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Weitere Untersuchungen liber die kubische
diophantische Gleichung z°>—y?*= D

Von OrT0 BRUNNER, Meilen

Einleitung

In seiner Arbeit ,,Uber kubische diophantische Gleichungen‘) hat Herr
Fueter ein von ihm gefundenes Kriterium fiir die rationalen Losungen
von 23 — y2 = D?2) veroffentlicht. Diese Untersuchungen sind von mir
weitergefiihrt worden; im folgenden gebe ich die bis jetzt gefundenen
Resultate wieder3).

In den Abschnitten I und II zeige ich, dal der Fueter’sche Satz auch
gilt, wenn D gewisse ungerade Primfaktoren in gerader Anzahl enthilt
und wenn D = 5 (mod 9) ist.

Unter der Annahme einer Losung wende ich im Abschnitt III den
friheren Beweis auf Gleichungen 28 — y2 = D an, deren D beliebige
ungerade Primfaktoren in gerader Potenz besitzt, bzw. von den Inkon-
gruenzen D == — 1 (mod 4) und D =£ — 4 (mod 16) befreit ist. Auch zeige
ich, was sich ergibt, wenn man in der vorliegenden Gleichung D == 1 oder
== 8 (mod 9) annimmt. Dadurch gelange ich zur Erfassung einer Menge
neuer diophantischer Gleichungen, fiir die die Klassenzahl von k (1/ — D)
durch 3 teilbar ist. ’

Wahrend im vorigen Abschnitt der Zahler von z zu den ungeraden
Primfaktoren, welche in D in gerader Potenz auftreten, teilerfremd, bzw.
ungerade sein muss, beweise ich im IV. Abschnitt, unter der Voraus-
setzung, dall der Ziahler von z jene Faktoren enthalt, bezw. gerade ist
(D > 0 und nicht durch 3 teilbar), ein neues Kriterium, welches dem im
Abschnitt IT angefiihrten vollkommen entspricht.

Ferner sei noch hervorgehoben, dal derjenige Teil von D, welcher
keine quadratischen Teiler enthalt, im folgenden mit D’ bezeichnet wird.
Es ist also

De=pPP? asiians -p2-D,

1) Commentarii Mathematici Helvetici, Band II, Heft 1, Seite 69—89; kiinftig durch
C. M. H. I1, 1 abgekiirzt.

%) Satz 4, S. 86.

3) Ausfiihrliche Beweise zu den erwihnten Sidtzen und weitere Einzelheiten finden

sich in meiner Inaugural-Dissertation (erschienen im Sommer 1933 bei Gebr. Leemann &
Co., Ziirich), welche ich von jetzt an mit I. D. bezeichnen werde.
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wo die p; (¢=1,2,....r) samtliche in D im Quadrat auftretenden
Primfaktoren bedeuten.

I.

Wir setzen voraus, dal3 D, welches sonst alle Bedingungen des Satzes
von Herrn Fueter erfiillen soll [D > 0, D =7 (mod 9), D == — 1 (mod 4),
D =£ — 4 (mod 16) ], auch ungerade Primfaktoren p mit der Bedingung

<_p0,> -

aufweist. Ordnen wir nun, wie beim Beweise des Fueterschen Kriteriums,
einer vorhandenen Losung y, 2, ¢ von 28 — y2 = Di6%) die kubische
Gleichung

w—3zu—2y =20 (1)
mit der Losung

u=\3/y+t3x/—D + \?’/y-——tﬂ/—-D

zu, so sind (D ist auch hier nicht durch 3 teilbar) die beiden Fille zu
unterscheiden:

A. (1)ist in k (v/ 3 D) irreduzibel. Die Eigenschaft, daB (y 4 2 4/ — D)
je die dritte Potenz eines Ideals von k (/ — D), welches nicht Haupt-
ideal ist, darstellen, bleibt auch bei der erwihnten Annahme erhalten,
weil p Primideal in % (1/ — D) und somit seinem konjugierten gleich ist.
Da im iibrigen der Beweis derselbe wie beim Satz von Fueter bleibt, ist
demnach die Klassenzahl von k (/ — D) durch 3 teilbar.

