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Unitdre Matrizen in Galoisfeldern
Von J. S. FRAME, Ziirich

§ 1. Die meisten einfachen Gruppen lassen sich am bequemsten durch
Matrizen in einem Galoisfeld definieren, dessen Charakteristik p ein
Teiler der Gruppenordnung ist. Wir wollen uns hier mit einer zweifach
unendlichen Schar solcher Gruppen beschéftigen, indem wir die Matrizen
einer Klasse von konjugierten Elementen in einer besonders durchsichti-
gen Normalform schreiben, und daraus diese Gruppen geometrisch als
Permutationsgruppe von gewissen Vektorscharen in einem ,,Galoisfeld-
Raum‘ interpretieren. Wir legen als Koeffizientenbereich ein Galoisfeld
GF (g?) von ¢? Elementen zugrunde, wobei ¢ = p*® eine Primzahlpotenz
bedeutet. Ferner definieren wir zu jedem 2 ein konjugiertes: x = x9,
und bemerken, daB z? = 2% = x ist. Zur Abkiirzung setzen wir

2512 bz = (3; I b) = (m)’ und Qm =q" — (_—' 1)m’
i=1

Es sei jetzt @ die Gruppe der ,,unitiren* Matrizen vom Grade m in
diesem Galoisfeld; d. h., die Gruppe der Matrizen 7', welche die Form
(x | ) ungeédndert lassen. Thre Matrizen haben die Gestalt (t;), wo
m _ m _
it = 2t tyy = 0. Kurz gesagt, es ist 71 die transponierte
k=1 k=1
Matrix von 7. Fiir die Determinante gilt die Gleichung 7'+ T = 1.

m
Schreiben wir a’ = a T, wenn a;/ = Y a;t,, 1 =1, 2, .-- m, dann gilt
i=1

(aT |bT) = (a|b) fir T aus G.. Nach Dickson!) betrigt die Ordnung
dieser Gruppe

* m (M) m
gn =1 ¢*1Q, = ¢q* I1Q,.
k=1 k=1

Die Matrizen von der Determinante 1 bilden einen Normalteiler &,, vom
Index ¢ + 1, und von der Ordnung g,, = ¢ / (g + 1). Das Zentrum Z,,
dieses Normalteilers hat die Ordnung d, wo d der g.g. T. von m und
q + 1-ist. Die Faktorgruppe H,, = @,, | Z,, = HO (m, p**), von der Ord-
nung h,, = ¢,, / d, ist nach dem Beweis von Dickson eine einfache Gruppe,
abgesehen von den drei Fallen HO (2, 22), HO (2, 3%), und HO (3, 22).
Ferner ist HO (2, p?®) isomorph mit der linear-gebrochenen Gruppe
LF (2, p®) von der Ordnung ¢ (92— 1)/d. Von den iibrigbleibenden

1) Dickson: Linear Groups.
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Fallen ist HO (3, 3%), mit 6048 Elementen, die kleinste Gruppe dieser
Familie.

§ 2. Jeder Vektor (ay, a,, ‘- a,,), fiir den (a | a) = 0 ist, entspricht einer
unitiren Matrix von der Form

M (a; &) = M (ay, ag, -+ 2y, &) = (8;; + € a; a,),

WO ¢ = — ¢ eine ,,rein-imaginire Zahl des GF bedeutet. Hierbei ist
M (xa;e) = M (a; xx ¢), so daBl die ¢ + 1 Matrizen M (@ a; ¢) iiberein-
stimmen fiir ® @ = 1, und der Nullvektor entspricht der Identitit. Einige
wichtige Eigenschaften dieser Matrizen geben wir zunéchst in einer Reihe
von Sitzen an.

Satz 1. Die Matrizen M (a; ¢) und M (b; ¢) sind dann und nur dann
vertauschbar, wenn (a | b) = 0; oder wie wir auch geometrisch sagen
koénnen, wenn die Vektoren a und b senkrecht aufeinander stehen. Wir
bemerken, dafl nach Annahme (a|a) = (b | b) = 0 ist.

