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Quaternionen und Semivektoren
Von W. SCHERRER, Bern

Die Theorie der Spinoren ist von HEinstein und Mayer') in sehr
befriedigender Weise begriindet worden mit Hilfe neuer GroBen, der
Semivektoren. Diese Semivektoren vermitteln den Ubergang von den
Vektoren zu den Spinoren in folgendem Sinne: Sie stehen einerseits
in einem natiirlichen Zusammenhang mit der Gruppe der Lorentz-
- transformationen und andererseits enthalten sie die Spinoren als spezielle
Symmetrietypen.

Die algebraische Grundlage der Einstein-Mayerschen Theorie bildet
eine Aussage, die wir notieren als

Satz 1: Jede reelle Lorentzmatriz € lift sich bis auf das Vorzeichen ein-
deutig darstellen als das Produkt zweier speziellen Lorentzmatrizen W und B,
denen folgende Eigenschaften zukommen :

a) Jedes beliebige Y ist mit jedem beliebigen B vertauschbar.
B) U und B sind konjugiert komplex.

Aus diesem Satz folgt unmittelbar, dafl die Matrizen ¥ eine zur Gruppe
der Matrizen € — der Lorentzgruppe — isomorphe Gruppe bilden, ebenso
die Matrizen %B.

Im folgenden mochte ich nun zeigen, dafl der in Frage stehende Satz in
der Hamilton’schen Quaternionentheorie steckt und sich daher zwang-
los aus ihr herleiten laft.

Wir fithren die Untersuchung soweit als moglich auf dem Gebiet der
komplexen orthogonalen Matrizen durch, indem wir uns auf die bekannte
Tatsache stiitzen, dafl jeder orthogonalen Matrix

Aoo> Q1) Qg2; Qo3
Ay Q115  Qy2, O3
A2, Ay, Aag, Uag
A3, A3y 39, Q33 (1)
zwel Lorentzmatrizen
Qg0> F @ agys F 4 ags, F © g
+ ¢ ayp, 315 Q19 Qy3
=+ 7 agy, Aa15 a2, Q23
=+ % ay, Q315 Q32, Q33 (2)

zugeordnet werden konnen und umgekehrt.

1) A. Einstein und W. Mayer: Semivektoren und Spinoren. Sitzungsberichte
der preuBischen Akademie der Wissenschaften 1932.
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Das geeignete Instrument zur Behandlung der vierdimensionalen
orthogonalen Matrizen bildet die Hamilton’sche Quaternionenrechnung.
Zur Erleichterung des Lesers stelle ich die Definition und die Grund-
eigenschaften der Quaternionen kurz zusammen und zwar so, daB ohne
weiteres auch der komplexe Fall umfaft wird.

Quaternionen seien bezeichnet mit kleinen deutschen Buchstaben
a,b,¢, ..., 0,4 Ein einzelnes Quaternion ist definiert als lineare
Kombination

4= ay+ @1 ¢; 1+ 2y + 23 ¢ (3)

wo die ,,Komponenten‘ a,, a,, a,, a; beliebige komplexe Zahlen sein
konnen, wahrend die neben der natiirlichen Einheit 1 auftretenden Ein-
heiten folgenden Multiplikationsregeln gehorchen:

612=222=—‘e32=-—1
€s 83 = ¢4, €3 €; = €3, €1 € = ¢3
€3 €y = — @4, ¢ 83 = — ¢ ¢ = —¢3 (4)

Fiir die Addition werden die Regeln der gewdhnlichen Algebra ge-
fordert, mit der Ergéinzung, dal die Null dargestellt wird durch

0+ 0-¢,+ 0-¢,+ 0" e,

Fiir die Multiplikation soll neben den Regeln (4) das distributive Gesetz
gelten. Unter diesen Voraussetzungen findet man fiir das Produkt zweier
Quaternionen ¢ und b den Ausdruck

ab = 3/obo'—"3qb1—3fzbz_33b3

+ (8, b9 + a9 by — a3 by 4 a, by) ¢,

4 (a3 by 4 a3 b; + a9 by — a, b;3) ¢,

+ (a3 bg— ay b; + a, by, + a4 b;) ¢ (5)
Nun verifiziert man leicht das fundamentale assoziative Gesetz