B. (1) ist in % (4/ 3 D) reduzibel. Im ganzen kann auch jetzt die ehe-
malige Beweisfithrung vollstindig iibertragen werden. Nur muf} fiir den
Nachweis, dafl im irreduziblen Fall der Gleichung

¥ —3t,v—2r=20

(welche der Beziehung (10) in C. M. H. II, 1, S. 84, zugeordnet wird),
die Radikanden von v %) auch dritte Potenzen sind, p noch die Bedingung

(3 D ) — — 1 [p dann Primideal in k (4/ 3 D)] erfiillen, wegen der ahn-
p

4) In C. M. H. 11, 1, S. 72/73, wird gezeigt, daB jeder Gleichung z® — 4% = D (y,2 =
rationale Zahlen) eine andere umkehrbar eindeutig entspricht: 22 — y2 = D¢, wo y, 2, ¢

ganze rationale Zahlen sind.
5) C. M. H.II, 1, S. 84.
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lichen Uberlegung wie fiir (y 4 ¥ v/ — D) im Falle A). Insbesondere
bleiben die Ausfithrungen iiber die Relativdiskriminante vom Wurzel-
korper zu k (1/ — D) genau die gleichen. Folglich ist auch hier die
Klassenzahl von k (1/ — D) durch drei teilbar.

Weil (3 D ) == (—_ 3) (— D ), gilt also das Fuetersche Kriterium auch
p P /4
fiir ungerade p von D fiir die <:2> = — 1 und (:_—;-)E) = + 19%). Dem-
p

nach besitzt z. B.
28— y? = 196 = 22 72

wo D alle verlangten Kongruenzen befriedigt, <___ 9—) = — 1 und (Z';E)
P

— + 1, keine Losung, da die Klassenzahl von k (1/ — 22 - 72) eins ist.

I1.

Dafl man das Theorem von Herrn Fueter, unter gleichen Bedingungen
wie friither, auch auf den Fall

D=5 (mod 9)

ausdehnen kann?), erkennt man folgendermaflen: Im irreduziblen Fall
von (1) é&ndert sich der Beweis iiberhaupt nicht. Im reduziblen ist der
allerwichtigste Schritt der, wieder nachzuweisen, daB sich zwei analoge
widerspruchsvolle Kongruenzen wie in C. M. H. 11, 1, S. 84 ergeben, die
jetzt lauten:
+ 1=17 (mod 9) (2)
+1=25 (mod 9), (3)

woraus folgt, dafl ¢ im reduziblen Fall immer durch 3 teilbar sein muB.
Demnach wird, weil im iibrigen der Beweis der gleiche wie bei D =17
(mod 9) bleibt, in jedem Fall & 8) = 0 (mod 3).

Beispiele hiefiir sind:

93 — 252 = 104 = 2%2- 2 13; h = 6;
278 — 1372 = 914 = 2 - 457; h = 36.

¢) I.D., S.39—41.
) 1. D., 8. 41—44.
8) Klassenzahl von k (V — D).
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Dagegen gibt es keine Darstellung in rationalen y und z durch 23 — y2 =
D z. B. fiir die Zahlen: 5 (b = 2), 14 (A = 4), 32 (h = 1).

Infolge dieser beiden Erweiterungen nimmt das Kriterium von Herrn
Fueter folgende Form an ?):

Ist D eine von sechsten Potenzen freie, positive, ganze rationale Zahl, die
nur diejenigen ungeraden Primfaktoren p in gerader Potenz enthdlt, fur die

p p
80 besitzt die diophantische Gleichung

B—y2=2D
keine Liosung, falls

D=5 oder =7 (mod 9), D=£—1 (mod 4), D==—4 (mod 16)
und die Klassenzahl von k (\/ — D) nicht durch drei teilbar ist.

