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Ùber die Gradteilerzerlegung in gewissen
relativ-ikosaedrischen Zahlkôrpern

Von Max Gut, Zurich

Die vorliegende Arbeit ist die Fortsetzung von zwei in dieser Zeit-
schrift erschienenen Arbeiten1) und bringt die Zerlegung derjenigen
Primideale eines die 5. Einheitswurzeln enthaltenden algebraischen Zahl-
kôrpers k in einem relativ-ikosaedrischen Erweiterungskôrper K, welche
Teiler von 60 sind. Die Untersuchung zeigt aber, daB dièse Zerlegung
stark vom Grundkôrper abhàngt, nâmlich besonders von der absoluten
Ordnung des zu zerlegenden Primideales von k, und ich beschrânke mich
daher hier auf solche Grundkôrper k, deren Relativdifferente in bezug
auf den Kôrper der 5. Einheitswurzeln zu 60 teilerfremd ist.

Als Korollar ergibt sich die notwendige und hinreichende Bedingung
dafur, dafi in der Relativdiskriminanten von K in bezug auf k kein
Primideal p von k auftritt, das ein Teiler von 60 ist, und damit in Ver-
bindung mit einem frïiheren Resultate2) die notwendige und
hinreichende Bedingung dafur, daB die Relativdiskriminante von K in
bezug auf k gleich 1 ist.

Ist p ein Teiler von 3, so kann man die GrôBe x — 123 immer auf eine
solche Form bringen, daB p nicht zugleich im Zâhler und Nenner von
x — 123 aufgeht. Dann teilt p dann und nur dann die Relativdiskriminante

von K in bezug auf k nicht, wenn entweder der Exponent der
Potenz, in der p im Zàhler von x — 123 aufgeht, mindestens gleich 6 und
gerade ist, oder dieser Exponent gleich Null und gleichzeitig der Exponent
der Potenz, in der p im Nenner von x — 123 aufgeht, durch 5 teilbar ist.

Ist p ein Teiler von 2, so kann man die GrôBe x immer auf eine solche
Form bringen, daB p nicht zugleich im Zâhler und Nenner von x aufgeht.
Dann teilt p dann und nur dann die Relativdiskriminante von K in bezug
auf k nicht, wenn entweder der Exponent der Potenz, in der p im Zàhler
von x auftritt, mindestens gleich 12 und durch 3 teilbar ist, oder dieser

Exponent gleich Null, und gleichzeitig der Exponent der Potenz, in der p
im Nenner von x aufgeht, durch 5 teilbar ist.

*) vgl. die Note: tîber die Primidealzerlegung in gewissen relativ-ikosaedrischen

Zahlkôrpern, vol. 4 (1932), pg. 219, zitiert mit N., und: Weitere Unter-
suchungen ùber die Primidealzerlegung in gewissen relativ-ikosaedrischen

Zahlkôrpern, vol. 6 (1933), pg. 47, zitiert mit W.
2) W., S. 48.
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Ist p ein Teiler von 5, so kann man x immer eine solche Form geben,
da8 von den 3 GrôBen: Zâhler von x, Zâhler von x — 123 und Nenner
von x hôchstens eine durch p teilbar ist, und dann lautet die notwendige
und hinreichende Bedingung dafur, da8 p nicht in der Relativdiskrimi-
nanten von K in bezug auf k auftritt, so :

1. Ist der Exponent der Potenz, in welcher p im Zâhler von x auftritt,
positiv, so mu6 er mindestens gleich 10 und 1 (mod. 3) sein.

2. Ist der Exponent der Potenz, in welcher p im Zâhler von x — 123

auftritt, positiv, so mu8 er mindestens gleich 10 und gerade sein.

3. Ist der Exponent der Potenz, in welcher p im Nenner von x auftritt,

positiv und gleich v, so muB er durch 5 teilbar und auBerdem — funfter
x

Potenzrest mod. pv+5 sein.

4. Sind aile die erwâhnten drei Exponenten gleich Null, und ist mit
ganzem y von k und fur à in k mit zu p teilerfremdem Nenner x
^5 _|_ (i — e) <5} ferner (fur positives s) : p8 J x — y6 — 5 y4 — 40 y3, so

2iri

muB 5^5 sein (e e
5

Fur einige Hauptfâlle werden die Untersuchungen nicht weitlâufiger,
wenn man voraussetzt, daB die absolute Ordnung e eines Primteilers p

von 2 oder von 3 in k beliebig, und nicht gerade e 1 genommen wird,
und wir verzichten daher in diesen Fàllen auf die oben erwâhnte Be-

schrânkung des Grundkôrpers3).

8 1.

Ist k ein beliebiger Grundkôrper, der also die 5. Einheitswurzeln nicht
zu enthalten braucht, so entscheidet, wie aus der Tabelle W., Seite 52, zu
entnehmen ist und dort auch schon auf Seite 51 bemerkt wurde, der

Zerlegungstypus in einem Erweiterungskôrper k vom 12. Relativgrade in
bezug auf k (welcher Erweiterungskôrper also zu einer zyklischen Gruppe
von der Ordnung 5 gehôrt U cd?5) jedenfalls immer uber den
Zerlegungstypus in K. In der Folge wird es sich aber als vorteilhaft erweisen,
auch Resolventen 6. Grades der Ikosaedergleichung herbeizuziehen, und
wir geben daher hier zuerst noch die entsprechende Tafel fur den Fall,
daB die Untergruppe U gleich einer Diedergruppe 01O von der Ordnung
10 ist:

8) Umgekelirt wâre es sehr zu begrûfien, wenn eine Darstellung der ganzen Théorie bei
Beschrànkung von k auf den Kôrper der 5. Einheitswurzeln selbst gegeben wiirde, da
hiebei viele Unterfâlle wegfallen und einfache Resultate zu erwarten sind.
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Wahrend wir den Zerlegungstypus der zu 60 teilerfremden Primideale

p von k in der vorangehenden Arbeit unter Verwendung zweier einfacher
Hilfssàtze unmittelbar vermoge der beiden Hauptsatze der Ore'schen
Théorie bestimmten, werden wir in dieser Arbeit ausgiebig Gebraueh
machen von den Newton'schen Polygonen. Dièse Anwendung der
Newton'schen Polygone in der Théorie der algebraischen Zahlkorper
lafit sich folgendermaBen zusammenfassen4):

Es sei / (x) ein normiertes irreduzibles Polynom eines beliebigen
algebraischen Zahlkôrpers k, und K ein dureh eine Wurzel von / (x)

4) O. Ore, Newton'sche Polygone in der Théorie der algebraischen Korper.
Math. Ann., Band 99 (1928), S. 84. Die THëorie ist dort nur durchgefiihrt fur den Fall, dafi
der Grundkorper der rationale Zahlkorper ist. Wir formulieren sie hier fur einen beliebigen
Grundkorper k, da sie sich ofEenbar ubertragen lafit, wobei aber eine explizite Darstellung
wohl eine ziemhche Arbeit erfordern durfte.
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festgelegter Erweiterungskôrper von Je, ferner p irgend ein Primideal
von Je, endlich a eine natûrliche Zahl, die grôBer ist als der Exponent der
PotenZj in der p in der Diskriminante von f (x) aufgeht. Es sei dann

/ (x) Vl (xf1 <p2 (xf2 <p8 (*)'• (mod. p)

die Zerlegung mod. p von / (x) in normierte Primpolynome von k; fur
jedes t 1, 2, s sei mt der Grad von <pt (x)9 und gemâB dem Schône-
mann'schen Satze:

/ (x) &± (x) 02(x) &8 (x) (mod. pa)5

wobei fur jeden Index t:

0t(x)E=(pt(x)at (mod. p).

