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Ueber die Einteilung der Variationsprobleme
von Lagrange nach Klassen

Von C. Carathéodory, z. Z. Athen

Einleitung

I. Das Ziel dieser Arbeit ist die Aufstellung einer fur aile regularen
Punkttransformationen geltenden Invariante, die fur das Studium der
Variationsprobleme von Lagrange grundlegend ist. Es handelt sich um
Folgendes: ist im (n -f- i)-dimensionalen Raum der (tl9xl9 ...9xM) ein

Variationsproblem mit der Funktion L {t, xt, xt) unter dem Intégral und
und den p Differentialgleichungen

(i.i) G*{t,Xi,xt) o (k' i,...,p)

als Nebenbedingungen gegeben, so fullen die Extremalen, die aus einem

beliebigen aber festen Punkt A des Raumes ausgehen, einen Raumteil
aus, dessen Dimension mit (n-\- i — q) bezeichnet werden soll. Die Zahl

q, die fur das betrachtete Problem jeweils charakteristisch ist, soll die
Klasse des Problems heiOen ; es wird sich zeigen, daC sie von Null
bis p inklusive variieren kann, und daG sie aus den Funktionen L und
Gk' mit Hilfe von Differentiationen (und Eliminationen) bestimmbar ist.
Es handelt sich also um eine reine Differentialinvariante.

2. Das Problem von Lagrange ist in den letzten Jahren von ver-
schiedenen Autoren, besonders von Bliss1) und seinen Schulern und

*) G. A. Bliss. A note on the problem of Lagrange in the calculus of
variations. Amer. Bull. 22 (1916) pp. 220—225.

D. M Smith. Jacobi's condition for the problem of Lagrange in the
calculus of variations. Trans. Amer. Math. Soc. 17 (1916) p. 459.

G. A. Bliss. The problem of Mayer with variable end points. Amer. Trans.
19 (1918) pp. 305—314.

MlSS G. A. Larew Necessary conditions in the problem of Mayer m the
calculus of variations. Amer. Trans. 20 (1919) p. 1.

G. A. Bliss. Some récent developments in the calculus of variations.
Amer. Bull. 26 (1920) pp. 343—361.

G. A. Bliss. The transformation of Clebsch in the calculus of variations.
(Proceed. intern. mathem. Congress Toronto 1924, Vol. I, pp 589— 6o3\

Miss G. A. Larew. The Hilbert Intégral and Mayer Fields for the
problem of Mayer in the calculus of variations. Amer. Trans. 26 pp. 61—67.

G. A. BllSS. The problem of Lagrange in the calculus of variations.
Autograph. Vorlesung (1925) pp. 1—75.

G. A. BllSS The problem of Lagrange in the calculus of variations.
Amer. Journ. of Mathem. 52 (1930) pp. 672—748.
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auCerdem von Marston Morse1) behandelt worden. Der Grund aber,
weshalb die Lagrangeschen Problème nicht schon in diesen sehr sorg-
faltigen Arbeiten nach Klassen eingeteilt worden sind, ist folgender : nach
den Arbeiten von E. v. Escherzch3), der zuerst auf gewisse Singulantaten
der Lagrangeschen Problème hingewiesen hatte (cf §18), hat man sich
îm AnschluO an H. Hahn und Bolza*) gewohnt, nur solche Extremalen
zu betrachten, die sich, wie man sagt, « normal verhalten » Auf dièse
Weise konnte man allerdings die Schwiengkeiten, auf welche v. Escherzch

hingewiesen hatte, umgehen, aber es wurde gleichzeitig der Weg ver-
baut, der zu den feineren Unterscheidungen îm Verhalten der Extremalen

fuhrt. In der Tat ist z B. die Bedingung des normalen Verhaltens
einer Extremalen bei den Lagrangeschen Problemen mit festen End-
punkten îm wesentlichen mit der Forderung identisch, da!3 die Klasse
des Problems verschwinden soll. Und ganz ahnlich ist die Théorie des
normalen Verhaltens der Extremalen von Lagrangeschen Vanations-
problemen mit vanablen Endpunkten mit der Klasse des Problems ver-
knupft. Dièse Zusammenhange werden erst recht verstandhch, wenn man
den Begnff der Klasse unabhangig von der ublichen Théorie entwickelt,
und deshalb werde ich von allen oben zitierten Arbeiten absehen, und
mich nur auf die Formeln stutzen, die ich in einer fiuheren Unter-
suchung angegeben habe5) Dièse Abhandlung wird îm Folgenden mit
Geod. Aeq. zitiert.