IIT.

Einige unserer (losbaren) diophantischen Gleichungen, wie z. B.
3 —22=23 [D=—1 (mod 8), D=5 (mod 9), h = 3], welche sich
nicht in das oben stehende Kriterium einordnen lassen, fiir die aber die
Klassenzahl von k (4/ — D) trotzdem durch 3 teilbar ist, fithren zum
Versuch, den Beweis des Satzes von Herrn Fueter auch zur Erfassung
dieser Fille zu verwenden. Wir teilen die sich hieraus ergebenden Sitze,
welche alle Losungen von 2® — y? = Di8 4) voraussetzen, am besten in
zwei Gruppen ein.

a) Spezialsitze fiir D=5 und = 7 (mod 9). D enthalte jetzt beliebige

ungerade Primteiler p, fiir die :g) = 1 oder = — 1, bzw. D sei auch
=—1 (mod 4) und = — 4 (mod 16). Dann lassen sich folgende zwei

Kriterien formulieren:

Besitzt die diophantische Gleichung
23 — y2? = Dts,
wobet D eine von sechsten Potenzen freie, positive, ganze rationale Zahl

%) I.D., S. 44. — Auf andere Kongruenzklassen von D den Beweis des Kriteriums
in vollem Umfange auszudehnen, ist unmdoglich.
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bedeutet, exne Losung, in der z zu denjenigen ungeraden Primfaktoren pin D

’

teilerfremd ist, fur die ('_—_pp.) — 1, so mu, falls
D=5 oder =17 (mod 9), D =5 — 1 (mod 8), D = — 4 (mod 32),
entweder die Klassenzahl von k (n/ — D) oder t durch drei teilbar sein 19).
Besitzt die diophantische Gleichung
23 — y? = DtS,

wobet D eine von sechsten Potenzen freie, positive, ganze rationale Zahl
bedeutet, eine Losung, wn der z ungerade und zu denjenigen ungeraden

4

Pryvmfaktoren p in D teilerfremd 1st, fir dz'e(

) = 1, so mup, falls
D=5 oder =7 (mod 9),

entweder die Klassenzahl von k& (n/ — D) oder t durch drei teilbar sein 11).

Beim Beweise dieser Satze ist im srreduziblen Fall von (1) darauf zu
achten, dafl, wegen der Annahme iiber z und nach der Beziehung

(y+0+—D)(y—8y —D)=y*+1°D =2, (4)

die Ideale (y + #* v/ — D) keine Teiler ungerader Faktoren p von D, fiir

die (—_D ) = 1, bzw. keine geraden Teiler enthalten. Weil im iibrigen
P
alle Faktoren nach der ehemaligen Beweisfithrung zur dritten Potenz in

obigen Idealen aufgehen, sind diese wieder dritte Potenzen von Idealen,
welche keine Hauptideale darstellen. Folglich ist hier die Klassenzahl von
k (n/—D) auch durch 3 teilbar. — Hingegen 148t sich eine analoge
SchluBweise im reduziblen Fall von (1) nicht durchfiihren, da man durch
besondere Uberlegungen einsieht, daB sich aus der Bedingung z 540
(mod p), wobei es sich um eines der vorhin genannten p (p = 2 inbegriffen)
handelt, nicht auch die Inkongruenz ¢, == 0 (mod p)!?) ergibt. Da

10) vgl. I. D., 8 47, abgeédnderter Satz 2.

1) vgl I.D, S 48/49, erweiterter Satz 3.

