
Zeitschrift: Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 7 (1934-1935)

Artikel: Quaternionen und Semivektoren.

Autor: Scherrer, W.

DOI: https://doi.org/10.5169/seals-515590

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.02.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-515590
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Quaternionen und Semivektoren

Von W. Scherrer, Bern

Die Théorie der Spinoren ist von Einstein und Mayer1) in sehr
befriedigender Weise begriïndet worden mit Hilfe neuer GrôBen, der
Semivektoren. Dièse Semivektoren vermitteln den Ûbergang von den
Vektoren zu den Spinoren in folgendem Sinne: Sie stehen einerseits
in einem naturlichen Zusammenhang mit der Gruppe der Lorentz-
transformationen und andererseits enthalten sie die Spinoren als spezielle
Symmetrietypen.

Die algebraische Grundlage der Einstein-Mayerschen Théorie bildet
eine Aussage, die wir notieren als

Sat& 1 : Jede réelle Lorentzmatrix S làfit sich bis auf das Vorzeichen ein-
deutig darstellen als das Produkt zweier speziellen Lorentzmatrizen 21 und 95,

denen folgende Eigenschaften zukommen :

a) Jedes beliebige 2t ist mit jedem beliebigen 95 vertauschbar.

P) 21 und 95 sind konjugiert komplex.
Aus diesem Satz folgt unmittelbar, da8 die Matrizen 21 eine zur Gruppe
der Matrizen 6 — der Lorentzgruppe — isomorphe Gruppe bilden, ebenso
die Matrizen 95.

Im folgenden môchte ieh nun zeigen, da8 der in Prage stehende Satz in
der Hamilton'schen Quaternionentheorie steckt und sich daher zwang-
los aus ihr herleiten lâfit.

Wir fuhren die Untersuchung soweit als môglich auf dem Gebiet der
komplexen orthogonalen Matrizen durch, indem wir uns auf die bekannte
Tatsache stiitzen, da6 jeder orthogonalen Matrix
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l) A, Einstein und W. Mayer: Semivektoren und Spinoren. Sitzungsberichte
der preufiischen Akademie der Wissenschaften 1932.
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Das geeignete Instrument zur Behandlung der vierdimensionalen
orthogonalen Matrizen bildet die Hamilton'sche Quaternionenrechnung.
Zur Erleichterung des Lesers stelle ich die Définition und die Grund-
eigenschaften der Quaternionen kurz zusammen und zwar so, daB ohne
weiteres auch der komplexe Fall umfaBt wird.

Quaternionen seien bezeichnet mit kleinen deutschen Buchstaben
<*, h, C, y, t), J. Ein einzelnes Quaternion ist definiert als lineare
Kombination

a =¦ â0 + ax ej + a2e2 + a3 e3 (3)

wo die ,,Komponenten" &0, a3, a2, az beliebige komplexe Zahlen sein

kônnen, wâhrend die neben der natûrliehen Einheit 1 auftretenden Ein-
heiten folgenden Multiplikationsregeln gehorchen:

ex2 e22 e32 — 1

Fiir die Addition werden die Regeln der gewôhnliehen Algebra ge-
fordert, mit der Ergânzung, daB die Null dargestellt wird durch

Fur die Multiplikation soll neben den Regeln (4) das distributive Gesetz

gelten. Unter diesen Voraussetzungen findet man fiir das Produkt zweier
Quaternionen a und h den Ausdruck

&h aobo — ax b± — a2 b2 — a3 63

+ (^1 bQ + aob1 — a3 b2 + a2 63) d
+ (^2 &o + az bt + a0 62 — ax 63) e2

+ («3 h — a2 h + aj 62 + a0 68) e3 (5)

Nun verifiziert man leicht das fundamentale assoziative Gesetz

(aï>)t a(hc) (6)

Das kommutative Gesetz trifift schon nach (4) nicht zu.

Mit a* sei das zu a ,,konjugierte" Quaternion

a* a0 — ax tx — a2 e2 — a3 e3; (3*)
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bezeichnet. Man bestàtigt leicht die Giiltigkeit der wichtigen Relationen

(aJ)* 6*a* (7)

<*<** V + ai2 + V + a32 a*a Skalar. (8)

Ein Skalar und ein Quaternion, dessen drei letzte Komponenten ver-
schwinden, sind in der Quaternionenalgebra offenbar gleichwertige
Begrifïe. Bezeichnen wir die GrôBe a a* der Kiirze halber als ,,Lânge" des

Quaternions, so gilt

Sat& 2 : Wird ein beliebiges Quaternion y links oder redits mit einem

Quaternion von der Lange 1 multipliziert, so bleibt seine Lange ungeandert.

Die Behauptung geht also dahin, daB aus a a* 1 und î) dp die
Gleichung

99* yy*

folge. Die Berechnung ergibt auf Grund von (7), (8) und (6):

(*!)(!*«*)
a (pp*) a*
aa* • pp* pp*

Der Beweis fur die Rechtsmultiplikation verlàuft natûrlich analog.

