgegensteht, erfolgt nur mit Riicksicht auf eine bequeme Schreibweise
der Ableitungen F'¥ und F:i¥.

Gestiitzt auf die Tatsache, dafl der Ausdruck

1
2

-

Fit ik = (4)

" 1
invariant ist gegeniiber orthogonalen Transformationen des Einbettungs-
raumes, konnte der Tensor (2) auch gedeutet werden als Vektor in einem
6-dimensionalen Euklidischen Raum. Doch wire diese Darstellung
unvollstandig, da der Tensor (2) auch noch die identisch verschwindende
Invariante )

Fap2s | pae 3l | F8 F12—= @ (5)
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besitzt. Die durch den Flachentensor gegebene Darstellung der vier-
dimensionalen Drehgruppe ist also charakterisiert durch die simultane
Invarianz der beiden quadratischen Formen (4) und (5). Hierbei ist noch
zu beachten, daBl das identische Verschwinden der Invariante (5) fiir die
Beurteilung der Transformationsweise keine Rolle spielt, da dieser Aus-
druck bei jedem alternierenden Tensor invariant ist gegeniiber eigent-
lichen orthogonalen Transformationen. Wir kénnen also einen beliebigen
alternierenden Tensor betrachten und wollen seine Transformationsweise
studieren, indem wir an die Stelle seiner Komponenten 6 neue Variable
treten lassen vermoge der Gleichungen

Y, = F4a  F» ; Z, = Fya_ 23
Y, =F% | F3 ; Z, = F2 __ 3
Y, =F8 4+ F12 ; Zg = F93 _ f12 (6)

Wir sind damit iibergegangen zu einer dquivalenten Darstellung, die
offenbar auf den besonderen Symmetrieverhaltnissen des betrachteten
Falles beruht. An Stelle der Invarianten (4) und (5) treten jetzt die
Invarianten

i+ Y+ Yi=F +20; B4+ Z+Z=F—20; (1)

Stellen wir nun die Transformation, welche die neuen Variablen unter
dem Einflu einer Drehung des vierdimensionalen Raumes erfahren,
dar durch die Gleichungen

3 3

Y =23 a, Y, + X b, 7%/
F=1 k=1

3 3 (8)

Z, :kél Cor Yy + ’;\:1 [/

und bringen wir dabei die Invarianz der Formen (7) zur Geltung, so
gelangen wir zum Resultat, daBl die Matrizen (a,,) und (d;;) orthogonal
sind, wiahrend die Matrizen (b,;) und (c,,) verschwinden.

Zum Beweise betrachten wir die aus der Invarianz der Formen (7)
folgende Gleichung

Y)Y, =a,a,Y,Y,  +2a,0,Y,2 +b,;,0,2,/2' =YY/ (9)

in der iiber doppelt auftretende Indizes zu summieren ist und argumen-
tieren folgendermafllen:
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1. Aus Z,' = Z,’ = Z;' = 0 folgt die Relation
Ay By = Oy

wo d,, das bekannte Symbol fiir die Einheitsmatrix bedeutet. Diese
Relation bildet den Ausdruck fiir die Orthogonalitit der Matrix (a,,,).

2. Aus Y, =Y, =Y, = 0 folgt die Relation
bz‘k bu =0

3. Zufolge der unter 1. und 2. gewonnenen Relationen reduziert sich die
Gleichung (9) auf die Gestalt

und hieraus folgt
by =0

Da nun nach 1. die Matrix (a,;,) nicht singuldr sein kann, folgt aus der
letzten Gleichung das Verschwinden der Matrix (b,,). Ganz analog be-
weist man die Behauptungen iiber die Matrizen (c,;) und (d,;).

Indem wir bei unserer Verabredung betreffend die Summation iiber
doppelte Indizes bleiben, kénnen wir das erzielte Resultat durch folgende
Gleichungen zum Ausdruck bringen:

Y, =a,; Y, ; Qi Ay = Oy (10)
Z;=du 2y ; dix iy = O

In Worten: Die betrachtete Darstellung des alternierenden Tensors ist
das Produkt zweier dreidimensionalen Drehgruppen. Wir konnen also

die Variablentripel
(Y1, Yo, Y3) =9
(Zy, Zy, Zy) = 3

auffassen als gewohnliche Vektoren in einem dreidimensionalen Eukli-
dischen Bildraum und auf sie die elementare Vektorrechnung anwenden.
Aus (7) folgt unmittelbar
1

@=L (9—3 11)

Damit der Tensor (F%) einen Flichentensor im engern Sinne darstellt,
ist, wie schon erwahnt, das Verschwinden des Ausdrucks (5), d. h. der
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Invariante @ notwendig und hinreichend. Dies ergibt nach (11) die
Bedingung
9 =3 (12)

Da es nur darauf ankommt, die Stellung der Tangentialebene zu kennen,
so wird man die Vektoren  und 8 normieren, d.h. also durch die
Einheitsvektoren

p = __@__ und § = —8——
9] 3] 1)

ersetzen, wo mit | 9 | und | 3 | die gewohnlichen Betrige der Vektoren
gemeint sind. Offenbar gilt nach (7) und (12)

|191=18]=I|VF| (14)

Wahrend also im dreidimensionalen Falle ein Flachentensor dquivalent
ist mit einem Einheitsvektor, namlich der Normalen, so kann er im
vierdimensionalen Falle ersetzt werden durch die beiden unabhéngigen
Einheitsvektoren unseres dreidimensionalen Bildraums: § und §. Wir
haben gewissermallen zwei spharische Abbildungen und kénnen nun ihre
Flachenelemente

| [94 9o] | dudv und | [§,, $,] | dudv
vergleichen mit dem Element

| VF | dudv

der gegebenen Flache. Auf diese Weise resultieren zwei Kriimmungs-
malfle, die wir zufolge (14) darstellen konnen durch

