Zeitschrift: Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 6 (1934)

Artikel: Ueber symmetrische Monoide und Kegel.

Autor: Emch, Arnold

DOI: https://doi.org/10.5169/seals-7584

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 13.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Ueber symmetrische Monoide und Kegel

Von Arnold Emch, Urbana, Illinois (U.S.A.)

§ 1. Einleitung

In verschiedenen frühern Arbeiten 1) habe ich mich mit der Anwendung der Theorie der endlichen Substitutionsgruppen auf geometrische Probleme beschäftigt. Diese Theorie hat in der Geometrie schon öfters sehr schöne Resultate zu Tage gefördert, wie z. B. den Zusammenhang der Clebschen Diagonalfläche mit der symmetrischen Collineationsgruppe G_{120} von fünf homogenen Veränderlichen, der Kleinschen Kurve 4. Ordnung mit der G_{168} , der von Ciani behandelten Fläche 4. Ordnung mit 10 Deckebenen, die auch in der G_{120} invariant ist, etc.

Schon bei der symmetrischen G_{24} (x_1, x_2, x_3, x_4) lassen sich sehr viele interessante geometrische Tatsachen feststellen.

Unter einem symmetrischen geometrischen Gebilde (Konfiguration, Kurve, Fläche, Hyperfläche) in einem projektiven Raume $S_r(x_1, \ldots, x_{r+1})$ von r Dimensionen verstehe ich die Punktmenge, welche eine oder mehrere symmetrische algebraische Gleichungen $f(x_1, \ldots, x_{r+1}) = 0$ befriedigt. Hat man nur eine Gleichung, so handelt es sich um symmetrische Kurven, Flächen, Hyperflächen in S_2 , S_3 , $S_r(r > 3)$. Bezeichnet man die elementaren symmetrischen Funktionen von r + 1 Veränderlichen mit $\Phi_1 = \sum x_i$, $\Phi_2 = \sum x_i x_k$, $\Phi_3 = \sum x_i x_k x_r$, ..., $\Phi_{r+1} = x_1 \ldots x_{r+1}$, so läßt sich eine symmetrische Hyperfläche n. Ordnung in der Form

(I)
$$F n = \sum \alpha_{m_1 m_2 \dots m_{r+1}} \cdot \stackrel{m_1 m_2 m_3}{\Phi_1 \Phi_2} \cdot \stackrel{m_{r+1}}{\Phi_3} \dots \stackrel{m_{r+1}}{\Phi_{r+1}} = 0$$

¹⁾ Some geometric applications of symmetric substitution groups. Americ. Journ. of Math., Vol. 45 (1923), pp. 192-207.

On the mapping of the Quadruples of the G_4 in a plane upon a Steiner surface. Americ. Soc. Bull., Vol. 33 (1929), pp. 381—390.

On the mapping of the sextuples of the symmetric G_6 in a plane upon a quadric. Americ. Soc. Bull., Vol. 33 (1927), pp. 745-750.

On the geometry of symmetric functions. Tohoku Math. Journ., Vol. 32 (1930), pp. 16-26.

Finite groups and their geometric representation. Journal für reine und angewandte Mathematik, Band 162 (1930), pp. 238-255.

On algebraic surfaces which are invariant in a certain class of finite collineation groups. Americ. Math. Soc. Bull., Vol. 36 (1930), pp. 547—552.

darstellen, wobei die α beliebige Koeffizienten und die m_i positive ganze Zahlen sind und die Relation gelten mu β

(2)
$$m_1 + 2 m_2 + 3 m_3 + ... + (r + 1) m_{r+1} = n.$$

Die Konstruktion solcher Gebilde kommt somit auf die Lösung dieser diophantischen Gleichung oder eines bekannten Zerlegungsproblems der Zahlentheorie heraus.

In dieser Arbeit werde ich mich mit der Darstellung symmetrischer Monoide und Kegel, insbesondere derjenigen 6. Ordnung in S_3 beschäftigen.