Beweis : Das Produkt

M (a; g) M (b; €) = [6ij+8 (5535+5i55)+825ib1 o | a)]

ist dann und nur dann symmetrisch in 2 und b, wenn (b | a) = 0 ist. Zwar
haben wir dann a,b; (b | a) = b, a; (a | b), und folglich (a | a) b; (b|a) =
(b|a)a,; (a|b). Wegen (a| a) = 0, folgt a,; (b | a) (a | b) = 0, fiir alle a,.

Satz 2. Die Matrizen M (a; w ¢), wo w das GF (q) durchliuft, bilden
eine Abelsche Gruppe G,, vom Typus (p, p, --- p), die isomorph ist mit der
additiven Gruppe des GF (¢). Es gilt die Gleichung:

M(a; w,8) M (a; wge) =M [a; (w0, + wy) €]

Insbesondere ist M (a; ¢) » = M (a; n ¢). Jede Matrix ist daher von der
Ordnung p. Der Gruppe @, wird eine Vektorschar (a) zugeordnet, die die
simtlichen Multipla eines Vektors a enthalt.

Der Beweis des Satzes folgt sofort aus der Zusammensetzung der
Matrizen.

Satz 3. Esgilt T-1 M (a; ) T = M (aT; ¢), fiir T aus G;. Ferner ist
T—l G(‘i T — G&T'

Beweis: Xt,; (0, + ca,a) by, = 0;; + ¢ (kZ"ék iki> (Z’ a, t,,) .
k1 sl

I=1

Satz 4. Fiir m > 2 bilden die simtlichen Matrizen M (a; ¢), a + 0, eine
einzige Klasse von konjugierten Elementen der Gruppe H,,; fiir m = 2,
dagegen, zerfallen sie in d Klassen.
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Beweis: Fir m = 2 kann der Vektor (a;, a,) nur in (k ay,  a,),
k + 0, unter @, iibergefiihrt werden, und zwar vermittels der Matrix
<k i—a:&al E:ZZ:)’ wenn gilt: kuo, + kuwo;, = 1 —kk.

Nach Satz 3 ist daher die Matrix M (1, a; ¢) konjugiert zu denen, und
nur denen von der Form M (z0, xOa; &) = M (z, xO%a; &), wo 20 =F,
06 = 1 ist. Fir p = 2, und daher d = 1, gibt es nur eine Klasse. Fiir
p>2,s8ind M(1,a; ¢) und M (1, 1/ a; ¢) nicht miteinander konjugiert,
sondern sie liegen in d = 2 verschiedenen Klassen von den Typen
M (z, x a¥™+1; &) und M (x, x a®™1; ), wo aa = — 1 ist. Inverse Matrizen
M (o, ay; &) und M (ay, ay; — &) sind dann und nur dann konjugiert,
wenn — 1 ein Quadrat im GF (¢) ist; d. h. wenn ¢ =0, 1, oder 2, (mod 4)
ist. In diesen Fillen sind die Klassen selbstinvers, wie man es bekannt-
licherweise in den Gruppen LF' (2, p®) findet.

Ist m > 2, p> 2, und a + 0, so gilt nicht fiir alle §,k = 1, 2, --- m die
Relation a,a,-} a,a, = 0. Gelte sie paarweise fiir a;, a;, a,, so miiBte
2a;a; = 2a;a; = 2a,a, =0 und daher a, = a;, = a, = 0 sein. Es sei
also a;a; + a,a, = b;b,+ 0. Ubt man die Transformation

’ ’ a’a/b —a’k/bﬂ'\ . LA N y
(xi:xk) ( k)(k/b &j/bj)’xi_xi’@:#?,k
auf den Vektor (a,, --- -y, - &,) aus, so geht er in (a; --- b,, --- 0,