3. Ziisanimenstelliing bekannter JResultate.

Wir nehmen an, daf3 die Funktionalmatnx

2) a) The problème of Lagrange and Mayer under gênerai end
conditions Proc. Nat. Acad of Science. 16 (1930) pp. 229—233.

b) Sufficient conditions in the problem of Lagrange with variable end
conditions. Amer Journ of Mathem. 53 (1931) pp. 517—546

c) Sufficient conditions in the problem of Lagrange with fixed end
points Annals of Mathem. 32 (1931) pp 567—577.

Ferner
M Morse and S B, Myers The problems of Lagrange and Mayer with

variable end points. Proceed. Amer. Acad. of Arts and Science (Boston Mass.) 66
(1931) pp 235—253.

3) E V. Eschench Die zweite Variation der einfachen Intégrale. Wiener
Sitzungsber. Mathem Naturw. Klasse 107, 108, 110 (1898, 1899, 1901).

*) H. Hahn. Math Ann. 58 (1903) p. 152
O. Bolza. Vorlesungen uber Vanationsrechnung. (Leipzig, Teubner, 1909) p. 564.

6) C Carathéodory. Die Méthode der geodatischen Aequidistanten und
das Problem von Lagrange Acta Mathematica 47 (1926) pp. 199—236.



der linken Seite von (i. i) den Rang* p besitzt. AuGerdem soll fur die

Lmienelemente, die man betrachtet, die Legendresche Bedzngung erfullt
sein (Geod. Aeq. p. 210). Es soll also, wenn man mit f/iy çip Lagran-
gesche Multiplikatoren bezeichnet, und die Funktion

(3-2) M(t, xt, xt, fiy)

einfuhrt, die Gleichung in p

Gk

(3.3) D(q) o

lauter positive, von Null verschiedene Wurzeln besitzen.

Unter diesen Umstanden kann man an Stelle der (2n-\-p-\-i) Ver-
anderlichen, die in (3 2) auftreten, und die aufierdem den p Bedingungsgleichungen

(1. 1) genugen sollen, [2n -\- 1) von einander unabhangige
kanonische Koordinaten {t, xt, yt) einfuhren, die erlauben, aile Einzel-
heiten des Problems mit Hilfe einer einzigen Hamiltonschen Funktion
H & xi 9 7z) zu untersuchen (Geod. Aeq. p. 218).

Ist umgekehrt eine beliebige Funktion H {t, xt, j/t) gegeben, die min-
destens zwei Mal stetig differentiierbar ist, so kann sie als Hamiltonsche
Funktion eines Variationsproblems angesehen werden, fur welches die

Legendresche Bedingung erfullt ist, wenn die Gleichung in a

(3. 4) | Hyt Vj — StJ a | o

keine einzige négative Wurzel besitzt (Geod. Aeq. p. 221).
Die Anzahl ferner der verschwindenden Wurzeln der Gleichung (3. 4)

ist immer gleich der Anzahl der Bedingungsgleichungen (1. 1) des La-
grangeschen Problems, welchem die Funktion H zugeordnet ist. Ist also
insbesondere die Hessesche Déterminante I Hv v

I ^ o, so ist die Anzahl
der Bedingungsgleichungen gleich Null, d. h. das betrachtete Variations-
problem ist ein gewohnliches und kein Problem von Lagrange.

4. Die Losung eines Variationsproblems mit der Hamiltonschen Funktion

H (t,xt-,j/t) hangt bekanntlich von der Konstruktion einer ,,voll-
standigen Figur'4 ab, die aus einer Schar geodatisch aquidistanter Flachen



und der sie durchsetzenden Extremalenschar besteht. Man erhâlt die
Flàchenschar (4. 1) durch Intégration der partiellen Differentialgleichung
(Geod. Aeq. p. 222)

(4.2) Si+H{t,xi,SJti) o

Die Cauchyschen Charakteristiken von (4.2) sind Losungen des

Systems

(4. 3) *i H9i, yi — —Hx.

von kanonischen DifFerentialgleichungen.
Die Extremalen unseres Variationsproblems werden durch die Pro-

jektion xt'=Xi(t) dieser Kurven auf den (n -j- I - dimensionalen Raum
der (t, x{ dargestellt.