12) r, ty, ¢; ist eine Losung der Gleichung (10) in C. M. H.II, 1, 8. 84, welche der
Lésung y, 2, ¢ unserer diophantischen Gleichung entspricht.
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t,3 = 12— 33 Dt,® = (r + 3¢,34/3D) (r—31t34/3 D)13),

konnten folglich die Hauptideale (r 4 3 ¢,3 4/3 D)13) keine dritten
Potenzen von Idealen sein14), d. h. es konnte » nicht durch 3 teilbar
werden. Hingegen ist man in diesem Falle sicher, dafl, wegen den In-
kongruenzen in C. M. H. II, 1, S. 84 und wegen (2) und (3), ¢ durch 3
teilbar sein mufl. Wenn also unter obigen Annahmen fiir eine unserer
Gleichungen % zu 3 prim ist, so wird unbedingt ¢ = 0 (mod 3) %) und
umgekehrt. — Dafl man im ersten der beiden Satze nur die Inkongruen-
zen D == — 1 (mod 8) und D == — 4 (mod 32) beibehalt, beruht darauf,
daB nach obigem der Nachweis, daB (r 4 3 ¢,® 4/ 3 D) dritte Potenzen
sind, ausfallt. Im zweiten Satz kann man, aus demselben Grunde und
weil die Behandlung des Falles, z gerade, gar nicht eintritt (vgl. C. M. H.
I, 1, S. 83), diese Beziehungen iiberhaupt weglassen.

Folgerung : Haben wir ganzzahlige Losungen (! = 1) von 22 — y2 = D
mit den Bedingungen der soeben bewiesenen Satze vor uns, so mufl
unbedingt & durch 3 teilbar sein, weil (1) dann auf alle Falle irreduzibel
ist. Demnach enthilt z. B. der erste Satz die Gleichung

98 — 22 — 725 = 52 29,

da <__529> =1, 2=£ 0 (mod 5) und A~ = 6;

der zweite z. B.
35% — 2062 — 439,

da D=—1 (mod 8), z ungerade und A = 15.

Beide Gleichungen konnen im Kriterium auf S. 70 nicht untergeordnet
werden.

Man kann noch mehr Satze solcher Art bilden 16); sie sind aber eigent-
lich alle in den vorhin angefiihrten vorhanden.

b) Spezialsitze fir D = 1 und = 8 (mod 9). Die Untersuchung, ob sich
der Beweis von Fueter auch auf andere Kongruenzklassen von D aus-
dehnen 1aBt, fiilhrt uns zur folgenden Eigenschaft:

13) C.M.H.II, 1, S. 84/85.

14) siehe Abschnitt IV.

18) Ware némlich ¢ zu 3 teilerfremd, so wiirde der irreduzible Fall von (1) eintreten,
in welchem % immer durch 3 teilbar ist.

16) I. D., S.47 und 8. 49/50.
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Besitzt die diophantische Qleichung
28 — y? = DtS,
wober D eine von sechsten Potenzen freie, positive, ganze rationale Zahl
bedeutet und nur diejenigen ungeraden Primfaktoren p in gerader Potenz
’) = — lund <:—p—3> = - 1, eine Losung, so muf, falls

—

enthdlt, fir die(

D =1 oder =8 (mod 9), D =£ — 1 (mod 4), D =£ — 4 (mod 16),

entweder die Klassenzahl von k (n/ — D) durch 3 oder y durch 9 teilbar
sein 17),

Beweis: Auch hier haben wir, weil D nicht durch 3 teilbar ist, nur die
beiden gewohnten Fille fiir die kubische Gleichung (1) zu unterscheiden.
Wéahrend die Ausfithrungen im irreduziblen Fall derselben vollstindig
gleich wie frither bleiben, nimmt der Nachweis im reduziblen Fall eine
etwas veranderte Form an. Denn, unterscheiden wir wie beim Beweise
von Fueter die beiden Falle in C. M. H. I1, 1 auf S. 84, so finden wir, wenn
t zu 3 teilerfremd ist, daf} sich nur diejenige Kongruenz fiir » == 0 (mod 3)
als widerspruchsvoll zeigt [+ 1 =2 (mod 9)18), bzw. =4 (mod 9) 19)],
wahrend die andere Kongruenz (fiir » durch 3 teilbar) sehr wohl bestehen
kann [4+ 1 =1 (mod 9)18), bzw.= 8 (mod 9)19)]. Also darf jetzt im
reduziblen Fall ¢ auch zu 3 prim sein, d. h.% von k (/' — D) koénnte unter
Umsténden ebenfalls diese Eigenschaft besitzen. Doch ist dies, wegen der
Beziehung

ndy =1r3—3rs2D?29)