§ 2. Definition der Monoide und Kegel

Nach Cayley ist ein Monoid n. Ordnung eine Fläche mit einem (n-1)fachen Punkt und ist somit rational. Ein symmetrisches Monoid ist in
der symmetrischen Kollineationsgruppe G_{24} invariant. Der einzige Punkt
der in G_{24} unverändert bleibt ist der Einheitspunkt E (IIII), so daß die
Singularität des Monoids notwendigerweise in diesen Punkt fallen muß.
Da ein Monoid n. Ordnung in der Form

$$z = \frac{f_n(x, y)}{f_{n-1}(x, y)}$$

in Cartesischen Koordinaten dargestellt werden kann, so muß ein symmetrisches Monoid in S_8 notwendigerweise die Form haben

(4)
$$(x_1 + x_2 + x_3 + x_4)$$
 $F_{n-1}(x_1, x_2, x_3, x_4) - F_n(x_1, x_2, x_3, x_4) = 0$,

worin F_{n-1} und F_n symmetrische Polynome der Ordnung n-1 und n sind, welche homogen durch drei linear unabhängige Formen 1. Grades y_1, y_2, y_3 , die den Punkt E enthalten, dargestellt werden können. Setzt man nämlich

(5)
$$\begin{aligned}
\varrho \ y_1 &= x_1 - x_2 + x_3 - x_4, \\
\varrho \ y_2 &= x_1 - x_2 - x_3 + x_4, \\
\varrho \ y_3 &= x_1 + x_2 - x_3 - x_4, \\
\varrho \ y_4 &= x_1 + x_2 + x_3 + x_4,
\end{aligned}$$

so nimmt (4) die Form

(6)
$$y_4 F_{n-1}(y_1, y_2, y_3) - F_n(y_1, y_2, y_3) = 0,$$

an, die sofort den Charakter eines Monoids aufweist. Bezeichnet man mit Φ_i die in (1) gebrauchten elementaren symmetrischen Funktionen, so ergibt sich

wobei natürlich $Y_2^2 - (y_1^4 + y_2^4 + y_3^4) = 2 Y_4$ ist. Man sieht, daß Y_2 , Y_3 , Y_4 symmetrische Funktionen der x von der Ordnung 2, 3, 4 mit vielfachen Punkten derselben Ordnung in E sind. Konstruiert man Polynome P_{n-1} (Y_2, Y_3, Y_4) und P_n (Y_2, Y_3, Y_4) von Y_2 , Y_3 , Y_4 , welche in den x homogen und bezüglich von den Graden n-1 und n, und folglich symmetrisch sind, so ergibt sich ohne weiteres:

Satz 1. Der Ausdruck

$$\lambda \Phi_1 P_{n-1}(Y_2, Y_3, Y_4) + \mu P_n(Y_2, Y_3, Y_4) = 0$$

stellt ein symmetrisches Monoid der Ordnung n mit einem (n-1)-fachen Punkt in E dar. Für $\lambda = 0$ hat man die allgemeine Form

$$P_n(Y_2, Y_3, Y_4) = 0$$

des symmetrischen Kegels n. Ordnung.

Es versteht sich von selbst, daß Φ_1 nicht ein Teiler von P_n sein darf.

Ein Kegel von ungerader Ordnung enthält Y_3 oder eine Potenz von Y_3 als einen Faktor. Der einzige Kegel dritter Ordnung ist einfach

$$y_1 y_2 y_3 = Y_3 = \emptyset_1^3 - 4 \emptyset_1 \emptyset_2 + 8 \emptyset_3 = 0.$$

Als symmetrischer Kegel 5. Ordnung ergibt sich Y_2 $Y_3 = 0$. Y_2^2 $Y_3 = 0$, $Y_3^3 = 0$, Y_2 $Y_3^3 = 0$ sind bezüglich Kegel 7., 9., 11. Ordnung, usw.

§ 3. Die Monoide und Kegel 4. Ordnung

I. Es sollen zunächst einige Bezeichnungen eingeführt werden, die ich schon in frühern Arbeiten gebrauchte. A_1 (1,0,0,0), A_2 (0,1,0,0), A_3 (0,0,1,0),

 A_4 (0,0,0,1) seien die Ecken des Koordinatentetraeders; E (1,1,1,1) der Einheitspunkt; $\mathcal{E}_{12}(1,-1,0,0)$, $\mathcal{E}_{13}(1,0,-1,0)$, $\mathcal{E}_{14}(1,0,0,-1)$, $\mathcal{E}_{34}(0,0,1,-1)$, \mathcal{E}_{24} (0,1,0,-1), \mathcal{E}_{23} (0,1,-1,0) die Schnittpunkte der Kanten des Tetraeders mit der Einheitsebene $\Phi_1 = 0$; D_1 (1,-1,1,-1) D_2 (1,-1,-1,1), D_3 (1,1,-1,-1) die Diagonalpunkte des von den Koordinatenebenen auf $\Phi_1 = 0$ ausgeschnittenen Vierseits. Die in (5) gegebenen Gleichungen $y_1 = 0$, $y_2 = 0$, $y_3 = 0$ sind dann die durch den Einheitspunkt und diese Diagonalpunkte gehenden Ebenen.