Betrachtet man ein Stùck des Raumes, das von der Flàchenschar
(4. 1) einfach ùberdeckt wird, so bilden die sie transversal schneidenden

Extremalen, die man auch als Losungen der Differentialgleichungen

(4. 4) Xi Hy. (t, Xj, SXj)

gewinnen kann, ein Feld, auf welches die WeierstraOsche Théorie an-
wendbar ist (Geod. Aeq. p. 215)6).

5. Ein ILilfssatz.
Wir betrachten nun einen Punkt Po des Raumes der {t, xt) und ein

Extremalenstùck e0, das Po enthâlt. Aus der Integrationstheorie der
partiellen Differentialgleichung (4.2) folgt ein Résultat, das fur ailes
Weitere grundlegend ist.

Man kann mit Po als Mittelpunkt eine Kugel z abgrenzen, soda/S

jede Extremale <?, die in einer gewissen Nachbarschaft von e0 liegt, in
ein Feld eingebettet werden kann, das die Kugel x vollstàndig Uberdeckt.

Wir bezeichnen mit (£ die Gesamtheit der Extremalen e, die nach

geeigneter Wahl von z die vorstehende Eigenschaft besitzen. Erinnert
man sich daran, da!3 fur aile betrachteten Extremalen die Legendresche

6) Man bemerke, dajS durch die Benutzung der kaDonischen Koordinaten jeder Unter-
schied zwischen den gewôhnlichen und den sogeDannten flMayerschenu Feldern von Extremalen
in Fortfall kommt. Es ist ein grofier Vorteil, dafi die sehr komplizierte Begriffsbildung der
Mayerschen Felder vermieden werden kann.



Bedingung erfullt sein soll, so folgt, wenn man bei der Wahl von (£

einige auf der Hand liegende Einschrankungen macht, die die Benutzung
der WeierstraGschen i>Funktion sicherstellen, der

Satz 1. Ketne zwei Extremalenstucke ex und e2 aus (£, die beide im
Innern von z liegen, konnen dieselben Endpunkte besitzen, ohne zusamtnen-
zufallen*

Um dies zu zeigen, nehmen wir an, daC eY und e2 dieselben Punkte A
und B verbinden, ohne identisch zu sein, und bezeichnen mit % und %
die Werte des Intégrais uber L langs ex und e2. Nach Konstruktion
eines Feldes von Extremalen, das ex enthalt, kann man die Differenz

[Ji — J\) mit Hilfe der ii-Funktion, die zu diesem Felde gehort, durch
die Gleichung

(5-0 y*-%=ÇEdt

darstellen. Nun ist einerseits E^zo, aber E ist in der vorstehenden

Gleichung nicht durchweg Null, weil nach unserer Voraussetzung Punkte
existieren, in welchen e% die durch dièse Punkte gehende Feldkurve unter
einem von Null verschiedenen Winkel schneidet, und weil dann in diesen
Punkten E > o ist. Hieraus schlieCt man, daG Jt > Jx sein muG. Durch
Vertauschung von ex mit e% hatte man aber J-t > % gefunden, was zu
einem Widerspruche fuhrt.

6. Das accessorische Variationsproblem.
Die kanonischen Koordinaten xt, yt sollen langs einer festen Extremalen

e0 den Gleichungen

(6.1) X, x,(t),

genugen. Wir fuhren zur Abkurzung folgende Funktionen von t ein,
die also langs e0 deflniert sind :

(6.2) a,J[fy HttXj{t1xh,yk)

(6.3) lhj(t) Hx.yj{t,~xk,~yk)

(6.4) ctJ(t) H,tyj(t,ik,yk).



Stellt man durch die Gleichungen

(65) xt~xt{t,u\ y=yt{t,u)
die kanonischen Koordinaten der Linienelemente einer Extremalenschar
dar, die von einem Parameter u abhangt, und reduzieren sich fur u o
die Funktionen (6 5) auf xt bzw. yt, setzt man ferner

(6. 6) ç, (/)
à x, (t, u)

bu V. W _ by,(t,u)
»=0

so sind bekannthch die Funktionen £, (t) und qt (t) Losungen der
Differentialgleichungen

t — alk Çk — btk

(6 7)

