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Unitâre Matrizen in Galoisfeldern

Von J. S. Frame, Zurich

§ 1, Die meisten einfachen Gruppen lassen sich am bequemsten durch
Matrizen in einem Galoisfeld definieren, dessen Charakteristik p ein
Teiler der Gruppenordnung ist. Wir wollen uns hier mit einer zweifach
unendlichen Schar solcher Gruppen beschàftigen, indem wir die Matrizen
einer Klasse von konjugierten Elementen in einer besonders durchsichti-
gen Normalform schreiben, und daraus dièse Gruppen geometrisch als

Permutationsgruppe von gewissen Vektorscharen in einem „Galoisfeld-
Raum" interpretieren. Wir legen als Koeffizientenbereich ein Galoisfeld
GF (q2) von q2 Elementen zugrunde, wobei q ps eine Primzahlpotenz
bedeutet. Ferner definieren wir zu jedem x ein konjugiertes : x xQ,

und bemerken, daB xq xq2 x ist. Zur Abkurzung setzen wir

^ (a | 6) (6 | a), und Qm q™ — (— l)m.

Es sei jetzt 6?* die Gruppe der ,,unitàren" Matrizen vom Grade m in
diesem Galoisfeld; d. h., die Gruppe der Matrizen T, welche die Form
(x | x) ungeândert lassen. Ihre Matrizen haben die Gestalt (t(i), wo
on m
2J~iiktik E~thitkj ôijt Kurz gesagt, es ist T~x die transponierte

Matrix von T. Fur die Déterminante gilt die Gleichung T • T 1.
m

Sehreiben wir a' aT, wenn a/ Ua{ tiô, i 1, 2, ••• m, dann gilt

(aT | bT) (a \ b) fur T aus G*. Nach Dickson1) betrâgt die Ordnung
dieser Gruppe

Die Matrizen von der Déterminante 1 bilden einen Normalteiler Gm vom
Index q + 1, und von der Ordnung gm g* / (q + 1). Das Zentrum Zm

dièses Normalteilers hat die Ordnung d, wo d der g. g. T. von m und

q + 1 ist. Die Faktorgruppe Hm Gmj Zm HO (m, p2s), von der
Ordnung hm gm / d, ist nach dem Beweis von Dickson eine einfache Gruppe,
abgesehen von den drei Fàllen HO (2, 22), HO (2, 32), und HO (3, 22).

Ferner ist HO (2, p2s) isomorph mit der linear-gebrochenen Gruppe
LF (2, p8) von der Ordnung q(q2—\) j d. Von den ubrigbleibenden

*) Dickson: Linear Groupa.
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Fallen ist HO (3, 32), mit 6048 Elementen, die kleinste Gruppe dieser
Familie.

§ 2. Jeder Vektor (a1? a2, • • am), fur den (a | a) 0 ist, entspricht einer
unitaren Matrix von der Form

M (a; e) M (%, a2, ••• am\ e) (iM + ea( a^),

wo e —£ eine ,,rein-imaginare" Zahl des GF bedeutet. Hierbei ist
M (xa; e) M (a; x x e), so dafi die q + 1 Matrizen M (0a\ e) uberein-
stimmen fur 00=1, und der Nullvektor entspricht der Identitat. Einige
wichtige Eigenschaften dieser Matrizen geben wir zunachst in einer Reihe
von ^atzen an.

Satz 2. Die Matrizen M (a; e) und M (b; e) sind dann und nur dann
vertauschbar, wenn (a | 6) 0 ; oder wie wir auch geometrisch sagen
konnen, wenn die Vektoren a und b senkrecht aufeinander stehen. Wir
bemerken, daB nach Annahme (a \ a) (b \ b) 0 ist.

Beweis: Das Produkt

M {a; e) • M (b ; e) [ ôt} + e Ça% a3 + btbQ) + e2 at bi (b \ a) ]

ist dann und nur dann symmetrisch in a und 6, wenn (b \ a) 0 ist. Zwar
haben wir dann a% b0 (b \ a) bt a0 (a \ b), und folglich (a \ a) bi (b \ a)
(6 | a) a} (a \ b). Wegen (a | a) 0, folgt a3 (b \ a) (a \ b) 0, fur aile a3.