Nach Satz I hat nun ein Monoid der 4. Ordnung die Form

(8)
$$\Phi_1 Y_3 + \lambda Y_2^2 + \mu Y_4 = 0$$
,

oder

(9)
$$\theta_1 (\theta_1^3 - 4 \theta_1 \theta_2 + 8 \theta_3) + \lambda (9 \theta_1^4 - 48 \theta_1^2 \theta_2 + 64 \theta_2^2) + \mu (3 \theta_1^4 - 46 \theta_1^2 \theta_2 + 16 \theta_1^2 \theta_2 + 16 \theta_2^2 - 64 \theta_4) = 0.$$

Für $\lambda = 0$ ergibt sich die bekannte Römerfläche von Steiner. Ist $\mu = -4 \lambda$, so läßt sich (9) in die Gestalt bringen

(10)
$$\theta_1 Y_3 + \lambda (4 x_1 - \theta_1) (4 x_2 - \theta_1) (4 x_3 - \theta_1) 4 x_4 - \theta_1) = 0$$
,

woraus sofort hervorgeht, daß dieses Monoid die sechs Geraden $\overline{E \, \mathcal{E}_{ik}}$ einfach enthält und die \mathcal{E}_{ik} als Doppelpunkte hat. Im allgemeinen liegen auf einem Monoid n. Ordnung (3) n(n-1) durch E gehende Schnittgeraden, nämlich diejenigen von $f_{n-1} = 0$ und $f_n = 0$.

In dem besonderen Falle (10) sind die $\overline{E\mathcal{E}}_{ik}$ doppelt zu zählen. Zudem liegen die vier Geraden $\mathcal{E}_{ik}\mathcal{E}_{ij}$ auch auf der Fläche.

Daß auch auf dem allgemeinen symmetrischen Monoid 4. Ordnung 12 durch E gehende Geraden liegen, kann direkt wie folgt bewiesen werden. In einer der drei Ebenen $y_i = 0$, etwa $x_1 + x_2 - x_3 - x_4 = 0$ nehmen wir eine beliebige durch E gehende Gerade $s \ \rho \ x_1 = \lambda + 1$, $\rho \ x_2 = \lambda - 1$, $\rho \ x_3 = \lambda + a$, $\rho \ x_4 = \lambda + a$ an, die durch den Punkt (1, -1, a, -a) bestimmt ist. Liegt diese Gerade auf der Fläche

$$\lambda_1 \Phi_1^4 + \lambda_2 \Phi_1^2 \Phi_2 + \lambda_3 \Phi_1 \Phi_3 + \lambda_4 \Phi_2^2 + \lambda_5 \Phi_4 = 0$$

so muß diese Gleichung für alle Werte von λ befriedigt werden. Für einen Punkt der Geraden findet man $\Phi_1 = 4 \lambda$, $\Phi_2 = 6 \lambda^2 - a^2 - 1$, $\Phi_3 = 4 \lambda^3 + \lambda^2 - 2 \lambda (a^2 + 1)$, $\Phi_4 = \lambda^4 - \lambda^2 (a^2 + 1) + a^2$. Setzt man diese Werte in obige Gleichung ein, so kommt dann λ^3 nur in dem Gliede $\Phi_1 \Phi_3$ vor. Also muß λ_3 verschwinden. λ kommt nirgends vor,

somit gibt es nur die Glieder welche λ^4 , λ^2 , I enthalten, deren Verschwinden auf drei Gleichungen mit den Unbekannten $\frac{\lambda_1}{\lambda_5}$, $\frac{\lambda_2}{\lambda_5}$, $\frac{\lambda_3}{\lambda_5}$, $\frac{\lambda_4}{\lambda_5}$, führt. Diese sind erfüllbar und zwar auf ∞ -fache Art. Da sich alles innerhalb der G_{24} abspielt, so bestimmt also s elf andere durch E gehende Geraden, wovon 4 in jeder Ebene y_i liegen. E wird dreifacher Punkt und die Fläche ein Monoid.