7. Man bemerke jetzt, dafi die Funktion

(7 i)

als Hamiltonsche Funktion eines Vanationsproblems angesehen werden
kann, dessen Extremalen durch die kanonischen Gleichungen (6. 7) be-

stimmt werden Die Déterminante (3. 4) des ursprunglichen Vanations-
problems fallt, wenn man sie fur die Linienelemente von e0 bildet, mit
der analogen Déterminante des neuen Vanationsproblems zusammen,
woraus man schlieGt, da6 auch hier die Legendresche Bedingung erfullt ist
Von einem verwandten Résultat ausgehend, hat Bliss in der Arbeit, die er
dem Toronto CongreO vorgelegt hat, aufierordentlich élégante Schlusse

gezogen. Fur uns wird vor allem maGgebend sein, dafi man den Satz 1

des § 5 auch auf die Losungen der Differentialgleichungen (6. 7) an-
wenden kann. Wahlen wir fur die eine der beiden Extremalen, die in
diesem Satze benutzt werden, die Losung §t ~ o, r\t o der Gleichungen
(6 7), so konnen wir nunmehr folgenden Satz aussprechen:

Satz 2. Jeder Pttnkt t0 der t-Achse, fur welchen dte fruheren Voraus-

setzungen gelten, tst Mtttelpunkt eines Intervalls ô (t0), m dem eme be-

hebzge Losung der DifferenUalgletchung (6. y) hochstens eine gemeznsame
Nullstelle der £z (t) besitzen kann, faite ntcht fur dièse Losung aile g, (t)
tdenttsch Null sind.



8. Aufstellung der Klasse des Variationsproblems.
Wir betrachten die Gesamtheit der Extremalen unseres Variationsproblems,

die durch einen festen Punkt (t°9 x\) hindurchgehen, und in
einer Umgebung einer Extremalen e° liegen, die diesen Punkt ebenfalls
enthalt. Dièse Extremalen werden durch Losungen

(8.1) xt xt [t, Uj), yt yt {t, u,)

der kanonischen Differentialgleichungen (4. 3) dargestellt, die von n
Parametern (ul9 ...un) abhangen, und den Anfangsbedingungen

(8.2) xt{f,uù x\, yi{f, Uj) yt

genugen.
Um die ' Dimension desjenigen Teiies des Raumes festzustellen, der

von der Extremalenschar (8. 1) uberdeckt wird, mufi man den Rang der
Funktionaldeterminante

(8-3)

untersuchen.

Nun fuhre man die Bezeichnungen ein:

(8.4) ^W -^'. ><«

wobei man in die rechten Seiten dieser Gleichungen diejenigen Werte
der uk einsetzt, die zur Extremalen e° gehoren. Dann sind die Funktionen

£y, rjij Losungen der kanonischen Differentialgleichungen (6.7) des

accessorischen Problems, die in Folge von (8. 2) die Anfangsbedingungen

(8.5) év(o o, fiv(n sv

befriedigen mussen. Die Déterminante (8. 3) nimmt jetzt die Gestalt an

und ailes kommt darauf hinaus ihren Rang R [t) zu bestimmen, falls
ist.



g. Entweder ist jetzt im ganzen Intervall ô (t0) des Satzes 2 (§ 7) der
Rang R {t) von J (t, tQ) gleich n, oder es gibt im Innern dièses Intervalls
einen Punkt tl9 fur welchen dieser Rang gleich [n — q) und ç^>o ist.

Im letzten Falle gibt es q linear unabhangige «-dimensionale Vektoren

(9.1) Xf (k= 1, ...,«; a I,

so da6 mit den Bezeichnungen

fur jedes a und jedes i aile Gleichungen

(9-3) £a)(A) o

erfullt sind. Da nun fur jedes a die Funktionen ^a), r}^ Losungen der

Differentialgleichungen (6. 7) sind, und da die g(za) aile in den beiden
Punkten t0 und t± verschwinden, mussen nach dem Satze 2 des § 7 die

Gleichungen

(9.4) lT'W o

identisch befriedigt sein.
Hieraus folgt nun weiter, dai3 in jedem Punkt {t) des Intervalles 5{f)

mindestens q linear unabhangige Kombinationen der Zeilen der Deter"
minante (8. 6) existieren, die in diesem Punkte verschwinden, und man
entnimmt hieraus, daC ùberall R(t)^SR (^) sein mufi. Da nun tt einen

beliebigen von f verschiedenen Punkt des Intervalles S(f) bedeuten sollte,
fur welchen R (tt) < n war, ist dies nur dann moglich, wenn R (t) fur aile
von f verschiedenen Punkte immer denselben Wert {n—q) besitzt. Dièse
Zahl q} die auch Null sein kann, soll die Klasse der Extremale e° im
Punkte f genannt werden.