Passen wir nun y als Variable auf, so erscheint die Multiplikation

9 <*y

nach dem eben bewiesenen Satze als spezielle orthogonale Transformation,
deren vollstândiger Ausdruek nach (5) gegeben ist durch

Vq ^0 *^0 ^1 ^1 ^2 *^2 ^3 %3

yx QjX x0 -f- a0 xx — a3 ic2 i a2 ^3
2/2 *^2 *^0 ~t~ ^3 «^1 "T" ^"0 *^2 ^1 *^3

2/3 ^3 ^0 — a2 ^1 + ai X2 + a0 #3 (^)

Analoges gilt fur 9 y6 und wir erhalten das Résultat:

Die beiden Quaternionenprodukte

V <IP1 t) ph (10)
sind fur

i (il)
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âquivalent mit den respektiven orthogonalen Transformationen

9 3(y; 9 %>p (12)

deren Matrizen gegeben sind durch

21

8,-i &2 âo

; 35

b» — b.

-h -h (13)

Zufolge (11) hàngt jede dieser Matrizen von 3 komplexen Parametern ab.
Ùberdies sind beide, wie man unmittelbar feststellt, kontinuierlich in die
Identitàt uberfuhrbar.

Hieraus folgt, daB das Produkt
(14)

eine 6-parametrige und mit der Identitàt stetig zusammenhàngende
Schar von orthogonalen Transformationen, also aile eigentlichen
orthogonalen Transformationen umfaBt. Auf die Ausfûhrung dièses und àhn-
licher ,,Vollstàndigkeitsschlusse" mit Hilfe infinitesimaler Transformationen

kônnen wir hier verzichten.

Wir beweisen nun umgekehrt, daB die Darstellung aller eigentlichen
orthogonalen Transformationen gemàB (14) eindeutig ist, d. h. also, daB

aus
apb=Eztpb (15)

und

entweder

oder
a C und b b

a — c und h — b

folgt.

Zu dem Zweeke multiplizieren wir die Identitàt (15) links mit c* und
reehts mit 6* und erhalten wegen (16)

Hieraus folgt
C*<* bf>* Skalar.
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Also kônnen wir setzen
c*a A • <x*a,

wo A ein geeigneter Skalar ist, oder

(c* — Aa*)a o.

Reehtsmultiplikation mit a* ergibt

und daraus folgt
C — A • a 0.

Demnach gilt
ce* Paa* oder A ± 1

und wir erhalten schlieBlich c ± a und auf analoge Weise î> ± 6,

woraus die Eindeutigkeit der Darstellung (14) abgesehen vom Vor-
zeichen folgt.

Wir gehen jetzt von der Quaternionen-Darstellung (14) ùber zur
Matrizendarstellung und haben dabei besonders auf die assoziative
Zusammenfassung im Produkt <xyfc zu achten. Die Âquivalenz der Dar-
stellungen (10) und (12) ergibt in leichtverstàndlicher Schreibweise

Nach dem assoziativen Gesetz (6) folgt also

oder
(17)

Andererseits kônnen wir setzen

ayfc €y

und erfassen damit jede eigentlich orthogonale Matrix S.

Die erreichten Resultate sprechen wir aus als

Sat& 3 : Jede eigentlich orthogonale Matrix S laflt sich bis auf das Vor-
zeichen eindeutig darstellen als das Produkt zweier spezieller, eigentlich
orthogonaler Matrizen 21 und 95, denen folgende Eigenschaft zukommt :

Jedes beliebige 31 ist mit jedem beliebigen 95 vertauschbar.
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Die ftir 21 und 95 in Betracht kommenden Typen sind explicite gegeben
durch die Gleichungen (13) und haben daneben nur noch die Bedingungen
(11), also die Gleichungen

V
zu erfûllen.

Offenbar stimmt Satz 3 mit Satz 1 uberein bis auf die Realitàts-
bedingungen, denen wir uns jetzt zuwenden wollen.

Fur die Realitât der eigentlich orthogonalen Transformationen ist die
Realitât der Matrizen (13) evidentermaBen hinreichend, zufolge der
hier ebenfalls geltenden Vollstândigkeit und Eindeutigkeit der Dar-
stellung (14) aber auch notwendig.

Was nun die komplexen Lorentzmatrizen betrifft, so folgt aus Satz 3

mit Hilfe des Ûbergangs von (1) nach (2) und umgekehrt sofort ein voll-
kommen entsprechender Satz. An Stelle der Matrizen (13) treten dabei
folgende Matrizen:

an % ob-\ V a» v Cvr>

ia^ a§ a3 a2
% a« a3 ^o ~"-~~ a-t

t a% a2 a^ a«

; 95 -h
62 —

i62 i63

h —b,
b0 bx

h b0 (18)

Im Gegensatz zu den Matrizen (13) kônnen dièse Matrizen als zueinan-
der konjugiert komplex angenommen werden, ohne daB die einzelne
Matrix aufhôrt, von 3 komplexen Parametern abzuhângen. Dadurch
erhâlt man als Produkt eine eigentliche und réelle Lorentztransformation,
die von 6 reellen Parametern abhângt. Wir haben also auch hier eine

Darstellung aller eigentlichen reellen Lorentztransformationen. Wieder-
um folgt aus der Eindeutigkeit der Produktdarstellung, daB die Faktoren
notwendigerweise konjugiert komplex sind. Damit ist der an die Spitze
gestellte Einstein-Mayer'sche Satz vollstândig bewiesen.

