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Ueber die Einteilung der Variationsprobleme
von Lagrange nach Klassen

Von C. CARATHEODORY, z. Z. Athen

Einleitung

1. Das Ziel dieser Arbeit ist die Aufstellung einer fiir alle reguldren
Punkttransformationen geltenden Invariante, die fiir das Studium der
Variationsprobleme von Lagrange grundlegend ist. Es handelt sich um
Folgendes: ist im (= -} 1)-dimensionalen Raum der (¢, x,, ..., x,) ein
Variationsproblem mit der Funktion Z (¢, x;, x;) unter dem Integral und
und den p Differentialgleichungen

(1.1) Gy (2, %:, ) = O  =1,..,2)

als Nebenbedingungen gegeben, so fiillen die Extremalen, die aus einem
beliebigen aber festen Punkt A des Raumes ausgehen, einen Raumteil
aus, dessen Dimension mit (z -+ 1 — ¢) bezeichnet werden soll. Die Zahl
g, die fiir das betrachtete Problem jeweils charakteristisch ist, soll die
Klasse des Problems heifden; es wird sich zeigen, daf3 sie von Null
bis p inklusive variieren kann, und daf} sie aus den Funktionen Z und
G mit Hilfe von Differentiationen (und Eliminationen) bestimmbar ist.
Es handelt sich also um eine reine Differentialinvariante,

2. Das Problem von Lagrange ist in den letzten Jahren von ver-
schiedenen Autoren, besonders von A/zss') und seinen Schiilern und

1) G. A. Bliss. A note on the problem of Lagrange in the calculus ot
variations. Amer. Bull. 22 (1916) pp. 220— 225.

D. M. Smith. Jacobi’s condition for the problem of Lagrange in the
calculus of variations. Trans. Amer. Math, Soc. 17 (1916) p. 459.

(. A. Bliss. The problem of Mayer with variable end points. Amer. Trans,
19 (1918) pp. 305—314.

Miss Q. A. Larew. Necessary conditions in the problem of Mayer in the
calculus of variations. Amer. Trans, 20 (1919) p. I.

G. A. Bliss. Some recent developments in the calculus of variations,
Amer, Bull. 26 (1920) pp. 343—361.

G. A. Bliss. The transformation of Clebsch in the calculus of variations.
(Proceed. intern. mathem. Congress Toronto 1924, Vol. I, pp. 5§89—603\.

Miss (. A. Larew. The Hilbert Integral and Mayer Fields for the
problem of Mayer in the calculus of variations. Amer. Trans. 26 pp. 61 —67.

G. A. Bliss. The problem of Lagrange in the calculus of variations,
Autograph. Vorlesung (1925) pp. I—75.

G. A. Bliss. The problem of Lagrange in the calculus of variations.
Amer. Journ. of Mathem. 52 (1930) pp. 672—748.
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auf3erdem von Marston Morse®) behandelt worden. Der Grund aber,
weshalb die Lagrangeschen Probleme nicht schon in diesen sehr sorg-
filtigen Arbeiten nach Klassen eingeteilt worden sind, ist folgender: nach
den Arbeiten von £. v. Escherick®), der zuerst auf gewisse Singularititen
der Lagrangeschen Probleme hingewiesen hatte (cf. § 18), hat man sich
im Anschluf3 an A. Halkn und Bolsa*) gewdhnt, nur solche Extremalen
zu betrachten, die sich, wie man sagt, «normal verhalten». Auf diese
Weise konnte man allerdings die Schwierigkeiten, auf welche v. Escherich
hingewiesen hatte, umgehen, aber es wurde gleichzeitig der Weg ver-
baut, der zu den feineren Unterscheidungen im Verhalten der Extre-
malen fiihrt. In der Tat ist z. B. die Bedingung des normalen Verhaltens
einer Extremalen bei den Lagrangeschen Problemen mit festen End-
punkten im wesentlichen mit der Forderung identisch, daf3 die Klasse
des Problems verschwinden soll. Und ganz &hnlich ist die Theorie des
normalen Verhaltens der Extremalen von Lagrangeschen Variations-
problemen mit variablen Endpunkten mit der Klasse des Problems ver-
kniipft. Diese Zusammenhidnge werden erst recht verstiandlich, wenn man
den Begrift der Klasse unabhingig von der iiblichen Theorie entwickelt,
und deshalb werde ich von allen oben zitierten Arbeiten absehen, und
mich nur auf die Formeln stiitzen, die ich in einer friiheren Unter-
suchung angegeben habe®). Diese Abhandlung wird im Folgenden mit
Geod. Aeq. zitiert.