Dann folgt zunâchst aus dieser Tatsache, da6 das Primideal p in K eine

Idealzerlegung von der Form hat :

wobei die Idéale %t zueinander teilerfremd sind, und die Relativnorm
von 2(f, genommen in K in bezug auf k ist :

Um die weitere Zerlegung eines dieser Idéale 2t^ zu bestimmen, kon-
struiere man das Polygon (tz, cpt (x) von @t (x) oder von / (x), wo n eine
HenseFsche Primzahl in bezug auf p ist, d. h. eine ganze Zahl von &, die
durch p, aber nicht durch p2 teilbar ist. Hat dann unter Weglassung des

Index t die i-te Seite des Newton'schen Polygones von 0 (x) die Lange l{
und die Hôhe hi9 ist ferner

\ S %

so daB (*» *i) 1»

entspricht dieser Seite das Polynom Fi (x, y) vom Grade e{ in y, und hat
dièses die Primpolynomzerlegung (modd. n, q> (x) :

Ft (x, y) FÇ> (x9 y)*{P. Ff (x, y)4°.... Jf {x, y)4? (modd. n,v(z)

so besteht ftir 3t die weitere Zerlegung :
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3t=i7 7J $*\ NKfk(«<?>)

wobei aile Idéale 6^ zueinander teilerfremd sind. Hiebei bedeutet 8 die
Anzahl der Seiten des Newton'schen Polygons und mjl) ist der Grad
von F^p (x, y) als Polynom in y aufgefaBt.

Wenn dann tyl) ein Primidealteiler von 6^ in if ist, so ist der Relativ-
grad von SJJJ** durch mm(7l) teilbar. Ist dann a^ 1, so wird daher S^
gleich einem Primideal *pjl) von if vom Relativgrade w^ und von der
Relativordnung Àt in bezug auf &. Ist bei einer relativ-definierenden
Gleichung / (x) 0 jedes a^ 1, so nennt man / (x) regular in bezug
auf p.

Ein einfacher Kunstgriff gestattet im folgenden oft, regulare Glei-
ehungen mit çp (x) x zu bekommen. Ist namlich das normierte, irre-
duzible, relativ-definierende Polynom / (x) zunachst nicht kongruent
xn (mod. p), wo n der Grad von / (x) ist, so setze man œ x X, wo a> eine
durch p teilbare ganze Zahl von Je ist, dann ist

ein normiertes, irreduzibles, relativ-definierendes Polynom und

/* (X) Xn (mod. p).

Verwendet man dièses Verfahren, so wird fur jedes i die Ordinate des

Newton'schen Polygons (n, x) von / (x), die dem Koeffizienten von xn~~l

entspricht, um Ni erhôht, falls die naturliche Zahl N der Exponent der
Potenz ist, in welcher p in œ aufgeht. Wenn dieser Kunstgriff bei einem
Polynom / (x) zu verwenden ist, so werden wir daher nur sagen: ,,Man
stelle / (x) auf eine Treppe". Wie man nàmlich leicht einsieht, ist die
explizite Durchfuhrung der Substitution co x X uberflûssig, und man
hat nur das Newton'sche Polygon von / (x) schon von vorneherein auf
einer geraden Strecke (,,Treppe") aufzuzeichnen, die durch den Koordi-
natenursprung und einen Gitterpunkt (n, nN) geht, wo n der Grad von
/ (x) und N eine beliebige naturliche Zahl ist.

Man erkennt ferner unmittelbar, daB es bei der Untersuchung einer
relativ-definierenden, normierten Gleichung / (x) 0 nach einem be-

stimmten Primideal p nichts ausmacht, wenn / (x) gebrochene algebrai-
sche Zahlkoeffizienten hat, wenn deren Nenner aile zu p teilerfremd sind,
und wir werden von diesem Umstand bestândig Gebrauch machen, um
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die Darstellung kûrzer zu gestalten. Unter der Potenz, in der p in der
Diskriminanten von / (x) aufgeht, versteht man dann immer die Potenz,
in der es im Zâhler derselben aufgeht.

Mit einer einzigen Ausnahme ist es mir in allen Fâllen gelungen,
regulâre Gleichungen zu finden, bezw. den Zerlegungstypus von p ver-
môge einer Kongruenz mod. p zu eharakterisieren, resp. vermôge einer
Kongruenz, die mit einer solchen oder einer Folge von wenigen solchen
Kongruenzen àquivalent ist. Dieser Ausnahmefall betrifft einen Unterfall
bei der Zerlegung eines Primteilers p von 2, vgl. Ende von § 4. Immerhin
kann auch in diesem Falle die Entscheidung wenigstens von einer
Kongruenz 4. Grades (aber eben nach einer hôheren Potenz von p) ab-
hàngig gemacht werden.

Wie man ohne Schwierigkeit erkennt, lassen sich mit Hilfe der hier
angewandten Méthode, insbesondere des erwàhnten Kunstgrififes, aueh
die in W. in § 4 enthaltenen Untersuchungen ganz bedeutend viel kiirzer
gestalten5). Ich komme hier nicht darauf zuruck, da sich ja naturlich
nichts an den Resultaten ândert. Da8 die dort in den tîberschriften der
Unterfàlle auftretenden binomischen Kongruenzen ihrem Wesen nach
auch Kongruenzen mod. p sind, ist auch klar, denn sie bringen nur die
Freiheit in der Wahl einer HenseFschen Primzahl zum Ausdruck.

Jede in der Folge verwendete Resolvente entspringt oiner der drei
folgenden Gleichungen 21, S. 102; 49, S. 111, resp. 63, S. 60 des Iko-
saederbuches 6) :

123:1= [r — 3]3 [r2—llr+64]
: T [r2 _ 10 r + 45] 2

h — 123 : 1 [f2 — 10 | + 5]3

: [f2 _ 4 j _ i]2 |-f2 _ 22 | + 125]

123 : 1 [— (S20 + 1) + 228 (S15 — S5) — 494 S10]3

: — [(S30 + 1) + 522 (2™ — S5) — 10005 (S20 + S10)]2

(1)

(2)

(3)

6) Auch § 3 von W. kann dann weggelassen werden.
8) Klein, Félix, Vorlesungen ûber das Ikosaeder und die Auf lôsung der

Gleichungen vom fûnf ten Grade, Leipzig 1884. Vgl. hiezu auch N., S. 219/220
und W., S. 47 und 56.
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g 3.

Es sei in folgendem und bis am Schlusse dieser Arbeit k wieder ein
algebraischer Zahlkorper, der die 5. Einheitswurzeln enthalt, und (3)
die einen relativ-ikosaedrischen Erweiterungskorper K von k definierende
Gleichung.

In diesem Abschnitt untersuchen wir die Zerlegung der in 3 aufgehen-
den Primideale von k, p moge also in § 3 immer ein solches bedeuten7).
Man kann x auf eine solche Form bringen, dafi in

X
K —

die beiden ganzen Zahlen A und ju von k nicht gleichzeitig durch p teilbar
sind8). Ist in diesem Abschnitt immer9):

dann sind also die beiden Exponenten u und w entweder beide gleichzeitig

gleich 0, oder beide gleichzeitig positiv. Es ergeben sich daher
3 Hauptfàlle, die ich, um die Analogie mit N. und W. zu wahren,
folgendermaBen bezeichne :

A.) u v w 0.

F.) v > 0, u w 0.

G.) v 0, u > 0, w > 0.

A.) u v w 0.

