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Ùber die Krùmmung einer
zweidimensionalen Mannigfaltigkeit im vier-
dimensionalen Euklidischen Raum
Von W. Scherrer, Bern

Das GauB'sehe KrummungsmaB einer Mâche im dreidimensionalen
Euklidischen Raum laBt sich bekanntlich sehr anschaulich definieren
als das Verhaltnis des Flachenelements der spharischen Abbildung zum
Flachenelement der gegebenen Flache. Dièse Définition laBt sich uber-
tragen auf (n—l)-dimensionale Mannigfaltigkeiten, welche in einen
w-dimensionalen Euklidischen Raum eingebettet sind1). Wesentlich
anders liegen aber die Verhaltnisse, sobald die Dimensionszahl der ein-
gebetteten Mannigfaltigkeit um mehr als eine Emheit von der
Dimensionszahl des Einbettungsraumes abweicht2) Der einfachste Fall dieser

x) Eme Darstellung dieser Analogie findet man im sechsten Kapitel des absoluten
Differentialkalkul von Levt Civita (Springer, Berlin 1928) Entgegen einer Behaup
tung dièses Autors ist das dabei gewonnene KrummungsmaB nur von den Koeffizienten
der ersten Fundamentalform abhangig Damit ist allerdings noch nicht gesagt, dafi eme
neue absolute Invariante vorhegt, denn in mehr als 3 Dimensionen haben die die ,,Flache '

darstellenden Koordmatenfunktionen noch den Einbettungsrelationen zu genugen
Ûbngens lafit sich fur (n— 1) dimensionale Mannigfaltigkeiten im w-dimensionalen
Euklidischen Raum die Analogie zum klassischen Fall wesentlich weiterfuhren, wie ich
bei anderer Gelegenheit zeigen mochte Bekanntheh existiert m diesem Falle eme dem
klassischen Falle vollkommen entsprechende zweite Hauptform Nun kann man, gestutzt
auf die Simultanmvarianten der beiden Hauptformen im ganzen n —1 Krummungs
mafie aufstellen, von denen n — 2 effektiv nur von den Koeffizienten der ersten Haupt
form abhangen Ebenso gilt der Satz von Rodrigues uber Krummungslinien und der
Satz von Dupin uber Orthogonalsysteme

2) Herr H Hopf, Zurich, hatte die Freundhchkeit, mich darauf hinzuweisen, dafi schon
W Ktlhng m sèmera Bûche uber ,,Die Nichteuklidischen Raumformen in
analytischer Behandlung" (Teubner, Leipzig 1885) dièses Problem m einer Weise
behandelt hat, die eventuell Interesse verdient Killing gelangt auf anderem Wege zur Auf
stellung der m Anmerkung 1 erwahnten Krummungsmafie und gibt hierauf eme Méthode
an, um entsprechende Grofîen fur eine m dimensionale Mannigfaltigkeit zu berechnen, die
in einen n dimensionalen Euklidischen Raum eingebettet ist Dièse Méthode lafit sich
kurz folgendermafien charakterisieren Die Tangentialhyperebene Em m emem bestimmten
Punkte P der zu untersuohenden Hyperflache <Pm wird mit Hilfe emes nicht m Em hegenden
Vektors J) erweitert zu einer (m -j- 1) dimensionalen Hyperebene Em+1 (t)) Hierauf wird
die Hyperflache &m normal projiziert auf dièse Hyperebene Die erhaltene Projektion ijjm
ist also eine w-dimensionale Hyperflache, die in den (m -f- 1) dimensionalen Raum
Em_<rl (p) eingebettet ist Nun kann man die unter Anmerkung 1) erwahnten Krummungs
grofien berechnen, deren Zahl jetzt naturhch m ist und die bezeichnet sem mogen durch
K% (Tf), K2 (t)), Km (t)) Aus diesen Grofîen gewinnt Killmg durch geeignete Mittel
bildung seine Krummungsmafie Kv K2, Km und weist nach, dafi dieselben mit Aus
nahme eines einzigen nur von den Koeffizienten des Linienelements der Hyperflache ab
hangen Dabei konstatiert der Autor, dafi em Teil dieser Grofîen — diejenigen mit geradem
Index — unabhangig ist von der Differenz n—m Fur dièse Grofien ware damit die unter 1