Satz 2. Die Matrizen M (a; œ e), wo œ das GF (q) durchlauft, bilden
eine Abelsche GruppeGai vom Typus (p, p, -- p), die isomorph ist mit der
additiven Gruppe des GF (q). Es gilt die Gleichung:

M (a; &>! e) M (a; co2 e) M [a; (co1 + œ2) s].

Insbesondere ist M (a; e) n M (a; n e). Jede Matrix ist daher von der
Ordnung p. Der Gruppe Ga wird eine Vektorschar (a) zugeordnet, die die
samtlichen Multipla eines Vektors a enthalt.

Der Beweis des Satzes folgt sofort aus der Zusammensetzung der
Matrizen.

Satz 3. Es gilt T'1 M (a; e) T M (a T\ e), fur T aus (?*. Ferner ist

_ /-Beweis: Stkt{ôkl + eakal)th ôt} + e [Sak tkl
k,l \k=l

Satz 4. Fur m > 2 bilden die samtliehen Matrizen M (a; g), a £ 0, eine

einzige Klasse von konjugierten Elementen der Gruppe Hm; fur m 2,

dagegen, zerfallen sie in dî Klassen.
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Beweis : Fiir m 2 kann der Vektor (ax, a2) nur in (k alt k a2),

k $ 0, unter G2 ûbergefuhrt werden, und zwar vermittels der Matrix
'"h _L_ \

— 1 t 2), wenn gilt: kua^ + kua^ 1 — kk.
ua2 k-^-ua^

Nach Satz 3 ist daher die Matrix M (1, a; s) konjugiert zu denen, und
nur denen von der Form M (x0, x0a; s) M (x, x02a; e), wo x0== ky

00 1 ist. Fiir p 2, und daher d 1, gibt es nur eine Klasse. Fiir
p > 2, sind Jf (1, a; e) und Jf (1, 1 / a; e) nicht miteinander konjugiert,
sondern sie liegen in d 2 verschiedenen Klassen von den Typen
M (x, #a4m+1; s) und ikf (^9 xa^m~x\ e), wo a a — 1 ist. Inverse Matrizen
M (av a2 ; e) und M (ax, a2 ; — s) sind dann und nur dann konjugiert,
wenn — 1 ein Quadrat im GF (q) ist; d. h. wenn q 0, 1, oder 2, (mod 4)
ist. In diesen Fallen sind die Klassen selbstinvers, wie man es bekannt-
licherweise in den Gruppen LF (2, ps) findet.

Ist m > 2, p > 2, und a $ 0, so gilt nicht fur aile k 1, 2, • • • m die
Relation a5a, +%%> 0. Gelte sie paarweise fur a^, a5, a^., so mùBte
2 a, a, 2 a,a, 2 a^.a^ 0 und daher a, a, a*. 0 sein. Es sei
also a^a, + a^ 6,63 £ 0. Ûbt man die Transformation

- i t n / * '> xt xi, 1 $ h k
\akj o3

auf den Vektor (a1? ••• a3, ••• afc, ••• am) aus, so geht er in (a± -- b3, -- 0,
• • • am) iiber. Fxir m > 2, p 2 kann man dieselbe Transformation ge-
brauchen, wenn man es nicht mit den Vektoren a, wo ax ax a2 a2 • • •

awaw, zutunhat. In diesemFalle kann man aber erst (al9 a2) in (kav ka2)
uberfiihren, wo kk ^ l ist, und dann in derselben Weise fortfahren wie fur
p > 2. In âhnlicher Weise kann man aile Komponenten bis auf zwei in 0