Je nachdem die Zerlegung von

{r _ 3)3 (r2 — 11 r + 64) + ^ r3 (r — l)2 + ^ 0 (mod. p) (4)

in Primpolynome mod. p genau keinen, zwei, einen, bezw. fûnf Linear-
faktoren hat, gilt der Fall 10, 12, 14, bezw. 15.

Denn die Diskriminante des ersten Polynômes in (4) [vgl. auch
Formel (1)] ist gleich

55 H2 (x _
also teilerfremd zu p, so daB der Satz unmittelbar aus der Tabelle W.,
S. 52 folgt.

7) Weil fur die Teiler von 3 die Verhaltnisse am einfachsten sind, nehmen wir dièse
Primteiler zuerst.

8) Vgl. N., S. 228.
9) Vgl. W., S. 53/54.
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F.) v>0, u w O.

VEjâO (mod. 5): Fall 9.

1

v 0 (mod. 5) :

funfter Potenznichtrest mod. pv+1 : Fall 10.

H
funfter Potenzrest mod. pv+1 : Fall 15.

Setzt man in (1) die GrôBe r 3 -\ so erhàlt man die Resolvente:
x

f (x) x* + 40 — x2 — 5 — x + — 0. (6)

Falls v ^k 0 (mod. 5) ist, hat das zugehôrige Newton'sche Polygon nur
eine Seite mit Kx 5, so dafî der Fall 4 oder der Fall 9 eintreten muB.
Setzt man in (3) die GrôBe S5 xx, so ist fur die daraus entstehende
normierte Resolvente 12. Grades:

g (x) x11 (x + 1) (mod. p).

Daher hat p im zugehôrigen Erweiterungskôrper h vom Relativgrade 12

iiber h einen Primidealteiler vom Relativgrad und von der Relativ-
ordnung 1. Mithin gilt, wie aus der rechten Seite der Tabelle W., S. 52

folgt, der Fall 9 und nicht der Fall 4.

Falls v 0 (mod. 5) ist, hat das Newton'sche Polygon nur eine Seite
und das zugeordnete Polynom von (6) ist:

±i (mod.p),

wo n eine HenseFsche Primzahl in bezug auf das Primideal p bedeutet.

Je nachdem, ob — funfter Potenznichtrest (mod. pv+1) ist oder nicht, ist

dièses Polynom irreduzibel (mod. p) oder zerfâllt in 5 voneinander ver-
schiedene Linearfaktoren, da h die funften Einheitswurzeln enthâlt.

G.) v 0, u > 05 w > 0.

Beschrànkt man sich auf den Fall, dass die absolute Ordnung e von p gleich
1 ist, so treten je nach dem Wert von w folgende Faile auf :
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w 3:

w 5: Fall 5.

x — 123 quadratischer Nichtrest mod. pw+1; Fall 6.

x — 123 quadratischer Best mod. pw+1: Fall 11.

0 (mod. 3) : Fall 5.

u 3u' 3 und mit ganzem y von k und fur ô mit zu p

teilerfremdem Nenner x 23 5- 33w' y3 (1 — 3 ô) :

y ^k ô (mod. p); Fall 5.

y ô (mod. p):

d =£ 0 (mod. p) :
ô 0 (mod. p) : .FaH 25.

u' 1

6: Je nachdem, ob die Kongruenz ys — y2 -\ ^ O (mod. p)
36

genau keinen, einen, bezw. 3 Linearfaktoren m k hat: Fall 12,
14, bezw. 15.

w ungerade: Fall 13.

tv > 6:
w gerade:

x — 123 quadratischer Nichtrest mod. pw+1: Fall 14.

x — 123 quadratischer Rest mod. pw+1. Fall 15.

Zunachst ist bei beliebigem e in diesem Unterfaile

(r — 3)3 (r2 — 11 r + 64) + x r* (r — l)2 (mod. p),

und folglich zerfallt p in einem Erweiterungskorper k vom 5. Grade in
bezug auf k10) in mindestens 2 vonemander verschiedene Primideale, fur
welehe das Produkt aus Relativordnung und Relativgrad hochstens die
Werte 1, 2 oder 3 haben kann. GemaB der Tabelle W S. 52 ergeben sich
mithin nur folgende sieben moglichen Falle: 5, 6; 11, 12, 13, 14 und 15,

und die Entscheidung, welcher von diesen Pallen eintritt, fallt jedenfalls
schon immer in einem Erweiterungskorper k vom 5. Grade in bezug auf k.

Setzt man in (1) die GroBe r2 — 10 r + 45 — x9 so erhalt man die
Resolvente :

x5 + 45 X* + 10 (x — 123) x2 + (x— 123)2 0. (7)

Es sei die absolute Ordnung e von p im folgenden gleich l11).

10) Naturhch ist hier und in allen analogen Fallen vorausgesetzt, dafi Je in K enthalten sei.
X1) Man sieht leicht, dafi fur behebiges e die Gleichung (7) regular ist fur w ^ 6e. Es ist

umgekehrt r — {K — 123) x~2, so dafi k (r) k (a?) ist
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Ist w > 6, so hat das Newton'sche Polygon 3 Seiten mit den Làngen
lx \9 l2 ls 2. Fur ungerades w sieht man sofort, daB der Fall 13

gilt, fur gerades w darf man setzen :

F2 (x, y) F3 (x, y) y* ^— (mod. p), (8)

da — 1 wegen — 1 (j/5 )2 (mod. p) quadratischer Rest mod. p ist.
Je nachdem also x — 123 quadratischer Nichtrest oder Rest (mod. pw+1)

ist, gilt daher der Fall 14 oder 15.

Ist w 6, so hat das Newton'sche Polygon 2 Seiten mit den Làngen
lx 3 und l2 2, und

K J23 h 123
Fx {x, y)=Ey* — y*-\ ^— (mod. p), F2 {x, y)^y2-\ ^— (mod. p).

Da 1 v > y) _ — 2 y (mod. p) ist, so ist die Diskriminante von Fx {x, y)
à y

teilerfremd zu p, und es sind daher 3 Unterfaile môglich :

Ist die kubische Kongruenz irreduzibel, so mu6 der Fall 12 eintreten
und die quadratische Kongruenz lôsbar sein, da dann /x 3 ist.

Hat die kubische Kongruenz genau einen Linearfaktor, so miissen
in p genau 3 voneinander verschiedene Primidealteiler von k aufgehen,
da p niemals genau 4 voneinander verschiedene solche hat. Folglich ist
die quadratische Kongruenz nicht lôsbar, und es gilt der Fall 14.

Hat die kubische Kongruenz 3 Linearfaktoren, so mu6 aus demselben
Grunde die quadratische Kongruenz lôsbar sein, und es gilt der Fall 15.

Ist w 1 oder w 5, so hat das Newton'sche Polygon von (7) zwei
Seiten mit den Làngen lx 3, l2 2 und die zugehôrigen X{ haben die-
selben Werte, folglich gilt der Fall 5.

Ist w 2 oder w 4, so hat das Newton'sche Polygon von (7) eben-
falls zwei Seiten mit denselben Làngen lx 3 und l2 2 und Xx 3,

dagegen A2 1 mit demselben zugeordneten Polynôme F2 {x, y) wie
in (8). Daher gilt der Fall 6 oder der Fall 11, je nachdem k — 123 quadratischer

Nichtrest (mod. pw+1) oder quadratischer Rest (mod. p^+1) ist.
Es bleibt der Fall w 3 zu untersuchen ûbrig. Dann ist, wegen

x= (K— 123) + 2«-33

der Wert von u ^ 3.

