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Sur les corps potentiellement équivalents et
les fonctions harmoniques multiformes (suite),

par R. Wavre, Genève.

Rappel.

Cet article fait suite à celui qui est paru au volume VI, p. 317 de cette
Revue. Nous envisagions une surface S analytique et deux fonctions g et /
holomorphes sur S frontière comprise. Puis nous construisions le potentiel
suivant qui sera dit mixte si aucune des deux fonctions g et f n'est
identiquement nulle

Nous construisions d'autre part une fonction p dite de passage au travers
de la surface S et qui était définie par la résolution du problème de

Cauchy-Kowalewska

A p 0; ~- 4 n g sur S; p — 4 n f sur S.

Ce problème admet une solution et une seule, comme on sait. Le potentiel
U peut alors s'écrire

Ceci étant, le potentiel prolongé de P en M au travers de S dans le sens
de la normale positive, donne lieu à la relation

et la fonction de passage p est en même temps une fonction période pour
le potentiel U et attachée à la frontière de S.

Puis nous avions à la fin de l'article précédent montré que certaines
couches ne pouvaient pas être déformées sans que le potentiel qu'elles
créent ne varie au voisinage de tout point de l'espace.

Comme précédemment, nous dirons que deux corps sont équivalents
s'ils créent le même potentiel newtonien au voisinage d'un point de
l'espace.
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§ 7. Sur l'équivalence de certains couches analytiques.

Soient 8 et 8' deux couches analytiques, P un point de l'espace, puis
p et p' les fonctions de passage au travers des deux couches. Ceci étant,
supposons les potentiels égaux au voisinage de P

Alors, il est très simple d'exclure certaines configurations topologiques
formées par l'ensemble des deux surfaces.

a) II est impossible d'atteindre à partir P la frontière de l'une des
couches (8) en évitant S et Sf et la frontière de S'. En effet, le long
d'un tel chemin, le potentiel créé par 8' resterait harmonique dans un
petit canal qui contiendrait tout le chemin à son intérieur. Tandis que le

potentiel créé par S se ramifierait au voisinage de la frontière de S.

b) Si les deux surfaces S et S' forment par leur réunion une seule
surface fermée divisant l'espace en deux régions seulement, l'une intérieure i,
l'autre extérieure e, elles ne pourraient être chargées de simples couches ;

et si ces couches sont doubles, les densités sont constantes et égales.

En effet, si P est dans e, alors, en traversant la surface 8, l'on aura
dans i

p= S(p')d8'

et en traversant la surface S', l'on aurait dans i
!(p)d8= J(p')dS'-p'.

Les fonctions de passage seraient donc identiques p p' et harmoniques
dans toute la région i. Si les couches sont simples, l'on aurait p 0 sur 8
et sur 8' d'où p 0 et les couches seraient inexistantes.

Si les couches sont doubles, l'on aurait -~- 0 sur 8 + 8' d'où
an

p constant ; le potentiel commun serait à nouveau l'angle solide sous

lequel apparaissent les deux surfaces vues de l'extérieur e.

Si P est dans i, l'on gagnerait l'espace extérieur e en traversant soit 8
soit S' et l'on aurait dans e l'identité de p et de p'. Si les couches sont
simples, p est identiquement nulle parce que nulle sur S + S' et à

l'infini. Si les couches sont doubles, l'on aurait encore -y— 0 sur
an

8 + 8' mais p devant être nulle à l'infini, la fonction de passage serait
identiquement nulle et dans ce cas, les deux doubles couches ne sauraient
exister. C. Q. F. D.
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On pourrait exclure d'autres configurations particulières sans de grandes

difficultés. Mais, pour être bref, je ne saurais mieux résumer mes
recherches dans cet ordre d'idées qu'en formulant la proposition suivante :

c) Si deux simples couches ou deux doubles couches analytiques sont
équivalentes :

1° ou bien, elles sont toutes deux fermées ;

2° ou bien, Vune des fonctions de passage est multiforme ;

• 3° ou bien, il y a réduction aux angles solides.

Montrons tout d'abord que les trois cas sont possibles. En effet, 1°, deux
surfaces sphériques homogènes concentriques et de même masse totale
sont équivalentes puisqu'elles créent le même potentiel en dehors de la
plus grande des deux sphères.

2° Soient 8 une surface ouverte et g une densité positive; formons le

potentiel

V-C'-dS.J

Puis prenons une surface S' sur laquelle U K. Si la constante K est
suffisamment petite, la surface S' est fermée et contient S à son intérieur.
Formons alors

V-±fl dUd8'
4t7ij r dn

On a, c'est bien connu, F U à l'extérieur de S' et les deux corps
chargés 8 et 8' sont bien équivalents. Mais la fonction de passage du
potentiel F est U — K et c'est une fonction multiforme, puisque le

potentiel U se ramifie autour de la frontière de S.