Als Ergebnis hat man

Sats 2. Jede durch E gehende und in einer Ebene y_i liegende Gerade s führt durch G_{24} su einer Gruppe von swölf Geraden durch E, die sich su vieren auf die drei Ebenen y_1 , y_2 , y_3 verteilen. Eine solche Gruppe bestimmt ein Büschel von symmetrischen Monoiden 4. Ordnung, welches die ganze Gruppe enthält. Es gibt also ∞^2 Monoide dieser Art (∞^5 in S_3). In dieser Mannigfaltigkeit kommen ∞^1 Steinersche Flächen vor, ferner ∞^1 Flächen von der Art, sechs doppelt zu sählende Geraden $E \mathcal{E}_{th}$, sechs Doppelpunkte \mathcal{E}_{ik} und ihre vier Verbindungsgeraden zu enthalten.

2. Die symmetrische Funktion Y_4 läßt sich wie folgt schreiben:

(II)
$$4 (y_1^2 y_2^2 + y_2^2 y_3^2 + y_3^2 y_1^2) = (y_1 + y_2 + y_3) (-y_1 + y_2 + y_3) (y_1 - y_2 + y_3) (y_1 + y_2 - y_3) + (y_1^2 + y_2^2 + y_3^2)^2.$$

Hierin ist

(12)
$$y_1 + y_2 + y_3 = -(\Phi_1 - 4x_1), -y_1 + y_2 + y_3 = \Phi_1 - 4x_3,$$

 $y_1 - y_2 + y_3 = \Phi_1 - 4x_4, y_1 + y_2 - y_4 = \Phi_1 - 4x_2.$

Das sind die Gleichungen der Ebenen, welche E mit den Schnittgeraden der Koordinatenebenen mit der Einheitsebene verbinden. Sie sollen mit e_i , i = 1, 2, 3, 4 bezeichnet werden. Man hat auf die Bauart von (11) gestützt den

Satz 3. Der Kegel 4. Ordnung $Y_4 = 0$ hat die Ebenen e_i zu Doppeltangentialebenen. Die je zwei Berührungsgeraden in jeder werden durch den Kegel $Y_2 = 0$ ausgeschnitten.

Betrachtet man den Büschel von Steinerschen Flächen Φ_1 $Y_3 + \lambda$ Y_4 , so bildet der Schnitt desselben mit der Einheitsebene eine Kurve 4. Ordnung ($\Phi_1 = 0$, $Y_4 = 0$), welche die Schnittgeraden e_i der Koordinatenebenen mit der Einheitsebene zu Doppeltangenten hat. Zudem sind die Diagunalpunkte Doppelpunkte dieser Kurve. Somit

Satz 4. Alle Flächen des Büschels Φ_1 $Y_3 + \lambda$ $Y_4 = 0$ gehen durch dieselbe Kurve 4. Ordnung C_4 in der Einheitsebene. Diese merkwürdige Kurve hat die Eigenschaft vier reelle Doppeltangenten zu besitzen, die ein Vierseit bilden, dessen reellen Diagonalpunkte Doppelpunkte der Kurve sind. Außer diesen Doppelpunkten ist die Kurve imaginär.

3. Aehnliches gilt für den Büschel von Kegeln

(13)
$$\lambda Y_2^2 + \mu Y_4 = 0$$
, oder wenn $\mu/\lambda = \nu$ gesetzt wird,

(14)
$$9 \, \mathcal{P}_{1}^{4} - 48 \, \mathcal{P}_{1}^{2} \, \mathcal{P}_{2} + 64 \, \mathcal{P}_{2}^{2} + \nu \, (3 \, \mathcal{P}_{1}^{4} - 16 \, \mathcal{P}_{1}^{2} \, \mathcal{P}_{2} + 16 \, \mathcal{P}_{1} \, \mathcal{P}_{3} + 16 \, \mathcal{P}_{2}^{2} - 64 \, \mathcal{P}_{4}) = 0.$$