Ist cp (x) x — 3 und ip (x) x —, so hat
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/ (*) (* — 3)s (xz — 11 x + 64) + x

mod. p die Primpolynomzerlegung :

/(*)=?(*)• •?(*)• (mod.p),

also zerfâllt / (x) nach dem Schônemann'schen Satze nach einer beliebig
hohen Potenz von p in einen Faktor 3. Grades und einen Faktor 2. Grades,

deren Reihenentwicklungen nach Potenzen von x die folgenden sind :^% (9)

«). (10)

Da w 3 ist, entspricht W (x) gemâB (10) jedenfalls immer ein Prim-
idealteiler von p in k mit Relativgrad 1 und Relativordnung 2, und es

sind also nur die Fàlle 5 und 13 noch môglich.
Ist u ^é 0 (mod. 3), so zeigt das Newton'sche Polygon fur (9) sofort,

dafi der Fall 5 eintritt.
Ist u 0 (mod. 3) und u 3 u' ^3, dann hat, weil der Restklassen-

ring von p ein Galoisfeld mit der Charakteristik 3 ist, die Kongruenz :

immer eine mod. p eindeutige Lôsung in k, d. h. h ist von der Form

* 23.5.33wV(l — 3<5), (11)

wo y eine zu p teilerfremde und mod. p eindeutig bestimmte ganze Zahl
von k, und à jedenfalls eine Zahl mit zu p teilerfremdem Nenner ist.

Setzt man in (9) die GrôBe (p (x) X — 3W/ y, so wird nach dem

Taylor'schen Lehrsatze:

oder eingesetzt:

(— 320+ 3«'.40y-f 32«'+V) +34tt'. ^^(—40—3u/^y)]

(mod. p6w/) (12)

8 Commentera Mathematici Helvetici



Hiebei enthalten die bei dem Koeffizienten einer festen Potenz von X
angedeuteten weggelassenen Summanden das Primideal p in einer
hôheren Potenz als in jedem der angegebenen Summanden, und dies soll
auch im folgenden iiberall fur die analog aufgeschriebenen Resolventen
gelten.

Ist zunâchst u' > 1, so ist in jeder eckigen Klammer bei X2 und X der
erste Term der fur das Newton'sche Polygon in Betracht kommende, und
daraus ergibt sich sofort, da8 wenn ô ^ 0 (mod. p) ist, dasselbe aus einer
einzigen Seite mit lx ^ 3 besteht, und es gilt mithin der Fall 5.

Ist ô 0 (mod. p), so besteht das Newton'sche Polygon aus 2 Seiten mit
lx hx 2 und l2 A2 1, und es gilt der Fall 13.

Ist u' 1, so ist nach (11):

x — 123 23 • 5 • 33 y3 1 — 3 ô) — 26.33

23-33(5/ —8) —23-5.34735

23-33[6y3 —9 —(y3—1) ] — 23.5.34y3<5,

und da w 3 ist, so ist y ^k 1 (mod. p), und folglich auch 1 + -~^ 0

(mod. p). Nach (12) wird:

Ist y =?k ô (mod. p), so hat das Newton'sche Polygon eine Seite mit
lx Xx 3, es gilt also Fall 5. Ist y à (mod. p), so hat das Newton'sche

Polygon 2 Seiten mit lx Ax 2, bezw. Z2 A2 1, und folglich gilt
der Fall 13.

§ 4.

In diesem Abschnitt untersuchen wir die Zerlegung der in 2 auf-
gehenden Primideale von k, und p môge also in § 4 immer ein solches

bedeuten. Dann folgt, wie in § 3, da8 man x auf eine solche Form bringen

kann, dafi in h — die beiden ganzen Zahlen A und ju, von k nicht gleich-

zeitig durch p teilbar sind, und fails in diesem Abschnitt immer :

114



so ergeben sich dieselben 3 Hauptfâlle wie in § 3, und die beiden ersten
werden auch bewiesen wie in § 3, weshalb ich fur dièse nur die Resultate
angebe.

A.) u v w ~ 0.

Je nachdem die Zerlegung von

(r — 3)3 (r2 — 11 r + 64) + k r (r + l)4 + x 0 (mod. p)

in Primpolynome (mod. p) genau keinen, zwei, einen, bezw. fûnf Linear-
falctoren hat, gilt der Fall 10, 12, 14, bezw. 15.

F.) v > 0, ti w 0.

— fiinfter Potenznichtrest mod. pv+1: Fall 10.

(mod. 5): Fall 9.

v 0 (mod. 5):
— fûnfter Potenzrestmod. pv+1: Fall 15.

G.) v O, u > O, w > 0.

Beschrânkt man sich auf den Fall, dass die absolute Ordnung e von p
gleich 1 ist, so treten je nach dem Werte von u folgende Faile auf :

u 1, 2, 5, 7,10,11: Fall 1.

x kubischer Nichtrest mod. pu+1: Fall 2.

x kubischer Best mod. pu+1 : Fall 7.

u 4, 8 und mit ganzem y von k und fur ô mit zu p teilerfremdem
Nenner x 2U / (1 — 2 ô) :

u 4 und y =£ ô (mod. p), bezw. u 8 und yô^k 1 (mod. p): Fall 1.

u 4 und y ô (mod. p), bezw. u 8 und yô 1 (mod. p): Fall 11.

6: k kubischer Nichtrest mod. pu+1: Fall 2.

x kubischer Best mod. pu+1: Je nachdem ein gewisses Polynom
4. Grades mod. p2w?+13 in 2 quadratische Faktoren zerfàllt, bezw. nicht
zerfàllt, aber nach Adjunktion der Nullstelle eines beliebigen Primpolynoms
(mod. p) vom 2. Grade mod. p4w+25 in 2 quadratische Faktoren zerfâllt,
bezw. auch nach einer solchen Adjunktion mod. p4w+25 nicht zerfàllt:
Fall 13, bezw. Fall 8, bezw. Fall 7.
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y/
n 12 : Je nachdem, ob die Kongruenz y* + yz + —- 0 (mod. p)

einen, keinen, bezw. vier Linearfaktoren hat: Fall 12, 14, bezw. 15.

u =éO(mod.3): Fall 11.

_ rtv « kubischer Nichtrest mod. pw+1: JPaZZ 12.
m - u <moa. *). ^ kubischer Rest mod. p«+*: Fall 15.

Setzt man in (1) die GrôBe r 3 + a:, so ergibt sich die Resolvente:

/ (x) x5 — 5 ic4 + 40 a;3 + « 0. (13)

Stellt man / (x) auf eine Treppe, so ergibt sich folgendes12) :

u > 12. Dann besteht das Newton'sche Polygon aus 3 Seiten von den

Làngen lx l2 1, l3 3. Ist u =£ 0 (mod. 3), so ist A3 3, und es gilt
daher der Fall 11. Ist u 0 (mod. 3), so ist A3 1 und

Die Diskriminante von Fs (x, y) ist ^ 0 (mod. p). Das Polynom (14) ist
entweder irreduzibel in k, oder dann zerfâllt es in 3 Linearfaktoren. Denn
ist a eine seiner Wurzeln in k, so ist

Fs (x, y) (y — a) (y — (e+ e4) a) (y — (e2 + e3) a) (mod. p),

271%

wo s e 5 Ist die Kongruenz (14) irreduzibel in k, so gilt der Fall 12,

ist sie reduzibel in k, so gilt der Fall 15.

u 12. Dann besteht das Newton'sche Polygon aus 2 Seiten mit lx 1,

l2 4, und

F2 (x, y) y* + y3 + -^ (mod. p).