(r durch 3 teilbar), nur dann méglich, wenn y den Faktor 9 enthalt. Wird
demnach y nicht durch 9 teilbar, so ist im reduziblen Fall von (1) wie
frither ¢ immer = 0 (mod 3). Hier 148t sich aber in gewohnter Weise fest-
stellen, daB % in jedem Falle durch 3 teilbar ist. Dabei muf8l man beachten,
daB, falls v einer in k (4/ — D) reduziblen Gleichung geniigt 2!), falls sich
also die bisherige Beweisfiihrung wiederholt, auch das neue y, d. h. r, zu 9
teilerfremd ist, wie man leicht einsieht. — Damit ist unser neues Kriterium

17) vgl. I. D., 8. 51, abgeiinderter Satz 5.
18) wenn D=1 (mod 9).
19) wenn D = 8 (mod 9).
20) Sie ergibt sich aus
Y+ VD= (e DY

(C. M. H. 11, 1, S. 83; n nicht durch 3 teilbar).
1) C. M. H. 11, 1, S. 85/86.
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vollstdndig nachgewiesen, denn % von k (4/ — D) kann nach obigem nur
dann zu 3 prim werden, wenn y durch 9 teilbar ist und umgekehrt.

Beispiele:
5 — 42 =109, D=1 (mod 9), h = 6, y=~=0 (mod 9);
B — 12= 26, D=8 (mod 9), h = 6, y %= 0 (mod 9);
293 — 1532 = 980, D =8 (mod 9), h =2, y =0 (mod 9);
343 — 1982 = 100, D=1 (mod 9), h=1, ¥y =0 (mod 9).

Aus diesem Spezialsatz gewinnt man ebenfalls analoge Kriterien wie
die unter a) genannten. Wesentlich ist jedoch, dall jetzt bei allen die
Bedingung hinzutritt, da3, falls D =1 oder = 8 (mod 9) usw., ent-
weder y durch 9 oder die Klassenzahl von k (4/ — D) oder ¢ durch 3 teil-
bar sein muf.

Iv.

Der Vollstandigkeit halber soll noch untersucht werden, was geschieht
wenn in einer vorhandenen Losung unserer Gleichung z durch irgend-
welche ungeraden Faktoren p, die in D in gerader Potenz enthalten sind,
bzw. durch die diesen p entsprechenden Faktoren 2 teilbar ist.

1. Zunichst konstatieren wir, daBl bei solchen Losungen die Haupt-
ideale (y -+ 3 A/ — D) niemals 3. Potenzen von Idealen in k (1/ — D)
sind 22). Die Einsicht dieser Eigenschaft ist unabhangig von der Unter-
scheidung der beiden bekannten Falle fiir Gleichung (1), weshalb wir hier
D ganz beliebig (auch durch 3 teilbar) annehmen diirfen; sie ergibt sich
hauptséchlich durch die Betrachtung der frither erwéahnten Beziehung (4).