[y 901 .
=91 (15)

e w11
H="rg1 (16)

Genau wie im dreidimensionalen Falle konnen wir nun auch hier die
Zahler der Ausdriicke fiir G und H unter Einfithrung eines Vorzeichens
rational durch g und j ausdriicken:

Aus p? =1 folgt py, = 0 und py, = 0, also [y,, v,] = Ay mit | [y,
v,] | = | A|. Demnach gilt p[p., v,] = A. Analoges ergibt sich fiir den
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Vektor §. Wir verleihen also den Gré8en G und H ein Vorzeichen, indem
wir sie statt durch (15) und (16) durch die Gleichungen

_O[Duavv] . !
7= 191 - (189

b Lous 8o
H= ; '
131 (169

definieren. Zum Zwecke der expliciten Darstellung greifen wir zuriick auf
(13) und erhalten

9 _ 9 19l
= (il =rp1— 9

und einen analogen Ausdruck fiir y,. Daraus folgt

- Q [yu ’ @v]
0 [Ou ’ pfv] - (92)3/2

Entsprechendes gilt fiir j.

Schlieflich erhalten wir aus (15’) und (16") unter Beriicksichtigung von
(6) und (14) fir die beiden KriimmungsmaBe die endgiiltigen Ausdriicke

F41+ F23 F42+ F31 F43+F12
Fi} + th.;j , F43_+_ F31 F4;__+_ Fllf

(73 2

F4')1—{—F25 , F43+F31 F47;3+Flv2

v 2

2

F“—— F23 F42__F31 F43____F12
F41 _ F23 F42 _ F31 F43 . F12

F“-——— F23 F42—~ F31 F43 __Fm
H == (18)
&

bei deren Auswertung die GroBSe F nach (4) zu berechnen ist.

Nun besitzt jede Fliache eine biegungsinvariante Gauf3’sche Kriimmung
und es erhebt sich also die Frage, wie diese Kriimmung — die wir mit K
bezeichnen wollen — mit den eben definierten GroBen G und H zusammen-
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hingt. Die Koeffizienten der Fundamentalform e, f und g sind definiert
durch die Gleichungen

l

i 0%,
: (19)

|

I
| R

g

zla’U v

und die Gau’sche Biegungsinvariante K berechnet sich aus der Gleichung

——:1!guu+fu‘v_%e’v’v’ %e“’ 'fu—_.éev
(eg— ) K = fo—btgu s e, f
%gv ’ f ? g
(20)
O ) %ev b ngn
—_ ‘e, , e , |
$9. f > g

Wir behaupten nun, dafl der Zusammenhang zwischen den Groflen &, H
und K gegeben ist durch die Gleichung

K = é- (G —H) (21)
Die zur Verifikation dieser Behauptung notwendige Rechnung laBt sich
weitgehend vereinfachen durch folgendes Verfahren. Man wéhle einen
beliebigen aber festen Punkt der Fliche aus und richte daselbst das
Parametersystem so ein, dafl die Tangentenvektoren an die Parameter-

linien in diesem Punkte sich spezialisieren auf
r, = (1, 0, 0, 0)
£, = (0, 1, 0, 0)
was natiirlich leicht und auf unendlich viele Weisen moglich ist. Wenn

man nun die linke und die rechte Seite der Gleichung (21) berechnet,
erhilt man ein und denselben Ausdruck, namlich

Raxy Pxg [ Pwg )2 Rz, R, [FPa,\E
duz o2 _<au3v du vt —<9uafv

/
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Hieraus folgt, daBl die Ausdriicke K und { (@ — H) in jedem Punkte der
Fliache denselben Wert haben und demnach dieselbe Funktion darstellen,
w.z. b. w.

Hier moge noch eine Bemerkung Platz finden iiber die Auszeichnung
des Index 4 bei der Einfithrung der neuen Variablen Y,, Y,, Y,, Z,, Z,, Z,
vermittels der Gleichungen (6). Daf} sie von sekundirer Bedeutung ist,
ersieht man am besten an der Wirkung, welche die Vertauschung irgend
zweier Indizes auf die durch (17) und (18) definierten Kriimmungsmafe
ausiibt. Unter ihrem Einflul geht — wie man leicht nachpriift — einfach
G iber in — H und H iber in — G. Die GroBe 1 (¢ — H) = K ist also
gegeniiber beliebigen Permutationen der Indizes invariant. Es liegt nahe,
eventuell neben dieser GroBe den Ausdruck i (G + H) zu benutzen,
welcher gegeniiber Indexpermutationen bis auf das Vorzeichen invariant
bleibt.

Zum SchluB sei noch auf das Beispiel®)

£ = (cos % cos v, cos % sin v, sin % cos v, sin « sin v)

hingewiesen, durch welches eine ganz im Endlichen verlaufende ge-
schlossene Flache dargestellt wird, deren Biegungsinvariante K in allen
Punkten verschwindet. Die Anwendung der Formeln (17) und (18) auf
dieses Beispiel ergibt, dafl sogar die Kriimmungsmafle G und H auf der
Flache identisch gleich Null sind.

(Eingegangen den 8. September 1934.)

3) Siehe Hilbert — Cohn — Vossen, Anschauliche Geometrie, Seite 302 (Springer,
Berlin 1932).
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