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Sur les corps potentiellement équivalents et
les fonctions harmoniques multiformes (suite),

par R. WAVRE, Genéve.

Rappel.

Cet article fait suite & celui qui est paru au volume VI, p. 317 de cette
Revue. Nous envisagions une surface § analytique et deux fonctions g et f
holomorphes sur § frontiére comprise. Puis nous construisions le potentiel
suivant qui sera dit mixte si aucune des deux fonctions ¢ et f n’est iden-

tiquement nulle
1
— (L ‘ﬁ) ds
e _f <r +1 dn )

Nous construisions d’autre part une fonction p dite de passage au travers
de la surface § et qui était définie par la résolution du probléme de
Cauchy-Kowalewska

Apzo;g%:élng sur 8; p=—4anf sur S.

Ce probléme admet une solution et une seule, comme on sait. Le potentiel
U peut alors s’écrire

_ _ 1 r/1dp d5
U=[(p)d8 avec [(p)dS = (7%_20%)4&

Ceci étant, le potentiel prolongé de P en M au travers de 8 dans le sens
de la normale positive, donne lieu & la relation

Upsyu = Uy + p,

et la fonction de passage p est en méme temps une fonction période pour
le potentiel U et attachée & la frontiére de S.

Puis nous avions a la fin de l’article précédent montré que certaines
couches ne pouvaient pas étre déformées sans que le potentiel qu’elles
créent ne varie au voisinage de tout point de ’espace.

Comme précédemment, nous dirons que deux corps sont équivalents
§’ils créent le méme potentiel newtonien au voisinage d’un point de ’es-
pace.
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§ 7. Sur Udquivalence de certains couches analytiques.

Soient § et §’ deux couches analytiques, P un point de l’espace, puis
p et p’ les fonctions de passage au travers des deux couches. Ceci étant,
supposons les potentiels égaux au voisinage de P

J@dS= [(p)as.

Alors, il est trés simple d’exclure certaines configurations topologiques
formées par I’ensemble des deux surfaces.

a) Il est impossible d’atteindre a partir P la frontiére de I'une des
couches (S) en évitant S et S’ et la frontiére de S’. En effet, le long
d’un tel chemin, le potentiel créé par S’ resterait harmonique dans un
petit canal qui contiendrait tout le chemin & son intérieur. Tandis que le
potentiel créé par S se ramifierait au voisinage de la frontiére de S.

b) Si les deux surfaces S et §° forment par leur réunion une seule sur-
face fermée divisant I’espace en deux régions seulement, 1'une intérieure 1,
lautre extérieure e, elles ne pourraient étre chargées de simples couches;
et si ces couches sont doubles, les densités sont constantes et égales.

En effet, si P est dans e, alors, en traversant la surface S, 'on aura
dans 1

JpdS+p= [(p)ds
et en traversant la surface §’, I’on aurait dans ¢
JpydS= [(p)ds —p.

Les fonctions de passage seraient donc identiques p = p’ et harmoniques
dans toute la région . Si les couches sont simples, ’on aurait p = 0 sur §
et sur 8’ d’ol1 p = 0 et les couches seraient inexistantes.

Si les couches sont doubles, I’on aurait g-g =0 sur S+ 8 dou

p = constant; le potentiel commun serait a nouveau 1’angle solide sous
lequel apparaissent les deux surfaces vues de 'extérieur e.

Si P est dans 7, I’on gagnerait ’espace extérieur e en traversant soit §
soit 8’ et ’on aurait dans e l'identité de p et de p’. Si les couches sont
simples, p est identiquement nulle parce que nulle sur S 4 §’ et a

Pinfini. Si les couches sont doubles, I’on aurait encore g%’ =0 sur
S 4+ 8’ mais p devant étre nulle a l'infini, la fonction de passage serait
identiquement nulle et dans ce cas, les deux doubles couches ne sauraient

exister. C. Q. F. D.
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On pourrait exclure d’autres configurations particuliéres sans de gran-
des difficultés. Mais, pour étre bref, je ne saurais mieux résumer mes
recherches dans cet ordre d’idées qu’en formulant la proposition suivante:

c) Si deux simples couches ou deux doubles couches analytiques sont
équivalentes :

1° ou bien, elles sont toutes deux fermées;
20 ou bien, une des fonctions de passage est multiforme;
o 3% ou bien, il y a réduction aux angles solides.

Montrons tout d’abord que les trois cas sont possibles. En effet, 19, deux
surfaces sphériques homogénes concentriques et de méme masse totale
sont équivalentes puisqu’elles créent le méme potentiel en dehors de la
plus grande des deux spheres.