(ab) c = a (b¢) (6)
Das kommutative Gesetz trifit schon nach (4) nicht zu.
Mit g* sei das zu a ,,konjugierte‘‘ Quaternion
0* = ag—a, ¢, — a5 ¢, — 23 ¢3; (3%)
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bezeichnet. Man bestétigt leicht die Giiltigkeit der wichtigen Relationen
(aB)* = b*a* (7)
aa* = a2 4+ a,® + a,? + a,2 = q*q = Skalar. (8)

Ein Skalar und ein Quaternion, dessen drei letzte Komponenten ver-
schwinden, sind in der Quaternionenalgebra offenbar gleichwertige
Begriffe. Bezeichnen wir die Grofle g a* der Kiirze halber als ,,Lange‘‘ des
Quaternions, so gilt

Satz 2: Wird ein beliebiges Quaternion p links oder rechts mit einem
Quaternion von der Linge 1 multipliziert, so bleibt seine Linge ungedindert.

Die Behauptung geht also dahin, daB aus ga* =1 und p = ap die
Gleichung

py* = pp*
folge. Die Berechnung ergibt auf Grund von (7), (8) und (6):
py* = (ar) (ar)*
= (ap) (£*a%)

= a(rr*) a*
= qa* - pp* = pp*

Der Beweis fiir die Rechtsmultiplikation verlauft natiirlich analog.
Fassen wir nun p als Variable auf, so erscheint die Multiplikation

h=ar
nach dem eben bewiesenen Satze als spezielle orthogonale Transformation,
deren vollstindiger Ausdruck nach (5) gegeben ist durch

Yo = 39 Xg— @1 Xy — Ay Ty — A3 X3
Y1 = 2; Ty + 89 &y — 83 Ty + 35 X4
Yo = 3y Xy + 23 &1 + 39 Xy — 81 T3
Y = 83 Ly— 8y &y + 33 Ty + 39 Xy (9)
Analoges gilt fiir = pb und wir erhalten das Resultat:
Die beiden Quaternionenprodukte

y = ar; p=1rb (10)
sind fiir
aa* = 1; bb* =1 (11)
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aquivalent mit den respektiven orthogonalen Transformationen
y = Ug; p =By (12)

deren Matrizen gegeben sind durch

8y —a; —3a; —3ag by —b, —b, —b,
a, a9 — ag 2, b, by b, —b,
A= a ag ay —ayll; B=|by —b bo b
a; — a, a, g b, b, —b, boll (13)

Zufolge (11) hangt jede dieser Matrizen von 3 komplexen Parametern ab.
Uberdies sind beide, wie man unmittelbar feststellt, kontinuierlich in die
Identitat iberfiithrbar.

Hieraus folgt, dal das Produkt
= arb (14)

eine 6-parametrige und mit der Identitat stetig zusammenhingende
Schar von orthogonalen Transformationen, also alle eigentlichen ortho-
gonalen Transformationen umfafit. Auf die Ausfithrung dieses und &hn-
licher ,,Vollstandigkeitsschliisse’* mit Hilfe infinitesimaler Transforma-
tionen kénnen wir hier verzichten.

Wir beweisen nun umgekehrt, daBl die Darstellung aller eigentlichen
orthogonalen Transformationen gemaf (14) eindeutig ist, d. h. also, dafl
aus

arb=cpd (15)

und

a0* = Bhb* = ¢c¢* = dpd* =1 (16)
entweder

a=cund b=>»
oder
a=—c¢cund b= —9>

folgt.

Zu dem Zwecke multiplizieren wir die Identitat (15) links mit ¢* und
rechts mit b* und erhalten wegen (16)

c*ap =prdb*.
Hieraus folgt
¢*a = db* = Skalar.
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Also konnen wir setzen
c*a — A ” a*a’

wo A ein geeigneter Skalar ist, oder

(¢*— 4a*)aqa = 0.
Rechtsmultiplikation mit ¢* ergibt

¢*—2Ag* =0
und daraus folgt
c—Ai-a=0.
Demnach gilt
cec* = A%2gqqa* oder A = + 1

und wir erhalten schliefflich ¢ = + ¢ und auf analoge Weise d = -+ b,
woraus die Eindeutigkeit der Darstellung (14) abgesehen vom Vor-
zeichen folgt.