transformieren. Mit einer geraden Permutation bringt man dièse zwei in
die ersten beiden Stellen, und wie im Falle m — 2 transformiert man
diesen Vektor in (1, /?, 0, ••• 0). Der wird aber jetzt in einen bestimmten
Vektor (1, a, 0, ••• 0), durch die Transformation: x2 (a j fi) x2, x3'
(^ I a) x3; xt' xt, idp 2, 3, transformiert. Entsprechend, nach Satz 3,

ist fiir m > 2 jede Matrix M (%, • • • am ; e) mit der Matrix M (1, a, 0 • • • 0 ; e)

in Gm konjugiert. Daher bilden dièse Matrizen auch in Hm eine einzige
Klasse, weil man die Vektoren nur bis auf einen Faktor 0, 0 0 1,

zu bestimmen braucht. Hiermit ist Satz 4 bewiesen.

Satz 5. Die Anzahl der in GF (q2) von 0 verschiedenen Lôsungen der
Gleichung (a | a) 0 betràgt QmQm-v Entsprechend gibt es QmQm-x I Qi
von der Identitàt verschiedenen Matrizen M (a; e), und QmQm-x IQ2
Abelsche Gruppen Ga.



Beweis: Die Formel gilt fur m 1. Nehmen wir an, sie gelte fur
m — 1, m > 1. Wenn am 0, gibt es nach Induktionsannahme Qm_xQm_2

Lôsungen a + 0. Wenn aw + 0, jhat man g2m~2 — 1 —Qm-xQm-2 Werte
m —1_

von %, • • • a^^, so daB Z1 at a^t 0 ist, und damit ist am bis auf einen
__

»=i*
Paktor 0, 00 1, bestimmt. Die Richtigkeit des Satzes folgt aus der
Identitàt:

QnQ^ — Q^Q^ + (q + 1) (g*m-2_ i -Q^Q^).
Sate 6. Die Gruppe jffw besitzt eine Darstellung als Permutationsgruppe

PmvonQmQm^1/Q2 Symbolen(?â, durch die Abbildung, wobei T der
Permutation (Ga -> GaT) entspricht. Fur m > 2 ist dièse Gruppe transitiv.

Der Satz folgt sofort aus den vorangehenden Sâtzen.

Satz 7. Ist eine Matrix aus Gm, m > 2, mit der Gruppe Ga vertauschbar :

Ga Oa/r, so transformiert sie den zum Vektor a orthogonalen Raum
in sich selbst, und vertauscht auch die ûbrigbleibenden Vektoren unter
sich. Ich behaupte, die Untergruppe Ua der Permutationsgruppe Pm, die
Ga invariant làBt, ist transitiv in den q2m-* zu (a) nicht orthogonalen
Vektorscharen, und transitiv auch in den q2Qm-2Qm-s I Qz zu (a)
orthogonalen Vektorscharen auBer (a) selbst.

Beweis : Aus (a T \ b T) (a \ b) folgt der erste Teil des Satzes. Wir
untersuchen zunàchst die Transitivitât von Va in den zu (a) nicht
orthogonalen Vektorscharen (c), (c'), usw. Es seien (a \ a) (c \ c)

(c' | c') 0; (c | a) k (c' \ a) $ 0. Nach Satz 4 gibt es eine Matrix S

aus Gm, so daB a S a0 (1, a, 0 • • • 0) ist. Wir setzen b cS, b' c' S.

Die Matrix
ak& bd0 >bn&

0) abz0 abn0
T: I *3i atn tzs t3n

— 1 ist,
transformiert: a0 : (1, a, 0 ••• 0) in k a0: (k, ka, 0, ••• 0),
und b0 : (1, p, 0 — 0) in b : (bv b2, bs, — bn).

Die Bedingungen fur die Existenz von T sind :

(»o i 6o) (k*o | 6) 1 / (P * 0; (a0 | a0) (ô0 I 60) (6 | 6) 0.

Man kann mit T~x einen beliebigen solchen Vektor 6, (a0 | 6) + 0, in 60,

und mit einem geeigneten T' diesen 60 in einen beliebigen b' mit den-
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selben Eigenschaften uberfuhren, indem man die Schar (a0) invariant
lâBt. Die Transformation ST"1 T' S"1 fuhrt c in c' und a in ha iiber, wie
wir es wollten.