a,,) uber. Fir m > 2 p = 2 kann man dieselbe Transformation ge-
brauchen, wenn man es nicht mit den Vektoren a, wo a, 2, = aya, = - =
a,, 3, zu tun hat. In diesem Falle kann man aber erst (a,, a,) in (ka,, ka,)
iiberfithren, wo k% + 1 ist, und dann in derselben Weise fortfahren wie fiir
p > 2. In dhnlicher Weise kann man alle Komponenten bis auf zwei in 0
transformieren. Mit einer geraden Permutation bringt man diese zwei in
die ersten beiden Stellen, und wie im Falle m = 2 transformiert man
diesen Vektor in (1, 8, 0, --- 0). Der wird aber jetzt in einen bestimmten
Vektor (1, a, 0, --- 0), durch die Transformation: z,” = (a /) ,, x5’ =
B/ a) x3; ;] = =z, ©+ 2,3, transformiert. Entsprechend, nach Satz 3,
ist fiir m > 2 jede Matrix M (a,, --- a,,; ¢) mit der Matrix M (1, @, 0 --- 0; &)
in @,, konjugiert. Daher bilden diese Matrizen auch in H,, eine einzige
Klasse, weil man die Vektoren nur bis auf einen Faktor @, @ @ = 1,
zu bestimmen braucht. Hiermit ist Satz 4 bewiesen.

Satz 5. Die Anzahl der in GF (¢?) von 0 verschiedenen Losungen der
Gleichung (a | a) = O betrigt @,, @,,—;. Entsprechend gibt es @,,Q,.—, / @,
von der Identitdt verschiedenen Matrizen M (a; ¢), und @,,@,—; [ @2
Abelsche Gruppen G,.
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Beweis: Die Formel gilt fiir m = 1. Nehmen wir an, sie gelte fir
m — 1, m > 1. Wenn a,, = 0, gibt es nach Induktionsannahme @,,_,@,.—»
Losungen a+0. Wenn a, 0, |hat man ¢®™~2 —1—@Q,,_,Q,,_, Werte

m=1_
von a,, --- &,—, 80 dal X a,a,+ 0 ist, und damit ist a,, bis auf einen
t=1"
Faktor @, @0 = 1, bestimmt. Die Richtigkeit des Satzes folgt aus der
Identitat:

Qm Qm-—l = Wm-1 Qm—2 "|" (q + ]-) (q2m_2 —1— Qm-—l Qm—-2)'

Satz 6. Die Gruppe H,, besitzt eine Darstellung als Permutationsgruppe
P,von@,,Q,— /@ SymbolenG,, durch die Abbildung, wobei 7' der Per-
mutation (G, — G, ) entspricht. Fiir m > 2 ist diese Gruppe transitiv.

Der Satz folgt sofort aus den vorangehenden Séatzen.

Satz 7. Ist eine Matrix aus G,,, m > 2, mit der Gruppe G, vertauschbar:
G, = G,p, so transformiert sie den zum Vektor a orthogonalen Raum
in sich selbst, und vertauscht auch die iibrighleibenden Vektoren unter
sich. Ich behaupte, die Untergruppe U, der Permutationsgruppe P,,, die
@, invariant 1aBt, ist transitiv in den ¢®*2 zu (a) nicht orthogonalen
Vektorscharen, und transitiv auch in den ¢2Q,,@Q,.—3 / @ zu (a) ortho-
gonalen Vektorscharen aufler (a) selbst.

Beweis: Aus (aT |bT) = (a| b) folgt der erste Teil des Satzes. Wir
untersuchen zunichst die Transitivitdit von U, in den zu (a) nicht
orthogonalen Vektorscharen (c), (¢’), usw. Es seien (a|a)=(c|¢c) =
(¢ |¢')=0; (c|a)=Fk(c|a)+0. Nach Satz 4 gibt es eine Matrix §
aus G,,sodaB a8 =a,= (1,0, 0 --- 0) ist. Wir setzen b = ¢S, b =¢’S.
Die Matrix

byd -+ kD by®+ak®  byP - b,P
ab®+ak(@—1) ab,®+k(l—P) aby® ... ab, D
T: 2351 a by tag -+ lan
tnl atnl tn3 tnn

wo(1+apB)® = (kb +kab))®=1,aa=pp=—1Iist,
transformiert: aq: (1,a,0 - 0) in ka,y: (k, ka, 0, -+ 0),
und bo:(1,B,0---0) in  b: (b, by, bg, -+ b,,).
Die Bedingungen fiir die Existenz von T sind:
(g | bo) = (kag | b) =1/ P+ 0; (a9]|ag) = (bg|by) = (b]|b) = 0.