Die Quaternionenalgebra scheint auch bei der Aufstellung von In-
varianten gewisse Vorteile zu bieten. Dabei ist man allerdings genôtigt,
sâmtliche Entwicklungen fur orthogonale Transformationen durch-
zufuhren und jeweils erst am SchluB mit Hilfe der Transformation
xQ it zu den Lorentztransformationen tiberzugehen.

Wir erlâutem dièses Verfahren, soweit es sich im Gebiet der
orthogonalen Transformationen abspielt. Bei Beschrânkung auf orthogonale
Koordinaten fâllt die Unterscheidung zwischen oberen und unteren
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Indices bekanntlich weg. Wir stellen jetzt also jede orthogonale
Transformation y' fëy quaternionenmâBigdardurchy' ayfcunddefinieren:

1. Ein Vektor y (x0, x1} x2, xz) ist ein Quaternion, das sich gemâB der
Gleichung

T' <*?& (19)
transformiert.

2. Ein LinksveJctor y (asïï, xT, :%, %) ist ein Quaternion, das sieh
gemâB

|' <*y (19a)
transformiert.

3. Ein Rechtsvektor y (#¥, #T, #¥, #=) ist ein Quaternion, das sich gemâB

l'=lt> (196)
transformiert. m

Die in (19), (19a) und (196) vorkommenden a und h mûssen natûrlich
immer ein und derselben orthogonalen Matrix S entspringen.

Nun kann man in der ûblichen Weise gemischte Tensoren beliebig hoher
Stufe durch komponentenweise Multiplikation und Addition der defi-
nierten Vektortypen bilden. Dabei gilt insbesondere auch

Sat& <â: Ist
F (y, ç,|, ...)==»< * r--- xi yi 27

eine invariante Multilinearform, so bilden ihre Koeffizienten at^f einen
Tensor von dem durch die Indizes bezeichneten Typus und umgekehrt.

Die Quaternionenmultiplikation bildet offenbar einen Invarianten er-
zeugenden ProzeB. Aus (19), (19a) und (19b) in Verbindung mit (7)
findet man unmittelbar die in der Einstein-Mayer'schen Théorie grund-
legenden invarianten Quaternionen

l* ' £ f (2°)
und

f Vf |9* |. (21)

Jedes dieser Quaternionen liefert 4 invariante Formen und damit nach
Satz 4 ebenso viele numerisch invariante Tensoren. Man erhâlt so aus (20)
und (21) je 4 Tensoren der Typen a-^ ^|= aTkf â~kf. Diebeiden
aus (21) entspringenden Typen sind aber âquivalent, wie man aus der
Gleichung (y 9* $)* j* 9 y* ersieht.
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Die Berechnung des ersten Ausdrucks ans (20) ergibt auf Grund von
(3*) und (5) die invarianten Bilinearformen

% yT + x-z y-, — x2 yè

% yt + x^y2 + xT yT
(22)

Der Vergleich mit den Einstein-Mayer'schen Pormeln (41) und (41a)
nach vollzogener Substitution x0 ix-^\ y~ iyT zeigt, daB die Links -

vektoren den Semivektoren 2. Art entsprechen. Die Querstriche uber
den Indizes waren also zu verdoppeln.

Wie schon bemerkt, bilden die Koeffizienten der Formen (22) spezielle
numerische invariante Tensoren. Durch lineare Kombination gewinnt
man aus ihnen diejenigen Tensoren, denen bei Einstein und Mayer die
Tensoren c= 2) entsprechen. Analog ergeben sich au& den Invarianten
(21) die allgemeinen dreistufigen Tensoren.

Die Anwendung von Satz 4 auf (22) gestattet aber auch den SchluB,
daB die vier Reihen

x0, xT, x2, x^) (230)

Xç, #¥, x^, xT) (232)

x^, x2, xT, x^) (233)

simultan ein System von Linksvektoren bilden. Dasselbe gilt somit auch
fur aile linearen Kombinationen dieser Reihen. Addiert man also das

(— i)-fache der zweiten Reihe zur ersten, so erhalt man den speziellen
Linksvektor

i (x,—ix^)) (24)

dessen Komponenten die Relationen

erfullen. Zur Beschreibung dièses Linksvektors genugen demnach
zwei Komponenten. Analog erhalt man durch Addition der i-fachen
zweiten Reihe zur ersten den Linksvektor

2) A. Einstein und W. Mayer: Die Diracgleiehungen fur Semivektoren.
Amsterdamer Berichte 1933.
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(25)

mit den Relationen

Die unabhângigen Komponenten der Linksvektoren (24) und (25)
konstituieren also zwei 2-komponentige GrôÔen — sogenannte Spinoren —
die durch den Linksvektor (230) bestimmt sind und ihrerseits denselben
bestimmen.

(Eingegangen den 8. September 1934.)
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