Man kann wieder Größen wie

$$z_1 = 4 x_1 - \Phi_1,$$

 $z_2 = 4 x_2 - \Phi_1,$
 $z_3 = 4 x_3 - \Phi_1,$
 $z_4 = 4 x_4 - \Phi_1,$

einführen, welche die Bedeutung der e_i haben. Dann wird aus (14)

(15)
$$(\sum z_i^2)^2 - \frac{64 \nu}{\nu + 1} z_1 z_2 z_3 z_4 = 0,$$

oder

$$(16) \left[\sum (x_i - x_k)^2 \right]^2 - \frac{4\nu}{\nu + 1} (4x_1 - \Phi_1) (4x_2 - \Phi_1) (4x_3 - \Phi_1) (4x_4 - \Phi_1) = 0.$$

Daraus ergibt sich

Satz 5. Der Büschel von symmetrischen Kegeln 4. Ordnung $\lambda Y_2^2 + \mu Y_4 = 0$ hat dieselben vier Doppeltangentialebenen $z_i = 0$, deren Berührungsgeraden von dem Kegel $Y_2 = 0$ ausgeschnitten werden.

§ 4. Die Monoide und Kegel 6. Ordnung

1. Die allgemeine symmetrische Fläche 6. Ordnung hängt von 8 wesentlichen Konstanten ab und hat die Form

(17)
$$a_0 \, \Phi_1^6 + a_1 \, \Phi_1^4 \, \Phi_2 + a_2 \, \Phi_1^3 \, \Phi_3 + a_3 \, \Phi_1^2 \, \Phi_2^2 + a_4 \, \Phi_1^2 \, \Phi_4 + a_5 \, \Phi_1 \, \Phi_2 \, \Phi_3 + a_6 \, \Phi_2 \, \Phi_4 + a_7 \, \Phi_2^3 + a_8 \, \Phi_3^2 = 0.$$

Damit diese Fläche ein Monoid werde, muß sie erstens durch E gehen, zweitens müssen, mit der ersten beginnend, vier nacheinanderfolgende Polaren von E in bezug auf die Fläche E enthalten, damit E ein fünffacher Punkt wird.

Es sind also dazu fünf Bedingungen nötig. Somit bleiben für das Monoid 6. Ordnung drei verfügbare Konstanten, so daß alle Monoide dieser Ordnung eine dreifache Mannigfaltigkeit bilden. Das geht auch aus der früher aufgestellten Gleichung der Monoide n. Ordnung hervor, welche für die 6. Ordnung

(18)
$$\Phi_1 Y_2 Y_3 + \lambda Y_2^3 + \mu Y_2 Y_4 + \nu Y_3^2 = 0$$

ist. Da diese Gleichung auch als $Y_2 F_6 + \nu Y_3^2 = 0$ geschrieben werden kann, so ergibt sich

Satz 6. Alle ∞^3 symmetrischen Monoide 6. Ordnung berühreu den Kegel $Y_2 = 0$ in den Erzeugenden, welche von den Diagonalebenen y_1 , y_2 , y_3 ausgeschnitten werden. Diese doppelt gezählt, sind die 12 Geraden welche auf einem solchen Monoid durch E gehen.

2. Läßt man das erste Glied in (18) weg, so erhält man das Netz symmetrischer Kegel 6. Ordnung

(19)
$$\lambda Y_2^3 + \mu Y_2 Y_4 + \nu Y_3^2 = 0,$$

welches natürlich die in Satz 6 ausgesprochenen Eigenschaften hat. Bedeuten jetzt λ und μ Konstanten die nicht mit denen von (19) identisch zu sein brauchen, so läßt sich (19) explizite als