20 Soient S une surface ouverte et g une densité positive; formons le
potentiel

U — f--g— as.
r

Puis prenons une surface 8’ sur laquelle U = K. Si la constante K est
suffisamment petite, la surface S’ est fermée et contient S & son intérieur.
Formons alors

1 1 dU ,
V=gl v m S
On a, c’est bien connu, V = U a l'extérieur de S’ et les deux corps
chargés S et S’ sont bien équivalents. Mais la fonction de passage du
potentiel V est U — K et c’est une fonction multiforme, puisque le
potentiel U se ramifie autour de la frontiére de S.

3% Deux couches doubles ouvertes de méme frontiére et de méme
densité donnent le méme potentiel au voisinage du point a l'infini et cette
fonction n’est autre que 1’angle solide sous lequel apparaissent les deux
surfaces.

Ces différents cas étant reconnus possibles, il suffit pour démontrer le
théoréme, de faire voir ceci: si 'une des surfaces est ouverte et si les
fonctions de passage sont uniformes, il y a réduction a 'angle solide.

Démonstration. Partons du point P au voisinage duquel nous avions
[(pdS=[()ds.

Puis allons jusqu’a un point de la frontiére F' d’une des surfaces par un
chemin qui évite tout autre point frontiére. Pour cela, il nous faudra
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franchir I'une ou l'autre des surfaces et peut-étre les deux. Supposons
que l'on franchisse S, 'on aura de 'autre c6té

Jp)dS+p= [(p)ds

et la fonction de passage sera harmonique dans la nouvelle région atteinte.
S’il faut encore traverser une surface, S’ par exemple, on aurait dans la
troisiéme région

IpdS+p= [(p)dS + ¢

et la différence p — p’ serait harmonique dans cette troisieme région.

En parvenant au point de la frontiére, on aurait une relation de la forme

[d8= [(p)dS +np+n' p.

Mais, pour un circuit décrit autour de la frontiére ¥, le premier membre
se ramifierait et il n’en serait de méme du second que si F' appartenait
aussi & la frontiére F’ de §’.

Ceci est di au fait que les fonctions de passage p et p’ sont uniformes.

Les frontieres de S et de S’ devraient coincider et les fonctions période
devraient étre identiques pour un circuit décrit autour de la frontiére
commune. Ces fonctions période ne sont autres que les fonctions de
passage. L’on aurait donc p = p’.

Revenons alors au point de départ. L’ensemble S + 8’ qui forme une
surface fermée, divise I’espace en deux régions au moins. De P en traver-
sant I’'une des surfaces, § par exemple, I’'on aura comme précédemment

Jp)ydS+p= [(p)ds.

La fonction p sera harmonique dans la nouvelle région limitée & I’ensemble
S + §’. Si le potentiel est simple, I’'on a p = 0 a la frontiére de cette
région, d’o1 p = 0 et les distributions envisagées sont impossibles. Si le

potentiel est de double couche, I’on aurait g—g = 0 a la frontiére de la
région. Si cette derniére est connexe du point & l'infini, I’'on aura encore
p = 0 et les doubles couches sont impossibles; mais si la région o 'on est
parvenu ne peut pas étre connexe du point & I'infini, on pourrait avoir
p = constante, d’ol réduction a 1’angle solide. Les résultats des § 6 et 7
subsistent pour les potentiels logarithmiques et les courbes planes chargées

de simples ou de doubles couches.
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§ 8. Détermination d’une certaine fonction harmonique par ses singularités.

On sait qu'une fonction harmonique dans un domaine est toujours
représentable par un potentiel mixte étendu a une surface fermée, située
dans ce domaine. La surface peut d’ailleurs étre choisie arbitrairement;
elle est sans rapport avec les singularités de la fonction harmonique. Le
véritable intérét du probléme inverse de la théorie du potentiel est de
trouver d’autres corps que ceux-la qui engendrent une fonction harmo-
nique donnée. Il serait intéressant de trouver des corps générateurs qui
fussent en rapport avec les singularités de la fonction donnée. Dans cet
esprit, nous voudrions montrer que certaines fonctions harmoniques dont
on donne une ligne de ramification et la fonction période correspondante
peuvent étre engendrées par des couches mixtes, ouvertes, qui s’appuyent
sur la ligne de ramification.

Soient ¢ une branche d’une fonction harmonique qui se ramifie autour
d’une courbe fermée simple C et p la fonction période relative a un circuit
fermé décrit autour de C. 1l est supposé qu’une fois tracée une surface S
s’appuyant sur C' la branche ¢ est harmonique et bornée dans tout ’espace
dont on a retranché la surface S, qu’elle est prolongeable au travers de
cette surface et que la fonction période p est harmonique dans un volume
qui contient la surface S a son intérieur. En plus, la branche ¢ est supposée
s’annuler a 'infini. Dans ces conditions, la branche envisagée n’est autre
que le potentiel mixte dérivant de la fonction de passage p et pris sur S.
En effet, la fonction harmonique est entiérement déterminée par les carac-
téres précédents d’avoir une branche bornée nulle & 'infini qui n’admet
aucune singularité tant qu’on ne traverse pas la coupure §, qui se ramifie
autour de la courbe fermée C et admet la fonction période donnée.
S’il y avait deux fonctions satisfaisant a ces conditions, g et ¢’, 'on aurait
en traversant S et en décrivant un circuit autour de C et suffisamment
voisin de cette courbe:

Pyusy = Pu + Pu O sy =9 u+ Pu

et par soustraction
@ —9 sy =@—9 )

La fonction ¢ — ¢’ serait univoque au voisinage de C, elle serait bornée
aussi et par conséquent la ligne C serait une singularité impropre et la
fonction ¢ — ¢’ serait donc encore harmonique sur la courbe C elle-
méme. Elle n’admet d’autre part aucune autre singularité dans 1’espace
entier, et comme elle est nulle 4 l'infini, cette différence serait identique-
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~ment nulle, ce qui signifie qu’il n’y a qu’une fonction qui satisfait aux
conditions imposées. Or le potentiel

U= [(p)d8

satisfait a ces conditions. Il représente donc la fonction qui au début
n’était définie que par ses singularités.

§ 9. Les fonctions périodes des divers ordres.

Soit y un circuit fermé, par exemple une circonférence. Décrivons y
toujours dans le méme sens et soient @,, D,, ... les différentes branches
d’une fonction @ obtenues en faisant une fois le tour, deux fois le tour, ete.
du circuit & partir d'une détermination convenablement choisie @,.

Posons

(1) Dy — D=7, Po— Dy =1pPp, ... &,— D,y =1p,, ....

Si I’on faisait le tour en sens inverse, on aurait des fonctions @_;, @_,, ...
et des différences p,, p—;, - ... Nous appellerons la fonction p fonction
période. Elle peut étre identiquement nulle, alors @ est uniforme, p

peut étre uniforme ou multiforme.
Nous pouvons former la fonction période z de p ; elle sera dite fonction

période du second ordre de @. L’on aura

Pa—P1= Ty Pg—— P2 = Tgy ooe Pty — P = Ty v+«

On formerait de la méme maniére les fonctions période de tout ordre de la
fonction primitive ®.

L’addition des ¢ premiéres équations (1) donne immédiatement
(2) D, — Dy=1p, + ... + ps
Soit alors 7 le plus petit nombre entier pour lequel la fonction
(3) Lt Pt e +Pi=%

est uniforme le long de y. On peut avoir ¢ égal & un nombre entier ou
1 inexistant. Si 4 existe, I’on a

(4) &, — Py=u dout Py— &, =u dout Oy — D)= Ku.
Alors: 1° Si ¢ existe, p n’a que ¢ branches distinctes et réciproquement.
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Car en faisant un tour de plus, I'on aurait
Po+Ps+ oo + P+ P =u dout p = p.,.
La réciproque est immédiate.

29 Si 4 existe et si w =0, alors @ n’a que ¢ branches distinctes, et
réciproquement. Il est évident par (4) que @ n’a pas plus de ¢ branches
distinctes, elle n’en a pas moins non plus, car alors u serait identiquement
nul pour 2° < 1, ce qui est contraire & la définition de ¢. La réciproque est
encore immédiate.

3° Si ¢ existe et si % n’est pas identiquement nul, alors @ a une infinité
de branches qui se répartissent par groupes de ¢ branches et @ n’est pas
bornée. En effet, on a, quel que soit I’entier positif K:

Oy — Py=Ku, Pgiy;— P=Ku, vor Pritior— @iy =Ku.

49 Si @ est bornée, ses fonctions période de tous ordres sont bornées.
En effet, si

Max | @ | <M alors Max |p| <2M, Max|n| <4 M, ...

5% Si @ a 1 branches distinctes et ¢ seulement, il en est de méme de ses
périodicités des divers ordres. En effet, la somme p; + ... +p,/ =V
pour ¢’ < 4 ne peut étre uniforme, car si V est nulle identiquement @
n’aurait que 4 branches distincte et si V n’est pas nulle identiquement,
® aurait une infinité de branches. D’autre part, 'on a V = 0 pour " = 1,
de sorte que p posséde ¢ branches et ¢ seulement. Il en est alors de méme
de = etec.

60 St D est bornée, alors @ ainst que ses fonctions période des divers ordres
n'ont qu'un méme nombre fini de branches distinctes, ou bien, toutes ces
fonctions ont une infinité de branches distinctes.

En effet, en vertu de 59, il ne reste qu’a exclure le cas ol @ aurait une
infinité de branches et p un nombre fini; mais 1 existerait avec % non
identiquement nulle et @ ne serait pas bornée. Donc p aurait aussi une
infinité de branches distinctes, et comme p est bornée, il en serait de
meéme par 4° de z ete.