A. Ist p ein ungerader Faktor von 2, so sind zwei Bedingungen auseinan-

der zu halten:
— D')
a = 4+ 1
) ( |y

Dann zerfallt p in k£ (n/— D) in zwei verschiedene, zueinander kon-
jugierte Primideale p und p’. Weil nach unseren Annahmendie Gleichung
(4) entweder zu

P2 =p-py+ 8B+ — D) (y,—+ — Dy,

falls D = ple,z_—zp”zl (n =1,2,3, ): Yy=0"% [yl;.‘éO(modp)],
oder zu

22) 1. D., 8. 57, Satz 1 und S. 61, Satz 2.
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P2 =pp® (Y + 8+ —D) (y,—+ — D)),

falls D=p* D,z =p"2, (n = 2,3, 4, ...),y = p* - y; [y, == 0 (modp)],
wird, stellen wir fest, da das Produkt (y, + 3 v/ — D,) - (y; —
3 o/ — D,) durch p*-2 bzw. p*** teilbar sein muB. Daraus folgt, da
Y, + B8 v/ — Dy p*2 bzw. >4 und y, — 13 4/ —D, p’32 bzw.
p’3»—4 zur hochsten Potenz enthalten [eine andere Verteilung von
p und p’ ist wegen y, == 0 (mod p) unmoglich ]. Also wird z. B.

Y+ —D=p (y + 8B+ —D)=p>1-p ...... ,
baw. y + 84/ —D =p2(y, + 834/ — D;) = p>2-p'2 ...... ,

womit wir unsere Behauptung schon allgemein fiir die ungeraden p
bestatigt haben. Ist ndmlich

m(1F>Z“L

so kann z kein solches p besitzen, da sonstdie obige Uberlegung ergibe
[p ist jetzt Primideal in k (/— D)], daB sowohl y, + # v/ — D,, wie
Yy, — t3 o/ — D, und demnach auch y, durch p teibar wire.

B. Ist z gerade, so sind die Hauptideale (y + #* 4/ — D) nur dann keine
dritten Potenzen, a) wenn y ungerade oder b) wenn y gerade und D
= 22D, [D;=—1 (mod 4)]. Im ersten Fall wird namlich, da die ge-
nannten Ideale den Faktor 2 enthalten, die Gleichung (4) zu

.8 _o.ofY ot :Tj@mf —p
2z1~22G+2V D) (Y-t v—D)

wo 2"z, =2(n=12,3,...) und die zwei letzten Faktoren ganze
algebraische Zahlen sind. Weil nach C. M. H. I1, 1, S. 83, sogar D = — 1
(mod 8), zerfallt 2 in zwei voneinander verschiedene Primideale p und p’
in k (/ — D); also folgt wie bei A) z. B.

—_— t3 g ’ ’
y+t3\/——D=2(%+§\/—-D)zp-p'p3”—2 ..... =p3"1.p'...

— Im zweiten Fall sind zwei Unterfille zu unterscheiden: a) D; =—1
(mod 8). Da hier die Hauptideale unbedingt durch 4 teilbar sind, hat (4)
das Aussehen:
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i B s
op =22 (44 Ly=D,) (Y—Fv=D))

wWo 2"z, =2z (n=2,3,4,...) und 2y, = y (y, ungerade). Aus dem
gleichen Grunde wie oben erhalten wir demnach z. B.

y+%H%—D=”%%+§V:7®=v”wtwwﬂu=NW%”~W

woraus sich wieder unsere Behauptung ergibt. Wird 8) D; = — 5 (mod 8),
so ist 2 Primideal in k£ (v/— D), d. h. dieser Fall tritt nicht ein [vgl.

(mpD) =

Hieraus erkennt man, dafl die diesen Gleichungen entsprechenden
Klassenzahlen von k (4/ — D) nicht durch 3 teilbar zu sein brauchen,
wie auch aus nachstehenden Beispielen ersichtlich ist:

158 — 552 = 350 = 2+ 52 7,2=0 (mod 5), h = 4,
(65 4 5 4/ — 14) keine 3. Potenzen.

208 — 892 = 79, z gerade, y ungerade, h = 5,
(89 4+ 4/ — 79) keine 3. Potenzen.

128 — 382 = 284 = 2%- 71,z und y gerade, h = 7,

(38 4 2 4/ — 71) keine 3. Potenzen.