3° Deux couches doubles ouvertes de même frontière et de même
densité donnent le même potentiel au voisinage du point à l'infini et cette
fonction n'est autre que l'angle solide sous lequel apparaissent les deux
surfaces.

Ces différents cas étant reconnus possibles, il suffit pour démontrer le
théorème, de faire voir ceci: si l'une des surfaces est ouverte et si les

fonctions de passage sont uniformes, il y a réduction à l'angle solide.

Démonstration. Partons du point P au voisinage duquel nous avions

Ï(p)d8^ $(v')dS'.
Puis allons jusqu'à un point de la frontière F d'une des surfaces par un
chemin qui évite tout autre point frontière. Pour cela, il nous faudra
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franchir Tune au l'autre des surfaces et peut-être les deux. Supposons

que Ton franchisse 8, Ton aura de l'autre côté

j(p)dS + p $(p')dS'

et la fonction de passage sera harmonique dans la nouvelle région atteinte.
S'il faut encore traverser une surface, S' par exemple, on aurait dans la
troisième région

S + p= j(P')dS' + p'

et la différence p — p' serait harmonique dans cette troisième région.

En parvenant au point de la frontière, on aurait une relation de la forme

8= j(p')dS' +np + n' p'.

Mais, pour un circuit décrit autour de la frontière F, le premier membre
se ramifierait et il n'en serait de même du second que si F appartenait
aussi à la frontière F' de 8'.

Ceci est dû au fait que les fonctions de passage p et p' sont uniformes.

Les frontières de 8 et de 8' devraient coïncider et les fonctions période
devraient être identiques pour un circuit décrit autour de la frontière
commune. Ces fonctions période ne sont autres que les fonctions de

passage. L'on aurait donc p^p'.
Revenons alors au point de départ. L'ensemble 8 + S' qui forme une

surface fermée, divise l'espace en deux régions au moins. De P en traversant

l'une des surfaces, 8 par exemple, l'on aura comme précédemment

La fonction p sera harmonique dans la nouvelle région limitée à l'ensemble
8 + 8'. Si le potentiel est simple, l'on a p 0 à la frontière de cette
région, d'où p 0 et les distributions envisagées sont impossibles. Si le

potentiel est de double couche, l'on aurait ~- 0 à la frontière de la

région. Si cette dernière est connexe du point à l'infini, l'on aura encore

p o et les doubles couches sont impossibles ; mais si la région où l'on est

parvenu ne peut pas être connexe du point à l'infini, on pourrait avoir

p constante, d'où réduction à l'angle solide. Les résultats des § 6 et 7

subsistent pour les potentiels logarithmiques et les courbes planes chargées
de simples ou de doubles couches.
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§ 8. Détermination d'une certaine fonction harmonique par ses singularités.

On sait qu'une fonction harmonique dans un domaine est toujours
représentable par un potentiel mixte étendu à une surface fermée, située
dans ce domaine. La surface peut d'ailleurs être choisie arbitrairement;
elle est sans rapport avec les singularités de la fonction harmonique. Le
véritable intérêt du problème inverse de la théorie du potentiel est de

trouver d'autres corps que ceux-là qui engendrent une fonction harmonique

donnée. Il serait intéressant de trouver des corps générateurs qui
fussent en rapport avec les singularités de la fonction donnée. Dans cet
esprit, nous voudrions montrer que certaines fonctions harmoniques dont
on donne une ligne de ramification et la fonction période correspondante
peuvent être engendrées par des couches mixtes, ouvertes, qui s'appuyent
sur la ligne de ramification.

Soient y une branche d'une fonction harmonique qui se ramifie autour
d'une courbe fermée simple C et p la fonction période relative à un circuit
fermé décrit autour de C. Il est supposé qu'une fois tracée une surface S

s'appuyant sur C la branche 9? est harmonique et bornée dans tout l'espace
dont on a retranché la surface S, qu'elle est prolongeable au travers de

cette surface et que la fonction période p est harmonique dans un volume
qui contient la surface S à son intérieur. En plus, la branche <p est supposée
s'annuler à l'infini. Dans ces conditions, la branche envisagée n'est autre
que le potentiel mixte dérivant de la fonction de passage p et pris sur S.