Wir gehen jetzt von der Quaternionen-Darstellung (14) iiber zur
Matrizendarstellung und haben dabei besonders auf die assoziative
Zusammenfassung im Produkt ¢¢b zu achten. Die Aquivalenz der Dar-
stellungen (10) und (12) ergibt in leichtverstandlicher Schreibweise

a (b)) = UBy
(ap) b= Uy
Nach dem assoziativen Gesetz (6) folgt also
ABr = BUy
oder
AB — BY. (17)

Andererseits konnen wir setzen
arb=Cy

und erfassen damit jede eigentlich orthogonale Matrix €.

Die erreichten Resultate sprechen wir aus als

Satz 3: Jede eigentlich orthogonale Matrix € lift sich bis auf das Vor-
zeichen eindeutig darstellen als das Produkt zweier spezieller, eigentlich
orthogonaler Matrizen ¥ und B, denen folgende Eigenschaft zukomms :

Jedes beliebige Y ist mit jedem beliebigen B vertauschbar.
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Die fiir % und % in Betracht kommenden Typen sind explicite gegeben
durch die Gleichungen (13) und haben daneben nur noch die Bedingungen
(11), also die Gleichungen

a2 + a2 + a2 + a2 = b> + b2 4 b2 + bt =1 (117)
zu erfiillen.

Offenbar stimmt Satz 3 mit Satz 1 iiberein bis auf die Realitits-
bedingungen, denen wir uns jetzt zuwenden wollen.

Fiir die Realitat der eigentlich orthogonalen Transformationen ist die
Realitat der Matrizen (13) evidentermaBen hinreichend, zufolge der
hier ebenfalls geltenden Vollstandigkeit und Eindeutigkeit der Dar-
stellung (14) aber auch notwendig.

Was nun die komplexen Lorentzmatrizen betrifft, so folgt aus Satz 3
mit Hilfe des Ubergangs von (1) nach (2) und umgekehrt sofort ein voll-
kommen entsprechender Satz. An Stelle der Matrizen (13) treten dabei
folgende Matrizen:

ay 1a; 13, 13, by b, b, b,
QI — "53/1 a/o "—'313 3/2 ; % — ?Ebl bo b3 "—"‘bz
?:343 - az 3/1 30 ibs bz _ b]. bo (18)

Im Gegensatz zu den Matrizen (13) konnen diese Matrizen als zueinan-
der konjugiert komplex angenommen werden, ohne daBl die einzelne
Matrix aufhort, von 3 komplexen Parametern abzuhingen. Dadurch
erhilt man als Produkt eine eigentliche und reelle Lorentztransformation,
die von 6 reellen Parametern abhiangt. Wir haben also auch hier eine
Darstellung aller eigentlichen reellen Lorentztransformationen. Wieder-
um folgt aus der Eindeutigkeit der Produktdarstellung, dafi die Faktoren
notwendigerweise konjugiert komplex sind. Damit ist der an die Spitze
gestellte Einstein-Mayer’sche Satz vollstandig bewiesen.

Die Quaternionenalgebra scheint auch bei der Aufstellung von In-
varianten gewisse Vorteile zu bieten. Dabei ist man allerdings genotigt,
simtliche Entwicklungen fiir orthogonale Transformationen durch-
zufiithren und jeweils erst am SchluB mit Hilfe der Transformation
x, = it zu den Lorentztransformationen iiberzugehen.

Wir erlautern dieses Verfahren, soweit es sich im Gebiet der ortho-
gonalen Transformationen abspielt.- Bei Beschrankung auf orthogonale
Koordinaten fallt die Unterscheidung zwischen oberen und unteren
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Indices bekanntlich weg. Wir stellen jetzt also jede orthogonale Trans-
formation ¢ = € g quaternionenméBig dar durch ¢’ = apbund definieren :

1. Ein Vekior p = (x,, ,, %5, x;) ist ein Quaternion, das sich gemaB der
Gleichung
r=arb (19)

transformiert.

2. Ein Lwnksvektor ¢ = (xy, xt, 3, %3) ist ein Quaternion, das sich
gemaf

~-

r=aqar (19a)
transformiert.