Man kann mit 7-! einen beliebigen solchen Vektor b, (a, | b) 0, in b,
und mit einem geeigneten 7" diesen b, in einen beliebigen b’ mit den-
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selben Eigenschaften iiberfithren, indem man die Schar (a,) invariant
1aB8t. Die Transformation S7-1 7" S-1 fiihrt ¢ in ¢’ und a in ka iiber, wie
wir es wollten.

Fiir m = 3 gibt es keine Vektoren, die zu einem bestimmten orthogonal
sind, auler dessen Multipla. So haben die Permutationen der Unter-
gruppe U, in diesem Falle nur zwei transitive Bestandteile. Fiir m = 4
gibt es jetzt eine Matrix V

1 0 —vx  vfx 0.0
0 1 —vazx vfax 0 -0
v vox 1 0 0---0
V:| —vBx —vBaz 0 1 0 -0
0 0 0 0 1---0
0 0 0 0 0 ... 1

aus @,, derart, daB3 sie a,: (1, @, 0, --- 0) in sich, und (%, a, 1,4,0---0)
in (0,0,1,8,0---0) transformiert, wo aa = ff = — 1 ist. Jeder zu a,
orthogonale Vektor laBt sich aber in der Form (z, xza,bg, b,, --- b,,)
schreiben. Nach dem Beweis von Satz 4 kann man mit einer Transfor-
mation auf m — 2 Variable den Vektor (bg, b,, --- b,), b+ 0, in einen
geeigneten Vektor (1, 5, 0, --- 0) iiberfithren. So kann man jeden zu (a,)
orthogonalen Vektor in einen beliebigen anderen solchen iiberfiihren,
wenn sie nur nicht Multipla von a, sind, indem man die Schar (a,) un-
geindert 1aBt. Ahnlich wie oben gilt der Satz auch fiir eine beliebige
Vektorschar (a).

Es gibt 2 (@n—3@n—s + 1) — 1 von Null verschiedene, zu (a,) ortho-
gonale Vektoren b mit (b | b) = 0, oder nur ¢2Q,,—,@,,—3, Wwenn man die
Multipla von a, nicht mitzahlt. Entsprechend gibt es ¢2Q,,—» @,.—s / @2 zu
(a,) orthogonale Scharen ausser (a,), und @,,@,,—1 / @s — ® Q- @r—s | Q2
— 1 = ¢¥*3 zu (a,) nicht orthogonale Scharen. Hiermit ist Satz 7 voll-

stdndig bewiesen.

Satz 8. Die Permutationsgruppe P,, von Satz 6 hat fiir m > 3 genau
drei irreduzible Komponenten im algebraisch abgeschlossenen Korper
der Charakteristik 0. Die Gruppe Pj hat nur zwet irreduzible Komponen-
ten, wovon einer die Identitdt und der andere eine Darstellung vom

Grade ¢3 ist.

Beweis : Der Satz folgt aus Satz 7, indem wir Satz 103 aus der Gruppen-
theorie von A. Speiser anwenden.
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§ 3. Bevor wir diese Permutationsgruppen P,, weiter studieren, wollen
wir jetzt die Normalform M (a; ¢) etwas verallgemeinern, um einige
andere Klassen von konjugierten Matrizen darzustellen, deren charak-
teristische Wurzeln samtlich gleich 1 sind. Nach Speiser!) ist diese Be-
dingung notwendig'und hinreichend dafiir, da die Ordnung einer solchen
Matrix eine Potenz von p ist.

Satz 9. Die Matrizen
M (a;a; €)= (d,; + —o_z,-a,- —-——Eia,- - 85,-&,)

mit (2] a) = (a]|a) = (a|a) + ¢ + ¢ = 0, bilden fiir (a| a) £ 0, m > 3,
eine einzige Klasse von @,,Q,,—; @m—29™ 2 | @; konjugierten Elementen der
Gruppe H,,, deren Ordnungen p oder p? sind, je nachdem p > 2 oder
p = 2 ist. Fiir m = 3, dagegen, zerfallen sie in d Klassen. Die Matrizen
M (a; a; ), die einem gemeinsamen Vektor a entsprechen, multiplizieren