aufgeworfene Frage nach der Existenz absoluter Invananten m positivem Sinne be-
antwortet, denn man kann die Dimensionszahl n des Einbettungsraumes mimer so hoch
annehmen, dafi keme Einbettungsbedingungen mehr notig sind
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Art liegt ofïenbar vor, wenn eine zweidimensionale Mannigfaltigkeit in
einen vierdimensionalen Euklidischen Raum eingebettet wird. Diesen
Fall, der uberdies durch besondere Symmetrieverhaltnisse ausgezeichnet
istj wollen wir hier betrachten und zeigen, daB sich fur ihn Krummungen
definieren lassen, die in gewissem Sinne der eingangs erwahnten Définition
an die Seite gestellt werden konnen.

Es sei also eine zweidimensionale Mannigfaltigkeit — eine Flache, wie
wir in Zukunft kurz sagen wollen — in einem vierdimensionalen
Euklidischen Raum mit Hilfe der Parameter u und v dargestellt durch ihren
Ortsvektor

p(u,v) [xt (u, v), x2 (u, v), x3 (u, v), x^ (u, v) ] (1)

Die Tangentialebene dieser Flache laBt sich dann charakterisieren mit
Hilfe des Flachentensors

(Fik) (F12, F13, F1*, F™, F2*, FM) (2)

dessen Komponenten gegeben sind durch die Determinanten der Matrix

dxx dx2 dx3 dx±
' du ' du ' du

dx2
dv ' dv ' dv ' dv (3)

Die Hochstellung der Indizes m (2), die ja der Indexstellung in (1)

entgegensteht, erfolgt nur mit Rucksicht auf eine bequeme Schreibweise
der Ableitungen F*u* und F\k.

Gestutzt auf die Tatsache, daB der Ausdruck

i_ (4)

invariant ist gegenuber orthogonalen Transformationen des Einbettungs-
raumes, konnte der Tensor (2) auch gedeutet werden als Vektor in einem
6-dimensionalen Euklidischen Raum. Doch ware dièse Darstellung
unvollstandig, da der Tensor (2) auch noch die identisch verschwindende
Invariante

0 (5)
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besitzt. Die durch den Flàchentensor gegebene Darstellung der vier-
dimensionalen Drehgruppe ist also charakterisiert durch die simultané
Invarianz der beiden quadratischen Formen (4) und (5). Hierbei ist noch
zu beachten, daB das identische Verschwinden der Invariante (5) fur die
Beurteilung der Transformationsweise keine Rolle spielt, da dieser Aus-
druck bei jedem alternierenden Tensor invariant ist gegenûber eigent-
lichen orthogonalen Transformationen. Wir kônnen also einen beb'ebigen
alternierenden Tensor betrachten und wollen seine Transformationsweise
studieren, indem wir an die Stelle seiner Komponenten 6 neue Variable
treten lassen vermôge der Gleichungen

Y1

y2 F*2
F*S

+
-f.
+

J?23

FZ1 ;

F12 ;

Zx

^2
^3

F*1

i^43

J^23

JP31

J^12 (6)

Wir sind damit ubergegangen zu einer àquivalenten Darstellung, die
offenbar auf den besonderen Symmetrieverhâltnissen des betrachteten
Falles beruht. An Stelle der Invarianten (4) und (5) treten jetzt die
Invarianten

Yl+ 7\+ Y\=F + 2 0; Z\ + Z\ + Z\ F — 20; (7)

Stellen wir nun die Transformation, welche die neuen Variablen unter
dem EinfiuB einer Drehung des vierdimensionalen Raumes erfahren,
dar durch die Gleichungen

» (8)

und bringen wir dabei die Invarianz der Formen (7) zur Geltung, so

gelangen wir zum Résultat, daB die Matrizen (aik) und (dik) orthogonal
sind, wàhrend die Matrizen (bik) und (cik) verschwinden.