Da —%Lj1L ^2 (mod. p), ist die Diskriminante von F2 (x, y) nicht
dy _kongruent Null mod. p. Folglich ist p jedenfalls unverzweigt in k, und es

gilt der Fall 12, 14, bezw. 15, je nachdem F2 (x, y) genau einen, keinen,
bezw. vier Linearfaktoren mod. p in k hat.

Es sei von nun an 1 ^ u ^ 11. Dann besteht das Newton'sche

Polygon zu der auf eine Treppe gestellten Resolventen (13) aus 2 Seiten

ia) Man sieht leicht, daû im allgemeinen Falle das auf die Treppe gestellte Polynom
/ (x) regulâr ist fur u ^ 12 e.
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von den Lângen lt 1 und Z2 4, und es ergeben sich gemâB der
Tabelle W., S. 52 folgende Môglichkeiten:

n=±l (mod.4): 1, 2, 7.

u 2 (mod. 4) : 1, 2, 7, 8, 13.

^ 0 (mod.4): 1, 2, 7, 8, 11, 12, 13, 14, 15.

Wie aus der Tabelle in § 1 hervorgeht, fâllt die Entscheidung, welcher
Pall eintritt, schon immer in einem Kôrper k vom Relativgrade 6 in
bezug auf fc, dessen Zahlen also invariant sind unter einer Diedergruppe
von der Ordnung 10. Setzt man in (2) die GrôBe £ x + 5 + 2 |/5*5

so ergibt sich die Resolvente 6. Grades :

/ (x) x« + 12 |/5 x5 + 240x* + 320f5x* + xx + K(5+2yE),
deren Newton'sches Polygon aus einer einzigen Seite (von der Lange 6)
besteht.

Ist u ± 1 (mod. 6), so ist Xx 6, und es tritt der Fall 1 ein.

Ist n~ ± 2 (mod. 6), so ist X1 3, und es tritt Fall 1 oder 11 ein.

Ist u 3 (mod. 6), so ist Aj, 2 und Fx (x, y) ^ yz — — (mod.p).

Dièse Kongruenz ist die gleiche wie (14), und folglich ergeben sich nur
2 Môglichkeiten:

Ist h kubischer Nichtrest (mod. pw+1), so gilt der Fall 2.

Ist k kubischer Rest (mod. pM+1), so gilt der Fall 7.

Ist u e^ 0 (mod. 6), so ist Xx 1, und Fx (x, y)^y* — ôïT —

(yz— 1/— (mod. p), wobei [/—, wie aus der Théorie der Galois-

felder unmittelbar folgt, mod. p kongruent einer mod. p eindeutig be-

stimmten Zahl des Grundkôrpers k ist. Da y JÏL und — gleichzeitig

kubische Nichtreste oder kubische Reste mod. p sind, so folgt :

Ist x kubischer Nichtrest (mod. pu+1), so tritt der Fall 2 oder 12 auf.
Ist k kubischer Rest (mod. pw+1), so tritt einer der Fâlle 7, 8, 13, 14

oder 15 auf.
Vergleicht man beide Resultate miteinander, so liefern sie die in der

Aufstellung erwâhnten Fâlle mit Ausnahme der Werte u 4 und 8, wo
noch die beiden Fàlle 1 und 11 môglich sind, und des Wertes u 6, wo,
falls x kubischer Nichtrest mod. pw+1 ist13), der Fall 2 eintreten muB,

18) Dies ist offenbar nur dann môglich, wenn w 6 ist, da x (X — 123) + 2e. 38.
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und falls x kubischer Rest mod. pw+1 ist, einer der Fâlle 7, 8 oder 13

môglich ist. In jedem Falle kann die Entscheidung, welcher Fall eintritt,
in einem Kôrper k vom Relativgrade 5 in bezug auf k getroffen werden.

Weil der Restklassenring von p ein Galoisfeld von der Charakteristik 2

ist, hat die Kongruenz

z* ^ (mod. p)

immer eine mod. p eindeutige Lôsung in k, d. h. x ist von der Form

* 2U y4 (1 — 2(5), (15)

wo y eine zu p teilerfremde und mod. p eindeutig bestimmte ganze Zahl
von k, und ô jedenfalls eine Zahl mit zu p teilerfremdem Nenner ist.

Setzt man in (13) die GrôBe x X + 2u'y, so erhàlt man die Resol-
vente

V (2u'v)
+ U±J>lX+f(2»'y)=0. (16)

Sei u 4 u\ dann wird (16) unter Berûcksichtigung von (15) fur ?/ 4,
d. h. u' 1:

X* + 5 [— 1 + 2 y] X4 + 23- 5 [1 — y + y2] X3 +
+ 23.5 y [— 3 y + 2 (y* + 3)] X2 + 2*. 5 y2 [y2 — 2 (y — 3)] X +

bezw. fur ?r 8, d. h. u' 2:

X5 + 5 [— 1 + 22 y] X4 + 23-5 [1 — 2 y + 22 y2] X3 +
+ 25.5 y [3 (1 — y) + 22 y2] X2 + 2?- 5 y2 [3 — 2 y (1 —y)] X +

Stellt man dièse Polynôme auf eine Treppe, so ergibt sich, dafi fur u 4,

wenn y ^à 6 (mod. p), bezw. fur u 8, wenn y d =pê 1 (mod. p) ist, das

Newton'sche Polygon aus 2 Seiten mit den Lângen lx 1, Z2 4 besteht,
wobei A2 4 ist. Es gilt daher der Fall 1 und nicht der Fall 11. Ist fur
u 4 die GrôBe y ô (mod. p), bezw. fur ^ 8 die GrôBe yô 1

(mod. p), so besteht das Newton'sehe Polygon aus 3 Seiten mit den
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Làngen lx 1, l2 3 und ls 1, ferner ist A2 3. Es gilt daher der
Fall 11 und nicht der Fall 1.

Damit bleibt nur noch der Fall zu untersuchen, wo ti 6 und x
kubischer Rest mod. pu+1 ist. In diesem Falle ist w J> 6, und das Polynom
[vgl. Formel (1)]:

f(x) x (x2 — 10 x + 45)2 + (x — 123), (17)

dessen Diskriminante gemâfi Formel (5) das Primideal p genau in der
(2 w + 12)ten Potenz enthâlt, hat die Primpolynomzerlegung :

f(x)~x(x + l)4 (mod. p).

Nach dem Schônemann'schen Satze folgt daraus fur eine beliebig groBe
naturliche Zahl N eine Zerlegung von der Form :

f(x) V (x). 0 (x) (mod. pN),
wo W (x) ^ x

Falls JV genugend groB ist, also jedenfalls fur N ^>2w -\- \%, enthâlt die
Diskriminante von & (x) nach der bekannten Formel, wie sich die
Diskriminante eines Produktes von Polynomen aus den Diskriminanten
und Resultanten der Faktoren aufbaut14), das Primideal p in der gleichen
Potenz wie die Diskriminante von (17).

Bis auf Glieder in zweiter oder hôherer Potenz von (x —123) ist
ubrigens15) :

0 (x) (x2 — 10 x + 45)2 + 52 (— x3 + 20 x2 — 190 x + 900)

(mod. p2w).

Auf Grund der beiden Hauptsàtze der Ore'schen Théorie, eines weiteren
Satzes von Ore16) und der Tabelle W., S. 52 folgt mithin, daB der FaU 13,
bezw. 8, bezw. 7 gilt, je nachdem 0 (x) mod. p2w+13 in zwei quadratisehe
Faktoren zerfàllt, bezw. nicht zerfàllt, aber nach Adjunktion der Nullstelle
eines beliebigen Primpolynoms mod. p vom 2. Grade von Je mod. p4™+2s

in zwei quadratisehe Faktoren zerfâllt, bezw. auch nach einer solchen

Adjunktion mod. p4w+25 nicht zerfâllt. Leider habe ich auch unter Her-

14) Vgl. z. B. Hensel, K., Théorie der algebraischen Zahlen, Erster Band,
Leipzig und Berlin 1908, S. 60, Formel (7).