(20)
$$3 \mathcal{P}_{1}^{6} - 24 \mathcal{P}_{1}^{4} \mathcal{P}_{2} - 6 \mathcal{P}_{1}^{3} \mathcal{P}_{3} + 66 \mathcal{P}_{1}^{2} \mathcal{P}_{2}^{2} - 54 \mathcal{P}_{1}^{2} \mathcal{P}_{4} + 42 \mathcal{P}_{1} \mathcal{P}_{2} \mathcal{P}_{3} + 144 \mathcal{P}_{2} \mathcal{P}_{4} - 68 \mathcal{P}_{2}^{3} - 78 \mathcal{P}_{3}^{2} + \lambda (6 \mathcal{P}_{1}^{6} - 48 \mathcal{P}_{1}^{4} \mathcal{P}_{2} + 18 \mathcal{P}_{1}^{3} \mathcal{P}_{3} + 122 \mathcal{P}_{1}^{2} \mathcal{P}_{2}^{2} + 6 \mathcal{P}_{1}^{2} \mathcal{P}_{4} - 74 \mathcal{P}_{1} \mathcal{P}_{2} \mathcal{P}_{3} + 16 \mathcal{P}_{2}^{2} \mathcal{P}_{3} + 78 \mathcal{P}_{3}^{2}) + \mu (\mathcal{P}_{1}^{6} - 8 \mathcal{P}_{1}^{4} \mathcal{P}_{2} - 8 \mathcal{P}_{1}^{3} \mathcal{P}_{3} + 24 \mathcal{P}_{1}^{2} \mathcal{P}_{2}^{2} + 6 \mathcal{P}_{1}^{2} \mathcal{P}_{4} + 30 \mathcal{P}_{1} \mathcal{P}_{2} \mathcal{P}_{3} - 16 \mathcal{P}_{2} \mathcal{P}_{4} - 28 \mathcal{P}_{3}^{2} - 26 \mathcal{P}_{3}^{2}) = 0$$

schreiben. Da diese Gleichung für $\Phi_1 = 0$, $\Phi_2 = 0$, $\Phi_3 = 0$ befriedigt wird, so liegen die sechs Schnittpunkte dieser drei Flächen I_1 (i, -i, 1-1), I_2 (i, -i, -1, 1), I_3 (-1, i, -i, 1), I_4 (-1, -i, i, 1), I_5 (i, 1, -i, -1), I_6 (-i, 1, i, -1); $(i = \sqrt{-1})$; und somit auch die 6 Linien $\overline{EI_i}$, $i = 1, \ldots, 6$ auf diesen Kegeln. Die partiellen Derivierten nach

 x_i von (20) werden von den I_i befriedigt, wenn $\mu = 9 - \lambda$ ist. In diesem Falle erhält man aus (20) ein Büschel von Kegeln, welche die ET_i als Doppelgeraden besitzen. Sollen die Geraden \overline{EE}_{ik} einige E mit den Schnittpunkten der $\overline{A_iA_k}$ und der Einheitsebene verbinden, so muß $17 + 23 \lambda + 7 \mu = 0$ sein. Dieselbe Gleichung findet man für die Bedingung, daß die \overline{EE}_{ik} Doppelgeraden seien. Schreibt man beide Bedingungen vor, so wird $\lambda = -5$, $\mu = 14$ und man erhält einen Kegel, der notwendigerweise reduzibel ist und die Form hat

$$(-x_1 - x_2 + x_3 + x_4)^2 (-x_1 + x_2 - x_3 + x_4)^2 (x_1 - x_2 - x_3 + x_4)^2$$

$$= \emptyset_1^6 - 8 \ \emptyset_1^4 \ \emptyset_2 + 16 \ \emptyset_1^3 \ \emptyset_3 + 16 \ \emptyset_1^2 \ \emptyset_2^2 - 64 \ \emptyset_1 \ \emptyset_2 \ \emptyset_3 + 64 \ \emptyset_3^2 = 0.$$

3. Symmetrische Kegel 6. Ordnung können rein geometrisch dadurch erhalten werden, daß man den Einheitspunkt E mit den Punkten der Schnittkurve 6. Ordnung C_6 einer symmetrischen Fläche 2. Ordnung mit einer ebensolchen 3. Ordnung verbindet. Die C_6 dieser Art ergibt sich also als Schnitt von