3. Zusammenstellung bekannter Resultate.

Wir nehmen an, daf3 die Funktionalmatrix

(3. 1) (aai") B =1, .., p;i=1, ..., n)

%) a) The problems of Lagrange and Mayer under general end
conditions. Proc, Nat, Acad. of Science. 16 (1930) pp. 229—233.

b) Sufficient conditions in the problem of Lagrange with variable end
conditions. Amer. Journ. of Mathem. 53 (1931) pp. 517—546.

c) Sufficient conditions in the problem of Lagrange with fixed end
points. Annals of Mathem. 32 (1931) pp. 567—577.

Ferner:

M. Morse and S. B. Myers. The problems of Lagrange and Mayer with
variable end points, Proceed, Amer. Acad. of Arts and Science (Boston Mass.) 66
(1931) pp. 235—253.

8) E. v. Escherich Die zweite Variation der einfachen Integrale. Wiener
Sitzungsber. Mathem. Naturw, Klasse 107, 108, 110 (1898, 1899, 1901).

4 H. Hahn. Math. Ann, 58 (1903) p. 152.

O. Bolza. Vorlesungen iiber Variationsrechnung. (Leipzig, Teubner, 1909) p. 564.

8 C. Carathéodory. Die Methode der geodidtischen Aequidistanten und
das Problem von Lagrange. Acta Mathematica 47 (1926) pp. 199—236.
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der linken Seite von (1.1) den Rang p besitzt. Aufderdem soll fiir die
Linienelemente, die man betrachtet, die Legendresche Bedingung erfiillt
sein (Geod. Aeq. p. 210). Es soll also, wenn man mit g, ..., w4, Lagran-
gesche Multiplikatoren bezeichnet, und die Funktion

(3-2) Mt x, I;-, pi) = L + up Gp

einfiihrt, die Gleichung in o

.. 0 Gy
( K sz'xj — 50, Bbx—,
. f— = 0
3. 3) (0) 5 G
- , O
0x;

lauter positive, von Null verschiedene Wurzeln besitzen.

Unter diesen Umstinden kann man an Stelle der (224 p -+ 1) Ver-
anderlichen, die in (3. 2) auftreten, und die auf3erdem den p Bedingungs-
gleichungen (1. 1) geniigen sollen, (22 -+ 1) von einander unabhingige
kanonische Koordinaten (7, x;, y;) einfiilhren, die erlauben, alle Einzel-
heiten des Problems mit Hilfe einer einzigen Hamiltonschen Funktion
H (¢, x;, ;) zu untersuchen (Geod. Aeq. p. 218).

Ist umgekehrt eine beliebige Funktion A (¢, x;, y;) gegeben, die min-
destens zwei Mal stetig differentiierbar ist, so kann sie als Hamiltonsche
Funktion eines Variationsproblems angesehen werden, fiir welches die
Legendresche Bedingung erfiillt ist, wenn die Gleichung in ¢

(3-4) | H,,,,— dy06| =0

keine einzige negative Wurzel besitzt (Geod. Aeq. p. 221).

Die Anzahl ferner der verschwindenden Wurzeln der Gleichung (3. 4)
ist immer gleich der Anzahl der Bedingungsgleichungen (1. 1) des La-
grangeschen Problems, welchem die Funktion A zugeordnet ist. Ist also
insbesondere die Hessesche Determinante | A, y;15£0, so ist die Anzahl

der Bedingungsgleichungen gleich Null, d. h. das betrachtete Variations-
problem ist ein gewohnliches und kein Problem von Lagrange.

4. Die Losung eines Variationsproblems mit der Hamiltonschen Funk-
tion H (¢, x;, y;) hingt bekanntlich von der Konstruktion einer ,voll-
stindigen Figur# ab, die aus einer Schar geoditisch dquidistanter Fliachen

(4. 1) St )= A



und der sie durchsetzenden Extremalenschar besteht. Man erhilt die
Fldachenschar (4. 1) durch Integration der partiellen Differentialgleichung
(Geod. Aeq. p. 222)

(4. 2) S+ H(t, 71, Sy;) =0

Die Cauchyschen Charakteristiken von (4.2) sind Losungen des
Systems

(4* 3) '%i:Hy;) ];i:'_“Hx,-

von kanonischen Differentialgleichungen.