10. Die q Funktionen ^-a) (/), die in der zweiten Gleichung (9.2)
vorkommen, sind Losungen der Differentialgleichungen (6. 7), in welchen

man die £k identisch gleich Null gesetzt hat. Sie sind also Losungen
der Differentialgleichungen

(io- 1) rii——bikr(k y

die aufierdem noch die n linearen Gleichungen

(10.2) ctkrik=o



befriedigen. Fur t=f hat man aufierdem, wegen (8. 5) und (9. 2)

und hieraus entnimmt man, dafi die q Funktionen r^ (t) linear unab-

hangig sind.
Wir bezeichnen mit J* ein beliebiges Teilintervall von S (f) und mit

q* die Anzahl der linear unabhangigen Losungen von (10. 1) die im
Intervalle J* den Relationen (10. 2) genugen. Es ist selbstverstandlich, dafi

(10.4) q*^q
ist. Nun bemerke man, dafi jede dieser Losungen auch aufgefafit werden
kann als Losung von (6. 7), fur welche aile £f- in J* identisch verschwinden.
Da nun nach Voraussetzung J* in 8{f) enthalten ist, mussen nach dem
Satze 2 des § 7 aile dièse £2 uberall in S(t0) verschwinden. Hieraus folgt,
da!3 der Rang R (t) der Déterminante (8. 6) der Bedingung

(10.5) R(t)^n—<f

genugt. Man hat also insbesondere n—q ^ n—q* und durch Vergleichung
mit (10. 4)

(10. 6) q* q.

Andererseits ist aber auch q* die Klasse der Extremalen e0 in einem be-

liebigen Punkte von J* ; man sieht also, dafi die Klasse von e0 unabhangig
ist von der Wahl des Punktes Po auf dieser Extremalen. Es gilt daher der

S(lt& 3. Es set e° ein Extremalenstuck, auf welckcm die Legendresche

Bedmgung erfullt ist. Die Gesamtheit der Extremalen^ die durch einen

beliebigen aber festen Punkt von e° kindurchgeken, bildet eine Punktmenge,
deren Dimension (n -f- / — q) ist; die Zahl q, die positiv oder Null ist, und
die aufèerdem unabhangig von der Wahl von Po ist, heifSt die Klasse der
Extremalen e°. Sie ist gleich der Anzahl derjenigen linear unabhangigen
Losungen von (10. 1), die der Bedingung (10. 2) genugen.

11. JBerechnung der Klasse. Ist das gestellte Variationsproblem
ein gewohnliches, so ist der Rang der Matrix (cik) gleich n und das

System von Gleichungen (10. 2) besitzt dann keine von Null verschiedene

Losung. In diesem Falle ist selbstverstandlich die Klasse q gleich Null.
Wir nehmen also an, dafi wir ein Lagrangesches Variationsproblem mit p

Differentialgleichungen als Nebenbedingungen vor uns haben, was gleich-
bedeutend damit ist, dafi der Rang der Matrix (clk) gleich (n—p) sein soll.

9



Wir fuhren nun die Bezeichnung ein

Setzen wir fur die r\k beliebige Losungen der Differentialgleichungen
(10. i) ein, so sind die Funktionen (il. i) mindestens / Mal stetig differen-
tiierbar, falls, wie wir von jetzt ab annehmen wollen, die Hamiltonsche
Funktion H mindestens {p -f- 2) Mal stetig differentiierbar ist. Aus (11. 1)

und (10. 1) folgt dann

Setzt man also zur Abkurzung

(11. 2) cgkw =ctk — ctJbjk

und allgemein fur m I, 2,

(11.3) cik^1) cJm) — ct/^bjk

so hat man fur aile betrachteten Werte von m

Es handelt sich jetzt darum, die Anzahi der linear unabhangigen Losungen

r^ von (10. 1) zu bestimmen, fur welche aile

("•5) (a) (a)
V\ Czk ffk

identisch verschwinden.