16) Vgl. auch W., S. 66, Formel (41).
16) Satz 8, S. 584 von: O.Ore, Ûber den Zusammenhang zwischen den défi-

nierenden Gleichungen und der Idealtheorie in algebraischen Kôrpern,
zweite Mitteilung. Math. Ann., Band. 97 (1927), S. 569.
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beiziehung gewisser Resolventen 6. Grades, die sich hier eventuell gut
eignen, keine einfache und vollstândige Regel dafûr finden kônnen,
welcher der 3 Fâlle eintritt, weshalb ich es bei dem angegebenen Kriterium
bewenden lasse.

In diesem Abschnitt untersuchen wir dieZerlegung der in 5 aufgehenden
Primideale p von k. Man kann x auf eine solche Form bringen, da8 in

h — die beiden ganzen Zahlen A und ^ von k nicht gleichzeitig durch p

teilbar sind, so daB, fails in diesem Abschnitt immer :

von den 3 Zahlen u, v, w immer hôchstens eine positiv ist. Es ergeben
sich daher 4 Hauptfâlle, die ich, um die Analogie mit N. und W. zu
wahren, folgendermaBen bezeichne:

A.) u v w 0.

BC.) u > 0, v w 0.

DE.) w > 0, u v 0.

F.) v > 0, u w 0.

Wir beschrânken uns in diesem Abschnitt iiberall auf den Fall, daB
4e 4 ist; wo fur gewisse Ûberlegungen 4e beliebig sein darf, wird dies

immer ausdrûcklich hervorgehoben werden.

A.) u v w 0.

Ist mit ganzem zu p teilerfremdem y von k und fur ô mit zu p teilerfremdem
Nenner :

2 7Ti

x ys + ^ _ e) ô) e==zes
9 (18)

ferner filr positives s:

so treten je nach dem Wert von s folgende Fâlle auf :

x(x— 123) quadratischer Nichtrest mod. p: Fall 4.

x(x — 123) quadratischer Best mod. p: Fall 9.
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s > 5.

irreduzibel, bezw. reduzibel ist: Fall 10, bezw. Fall 15.

x (x — 123) quadratischer Nichtrest mod. p: Fall 14.

x (x — 123) quadratischer Rest mod. p: Fall 15.

Zum Beweise machen wir zunàchst folgende Vorbemerkung, die
ûbrigens fur eine beliebige Ordnung 4 e von p gilt. Setzt man in (3)
die GrôBe S5 x, so ergibt sich die Resolvente :

f(x) — [—x* + 228 a;3 — 494 a;2 — 228 a;— l]3+
+ xx [x2 + 11 x — l]5 0. (20)

Unter der Annahme u v w 0 folgt :

/ (x) (x — 2)12 + xx (x — 2)10 (mod. p),
oder

/ (a;) [x — 2]10 [(x — 2) — 2 « — ]/ïT(ï2^—^)].

\{x — 2) — 2x + ]/«"(Î2«^^)] (mod. p).

Hier ist
— 2 x + |/*(123 — «) # 0 (mod. p),

denn aus der Annahme des Gegenteils folgt

— 2 x ± ]/* (12* — x) (mod. p),

und durch Erheben beider Seiten ins Quadrat

— x2 ieel 123 x — x2 (mod. p),

also x^eO (mod. p) gegen Voraussetzung.

Ferner ist
— 2 x — )/x 123 — x) # — 2 x + y* 123 — x) (mod. p),

denn aus der Annahme des Gegenteils wiirde folgen, dafi x (x — 12S) 0

(mod. p) gegen Voraussetzung.
Aus dem Schônemann'schen Satze, den beiden Hauptsâtzen der

Ore'schen Théorie und weil

— 1 22 (mod. p)

folgt daher auf Grund der rechten Seite der Tabelle W., S. 52:
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Falls x {x — 123) quadratischer Nichtrest mod. p ist, sind nur die
Fâlle 4 und 14 môglich, falls x (x—123) quadratischer Rest mod. p ist,
sind nur die Fâlle 9, 10 und 15 môglich. Es ist mithin nur noch zu unter-
suchen, welcher von diesen 5 môglichen Fàllen eintritt.

Wir lassen jetzt wieder die Beschrânkung auf den Fall, da8 4 e 4

ist, eintreten, dann ist (1 — s) eine HenseFsche Primzahl in bezug auf
das Primideal p von k. Da der Restklassenring von p ein Galoisfeld mit
der Charakteristik 5 ist, so ist die Kongruenz

x y5 (mod. p)

fur ein mod. p eindeutig bestimmtes zu p teilerfremdes ganzes y von k
lôsbar, und es gibt folglich ein ô mit zu p teilerfremdem Nenner, so da8
(18) gilt, und in (19) ist daher s wesentlich positiv.

Setzt man in der Resolvente (13) die GrôBe x X — y, so erhàlt man
die Resolvente:

oder ausgerechnet :

[y2 + éy + 24] X+ [x - y5 - 5y4 - 40y3] 0. (21)

Hier ist die eckige Klammer, die als Faktor bei X auftritt, zu p teiler-
fremd. Denn aus der Annahme des Gegenteils folgt :

(y + 2)2==0 (mod.p),
und da p ein Primideal ist

y — 2 (mod. p),

also dureh Erheben beider Seiten in die 5. Potenz

y5 — 32 + 1760 123 (mod. p),

und mithin wegen (18):
x — 123 0 (mod. p)

gegen Voraussetzung.

Ist in (19) die positive GrôBe s kleiner als 5, so besteht das Newton'sche

Polygon von (21) aus einer einzigen Seite mit lx 5, ht s; es ist daher
e 5 und es tritt entsprechend der Vorbemerkung der Fall 4 oder 9 auf.
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Ist in (19) die GroBe s genau gleich 5, so besteht das Newton'sche
Polygon von (21) ebenfalls aus einer einzigen Seite mit lx lnx 5,
Ax — 1, und das zugeordnete Polynom von (21) ist, da

y 5 (1 — e)2-(s2+£3)-s4, (22)
also

J^5 2 (mod. p) : (23)

y, i 5 K V4 40 *,3

Fx {x, y) yt> — y* (7 + 2)2 y + '
(1 _.5 — (mod. p).

Da I—y — — 72 (y + 2)2 ^ 0 (mod. p) ist, so ist die Diskrimmante

von Fx (x, y) teilerfremd zu p, und es tritt entsprechend der Vorbemer-
kung einer der Falle 10, 14 oder 15 auf.

Ist in (19) die GroBe s groBer als 5, so besteht das Newton'sehe Polygon
von (21) aus 2 Seiten mit den Langen lt 4 und l2 1, und entspreehend
der Vorbemerkung und der Tabelle in W., S. 52 kann daher nur der
Fall 14 oder 15 auftreten.

Man wird sofort die Frage aufwerfen, ob im Falle A.) u — v w 0,

die beiden Moglichkeiten, Verzweigung oder Nicht- Verzweigung auch
wirklich auftreten konnen. DaB dièse Frage zu bejahen ist, zeigen fur den
Fall, daB der Grundkorper k der Kôrper der 5. Einheitswurzeln selbst ist,
die beiden Beispiele17) :

k 26-33(l + e), k— 123 26-33e,
bezw. h 26- 33 (244 + 56), h — 123 26- 33 (243 + 56).