Die Extremalen unseres Variationsproblems werden durch die Pro-
jektion x; = x;(¢) dieser Kurven auf den (z - 1)-dimensionalen Raum
der (¢, x;) dargestellt.

Betrachtet man ein Stiick des Raumes, das von der Flichenschar
(4. 1) einfach iiberdeckt wird, so bilden die sie transversal schneidenden
Extremalen, die man auch als Loésungen der Differentialgleichungen

(4. 4) ¥ = H, (¢ x;, Sk,

gewinnen kann, ein Feld, auf welches die Weierstraf3sche Theorie an-
wendbar ist (Geod. Aeq. p. 215)°).

5. Kin Hilfssatz.

Wir betrachten nun einen Punkt /7, des Raumes der (4 z,) und ein
Extremalenstiick ¢,, das /7, enthidlt. Aus der Integrationstheorie der
partiellen Differentialgleichung (4.2) folgt ein Resultat, das fiir alles
Weitere grundlegend ist.

Man lkann met P, als Mzttelpunkt eine Kugel x abgrensen, sodafs
Jede Extremale e, die in ciner gewissen Nachbarschaft von e, liegt, in
ein Feld eingebettet werden kann, das die Kugel » vollstindig iiberdeckt.

Wir bezeichnen mit & die Gesamtheit der Extremalen ¢, die nach
geeigneter Wahl von » die vorstehende Eigenschaft besitzen. Erinnert
man sich daran, daf3 fiir alle betrachteten Extremalen die Legendresche

6) Man bemerke, dafl durch die Benutzung der kanonischen Koordinaten jeder Unter-
schied zwischen den gewdhnlichen und den sogenannten ,Mayerschen“ Feldern von Extremalen
in Fortfall kommt. Es ist ein grofier Vorteil, daf} die sehr komplizierte Begriffsbildung der
Mayerschen Felder vermieden werden kann.
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Bedingung erfiillt sein soll, so folgt, wenn man bei der Wahl von &
einige auf der Hand liegende Einschrinkungen macht, die die Beniitzung
der Weierstraf3schen Z-Funktion sicherstellen, der

Satz 1. Keine swei Extremalenstiicke e, und e, aus €, die beide zm
Innern von »n liegen, konnen dieselben Endpunkite besitzen, olne susammen-
sujallen.

Um dies zu zeigen, nehmen wir an, daf3 ¢ und e, dieselben Punkte A4
und B verbinden, ohne identisch zu sein, und bezeichnen mit % und %
die Werte des Integrals iiber L lings ¢, und ¢,. Nach Konstruktion
eines Feldes von Extremalen, das ¢, enthilt, kann man die Differenz
(%,— %) mit Hilfe der E-Funktion, die zu diesem Felde gehort, durch
die Gleichung

(5. 1) };—%:f&zx

darstellen. Nun ist einerseits £= 0, aber FE ist in der vorstehenden
Gleichung nicht durchweg Null, weil nach unserer Voraussetzung Punkte
existieren, in welchen ¢, die durch diese Punkte gehende Feldkurve unter
einem von Null verschiedenen Winkel schneidet, und weil dann in diesen
Punkten £ > o ist. Hieraus schlief3t man, daf3 % > % sein muf3. Durch
Vertauschung von ¢, mit ¢, hitte man aber % > % gefunden, was zu
einem Widerspruche fiihrt.

6. Das accessorische Variationsproblem.

Die kanonischen Koordinaten x;, y; sollen lings einer festen Extremalen
¢, den Gleichungen

(6. 1) x; = x; (1), 4= 7: (0

geniigen. Wir filhren zur Abkiirzung folgende Funktionen von ¢ ein,
die also lings ¢, definiert sind:

(6. 2) @ () = Heyz, (b X2y J2)
(6. 3) by () = Hxiyj (2, %e, .;k)
(6. 4) i (0) = Hypyy (1 52 98)-



Stellt man durch die Gleichungen
(6. 5) ;= (¢, u), Y =it %)

die kanonischen Koordinaten der Linienelemente einer Extremalenschar
dar, die von einem Parameter » abhingt, und reduzieren sich fiir x — 0
die Funktionen (6. 5) auf x; bzw. y,; setzt man ferner

. bxz' (i7 Zt)

(6. 6) &) =51 __ 07: (%)

y 7: () =

#=0 0 w0

so sind bekanntlich die Funktionen §&;(?) und 4, (?) Losungen der
Differentialgleichungen

éi == fyy §k + Cik NE

(6. 7) . ,
Ne=-—p & — bu Mz .