12. Zu diesem Zweck betrachten wir die Matrix

ca \
(12.1) Am —

IO



die n Kolonnen und m • n Zeilen besitzt und bezeichnen mit rm ihren
Rang. Das heiGt rm soll die Ordnung der groGten Unterdeterminante
von (12. i) darstellen, die auf dem betrachteten Extremalenstùck eQ nicht
identisch verschwindet. Es ist jedenfalls

(12. 2) ^ rP

Hat man nun rp ¦=. n, so gibt es keine einzige nicht identisch ver-
schwindende Losung ?^ von (10. i), fur welche die rechten Seiten von
(n. i) und von (11.4) fur m 1, ...}p aile identisch Null sind. In diesem
Falle mufi die Klasse von e° gleich Null sein.

Ist dagegen rp <^ n, so gibt es wegen (12. 2) einen kleinsten Wert fur
m zwischen Null und [p — 1), sodaG

(12.3) rm+l rm

ist; auGerdem ist

(12.4) n — rm>o.

Es gibt ferner auf der z'-Achse ein Intervall S, auf welchem eine

rm-reihige Unterdeterminante der Matrix Am von Null verschieden ist.
Man kann dann Koeffizienten

finden, die auf $ stetig sind und fur welche die Gleichungen

(12.4) c%^=gjrcik+g%ctk^...+gyj£k [j,k=i,...,n)
sâmtlich erfùllt sind.

AuGerdem konnen wir {n — rM) linear unabhângige Losungen rfjp von
(10. 1) ausfindig machen, die in einem Punkte f von d den Bedingungen

m,« dvfUt") d{m)v?Ut°)

genùgen. Aus (il. 4) und (12. 4) folgt aber andererseits daG dièse Funk-
tionen vf} sâmtlich Losungen der linearen homogenen Dififerential-

gleichungen

sind.

Il



Hieraus folgt, da!3 die z>*a) in S identisch verschwinden mussen, und

es mufi daher die Klasse q unseres Variationsproblems der Relation

genugen.
Andererseits ist der Rang rp der Matrix Ap hochstens gleich (n — q) ;

man hat daher, mit Berucksichtigung von (12.2)

(12. 8) rm^Srp^S{n — q).

Die Vergleichung von (12.7) mit (12.8) und (12.2) liefert schlieBlich
die Relationen

(12. 9) rm r^+1 rp {n — q).

Man sieht auCerdem, dafi fur q die Bedingungen

(12. 10) O rf| q^Sp

gelten, und man kann durch Beispiele feststellen, da(3 q aile Werte
zwischen Null (inklusive) und p (inklusive) annehmen kann.

Es ist sehr bemerkenswert, dai3 man den Rang der Déterminante
A (t, f) des § 8 bestimmen kann, ohne die Differentialgleichungen (6. 7)

zu integrieren. Es gilt also der
Sat& 4* Die Klasse q der Extremale e ist irnmer gleich (n — rpj9

wenn rp den Rang der Matrix Ap bezeichnet.

13. Problème von der Klasse Null.
Aus unseren fruheren Ausfuhrungen folgt, dafi aile gewôhnlichen

Variationsprobleme von der Klasse Null sind. Aber auch fur Lagrangesche
Variationsprobleme sind die Problème von nicht verschwindender Klasse
die Ausnahme. Wir nehmen als Beispiel die Hamiltonsche Funktion

(13. 1) H=%f1 + x1y%.

Hier ist n 2 und man findet, daf3 die Matrizen der c{j und $
folgendermafien lauten:

12



hieraus folgt dann sofort, dafi p ¦=. I und q O ist. Die kanonischen

Differentialgleichungen der Extremalen

lassen sich sofort integrieren. Z. B. konnen die Extremalen, die durch
den Anfangspunkt der Koordinaten hindurchgehen, folgendermafien ge-
schrieben werden

xl la f -f 2bt, x2 af + bt\

und man berechnet, dafi die Funktionaldeterminante

à{a,è) ~ '

wie es sein soll, nicht identisch Null ist.
Fur die Problème der Klasse Null ist es aufierordentlich einfach, die

hinreichenden Bedingungen fur die Existenz eines Minimums und auch

die Théorie der konjugierten Punkte aufzustellen. Dièse Dinge sind

wiederholt, zuletzt von Morse (s. Fufinote 2)c)), behandelt worden. Die
Behauptung von Morse, daf3 die ùblichen Methoden hier versagen, ist
aber nur bedingt richtig. Man kann sehr gut die gewohnliche Méthode
benutzen, wenn man sich eines Kunstgriffes bedient, den L. Tonelli er-
funden hat 7).