Hingegen ist diese Eigenschaft nicht unbedingt notwendig, wie folgende
Gleichung zeigt:

103 — 152 = 775 = 5% - 31, 2= 0 (mod 5) und dennoch » = 3.

Folgerung : Ist D = 5 oder = 7 (mod 9), oder, falls y zu 9 teilerfremd,
D = loder = 8 (mod 9), und & von k (/ — D) nicht durch 3 teilbar, so
stellen wir wegen obiger Eigenschaft von y 4 2 4/ — D fest, daB in jeder
ganzzahligen Lésung von 28 — y? = D z durch mindestens einen der er-
wahnten ungeraden Primfaktoren p oder dann durch 2 teilbar sein
mul} 38). Denn nach Abschnitt III wére sonst 2 = 0 (mod 3).

%) 1. D., S.66, Satz 4. Vgl. insbesondere die Folgerung, S. 67.

76



Beispiele:
143 — 422 =980 =22:-5: 7%, h=2,2=0 (mod 7);
333 — 1872 =968 = 22:2-11% A =1, 2=0 (mod 11).

2. Um aus der unter 1. gewonnenen Aussage iiber (y 4+ & v/ — D)
weitere Schliisse zu ziehen, bauen wir jetzt Relativkorper auf. Zum
Grundkorper K (4/3 D, 4/ — 3) adjungieren wir namlich die dritte
Wurzel aus y =y + 134/ — Dbzw.u=y — 3 v/ — D, wo D zu 3 prim

angenommen werde. Auf die neuen Korper K,; ( lg/*,u_, /3D, v/ — 3)
wenden wir Satz 6 der bekannten Arbeit von Ph. Furtwingler: ,,Uber das
Reziprozitiatsgesetz der l. Potenzreste in algebraischen Zahlkorpern,
wenn ! eine ungerade Primzahl bedeutet‘‘?), an. Hierzu setzen wir
I = 3. Als Primideal {;, welches in g nicht zur dritten Potenz aufgeht,
diirfen wir die in 1. genannten p wahlen; denn sie geniigen der Bedingung,
daB sie zu 3 (D zu 3 teilerfremd), also ebenfalls zu [ = (1 — ) 25) prim
sind. Folglich miissen die Relativdiskriminanten von K, zu K durch diese
und damit auch durch simtliche Primfaktoren p (2 inbegriffen), in denen
die p aufgehen, teilbar sein.

Wichtig fiir das Folgende ist, daB sich diese Teilbarkeitseigenschaft auch
auf die Relativdiskriminante des Korpers K, (u, 4/ 3 D) in bezug auf
k (1/ 3 D), wo u eine Wurzel der in % (4/ 3 D) irreduziblen (weil D nicht
durch 3 teilbar) kubischen Gleichung (1) darstelle, ausdehnen laBt 26).
Dies gelingt mittelst einer analogen Betrachtung, wie sie beim Beweise
des Kriteriums von Fueter im reduziblen Fall von (1) angewendet
worden ist 27).

3. Dieses neue Resultat fithrt uns zur Anwendung eines weiteren
Theorems, das Herr Fueter in seiner Abhandlung: ,,Abelsche Gleichungen
in quadratisch-imagindren Zahlkorpern®, verdffentlicht hat 28). Wir
setzen dazu wieder I = 3; ferner wihlen wir als Grundkérper % (4/3 D)
und als relativ-Abelschen Korper K, (u, 4/ 3 D). [, lassen wir ebenfalls
die Primideale p der Primfaktoren p (£ 3) von 1. durchlaufen. Da diese p
wegen 2. in der Relativdiskriminante von K, zu k aufgehen, werden sie,

24) erschienen in den ,,Abhandlungen der Kgl. Ges. der Wiss. zu Gottingen. Math.-
Phys. Klasse. Neue Folge. Bd. II, Nr. 3, Berlin 1902,
— 14 y=3

25) [ ist bekanntlich im Kérper der 3. Einheitswurzel ( ¢ —————5————-—-—) gleich y-3.
\ :

%) 1. D., S.72, Satz 6.
27) Naheres dariiber in I. D., S. 22—28 und S. 70—72.
28) Mathematische Annalen, Bd. 75, S. 188.