Fiir m 3 gibt es keine Vektoren, die zu einem bestimmten orthogonal
sind, auBer dessen Multipla. So haben die Permutationen der Unter-
gruppe Ua in diesem Falle nur zwei transitive Bestandteile. Fur m ^ 4

gibt es jetzt eine Matrix F

1

0

vx
—v]ïx

0

0
1

vax
— v/iax

0

— vx
— vax

1

0
0

vfix
v ftax

0

1

0

0

0

0

0
1

o

o

o

o

o

\ 0 0 0 0 0 1

aus Gm derart, daB sie a0: (1, a, 0, ••• 0) in sich, und (x, xa, 1, /?, 0 ••• 0)
in (0, 0, 1, fi, 0 ••• 0) transformiert, wo aa /?/? — 1 ist. Jeder zu a0

orthogonale Vektor làBt sich aber in der Form (x, xa, bs, 64, ••• bm)

schreiben. Nach dem Beweis von Satz 4 kann man mit einer Transformation

auf m — 2 Variable den Vektor (bz, 64, • • • bm), b + 0, in einen
geeigneten Vektor (1, /?, 0, ••• 0) uberfuhren. So kann man jeden zu (a0)

orthogonalen Vektor in einen beliebigen anderen solchen uberfuhren,
wenn sie nur nicht Multipla von aQ sind, indem man die Schar (a0) un-
geândert làBt. Âhnlich wie oben gilt der Satz auch fur eine beliebige
Vektorschar (a).

Es gibt q2 (Qm-2Qm-s +1) — 1 von Null verschiedene, zu (a0)
orthogonale Vektoren b mit (6 | 6) 0, oder nur q2Qm-2Qm-z> wenn man die

Multipla von a0 nicht mitzàhlt. Entsprechend gibt es q2Qm-2Qm-s IQ2 zu
(a0) orthogonale Scharen ausser (a0), und QmQm-x / Q2 — q2Qm-2Qm-z IQ2
— 1 ^2m-3 zu (a^ nicht orthogonale Scharen. Hiermit ist Satz 7 voll-
stàndig bewiesen.

Satz 8. Die Permutationsgruppe Pm von Satz 6 hat fur m > 3 genau
drei irreduzible Komponenten im algebraisch abgeschlossenen Kôrper
der Charakteristik 0. Die Gruppe P3 hat nur zwei irreduzible Komponenten,

wovon einer die Identitàt und der andere eine Darstellung vom
Grade qs ist.

Beweis : Der Satz folgt aus Satz 7, indem wir Satz 103 aus der Gruppen-
theorie von A. Speiser anwenden.
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§ 3. Bevor wir dièse Permutationsgruppen Pm weiter studieren, wollen
wir jetzt die Normalform M (a; e) etwas verallgemeinern, um einige
andere Klassen von konjugierten Matrizen darzustellen, deren charak-
teristische Wurzeln samtlich gleich 1 sind. Nach Speiser1) ist dièse Be-
dingung notwendig\ind hinreichend dafur, daB die Ordnung einer solchen
Matrix eine Potenz von p ist.

Satz 9. Die Matrizen

M (a; a; e) (ôl} + ata3 — ata3 + s ataô)

mit (a | a) (a | a) (a | a) + e + ë 0, bilden fur (a | a) $ 0, m > 3,

eine einzige Klasse von QmQm~iQm~2^m~2 I Qi konjugierten Elementen der
Grappe Hm, deren Ordnungen p oder p2 sind, je nachdem p> 2 oder

p 2 ist. Fur m 3, dagegen, zerfallen sie in d Klassen. Die Matrizen
M (a; a; e), die einem gemeinsamen Vektor a entsprechen, multiplizieren

l1 ~a e-\
sich wie die Matrizen 10 1 al, wenn man fia durch (fi | a) ersetzt.