14. Problème mit endlichen Gleichungen als Neben-
hedingungen.

Unter den Lagrangeschen Problemen, deren Klasse nicht verschwindet,
sind diejenigen am einfachsten zu behandeln, die unter den Neben-

bedingungen eînige von der Gestalt

(14. 1) yj (/, x]) const.,

oder, was auf dasselbe hinauskommt, Nebenbedingungen von der Form

7) L. Tonelli. Sul problema isoperimetrico con un punte terminale
mobile (Mem. R. Ace. Bologna (7) Vol. 10, 1922—23). S. auch Geod. Aequid. p. 217.
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enthalten Allgemeiner kann man verlangen, dafi nach einer geeigneten
Punkttransformation die Hamiltonsche Funktion H(/, xt,yz) in den neuen
Koordinaten die Veranderhchen (ym+\, ,yn) nicht enthalt.

Die Behandlung dieser Problème kann man offenbar auf diejenige eines
Problems in einem Raume medngerer Dimension zuruckfuhren, und in
diesem reduzierten Raume kann die Klasse des Problems sehr wohl
gleich Null sein

Dies ist z B. der Fall, wenn man das Lagrangesche Problem mit der
Hamiltonschen Funktion

(103)

betrachtet, man venfiziert sofort auch auf direktem Wege, daC man hier

(14.4) * 2, p= I, q=i
hat.

15 Die Mayerschen Problème.
Eine andere Art von Lagrangeschen Problemen, deren Behandlung

bekannthch keine Schwiengkeiten bereitet, sind die sogenannten Mayerschen

Problème, solange dzese von der Klasse Ezns sznd
Die Mayerschen Problème sind solche, bei denen die Funktion L{t,xt)

die Gestalt hat

(15.1) L=Ut+ Ux%xt.

Definiert man dann nach (3 2) die Funktion M, so hat man weiter mit
Benutzung von (15 1)

(15 2) yt Mx% UXz + fik' ~~
(15.3) H= — L+ytx, — Ut+f*it-^-Xf

Setzt man also

(15-4) yt=yt—Ux%9 H-~

14



so mufi man, um H zu berechnen, die xt, {/&* als Funktionen von (t, x{, yt)
aus den Gleichungen

(15.5) jt=fix—JL9 Gk' o

entnehmen, und hierauf

setzen. Aus den Gleichungen (15. 5) folgt, daf3 die xt als homogène
Funktionen von der nullten Ordnung in den y; erscheinen, und daher
mufi H homogen erster Ordnung in diesen Grof3en sein. Man hat also

es?) Mh
nun ist aber auch

und man kann statt der Gleichung (15. 7) mit Benutzung von (15.4) und
(15. 8) schreiben

(15. 9) H= - Ut+(yj— Ux)Hyy

Die Identitat (15.9) ist andererseits charakteristisch dafur, dai3 das vor-
liegende Problem ein Mayersches sei; denn die Gleichung (15. 1) folgt
aus

(15. 10) L —H + yl H,%9 xt Hyt,

sobald (15.9) besteht.

16. Es ist sehr leicht zu zeigen, dai3 die Klasse der Mayerschen
Problème, wie zu erwarten ist, immer von Null verschieden ist. Diffe-
rentiiert man namlich die Identitat (15.9) nach x{ und yg- so erhalt man

(16. 1) Hx. -Utx. ~Ux.Xj Htj + {y, -UXj HXi,t

(16.2) o {yj-UXj)Hny..
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Setzt man also jetzt, um Anschlufi an die Bezeichnungen der §§ 8-12

zu bekommen,

(16.3) fi, =yt—uXtJ

so folgt durch Differentiation langs einer Extremalen

Vt =7t —UtXi —UXtXj Xj

Hx% Utxt Uxtxj Hyj >

also mit Berucksichtigung von (16. 1) und (16 3)

(16 4) qt ¦=z—njHXiyt

Andererseits hat man nach (16. 2) und (16. 3)