En effet, la fonction harmonique est entièrement déterminée par les caractères

précédents d'avoir une branche bornée nulle à l'infini qui n'admet
aucune singularité tant qu'on ne traverse pas la coupure S, qui se ramifie
autour de la courbe fermée C et admet la fonction période donnée.
S'il y avait deux fonctions satisfaisant à ces conditions, 99 et 9/, l'on aurait
en traversant 8 et en décrivant un circuit autour de C et suffisamment
voisin de cette courbe :

<Pmsm =<Pm + Pm Vmsm Vm + Pm

et par soustraction
(<P — <p')msm (<P — v')m-

La fonction 9? — 9/ serait univoque au voisinage de (7, elle serait bornée
aussi et par conséquent la ligne C serait une singularité impropre et la
fonction 92 — 9/ serait donc encore harmonique sur la courbe G elle-
même. Elle n'admet d'autre part aucune autre singularité dans l'espace
entier, et comme elle est nulle à l'infini, cette différence serait identique-
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ment nulle, ce qui signifie qu'il n'y a qu'une fonction qui satisfait aux
conditions imposées. Or le potentiel

satisfait à ces conditions. Il représente donc la fonction qui au début
n'était définie que par ses singularités.

§ 9. Les fonctions périodes des divers ordres.

Soit y un circuit fermé, par exemple une circonférence. Décrivons y
toujours dans le même sens et soient &v $2, les différentes branches
d'une fonction 0 obtenues en faisant une fois le tour, deux fois le tour, etc.
du circuit à partir d'une détermination convenablement choisie &0.
Posons

(1) 01—0O pv ®2—&x=:p2,... 0n—0n_1 Pn,

Si l'on faisait le tour en sens inverse, on aurait des fonctions 0_1? 0_2,
et des différences p0, p-ly Nous appellerons la fonction p fonction
période. Elle peut être identiquement nulle, alors 0 est uniforme, p
peut être uniforme ou multiforme.

Nous pouvons former la fonction période n de p ; elle sera dite fonction
période du second ordre de 0. L'on aura

Pi — Pi *H> Ps — P2 n2> -- Pn+l — Pn nn....
On formerait de la même manière les fonctions période de tout ordre de la
fonction primitive 0.

L'addition des * premières équations (1) donne immédiatement

(2) 0.— 0o p1+ +pt.

Soit alors i le plus petit nombre entier pour lequel la fonction

(3) pt + p2 + + pt u

est uniforme le long de y. On peut avoir i égal à un nombre entier ou
% inexistant. Si i existe, l'on a

(4) 0{ — 0q u d'où 02i — 0i u d'où 0K% — 0o Ku.

Alors : 1° Si i existe, p n'a que i branches distinctes et réciproquement.
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Car en faisant un tour de plus, Ton aurait

P% + Pa + • • • + Pi + Pi+i ^ d'où px pi+v

La réciproque est immédiate.

2° Si i existe et si u 0, alors 0 n'a que i branches distinctes, et
réciproquement. Il est évident par (4) que 0 n'a pas plus de i branches
distinctes, elle n'en a pas moins non plus, car alors u serait identiquement
nul pour i' < i, ce qui est contraire à la définition de i. La réciproque est
encore immédiate.

3° Si i existe et si u n'est pas identiquement nul, alors 0 a une infinité
de branches qui se répartissent par groupes de i branches et 0 n'est pas
bornée. En effet, on a, quel que soit l'entier positif K:

4° Si 0 est bornée, ses fonctions période de tous ordres sont bornées.
En effet, si

Max | 0 | < M alors Max \ p\ < 2 M, Max \ n \ < 4 M,
5° Si 0 a i branches distinctes et i seulement, il en est de même de ses

périodicités des divers ordres. En effet, la somme px + • • • + p/ V

pour i' < i ne peut être uniforme, car si V est nulle identiquement 0
n'aurait que i' branches distincte et si V n'est pas nulle identiquement,
0 aurait une infinité de branches. D'autre part, l'on a V 0 pour V i,
de sorte que p possède i branches et i seulement. Il en est alors de même
de n etc.

6° Si 0 est bornée, alors 0 ainsi que ses fonctions période des divers ordres

n'ont qu'un même nombre fini de branches distinctes, ou bien, toutes ces

fonctions ont une infinité de branches distinctes.

En effet, en vertu de 5°, il ne reste qu'à exclure le cas où 0 aurait une
infinité de branches et p un nombre fini; mais i existerait avec u non
identiquement nulle et 0 ne serait pas bornée. Donc p aurait aussi une
infinité de branches distinctes, et comme p est bornée, il en serait de

même par 4° de n etc.