1 —a ¢
sich wie die Matrizen { 0 1 a |, wenn man S« durch (8| a) ersetzt.
0 o 1

Beweis : Aus der Zusammensetzung der Matrizen folgt
M(a;a56) M(a;8,9) = M[a;a+p5e+9n—(B]| )]

Insbesondere gilt auch die Gleichung

[M (2; a; 8)]" = M [a; 7 a; (” ; 1> e+ (Z)E],

so daf} die Elemente von der Ordnung p, bzw. 4 sind, wie es behauptet
wurde. Es gilt ferner die Gleichung

MG |x;ax;exz) =M (a;a;¢) =M (a;atka; e+k—Ek).

Infolgedessen hat man, beim Zahlen, simtliche Matrizen M (a; a; ¢)
wenn man zu a nur modulo a verschiedene Werte, und dann nur einen
Wert aus jeder multiplikativen Schar (a) angibt. Anders betrachtet, kann
man dieselbe Matrix immer so ausdriicken, dal & einen beliebigen der
q2 — q Werte annimmt, fiir die & + ¢ + 0.

Es sei T eine Matrix aus der Gruppe G,. Dann ist
TI1M(a,a;e) T=M(@T;aT;e).

1) Speiser, A., Theorie der Gruppen von endlicher Ordnung. Zweite Auf-
lage, 1927, Satz 200, S. 221.
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Mit geeignetem 7" aus (7,, konnen wir a und a in beliebige a 7', o T' trans-
formieren, unter den Bedingungen

(ala)=(aT|aT); (a]la)= (T |aT); (ala)=(aT|aT).

Innerhalb der Gruppe G,, kénnen wir die Losung a T beliebig, aber dann
aT zuerst nur bis auf einen Faktor @, @ @ = 1, bestimmen. Es sei, z. B.,
a=(,a,0,:--0),a=(0,0,1---0). Dann kénnen wir, im Falle m > 3,
a in sich und a in irgend ein @*q iberfithren; fiir m = 3, dagegen,
a und a nur in @*a und @%*q iiberfithren, was aber derselben Matrix ent-
spricht wie a und @3*q. So erhalten wir @, / d verschiedene Werte von
@3k die konjugierten Matrizen entsprechen, und d verschiedene Klassen,
die nicht miteinander konjugiert sind.

Zusammengezahlt haben wir @,,@,,, Werte von a, und zu jedem davon
¢>*™* modulo a verschiedene Vektoren a fiir die (a|a) = 0 ist. Davon
geniigen aber @, ,@,-s + 1 der Gleichung (a|a) = 0. Es bleiben
>t —1 —@Q,,— Q-3 = @2 (™2 —q™3) Vektoren a, firr die —(a|a) =
e+ e+ 0 ist. Bis auf Vielfache bleiben Q,,_, "2 /@, Werte von a.
Mit a und a ist jetzt ¢ 4 & bestimmt, aber ¢ kann ¢ Werte annehmen. So,
wie behauptet, ist die Anzahl dieser Matrizen gleich ¢™2Q,, @,,—1 @—2 | @1-

Weitere Verallgemeinerungen der Form M (a; a, ¢) werden kompli-
zierter, weil sie vieler Relationen zwischen den Vektoren bediirfen. Wir

geben nur ein Beispiel davon:
_ ~ b, ¢, -

x; ;
wo A-i:':aiaj_aia’:i; z,=c¢;—b,=a;(a|lb)—a;(a|b)=2b A, =
k

Zodyund(@la)=@l0=(a]a=0b)=0lo=(lo==c+5
= 0 ist.