$$a \Phi_1^2 + b \Phi_2 = 0,$$

und

$$c \Phi_1^3 + d \Phi_1 \Phi_2 + e \Phi_3 = 0,$$

und hängt scheinbar von drei effektiven Konstanten ab. Durch eine solche C_6 gehen aber ∞' Flächen (22), so daß also die Konstantenzahl auf zwei reduziert wird. Die $\overline{EI_i}$ sind Tangenten von (21) in den Punkten I_i . Als Parameterdarstellung von $\overline{EI_i}$ hat man $x_i = i + \lambda$, $x_2 = -i + \lambda$, $x_3 = 1 + \lambda$, $x_4 = -1 + \lambda$. Für diese wird $\Phi_1 = 4\lambda$, $\Phi_2 = 6 \lambda^2$, $\Phi_3 = 4 \lambda^3$, welche in (22) eingesetzt $(64 c + 24 d + 4 e) \lambda^3 = 0$ geben. Daraus folgt, daß die $\overline{EI_i}$ die Fläche (22) in den I_i oskulieren. Als Tangentialebene von (22) in I_1 findet man $x_1 + x_2 - x_3 - x_4 = 0$, d. h. eine Ebene, welche durch E geht. Somit wird $\overline{EI_i}$ eine Tangente der Kurve C_6 in I_1 . Dasselbe ist der Fall für die übrigen $\overline{EI_i}$ in den Punkten I_i . Projiziert man jetzt die C_6 von E auf eine allgemeingelegene Ebene im Raum, so erhält man eine ebene Kurve 6. Ordnung mit 6 Spitzen. Der projizierende Kegel ist ein symmetrischer Kegel K_6 mit 6 Rückkehrkanten. Dieser schneidet die quadratische Fläche (21) in einer Raumkurve 12. Ordnung, wovon C_6 ein Teil ist. Folglich ist die Restkurve eine andere C_6 , die auch symmetrisch sein muß. Daß diese C_6' auch der vollständige Schnitt von (21) mit einer zweiten

kubischen Fläche (22) ist, kann wie folgt bewiesen werden: Eine symmetrische F_2 (21) wird durch einen allgemein gewählten Punkt, durch welche sie gehen soll, vollständig bestimmt. Sei nun ein symmetrischer K_6 gegeben. Auf ihm wähle man einen beliebigen Punkt P_1 . Dieser bestimmt eine F_2 , welche K_6 in einer Kurve 12. Ordnung C_{12} schneidet, die durch die 24 der G_{24} zugehörigen Punkte P_1, \ldots, P_{24} geht. Da F_2 K_6 in 12 Punkten schneidet, welche durch die I_i absorbiert werden, so schneidet F_2 die $\overline{EI_i}$ in keinen andern Punkten außerhalb der I_i . Auf jeder Erzeugenden von K_6 befinden sich zwei Punkte P_1 , P_2 der C_{12} , so daß diese aus zwei Zweigen B_1 und B_2 besteht, die eindeutig aufeinander bezogen sind. Auf dem Zweige B_1 , auf welchem P_1 liege, nehme man einen weitern Punkt R_1 an. Dann bestimmen P_1 und R_1 eine symmetrische kubische Fläche F_3 eindeutig. Diese geht durch die 48 zu der Gruppe G_{24} gehörigen Punkte (P_i, R_i) und durch I_i . Somit schneiden sich F_2 und F_3 in einer C_6 , welche 12 + 48 = 60 Punkte mit C_{12} gemein hat und mit dem Zweig B_1 zusammenfällt. Somit ist auch B_2 eine Kurve 6. Ordnung und $C_{12} = B_1 \cdot B_2$. Da R_1 in ∞^1 -facher Weise gewählt werden kann, so gehen durch jede $B_1 = C_6$ $(B_2 = C_6) \infty^1$ kubische F_3 . Zusammenfassend ergibt sich

Satz 7. Auf jedem symmetrischen Kegel K_6 6. Ordnung gibt es ∞^1 symmetrische Kurven 6. Ordnung. Da es ∞^1 solcher Kegel gibt, so ist die Mannigfaltigkeit der symmetrischen Raumkurven 6. Ordnung ∞^2 , wie oben durch Konstantenzählung auch gefunden wurde. Fede symmetrische Fläche 2. Ordnung schneidet jeden symmetrischen allgemeinen Kegel 6. Ordnung in zwei symmetrischen Kurven 6. Ordnung. Umgekehrt werden alle ∞^1 symmetrischen Kegel 6. Ordnung erhalten als projizierende Kegel von symmetrischen Raumkurven 6. Ordnung vom Einheitspunkte aus. Alle solchen Kegel K_6 haben die E K_6 las Rückkehrkanten.