§ 10. Remarques.

a) Voici un exemple d’une fonction non harmonique identique a sa
fonction période: 6 étant I'arc d’une circonférence de rayon un

6
®=e2a " dot B, =2 D, don p, = B, — Dy = D,
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Il sérait intéressant de frouver ume fonction harmonique identique & sa
fonction période.

b) Envisageons une fonction harmonique & l'intérieur d’un tore 7.
Comme précédemment, ses différentes branches s’obtiendront en faisant
une fois le tour, deux fois le tour, ete. du tore, et cela sans en sortir. Les
fonctions période de tous ordres p, =, ... sont harmoniques dans 7.
Supposons les fonctions p;, p,, ... positives dans T et envisageons la
somme

o=p 4+ Pyt ..

Alors si ¢ est infini en un point intérieur a 7', les fonctions @, convergent
uniformément vers l'infini dans un domaine 7" fermé, entiérement inté-
rieur & 7'. Si ¢ est fini en un point intérieur & 7', alors les @, convergent
uniformément dans 7" vers une fonction limite, harmonique dans 7.
Cela résulte d’'un théoréeme bien connu de Harnack.

c¢) On sait, en vertu d’un théoreme de MM. Picard et Lebesgue sur les
singularités impropres, qu’une fonction harmonique uniforme et bornée
au voisinage d’'une courbe fermée simple (réguliére) est forcément har-
monique sur la courbe elle-méme. (Voir, par exemple, Kellogg, page 271).

De sorte qu’une fonction harmonique et bornée au voisinage d’une telle
ligne singuliére posséde sur tout circuit faisant le tour de cette ligne, les
propriétés mises en évidence sous la rubrique 6 du § précédent.

§ 11. Exemple d’un potentiel a fonction de passage singuliére.

La fonction suivante est harmonique dans le plan repéré au moyen
des coordonnées polaires g et 0, on le vérifie aisément,

b O
p = o} sin =

Elle posséde deux déterminations distinctes et deux seulement relative-
ment au point de ramification ¢ = 0. Formons alors le potentiel suivant
pris sur le segment de droite 0 <p <1, 6 = 0:

1 rridp dLr
U =5, o<az‘ﬁL’”'—p‘a7)d9-

La fonction p étant nulle sur ce segment, il ne reste que le potentiel de
simple couche et I’on trouve facilement
1 M1

—_—.-4—7; OVQ—

Uo Lr dg.
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Cette fonction est parfaitement bien déterminée en chaque point du plan.
Décrivons un circuit autour de l'origine et qui traverse le segment,
la fonction de passage sera p et I'on aura pour la seconde branche

£, 0

2 .
Apreés deux tours, 'on trouvera une fonction U, qui coincidera avec la
fonction U, primitive, car on a

1 1
U,=U,+ o sin%+ o sin (g—}-ﬂ) = U,.

Tout ceci est conforme a la théorie du § 9. Ici 2 = 2 et w = 0. Mais cet
exemple ne reléve pas de la théorie du début, §§ 1, 2; puisque la densité
du potentiel de simple couche n’est pas holomorphe & l’origine, qui est
une des frontiéres du corps générateur.

L’on formerait un exemple analogue avec n branches en prenant pour

fonction période
1

p=gnsin_-

La branche initiale serait alors donnée par le potentiel

1
U 0— m o » Lr d Q-

Autour de l'origine, il n’y a que » branches qui se ramifient, mais
chacune de ces branches vient se ramifier autour du point p =1 6 = 0
et donne lieu, par prolongement autour de ce point, & une infinité de
branches; car la fonction période p est harmonique et uniforme au
voisinage de ce point-la.

Dans le cas de 1’espace repéré par les coordonnées semi-polaires g, 6, 2
prenons la méme fonction période indépendante de z et par conséquent
encore harmonique

1
- 6

— o" gin — -
p=¢" sin —

Elle admet la ligne critique ¢ = 0 c’est-a-dire ’axe des z. Enfin, formons
le potentiel
Uy= [(p)d8

Pintégrale étant étendue au carré S: 6 =0, 0 <o <1, 02K 1.
Ce potentiel se réduit d’ailleurs &
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1
U, — g—ﬁ——ld f dz

4n7z

Pour un circuit décrit autour du segment 0 1 de ’axe des z et qui traverse
le carré, la fonction prolongée n’admet que n déterminations distinctes.
Autour des autres arétes du carré, la fonction prolongée admet une
infinité de branches. Et enfin, un chemin en hélice qui traverserait le
carré, puis tournerait autour de I’axe 2z sans traverser & nouveau le carré
donnerait tout d’abord

.0
puis

1
U,=U,+ gﬁ'sine—tfn,

car la fonction période se ramifierait seule pour le dernier circuit.

(Regu le 1°* septembre 1934.)
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