3. Ein Rechtsvektor ¥ = (x5, x, %5, ¥5) ist ein Quaternion, das sich gemaB

r = (19b)

s
=

transformiert. ,

Die in (19), (192) und (196) vorkommenden ¢ und b miissen natiirlich
immer ein und derselben orthogonalen Matrix € entspringen.

Nun kann man in der iiblichen Weise gemischte Tensoren beliebig hoher
Stufe durch komponentenweise Multiplikation und Addition der defi-
nierten Vektortypen bilden. Dabei gilt insbesondere auch

Satz 4: Ist
F @y ...)=a,57...%, Y 27 ..
eine invariante Multilinearform, so bilden ihre Koeffizienten a,;; einen
Tensor von dem durch die Indizes bezeichneten Typus und umgekehrt.

Die Quaternionenmultiplikation bildet offenbar einen Invarianten er-
zeugenden ProzeB. Aus (19), (19a) und (19b) in Verbindung mit (7)
findet man unmittelbar die in der Einstein-Mayer’schen Theorie grund-
legenden invarianten Quaternionen

2

g

p* (20)
und B

L T (21)

| cre

Jedes dieser Quaternionen liefert 4 invariante Formen und damit nach
Satz 4 ebenso viele numerisch invariante Tensoren. Man erhilt so aus (20)
und (21) je 4 Tensoren der Typen a;z , a5% , aer » 2 15~ Die beiden
aus (21) entspringenden Typen sind aber dquivalent, wie man aus der
Gleichung (p p* §)* = §* p ¢* ersieht.
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Die Berechnung des ersten Ausdrucks aus (20) ergibt auf Grund von
(3*) und (5) die invarianten Bilinearformen

T Yo T Xr Y1t + X2 Ys + T3 Y5
— Xt Yy T g Yr T T3 Ysr — Xz Y3 (22)
— Ty Yy — Xz Yr T T5 Yz + X1 Y3
— X3 Y5 T Ty Yt — Tr Yz + X5 Yz

Der Vergleich mit den Einstein-Mayer’schen Formeln (41) und (41a)
nach vollzogener Substitution x, =iz ; y, = 1y, zeigt, daBl die Links-
vektoren den Semivektoren 2. Art entsprechen. Die Querstriche iiber
den Indizes wiren also zu verdoppeln.

Wie schon bemerkt, bilden die Koeffizienten der Formen (22) spezielle
numerische invariante Tensoren. Durch lineare Kombination gewinnt
man aus ihnen diejenigen Tensoren, denen bei Einstein und Mayer die
Tensoren c3 3 2) entsprechen. Analog ergeben sich aus den Invarianten
(21) die allgemeinen dreistufigen Tensoren.

Die Anwendung von Satz 4 auf (22) gestattet aber auch den Schlul,
daf} die vier Reihen

( L Zy) Zs5) (230)
(— 24, X, Xgy — Xy) (23,)
=y, — By Zss x) (23,)
(— 24, X By x5) (23,)

simultan ein System von Linksvektoren bilden. Dasselbe gilt somit auch
fiir alle linearen Kombinationen dieser Reihen. Addiert man also das
(— ¢)-fache der zweiten Reihe zur ersten, so erhdlt man den speziellen
Linksvektor

(g + 227, Ty-—1tZy, Xy —1Xz, Tz 4+ 1T3)
= (2g + i@y, —i (v +12g), Tg—1%5, © (T;—125)) (24)
= (25, 21, 2z, 2j)
dessen Komponenten die Relationen
2r=—12y5 ; %3 =123

erfilllen. Zur Beschreibung dieses Linksvektors geniigen demnach
zwei Komponenten. Analog erhdlt man durch Addition der ¢-fachen
zweiten Reihe zur ersten den Linksvektor

2) A. Einstein und W. Mayer: Die Diracgleichungen fir Semivektoren.
Amsterdamer Berichte 1933.
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(xﬁ—-ix—,- y t(Xg—txg), Tz F+txy, — (g F 125) ) ==
= (Ug, Ug, Uz, Uy) (25)
mit den Relationen
Up = Uy ; Uz = — L Us.
Die unabhéngigen Komponenten der Linksvektoren (24) und (25)
konstituieren also zwei 2-komponentige Grof3en — sogenannte Spinoren —

die durch den Linksvektor (23,) bestimmt sind und ihrerseits denselben
bestimmen.

(Eingegangen den 8. September 1934.)
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