Zum Beweise betrachten wir die aus der Invarianz der Formen (7)

folgende Gleichung

Y{Yt aik atl Yk' F,' + 2 »„ btl Yk' Z{ + bilc bu Zk' Z{ 7/ Y{ (9)

in der ûber doppelt auftretende Indizes zu summieren ist und argumen-
tieren folgendermaBen :
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1. Aus ZJ Z2' =Z3f 0 folgt die Relation

wo ôkl das bekannte Symbol fur die Einheitsmatrix bedeutet. Dièse
Relation bildet den Ausdruck fur die Orthogonalitat der Matrix (atfc).

2. Aus 7/ Y2' Ys' 0 folgt die Relation

3. Zufolge der unter 1. und 2. gewonnenen Relationen reduziert sich die
Gleichung (9) auf die Gestalt

2attbtlTt'Zl'=0
und hieraus folgt

Da nun nach 1. die Matrix (atk) nicht singular sein kann, folgt aus der
letzten Gleichung das Verschwinden der Matrix (blk). Ganz analog be-

weist man die Behauptungen uber die Matrizen (ctk) und (dtk).
Indem wir bei unserer Verabredung betreffend die Summation uber

doppelte Indizes bleiben, konnen wir das erzielte Résultat dureh folgende
Gleichungen zum Ausdruck bringen :

rt atfcïY; »,*»« iw, (10)

zi d%k Zk ; dtk dtl ôkl,

In Worten: Die betrachtete Darstellung des alternierenden Tensors ist
das Produkt zweier dreidimensionalen Drehgruppen. Wir konnen also

die Variablentripel
(715 r2, r,) g)

(z19z29z9) -3
auffassen als gewohnliche Vektoren in einem dreidimensionalen Eukli-
dischen Bildraum und auf sie die elementare Vektorrechnung anwenden.

Aus (7) folgt unmittelbar

Damit der Tensor (F%k) einen Flachentensor im engern Sinne darstellt,
ist, wie schon erwahnt, das Verschwinden des Ausdrucks (5), d. h. der

153



Invariante 0 notwendig und hinreichend. Dies ergibt nach (II) die
Bedingung

91 32 (12)

Da es nur darauf ankommt, die Stellung der Tangentialebene zu kennen,
so wird man die Vektoren g) und 3 normieren, d. h. also durch die
Einheitsvektoren

ersetzen, wo mit | §) | und | g | die gewôhnlichen Betràge der Vektoren
gemeint sind. Offenbar gilt nach (7) und (12)

I §> I - I 3 I I V~F | (14)

Wâhrend also im dreidimensionalen Falle ein Flâchentensor âquivalent
ist mit einem Einheitsvektor, nàmlich der Normalen, so kann er im
vierdimensionalen Falle ersetzt werden durch die beiden unabhàngigen
Einheitsvektoren unseres dreidimensionalen Bildraums: t) und j. Wir
haben gewissermaBen zwei sphârische Abbildungen und kônnen nun ihre
Flâchenelemente

I [*)«> 9v\ I dudv und | [jw, $J | dudv

vergleichen mit dem Elément

dudv

der gegebenen Flàche. Auf dièse Weise resultieren zwei Krummungs-
maBe, die wir zufolge (14) darstellen kônnen durch

(15)

H~ 131 '

Genau wie im dreidimensionalen Falle kônnen wir nun auch hier die
Zâhler der Ausdrûcke fur G und H unter Einfiihrung eines Vorzeichens
rational durch t) und $ ausdrucken :

Aus ç2 1 folgt t)t)w 0 und t)t)v 0, also [t)wî t)v] A t) mit | [t)M,

çj | | A |. Demnach gilt t) [t}u, 1)v] A. Analoges ergibt sich fur den
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Vektor j. Wir verleihen also den GrôBen G und H ein Vorzeichen, indem
wir sie statt durch (15) und (16) durch die Gleichungen

H

I8M

S Lêw êv J

(15')

(16')

defimeren. Zum Zwecke der expliciten Darstellung greifen wir zuruck auf
(13) und erhalten

\\$\)u \9\ §)n

und einen analogen Ausdruck fur t)v. Daraus folgt

g) [g)w g)J

Entsprechendes gilt fur j.