§ 10. Remarques.

a) Voici un exemple d'une fonction non harmonique identique à sa
fonction période : 6 étant l'arc d'une circonférence de rayon un

—12 d'où 01 2 0O d'où p± 0% — 0O #0.
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Il serait intéressant de trouver une fonction harmonique identique à sa
fonction période.

b) Envisageons une fonction harmonique à l'intérieur d'un tore ï\
Comme précédemment, ses différentes branches s'obtiendront en faisant
une fois le tour, deux fois le tour, etc. du tore, et cela sans en sortir. Les
fonctions période de tous ordres p, ny sont harmoniques dans T.
Supposons les fonctions pv p2, positives dans T et envisageons la
somme

<* Pi + P% + • • •

Alors si a est infini en un point intérieur à T, les fonctions &n convergent
uniformément vers l'infini dans un domaine 5P' fermé, entièrement
intérieur à T. Si or est fini en un point intérieur à T, alors les &n convergent
uniformément dans T' vers une fonction limite, harmonique dans T.
Cela résulte d'un théorème bien connu de Harnack.

c) On sait, en vertu d'un théorème de MM. Picard et Lebesgue sur les

singularités impropres, qu'une fonction harmonique uniforme et bornée
au voisinage d'une courbe fermée simple (régulière) est forcément
harmonique sur la courbe elle-même. (Voir, par exemple, Kellogg, page 271).

De sorte qu'une fonction harmonique et bornée au voisinage d'une telle
ligne singulière possède sur tout circuit faisant le tour de cette ligne, les

propriétés mises en évidence sous la rubrique 6 du § précédent.

§ 11, Exemple d'un potentiel à fonction de passage singulière.

La fonction suivante est harmonique dans le plan repéré au moyen
des coordonnées polaires q et 6, on le vérifie aisément,

p q% sin -
Elle possède deux déterminations distinctes et deux seulement relativement

au point de ramification q 0. Formons alors le potentiel suivant
pris sur le segment de droite O^^l, 0 0:

_. 1 r1 dp T dLr\
0 2nJ o \dn r dn

La fonction p étant nulle sur ce segment, il ne reste que le potentiel de

simple couche et l'on trouve facilement

\ r1 1

4nJ o Yq
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Cette fonction est parfaitement bien déterminée en chaque point du plan.
Décrivons un circuit autour de l'origine et qui traverse le segment,

la fonction de passage sera p et l'on aura pour la seconde branche

TT TT _!_ * •
6

(J1 t/0 -f- Q sm"ô •

Après deux tours, l'on trouvera une fonction U2 qui coïncidera avec la
fonction Uo primitive, car on a

1 û i / r\
TT T-T ¥ • " 2 • / "
u2=U0 + q sm— + q sin I— +

Tout ceci est conforme à la théorie du § 9. Ici i 2 et u 0. Mais cet
exemple ne relève pas de la théorie du début, §§ 1, 2; puisque la densité
du potentiel de simple couche n'est pas holomorphe à l'origine, qui est
une des frontières du corps générateur.

L'on formerait un exemple analogue avec n branches en prenant pour
fonction période

1 0
p z= g n gin —

La branche initiale serait alors donnée par le potentiel

TT l C1 ^ T J[/ =- q n Lr dp.

Autour de l'origine, il n'y a que n branches qui se ramifient, mais
chacune de ces branches vient se ramifier autour du point q 1 0 0

et donne lieu, par prolongement autour de ce point, à une infinité de

branches; car la fonction période p est harmonique et uniforme au
voisinage de ce point-là.

Dans le cas de l'espace repéré par les coordonnées semi-polaires q, 0, z

prenons la même fonction période indépendante de z et par conséquent
encore harmonique

V Qn sin — •

Elle admet la ligne critique q 0 c'est-à-dire l'axe des z. Enfin, formons
le potentiel

Uo= j(p)dS
l'intégrale étant étendue au carré 8: 0 0, 0<@<l, 0<z<l.
Ce potentiel se réduit d'ailleurs à
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0 ±7171J o J o r

Pour un circuit décrit autour du segment 0 1 de l'axe des z et qui traverse
le carré, la fonction prolongée n'admet que n déterminations distinctes.
Autour des autres arêtes du carré, la fonction prolongée admet une
infinité de branches. Et enfin, un chemin en hélice qui traverserait le
carré, puis tournerait autour de l'axe z sans traverser à nouveau le carré
donnerait tout d'abord

U u è gin l1 — o + Q n sm
n

>

puis
1 Û _j_ Ç)w

JJ9 Un 4- pn sin0 ' - n

car la fonction période se ramifierait seule pour le dernier circuit.

(Reçu le 1er septembre 1934.)
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