I
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nach der Theorie iiber den Zerfall von Primidealen in kubischen Korpern,
in K, je die dritte Potenz eines Ideals. Also gilt, infolge des soeben er-
wahnten Satzes von Fueter, fiir jedes p die Kongruenz

p——-(3D>29)EO (mod 3).
»

Damit sind wir zu dem in der Einleitung gewiinschten wichtigen
Kriterium fiir die in gerader Anzahl auftretenden ungeraden Prim-
faktoren p von D, bzw. fiir die ihnen entsprechenden Faktoren 2 gelangt:

Besitzt die diophantische Gleichung

28— y? = DiS,

wobei D eine von sechsten Potenzen freie, positive, ganze rationale und zu 3
teilerfremde Zahl bedeutet, eine Losung, in der entweder z = 0 (mod p,),
wo p,; irgendwelche ungeraden Primfaktoren durchliuft, die in D wn gerader
Anzahl aufgehen, oder in der, falls z gerade, y ungerade oder, falls z gerade,
y gerade und D = 22- D, [Dy=—1 (mod 4)] 1st, so qult fir jedes p;
bzw. fir p, = 2 die Bedingung

g — (31? )50 (mod 3)39).
Daran schlieBt sich der nachstehende Zusatz, der nur fiir ungerade p
gilt 31):
Besteht fiir eine ungerade Primzahl p, welche in D in gerader Potenz auf-

tritt, die Beziehung

p— (%3') £ 0 (mod 3),

80 18t in der Qleichung

28— y? = Di8
z zu p teilerfremd 39).
Dieser erlaubt also sofort einzusehen, was fiir Primfaktoren z nicht
besitzt. ' '
Beispiele fiir die beiden Satze:

D'\
1) 583 — 102 = 25 = 52, D="7 (mod 9), p;, = 5, (ép_): (%) = — 1;
/ t
p,-—-—-(3pD) =84+ 1=0 (mod 3).
%) d=4.32,¢#.3D: C.M.H.1I, 1, 8. 82,
30) 1.D., S.79. 3D
81) Fiir p = 2 besteht immer die Kongruenz: p — (—;—) =0 (mod 3) (J.D., S. 80).
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2) 813 —1712=550=2- 5% 11, D=1 (mod 9), p, = 5,(%):(%) =1;

i

P:

folglich kann z niemals 5 als Faktor enthalten.

pi—<3D’> =5—1=£0 (mod 3);

Weil in diesem Kriterium Faktoren der Ringklassenanzahl zum Fiihrer

=11 P20+ D)

in k (4/ 3 D) auftreten, liegt die Vermutung nahe, nachzuweisen, daB
~auch diese Zahl durch 3 teilbar ist. Da wir jedoch in k (4/ 3 D) einen
reellen Korper haben, ist dies nicht ohne weiteres zu entscheiden.

Immerhin haben wir nun, wenigstens falls D = 5 oder = 7 (mod 9),
fiir jede rationale Losung y, z der diophantischen Gleichung 23 — y2 = D
eine notwendige Losungsbedingung gefunden. — Beim Aufsuchen hin-

reichender Kriterien st6t man vorldufig auf noch nicht iiberwundene
Schwierigkeiten. Doch ist z. B. fiir D = 7 (mod 9) empirisch einzusehen,
dafl der Satz von Herrn Fueter bis zu ca. D = 200 auch umgekehrt
werden darf.

%) pi,t = 1,2, ... r, durchlauft die in diesem Abschnitt genannten Faktoren p.

(Eingegangen den 19. Juli 1934.)
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