SchlieBlich erhalten wir aus (15') und (16') unter Berucksichtigung von
(6) und (14) fur die beiden KrummungsmaBe die endgultigen Ausdrucke

JÇ731

T41 i

/-y __ (17)

•rtl 2 jp-M tt43 ït1

(18)

bei deren Auswertung die GroBe F nach (4) zu berechnen ist.

Nun besitzt jede Flache eine biegungsinvariante GauB'sche Krummung
und es erhebt sich also die Frage, wie dièse Kjummung — die wir mit K
bezeichnen wollen — mit den eben definierten GroBen G undH zusammen-
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hângt. Die Koeffizienten der Fundamentalform e, / und g sind definiert
durch die Gleichungen

(t\ du du

l du dv (19)

y iti 3v 3v

und die GauB'sche Biegungsinvariante K berechnet sich aus der Gleichung

i n _i_ / x p jl c f i p

(eg-ff K h9u, e f
i9v f > 9

(20)

0 è e« >
è- ^n

2 Vv €î /

|gfM / g

Wir behaupten nun, daB der Zusammenhang zwischen den GrôBen G, H
und K gegeben ist durch die Gleichung

K ^(G — H) (21)

Die zur Verifikation dieser Behauptung notwendige Rechnung lâBt sich

weitgehend vereinfachen durch folgendes Verfahren. Man wàhle einen

beliebigen aber festen Punkt der Flàche aus und richte daselbst das

Parametersystem so ein, daB die Tangentenvektoren an die Parameter-
linien in diesem Punkte sich spezialisieren auf

yu (1, 0, 0, 0)

y, (0, 1, 0, 0)

was naturlich leicht und auf unendlich viele Weisen môglich ist. Wenn
man nun die linke und die rechte Seite der Gleichung (21) berechnet,
erhâlt man ein und denselben Ausdruck, nàmlich

du* '
dv2 [dudv "*" du2

'
dv2 [dudv
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Hieraus folgt, daB die Ausdrucke K und \ (G — H) in jedem Punkte der
Flâche denselben Wert haben und demnach dieselbe Funktion darstellen,
w. z. b. w.

Hier môge noch eine Bemerkung Platz finden uber die Auszeichnung
des Index 4 bei der Einfuhrung der neuen Variablen Yl9 Y2i Y3, Zv Z2, Z3
vermittels der Gleiehungen (6). DaB sie von sekundàrer Bedeutung ist,
ersieht man am besten an der Wirkung, welche die Vertauschung irgend
zweier Indizes auf die durch (17) und (18) definierten KriimmungsmaBe
ausiibt. Unter ihrem EinfluB geht — wie man leicht nachprûft — einfach
G uber in — H und H ûber in — G. Die GrôBe £ (G — H) K ist also

gegenuber beliebigen Permutationen der Indizes invariant. Es liegt nahe,
eventuell neben dieser GrôBe den Ausdruck J (C? + H) zu benutzen,
welcher gegenuber Indexpermutationen bis auf das Vorzeichen invariant
bleibt.

Zum SchluB sei noch auf das Beispiel3)

y (cos u cos v, cos u sin v, sin u cos v, sin u sin v)

hingewiesen, durch welches eine ganz im Endlichen verlaufende ge-
schlossene Flàche dargestellt wird, deren Biegungsinvariante K in allen
Punkten verschwindet. Die Anwendung der Formeln (17) und (18) auf
dièses Beispiel ergibt, daB sogar die KrummungsmaBe G und H auf der
Flàche identisch gleich Null sind.

(Eingegangen den 8. September 1934.)

3) Siehe Hiïbert - Cohn - Vossen, Anschauliche Géométrie, Seite 302 (Springer,
Berlin 1932).
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