\0 0 1/
Beweis : Aus der Zusammensetzung der Matrizen folgt

M (a; a; e) M (a; fi; q) M [a; a + fi; e + rj — (fi\ a)].

Insbesondere gilt auch die Gleichung

[M (a; a; e)f M [a; n a; ^ + ^ e + Q ë],

so daB die Elemente von der Ordnung p, bzw. 4 sind, wie es behauptet
wurde. Es gilt ferner die Gleichung

M (a I x; ax\ exx) M (a; a; e) M (a; a + ka; e-\-k — k).

Infolgedessen hat man, beim Zahlen, samtliche Matrizen M (a; a; e)

wenn man zu a nur modulo a verschiedene Werte, und dann nur einen
Wert aus jeder multiplikativen Schar (a) angibt. Anders betrachtet, kann
man dieselbe Matrix immer so ausdrucken, daB e einen beliebigen der
q2 — q Werte annimmt, fur die e + e £ 0.

Es sei T eine Matrix aus der Gruppe (?*. Dann ist

T-1 M (a; a; e) T M (aï1; aï7; s).

1) Speiser, A Théorie der Gruppen von endheher Ordnung. Zweite Auf-
lage, 1927, Satz 200, S. 221.
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Mit geeignetem T aus 0* kônnen wir a und a in beliebige aTyaT trans-
formieren, unter den Bedingungen

T); (a| a) (aT| aï7); (a\a) (aT \ aT).

Innerhalb der Grappe Om kônnen wir die Lôsung a T beliebig, aber dann
aT zuerst nur bis auf einen Faktor &, © © 1, bestimmen. Es sei, z. B.,
a (1, a, 0, ••• 0), a (0, 0, 1 ••• 0). Dann kônnen wir, im Falle m > 3,

a in sich und a in irgend ein 0k a uberfuhren ; fur m 3, dagegen,
a und a nur in 0ka und @2A;a ûberfûhren, was aber derselben Matrix ent-
spricht wie a und ©zka. So erhalten wir Qx j d verschiedene Werte von
©Bk, die konjugierten Matrizen entsprechen, und d verschiedene Klassen,
die nicht miteinander konjugiert sind.

Zusammengezâhlt haben wir QmQm-x Werte von a, und zu jedem davon
g2m-4 m0(jul0 a verschiedene Vektoren a fur die (a | a) 0 ist. Davon
genûgen aber Qm-2 Qm-s + 1 der Gleichung (a | a) 0. Es bleiben
q2m-41_ i —Qm_2Qm_z Qm_2 (^-2__^m-3) Vektoren a, fur die — (a| a)
e -f e 4: 0 ist. Bis auf Vielfache bleiben Qm-2 qm~~z / Ci Werte von a.
Mit a und a ist jetzt e -f- e bestimmt, aber e kann q Werte annehmen. So,
wie behauptet, ist die Anzahl dieser Matrizen gleich (f1-2 QmQm-\Qm-% j Qv

Weitere Verallgemeinerungen der Form M (a ; a, e) werden kompli-
zierter, weil sie vieler Relationen zwischen den Vektoren bedurfen. Wir
geben nur ein Beispiel davon :

wo Atj ât-a3 — a%a,.; x,=cl — bt at (a | 6) — at (a | b) Ebk Ak%

i^c^-4^ und (a j a) (a | a) (a | a) (b \ b) (b \ c) (c | c) s + e

0 ist.