Man sieht ohne groBe Muhe18), daB fur dièse Werte von x die Galois'sche

Gruppe der Gleichung (1) in bezug auf den Korper der 5. Einheitswurzeln
die Ikosaedergruppe ist, und in K fur p (1 — e) fur den ersten Wert
von k Verzweigung:

Fall 4: (1 — e) J TI%

fur den zweiten Wert von x keine Verzweigung :

30

Fall 14: (1 — 6)= /7 »,, NKfk flfc) (1 - e)2;

eintritt.
I7) Die GroÛe (1 -f t) ist eine Einheit von Je, denn (1 + ê).(s + £3) — 1.
18) VgL N., S. 228/229.
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BC.) n>0, v — w 0.

Je nach dem Werte von u treten folgende Faile auf :

?e l, 3, 7,9: Fall3.
x (x — 123) quadratischer Nichtrest mod. pu+1: Fall 4.

*r 2, 4, 6, 8: K\H_ 123) quadratischer Rest mod. p»*1: Fall 9.

tf 5 und mit ganzem, zu p teilerfremdem y von k und fur à mit zu p

teilerfremdem Nenner:

x (1 — ef yb + (1 — e)6 ô. (24)

Ist p J ô und gleichzeitig yz + ——-—r ^ 0 (mod. p) : Fall 13.
(1 e)

Oilt dièse Bedingung nicht: Fall 3.

u 10 : Je nachdem die Zerlegung von

in Primpolynome mod. p genau keinen, zwei, einen, bezw. fiinf
Linearfaktoren hat: Fall 10, 12, 14, bezw. 15.

2 quadratischer Nichtrest mod. p : Fall 6.
i =£ 1 (mod. 3) 2 quadratischer Rest mod. p : Fall U.

u > 10 K

u 1 (mod. 3) Jz nachdem die Kongruenz

genau keinen, einen, bezw. drei Linearfaktoren
hat: Fall 12, 14, bezw. 15.

Ist u > 10, so besteht das Newton'sche Polygon von (13):

/ (x) x* — 5 x* + 40 x* + x 0

aus 2 Seiten mit den Lângen lt 2 und l2 3 19). Ist hiebei u ^k 1

(mod. 3), so ist A2 3, ferner ist

F± (x, y) y* + 2 (mod. p).

Je nachdem, ob — 2 oder was wegen — 1 22 (mod. p) auf dasselbe

herauskommt, 2 quadratischer Nichtrest oder quadratischer Rest mod. p

19) Wie man leicht erkennt, ist im allgemeinen Falle dièses Polynom fur u ^ 10 e

regulâr in bezug auf p.
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ist, gilt folglich der Fall 6 oder der Fall 1120). Ist dagegen u== 1 (mod. 3),
so ist A2 1 und

F2 («, y) y»- (Tj^ y>- X («Z*p (mod. p),

woraus die angegebene Regel folgt.

Ist il 10, so besteht das Newton'sche Polygon aus einer einzigen
Seite von der Lange lx 5 und

Fx (x, y) y5 + 2y* + (1^)10 (mocL P)«

Da -—' ' ^ 2/2 (mod. p), so ist die Diskriminante von Fx (x, y) zu p

teilerfremd, und hieraus ergibt sich die oben angegebene Regel.

Es sei von jetzt an u < 10. Ist u =fi 5, so besteht das Newton'sche

Polygon ebenfalls aus einer einzigen Seite mit Ax 5. Mithin tritt dann
gemàB der Tabelle W., S. 52 einer der Fàlle 3, 4 oder 9 ein.

Ist u 5, so ist die Kongruenz

fur ein mod. p eindeutig bestimmtes zu p teilerfremdes ganzes y von k
lôsbar, und es gibt daher ein ô mit zu p teilerfremdem Nenner, so da6
(24) gilt. Setzt man in (13) die GrôBe x (1 — e) t, so ergibt sich unter
Berucksichtigung von (24) die Resolvente:

tb ~ (Tzb) * + (T=bf 8<3 + y5 + (1 -£) ô °'

und setzt man hier t X — y, so erhâlt man die Resolvente :

O (X) g (X- y) Z5 + g""|~ y) X* + g"' ^"7} X* +

oder ausgerechnet :

20) Ist der Grundkôrper A? der Kôrper der 5. Einheitswurzeln selbst, so tritt der Fall 11

nie auf, was sich auch sofort aus W., S. 50, Fall 11 ergibt, da fur p 5 und / 1 die
Kongruenz pf=l (mod. 3) nicht erfûllt ist. Fur w=l (mod. 3) fallen dann die Fâlle 12

und 15 auÛer Betracht.
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2(5
Ist hier p T ô und gleichzeitig y3 -f — - 0 (mod. p), so besteht

(1 — a)

das Newton'sehe Polygon aus 2 Seiten mit Zx 4, h± 2, Ax 2 und
Z2 1, wobei wegen (23):

F1(x,y)EEEy* — (2y)*=E(y + 2y) {y — 2 y) (mod. p)

ist, und es tritt daher, da p ein Teiler von 5 ist, gemàB der Tabelle in W.,
S. 52, der Fall 13 ein. In jedem andern Falle besteht das Newton'sche
Polygon aus einer einzigen Seite mit Zx Xx 5, und es tritt daher einer
der Falle 3, 4 oder 9 ein.

Es ist noch zu entscheiden, welcher der drei Falle: 3, 4 oder 9 bei

u < 10 eintritt, und es ergibt sieh aus der Tabelle W., S. 52 und der
Tabelle in § 1 dieser Arbeit, daB dièse Entscheidung weder vermôge einer
Resolventen fûnften, noch einer sechsten, dagegen vermôge einer Resol-
venten zwôlften Grades getroffen werden kann. Setzt man in (20) die
GrôBe x Z + 7, so ergibt sich die Resolvente

O {Z) [Z4 — 23-52Z3 — 25-53Z2 — 23-55Z — 24-55]3 +
+ x [Z + 7].[Z2 + 52Z + 53]5 0, (25)

und im Falle u < 10 liefert das zugehôrige Newton'sche Polygon immer
die Entscheidung, welcher der 3 Falle eintritt. Hiebei ist noch zu be-

achten, daB

— 2 x 22- (x — 123) x (mod. p^1).

DM.) w>% u v 0.

In bemerkenswerter Analogie zum Hauptfalle BC.) treten je nach dem

Werte von w folgende Falle auf :

w l, 3, 7, 9: Fall 3.

x(x — 123) quadratischer Nichtrest mod. pw+1: Fall 4.
tv 2, 4, 6, 8 : x(x_ 123) quadratischer Best mod. pw+x: Fall 9.

ta 5 und mit ganzem, zu p teilerfremdem y von k und fur ô mit zu p

teilerfremdem Nenner :

x — 123 (1 — e)5 y5 + (1 — e)6 ô. (26)
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Ist p J ô und ausserdern y3 + — - 0 (mod. p) : Fall 13.
(1 6)

Gilt dièse Bedingung nicht : Fall 3.

(K 123)2
w 10 : Je nachdem die Zerlegung von y5 -\- y*

w > 10 :

55

in Primpolynome mod. p genau keinen, einen, bezw. fiinf Linear-

faktoren hat: Fall 10, 14, bezw. 15.

1 (mod. 2): Fall 13.

x (x — 123) quadratischer Nichtrest

_ mod. p"*1: Fall 14.
' 0 (mod. $): K^_ 123) quadratischer Rest mod. p™*1:

Fall 15.