(16 5) n,H,t9j =0
Sind also die GroOen r\t nicht aile identisch Null, so besagen die

beiden letzten Gleichungen, daC die Differentialgleichungen (10 1) Lo-
sungen besitzen, die den Bedingungen (10.2) genugen Hier ist also

immer q > o

Die einzigen Extremalen auf welchen die vonge Schlufiweise nicht
anwendbar ist, sind diejenigen, langs welchen aile yt UXt sind, dièse

werden aber ofters, wie das folgende Beispiel zeigt, auch aus anderen
Grunden ausgeschlossen

17. Beispiel.
Es sei eine einzige Differentialgleichung, namhch

(17 1) G ZxJ—\=o
1

gegeben. Man hat dann

(17.2) yt =2[ixt
und

H yt 11 2ka

ïô



Andererseits folgt aus (17.2) und (17.1)

2f 4,«2

und es ist daher

(17.3) H=flïï,
also nach (15. 4)

(17.4) H= — Ut + ysivi— Ux )2

Fur die Legendresche Bedingung hat man nun nach Geod. Âquid. p. 220.

und man findet nach einigen Rechnungen

(17.5) D[Q)

Die Legendresche Bedingung ist also dann und nur dann erfullt, wenn
H^> o ist, woraus folgt, dafi nicht aile y{ ~ Ux. sein durfen.

18. Hohere Singularitaten*
Die Lagrangeschen Problème der Variationsrechnung, die nicht unter

die schon genannten Kategorien fallen, sind fast gar nicht erforscht
worden.

Das einzige mir bekannte derartige Beispiel, das in allen Einzelheiten
behandelt ist, befindet sich in meiner Dissertation8). Es handelt sich um
folgendes Problem:

Eine Kugel wird von ihrem Mittelpunkt ans auf eine ihrer Tangen-
tialebene?i projzzzert; man verlangt zwei Punkte dieser Ebene durch eine

Kurve von gegebener Lange zu verbinden, die den Schatten einer tnog-
lichst kurzen spharischen Kurve darstellt.

Die Lôsung besteht hier immer aus zwei geradlinigen einen Winkel
bildenden Strecken, wobei die Winkelhalbierende stets durch den Be-

ruhrungspunkt der Kugel mit der Ebene hindurchgeht.

8) C. Carathéodory, Ueber die diskontinuierlichen Losungen in de
Variationsrechnung. (Gott. Diss. 1904) p. 50—62«
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Als Lagrangesches Problem aufgefasst, ist die Klasse dièses Problems
gleich Eins, solange man nur kontinuierliche Extremalen betrachtet ;

durch die Einfuhrung der diskontinuierlichen Lbsungen geht nun das

Problem in ein solches von der Klasse Null uber.

19. Es gibt aber auch Falle, in denen auch die Betrachtung diskon-
tinuierlicher Losungen nichts nutzen kann. Nehmen wir z. B. die
Hamiltonsche Funktion

(IQ1) H= 2(1— y2)

an. Man setze zur Abkurzung

(19.2) yx

Die Differentialgleichungen der Extremalen lauten dann

(19.3) Xl= Hyi=a

(19.4) x2= Hy%=lL — f(t) xxa — f[t) _fl
2 2

(19. S) yi ~ Hxx f(t)yt a + f(t)y% xx

(19.6) yt — Hx%=O.

Man hat hier in der Tat p 1, weil aus (19.3) und (19.4) folgt

(lQ 7) x — Z± f(t\x x f(t\ x

Andererseits entnimmt man aus (19. 3) und (19. 5)

da nun nach (19. 6) yt konstant ist, folgt aus der letzten Gleichung

(19. 8) y1 — fx^y% const.
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und es ist daher auch a eine Konstante. Jetzt kann man, wegen (19. 3)

schreiben

(19.9) x1 at + p

und aus (19. 7) folgt dann die Berechnung von x2 (t) durch eine Quadratur.
Aus dem letzten Résultat sieht man, dafi die Gesamtheit der Extremalen
durch einen Punkt eine zweidimensionale Flache bilden, und dafi daher

q I ist.
Diskontinuierliche Losungen sind hier nicht vorhanden; aus (19. 2) bis

(19. 4) folgt namlich, dafi, wenn man yx und y2 vorgibt, die Grofien xv
und x2 eindeutig bestimmt werden.

Endlich sieht man dafi die Legendresche Bedingung immer erfullt
ist, wenn yt <^ 1 ist, denn man berechnet ganz ahnlich wie im § 17

Eine eingehendere Untersuchung scheint also hier notwendig zu sein.

(Eingegangen den 27. Februar 1932)
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