§ 4. Die geometrische Vorstellung, die wir in § 2 betrachtet haben,
bietet ein Mittel dafiir, die Charaktere der Permutationsgruppe P,, und
die Klasseneinteilung von H,, zu untersuchen. Wegen der in den Satzen
6 und 7 gegebenen Transitivititseigenschaften sehen wir ein, daB zu einer
Matrix, die eine Schar, bzw. zwei zueinander nicht orthogonale, bzw.
zwei zueinander orthogonale Scharen invariant 148t, es eine konjugierte
Matrix gibt, die dasselbe fiir beliebige Scharen mit denselben Ortho-
gonalitdtsverhéltnissen macht. Fiihrt die Matrix 7' die Vektoren a, in
kya,, by in ko b, iiber, 80 ist (2, | bg) = (kyay | k3 bo) = By Ky (a4 | by). Ist
(@g | bo) + 0, so folgt &, k, = 1. Ist ferner eine dritte Schar (c,) unter 7'
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invariant, z. B., ist ¢y T = kgcy, mit (29]co) £0, (by] ¢o) + 0, 80 muB
ky = ky = k3 = O sein, @@ = 1. Dann werden auch alle Linearkom-
binationen von ag, b,, ¢, mit demselben Faktor multipliziert, und die
zugehorigen Scharen bleiben invariant.

Fassen wir insbesondere die Gruppe P, ins Auge. Die d Elemente des
Zentrums von @, die der Identitét in H,, entsprechen, haben die Spur

’
/

Qs = ¢ + 1. Dazu gibt es in H,, (@, / 4)— 1 Klassen von <Q23>——(Q21> =
@5 9%/ @, Elementen mit der Spur @,, die mehr als zwei Scharen invariant
lassen. Als Vertreter dieser Klassen nehmen wir reduzible Matrizen, die
die Scharen a,: (1, ¢, 0) und b,: (1, 8, 0) mit einem Faktor O, n = 1,
2, .- (@ /d)—1, @O = 1, die dritte Koordinate x, mit ©@-2" multipli-
zieren. Ahnlich gibt es in H,, (¢ — 2) @, / 2 d Klassen von je Qg3 Ele-
menten, die a, und b, mit verschiedenen Faktoren versehen. Sie haben
die Spur 2. Klassen mit der Spur 1 haben Vertreter in der Untergruppe,
von der Ordnung h;—Q30,/Q; = ¢®@, /| d, der mit einer bestimmten
Matrix M (a; &) vertauschbaren Matrizen. Eine Klasse enthalt die
Matrizen M (a; €) selbst. (¢, / d) — 1 Klassen von je @;Q, ¢? /| @, Elemen-
ten, deren Ordnungen ¢ @), teilen, entsprechen den obigen Klassen von der
Spur @,, wobei jetzt aber die Scharen (a,) und (b,) nicht mehr invariant
sind. Es bleiben mit der Spur 1 die d Klassen von @,0,q / d Elementen von
der Ordnung p, bzw. 4, die wir in § 3 untersucht haben. Endlich gibt es
zwei verschiedene Arten von Klassen mit der Spur 0. Dies sind einerseits

((q -+ 12; f;lq — 2) + %.—_ é) Klassen von je kyd /@2 Elementen, und dazu

eine Klasse von kg /@] Elementen, deren Ordnungen g -1 teilen; und

®—q+1—d
3d

anderseits Klassen von je @, @, 9 Elementen, deren Ord-

l teilen.

Betrachten wir jetzt die irreduzible Komponente von P, vom Grade ¢3,
so haben wir folgende Spuren, oder Charakteren einer irreduziblen
Darstellung der Gruppe H; = HO (3, ¢q*). Wir geben in vier Spalten 1)
die Anzahl von dhnlichen Klassen, 2) die Anzahl von Elementen in einer
Klasse, 3) die Spur von einer Matrix in dieser Klasse in der irreduziblen
Darstellung vom Grade ¢3, und 4) eine Zahl, die durch die Ordnungen
dieser Matrizen geteilt wird.
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Klassen Elemente Spur Ordnung—Multiplum

1 1 q? 1
1
g——d———d (¢*—g+1)¢° q ¢+1
2__g—2
2——5-31————— @®+1)¢° 1 ¢*—1
1 @+1) (@—1) 0 P
d @+1 @—1q/d 0 p oder 4 = p?
1
17“-—1 @ +1) (¢—1)¢" 0 pg+1)
1 @—q+1) @—1D¢/d —1 (@+1)/d
qz—_q;;8+2d @—q+1) @—1¢ —1  g+1
¢*—q+1—d ~ ¢*—q+1
34 —1) @¢—1)¢° —1

(Eingegangen den 31. Juli 1934.)
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