Wir machen zunâchst eine Vorbemerkung, die fur beliebiges e gilt.
Setzt man in (25) die GrôBe x (x — 123) + 123? so wird, falls nur der
Nenner von x zu p teilerfremd ist :

G(Z)=Z10[Z*+ 3Z — 29 + (x— 123)(Z + 7)] (mod. p12e), (27)

und fur w > 0 :

0 (Z)=Z10 (Z — l)2 (mod. p).

Es folgt vermôge des Satzes von Schônemann und der beiden Hauptsâtze
von Ore, daB es im Kôrper k vom Relativgrade 12 ûber k bei der Prim-
idealpotenzdarstellung von p jedenfalls ein Idéal t mit Nifk (t) p2

gibt, das teilerfremd ist zu allen andern Primidealteilern von p in k. Fur
beliebiges 4e sind daher im Hauptfalle DE.) nur die Fâlle 3, 4, 9, 10, 13,

14, 15 môglich.
Wir beschrànken uns wieder auf den Fall, dass 4e 4 ist, und nehmen

die Besolvente (7):

/ (x) x5 + 45 x* + 10 (x — 123) x2 + (x — 123)2 0

zu Hilfe21).

Sei w > 10. Dann besteht das Newton'sche Polygon aus 2 Seiten von
den Lângen lx 1 und l2 4. Ist w 1 (mod. 2), so ist l% 2, und es
ist nur der Fall 13 môglieh. Ist w 0 (mod. 2), so ist

21 Wie man. leicht erkennt, ist im allgemeinen Falle fur w ^ 10 e dièse Resolvente
regulâr in bezug axif p.
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VI \
v i"

/ k— 123 \ / „ x—12 \sv ~ V5(i—H r+vMi*)»-*)(mod-
woraus sich wegen (23) und den beiden Kongruenzen: — 2 x (mod. p)
und — 1 22 (mod. p) die angegebene Regel ergibt.

Ist w 10, so besteht das Newton'sche Polygon aus einer einzigen
Seite, und wegen (23) ist

Ft (X, y)^ys+y*+ ^^ (mod. p)

und da —^ ^ ^ — 2/3 (mod. p), so folgt unter Beachtung der Vor-

bemerkung die angegebene Regel.

Es sei von jetzt an iv < 10. Ist w =£ 5, so besteht das Newton'sche
Polygon aus einer einzigen Seite mit Xx 5, und es tritt folglich einer
der Fâlle 3, 4 oder 9 ein. Fiir w 5 kann man analog wie in BC.) fur
u 5 schlieBen, indem man zunàchst in (1):

r (r2 — 10 r + 45)2 + (x — 123) 0

die GrôBe r (1 — s) t setzt und (26) beachtet. In der entstehenden
normierten Resolventen setze man dann t X — y, dann liefert die
Resolvente 5. Grades in X das Résultat, daB falls p T ô und gleichzeitig

2ô
^3 _|_ ^ q (mo(i. p) ist, der Fall 13 eintritt, falls aber dièse Be-

(1 — a)

dingung nieht erfûllt ist, einer der Fâlle 3, 4 oder 9 eintritt.
Es ist jetzt wie unter BC.) noeh zù entscheiden, weleher der 3 Fàlle

3, 4 oder 9 bei w < 10 eintritt. Unter Berucksichtigung des Schônemann'
schen Satzes, insbesondere der Tatsaehe, daB in einer Sehônemann'schen
Zerlegung mod. pa in normierte Faktoren fur die mod. p zueinander
relativ primen Polynôme die einzelnen Faktoren fur eine beliebige
natûrliche Zahl a bekanntlich mod. pa eindeutig bestimmt sind, und auf
Grund der beiden Hauptsâtze von Ore erhàlt man sofort die oben
angegebene Regel, wenn man (27) unter folgender Form sehreibt:

und die Théorie der Newton'sehen Polygone auf den zweiten Faktor
anwendet.
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F.) v > 0, ?# w 0.

Je nach dem Werte von v treten folgende Faile auf:

r=é0(mod.5): Fail 9.

— fûnfter Potenznichtrest mod. pv+b: Fail 9.

r=0(mod.5): *
— fûnfter Potenzrest mod. p0+5, und mit zu p teilerfremdem

ganzem y von k und fur ô mit zu p teilerfremdem Nenner

L=(l_e)»y«[l + (l_8)»a]. (28)

Je nachdem, ob die Kongruenz

=0 (mod.p) (29)

irreduzibel, bezw. reduzibel ist mod. p : Fail 10, bezw.Faïl 15.

Zum Beweise machen wir zunàchst folgende Vorbemerkung, die

ubrigens fur eine beliebige Ordnung 4e von p gilt. Setzt man in (25) die
GrôBe Z — xz, so erhàlt man eine normierte Resolvente g (z) 0, fur
welche

g{z) z*(z+ 1) (mod.p). (30)

Nach bekannten Sâtzen folgt aus (30), daô p im zugehôrigen Erweite-
rungskôrper k vom Relativgrade 12 in bezug auf k jedenfalls einen
Primidealteiler p vom Relativgrad und von der Relativordnung 1 besitzt,
der zu allen andern Primidealteilern von p in k teilerfremd ist. Es kann
mithin nur einer der Fâlle 9, 10 oder 15 eintreten.

Wir verwenden jetzt die Resolvente (6):

f(x) x5 + 40-î-x2— 5— x + — 0,

und nehmen fur das folgende wieder an, daB ée 4 ist.

Ist v^kO (mod. 5), so zeigt das dieser Resolventen zugeordnete
Newton'sche Polygon, daB der Fall 9 eintritt.

Es sei also im folgenden: v bvr9 wo v' ^ 1 ist, und zunâchst

mit ganzem y von k und fur # mit zu p teilerfremdem Nenner:

Jl (1 _ e)*"' y» [ 1 + (1 — c) * ]. (31)

Setzt man in der Resolventen (6) die GrôBe x (1 — e)v't9 so erhâlt
man die folgende:
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Setzt man hier t X — y, so ergibt sich endlich folgende Resolvente :

O {X) g (X - y) X* + 9""{~ y) X* + 9'" {~V) X* +

oder ausgerechnet:

-^]=0- (32)

Ist hier $ =£ 0 (mod. p4), so besteht das zugehôrige Newton'&che

Polygon aus einer einzigen Seite mit Xx 5, und es gilt daher der Fall 9

wie eben.

Ist & 0 (mod. p4), so sei ê (1 — e)4 ô. Setzt man diesen Wert von ê
in (31) ein, so geht (31) in die Gleichung (28) uber. Tràgt man endlich

den Wert von — gemâB (28) in (32) ein, und setzt noch X y x, so ergibt

sich die normierte Resolvente:

x6— 5a4 + 5-2a:3 + [— 5-2 + .] #2 + [5 + ...] x +

(33)

Ist hier ô—(1 — s^'^y =:0 (mod. p), so besteht das Newton'sche
Polygon von (33) aus 2 Seiten von den Làngen Zx 4 und l2 1, und
es tritt der Fall 15 ein. In diesem Falle ist die Kongruenz (29) reduzibel,
da sie dann den Linearfaktor y hat. Ist ô— (1 — e)*'""1 y ^â 0 (mod. p),

so besteht das Newton'sche Polygon von (33) aus einer einzigen Seite
mit kx 1 und j?\ (#, y) ist mod. p kongruent dem Ausdrucke (29). Da

—x * ffl- — 1 (mod. p), ist dann die Diskriminante von J^i (x, y)
dy

mod. p nicht kongruent Null, und damit ist ailes bewiesen.

(Eingegangen den 19. August 1934.)
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