Die Gleichung des in diesem Satze auftretenden Büschels von K_6 wird aus (20), für $\mu = 9 - \lambda$ erhalten und ist

4. Es sollen nun noch die Kegel 6. Ordnung K_6^* behandelt werden, welche die \overline{E}_{ik} als Doppelgeraden enthalten und aus (20) durch die

Bedingung $7 \mu + 23 \lambda + 17 = 0$ hervorgehen. Sie bilden wieder einen Büschel, der außer den Doppelgeraden die $\overline{EI_i}$ einfach enthält und auf die Form gebracht werden kann

(24)
$$\sum (\Phi_{1} - 4x_{i})^{2} (\Phi_{1} - 4x_{j})^{2} (\Phi - 4x_{k})^{2}$$

$$+ \lambda \sum (\Phi_{1} - 4x_{i}) (\Phi_{1} - 4x_{2}) (\Phi_{1} - 4x_{3}) (\Phi_{1} - 4x_{4}) (\Phi_{1} - 4x_{i})^{2} = 0;$$

$$i, j, k = 1, ..., 4.$$

Projiziert man den Schnitt dieses Büschels mit $\Phi_1 = 0$ von A_4 auf die Ebene $x_4 = 0$, indem man $x_4 = -(x_1 + x_2 + x_3)$ setzt, so lautet die Gleichung

$$(25) x_1^2 x_2^2 x_3^2 + (x_1 + x_2 + x_3)^2 (x_1^2 x_2^2 + x_2^2 x_3^2 + x_3^2 x_1^2) - \lambda x_1 x_2 x_3 (x_1 + x_2 + x_3) [x_1^2 + x_2^2 + x_3^2 + (x_1 + x_2 + x_3)^2] = 0.$$

Führt man $x_1 + x_2 + x_3 = \psi_1$, $x_1 x_2 + x_2 x_3 + x_3 x_1 = \psi_2$, $\psi_3 = x_1 x_2 x_3$ ein, so wird aus (25)

(26)
$$\psi_1^2 \psi_2^2 - 2 \psi_1^3 \psi_3 + \psi_3^2 - 2 \lambda \psi_1 \psi_3 (\psi_1^2 - \psi_2) = 0.$$

Die Ebenen $x_1 + x_2 - x_3 - x_4 = 0$, $-x_1 + x_2 - x_3 + x_4 = 0$, $x_1 - x_2 - x_3 + x_4 = 0$ durch E schneiden $\mathcal{O}_1 = 0$ in den Diagonalgeraden d_1 , d_2 , d_3 , welche auf dem Kegelschnitt $K(\mathcal{O}_1 = 0, \mathcal{O}_2 = 0)$ die Punkte I_i ausschneiden. Die Projektionen von d_1 , d_2 , d_3 von E auf $x_4 = 0$ lauten $x_2 + x_3 = 0$, $x_3 + x_1 = 0$, $x_1 + x_2 = 0$. Ihr Produkt ist $(x_1 + x_2)(x_2 + x_3)(x_3 + x_1) = \psi_1 \psi_2 - \psi_3$. Die Projektion K' von K ist $\psi_1^2 - \psi_2 = 0$. Die Kurve (26) geht durch die 36 Schnittpunkte von

(27)
$$2 \psi_1 \psi_3 (\psi_1^2 - \psi_2) = 0$$

und

(28)
$$\psi_1^2 \psi_2^2 - 2 \psi_1^3 \psi_3 + \psi_3^2 = 0,$$

wovon 24 von den \mathcal{E}_{ik} absorbiert werden. Addiert man (27) und (28), so ergibt sich eine neue durch dieselben 36 Punkte gehende Kurve 6. Ordnung

(29)
$$(\psi_1 \ \psi_2 - \psi_3)^2 = 0,$$

d. h. das doppelt gerechnete Produkt der projizierten Diagonalgeraden. Dieses schneidet den Kegelschnitt $\psi_1^2 - \psi_2 = 0$ in 6 auf demselben

doppelt zu rechnenden Punkten, durch welche alle Kurven des Büschels (26) gehen und welche deshalb den Kegelschnitt in den Projektionen der I_i berühren. Bezeichnet man den symmetrischen Kegel 2. Ordnung, welcher E mit K verbindet, mit K_e , so folgt jetzt

Satz 8. Die symmetrischen Kegel 6. Ordnung mit den $E \mathcal{E}_i$ als Doppelgeraden berühren den symmetrischen Kegel 2. Ordnung in den Geraden $E I_i$.

(Eingegangen den 20. Mai 1933)