§ 4. Die geometrische Vorstellung, die wir in § 2 betrachtet haben,
bietet ein Mittel dafiir, die Charaktere der Permutationsgruppe Pm und
die Klasseneinteilung von Hm zu untersuchen. Wegen der in den Sâtzen
6 und 7 gegebenen Transitivitàtseigenschaften sehen wir ein, da6 zu einer
Matrix, die eine Schar, bzw. zwei zueinander nicht orthogonale, bzw.
zwei zueinander orthogonale Scharen invariant lâBt, es eine konjugierte
Matrix gibt, die dasselbe fur beliebige Scharen mit denselben Ortho-
gonalitâtsverhâltnissen macht. Fûhrt die Matrix T die Vektoren a0 in
&iao> bo in Kbo tiber^ so ist (a0 | b0) (k1a0 | k2b0) \k% (a0 | 60). Ist
(a0 | 60) 4: 0, so folgt kx k% 1. Ist ferner eine dritte Schar (c0) unter T
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invariant, z. B., ist c0 T ksc0, mit (a0 | c0) £ 0, (60 | c0) + 0, so muB
Jc± k2 k3 0 sein, 0© 1. Dann werden auch aile Linearkom-
binationen von a0, 60, c0 mit demselben Faktor multipliziert, und die
zugehôrigen Scharen bleiben invariant.

Fassen wir insbesondere die Gruppe P3 ins Auge. Die d Elemente des
Zentrums von Gm, die der Identitàt in Hm entsprechen, haben die Spur

gibt es in Hm (Q1 jd) — \ Klassen von ** — ^
Q3 q21 Qx Elementen mit der Spur Qv die mehr als zwei Scharen invariant
lassen. Als Vertreter dieser Klassen nehmen wir reduzible Matrizen, die
die Scharen a0 : (1, a, 0) und b0 : (1, /5, 0) mit einem Faktor 0n, n 1,

2, ••• {Qxl d) — 1, ©5=1, die dritte Koordinate x3 mit 0~2n multipli-
zieren. Âhnlich gibt es in Hm (q — 2) Q1 j 2 d Klassen von je Qsqz
Elementen, die aQ und 60 mit verschiedenen Faktoren versehen. Sie haben
die Spur 2. Klassen mit der Spur 1 haben Vertreter in der Untergruppe,
von der Ordnung h3—Q3Q2IQ1 <fQild, der mit einer bestimmten
Matrix M (a ; e) vertauschbaren Matrizen. Eine Klasse enthàlt die
Matrizen M (a; e) selbst. (Q1 \ d) — 1 Klassen von je QzQ2q2 j Q\ Elementen,

deren Ordnungen qQ1 teilen, entsprechen den obigen Klassen von der
Spur Ql9 wobei jetzt aber die Scharen (a0) und (60) nicht mehr invariant
sind. Es bleiben mit der Spur 1 die d Klassen von Q^Q^q / d Elementen von
der Ordnung p, bzw. 4, die wir in § 3 untersucht haben. Endlich gibt es

zwei verschiedene Arten von Klassen mit der Spur 0. Dies sind einerseits

L _|_ — Klassen von je h3d jQ\ Elementen, und dazu
3 d/6d ^ 3 dj

eine Klasse von h3 / Q\ Elementen, deren Ordnungen q + 1 teilen ; und

q2 (7-4-1 rf
anderseits - ^^ Klassen von je Q2 Qt qB Elementen, deren Ord-

od

q2 — q i x
nungen -^ teuen.

Betrachten wir jetzt die irreduzible Komponente von P3 vom Grade q3,

so haben wir folgende Spuren, oder Charakteren einer irreduziblen
Darstellung der Gruppe H3 HO (3, q2). Wir geben in vier Spalten 1)
die Anzahl von àhnlichen Klassen, 2) die Anzahl von Elementen in einer
Klasse, 3) die Spur von einer Matrix in dieser Klasse in der irreduziblen
Darstellung vom Grade g3, und 4) eine Zahl, die durch die Ordnungen
dieser Matrizen geteilt wird.
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Klassen Elemente Spur Ordnung—Multiplum11 qa 1

ri \I a I / a i il
g ~2qd~ (f + 1) ^ 1 ?2 — 1

1 (f + — 1) 0 p
cî (g3 + 1) (q2 — 1) i I d 0 p oder 4

—-z 1 (g3 -|- 1 (q — 1)(72 0 ^(^~l~l)
1 (?2 _ ^ + j) _ x) g3 jd _i (g + i d

(Eingegangen den 31. Juli 1934.)
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