7. Man bemerke jetzt, daf3 die Funktion
; I . . I
(7. 1) S, &ym) = —2"4:';' & &+ by &+ > Cif Ni Ny

als Hamiltonsche Funktion eines Variationsproblems angesehen werden
kann, dessen Extremalen durch die kanonischen Gleichungen (6. 7) be-
stimmt werden. Die Determinante (3. 4) des urspriinglichen Variations-
problems fallt, wenn man sie fiir die Linienelemente von ¢, bildet, mit
der analogen Determinante des neuen Variationsproblems zusammen,
woraus man schlief3t, daf3 auch hier die Legendresche Bedingung erfiillt ist.
Von einem verwandten Resultat ausgehend, hat B/zss in der Arbeit, die er
dem Toronto Congref3 vorgelegt hat, auf3erordentlich elegante Schliisse
gezogen. Fiir uns wird vor allem maf3gebend sein, daf3 man den Satz 1
des § 5 auch auf die Losungen der Differentialgleichungen (6.7) an-
wenden kann. Waihlen wir fiir die eine der beiden Extremalen, die in
diesem Satze benutzt werden, die Losung &; = o, 5; = o der Gleichungen
(6. 7), so konnen wir nunmehr folgenden Satz aussprechen:

Satz 2. Feder Punkt t, der t-Achse, [fiir welchen die friiheven Voraus-
setzungen gelten, zst Mittelpunkt eines Intervalls 0 (2,), in dem eine be-
licbzge Lisung der Differentialgleichung (6.7) hichstens eine gemeinsame
Nullstelle der &; (t) besitzen kann, falls nicht fiir diese Losung alle &;(t)
tdentisch Null sind.
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3. Aufstellung der Klasse des Variationsproblems.

Wir betrachten die Gesamtheit der Extremalen unseres Variations-
problems, die durch einen festen Punkt (#°, %) hindurchgehen, und in
einer Umgebung einer Extremalen ¢’ liegen, die diesen Punkt ebenfalls
enthdlt. Diese Extremalen werden durch Losungen

(8. 1) Xy == x; (¢, 1)), Ve =y: (4 u,)

der kanonischen Differentialgleichungen (4.3) dargestellt, die von =

Parametern (#,, ... #,) abhiangen, und den Anfangsbedingungen
(8. 2) 2 (0 ) =23,y (O u) = u;
geniigen.

Um die" Dimension desjenigen Teiles des Raumes festzustellen, der
von der Extremalenschar (8. 1) iiberdeckt wird, muf3 man den Rang der
Funktionaldeterminante

0x;

(8.3) 51

untersuchen.

Nun fiihre man die Bezeichnungen ein:

0x; 0 7;
H{ ’ 7i27'(z): aj ’

ou ; u;

I

(8. 4) & (2)

wobei man in die rechten Seiten dieser Gleichungen diejenigen Werte
der #, einsetzt, die zur Extremalen ¢’ gehoren. Dann sind die Funktionen
&y my; Losungen der kanonischen Differentialgleichungen (6.7) des
accessorischen Problems, die in Folge von (8. 2) die Anfangsbedingungen

(8‘ 5) ‘gzj (l‘o) = O, Nif (fo) == (51"
befriedigen miissen. Die Determinante (8. 3) nimmt jetzt die Gestalt an
(8.6) 4(5, 2) =855 ()]

und alles kommt darauf hinaus ihren Rang R (#) zu bestimmen, falls
L=~ 2, ist.



9. Entweder ist jetzt im ganzen Intervall § (%) des Satzes 2 (§ 7) der
Rang R (f) von 4 (¢ ¢,) gleich », oder es gibt im Innern dieses Intervalls
einen Punkt ¢, fiir welchen dieser Rang gleich (z—g¢) und ¢ >0 ist.

Im letzten Falle gibt es ¢ linear unabhingige »#-dimensionale Vektoren

(9. 1) Vs (E=1,..,7; a=1,...,9)

so daf3 mit den Bezeichnungen

(9. 2) EO="0  a O=2
fiir jedes « und jedes 7 alle Gleichungen

(9. 3) ) =o0

erfiillt sind. Da nun fiir jedes « die Funktionen &, 772“) Losungen der
Differentialgleichungen (6. 7) sind, und da die £® alle in den beiden
Punkten 4, und #, verschwinden, miissen nach dem Satze 2 des § 7 die
Gleichungen

(9. 4) 2@ =o0

zdentisch befriedigt sein.

Hieraus folgt nun weiter, daf3 in jedem Punkt (#) des Intervalles (")
mindestens ¢ linear unabhingige Kombinationen der Zeilen der Deter”
minante (8. 6) existieren, die in diesem Punkte verschwinden, und man
entnimmt hieraus, daf3 iiberall R (?) = R (#,) sein muf3. Da nun 7, einen
beliebigen von #° verschiedenen Punkt des Intervalles J(#°) bedeuten sollte,
tiir welchen R (#)<<#» war, ist dies nur dann moglich, wenn R (7) fiir alle
von #° verschiedenen Punkte immer denselben Wert (»—y¢) besitzt. Diese
Zahl ¢, die auch Null sein kann, soll die Klasse der Extremale ¢ im
Punkte t° genannt werden.

10. Die ¢ Funktionen nﬁ-“’ (¢/), die in der zweiten Gleichung (9.2)
vorkommen, sind Losungen der Differentialgleichungen (6. 7), in welchen
man die & identisch gleich Null gesetzt hat. Sie sind also Lodsungen
der Differentialgleichungen

(10. 1) 7},-:”*5%72/& )
die auf3erdem noch die 7 linearen Gleichungen
(IO. 2) Cik M — O
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befriedigen. Fiir # = #° hat man aufderdem, wegen (8. 5) und (9. 2)

(@)

(10.3) i () = A,

und hieraus entnimmt man, da3 die ¢ Funktionen 7 () linear unab-
hingig sind.

Wir bezeichnen mit §* ein beliebiges Teilintervall von ¢ (°) und mit
g* die Anzahl der linear unabhingigen Losungen von (10.1) die im
Intervalle J* den Relationen (10. 2) geniigen. Es ist selbstverstindlich, daf3

(10. 4) F=q

ist. Nun bemerke man, daf3 jede dieser Losungen auch aufgefaf3t werden
kann als Losung von (6. 7), fiir welche alle &; in J* identisch verschwinden.
Da nun nach Voraussetzung J* in J(#) enthalten ist, miissen nach dem
Satze 2 des § 7 alle diese &; iiberall in §(z) verschwinden. Hieraus folgt,
daf3 der Rang R (#) der Determinante (8. 6) der Bedingung

(10.5) R () = n—q*

geniigt. Man hat also insbesondere z—¢ = 7z—q¢* und durch Vergleichung
mit (10. 4)

(10. 6) g* = gq.

Andererseits ist aber auch ¢* die Klasse der Extremalen ¢, in einem be-
liebigen Punkte von J*; man sieht also, daf3 die Klasse von ¢, unabhingig
ist von der Wahl des Punktes 7, auf dieser Extremalen. Es gilt daher der

Satz 3. Es secz & ein Extremalenstiick, auf welchem die Legendresche
Bedingung erfiillt ist. Die Gesamtheit der Extremalen, die durch einen
belicbigen aber [festen Punkt von & hindurchgehen, bildet eine Punkimenge,
deven Dimienszon (n 4 1 — q) ist; die Zakl q, die positiv oder Null ist, und
die aufsevdem unabhingio von der Wahl von P, ist, hezfst die Klasse der
Extremalen . Sie ist gleick dev Anzalhl devjenigen linear unabhingigen
Losungen von (ro. 1), die der Bedingung (10.2) geniigen.

11. Berechnung der Klasse. Ist das gestellte Variationsproblem
ein gewohnliches, so ist der Rang der Matrix (c;) gleich » und das
System von Gleichungen (10. 2) besitzt dann keine von Null verschiedene
Losung. In diesem Falle ist selbstverstindlich die Klasse ¢ gleich Null,

Wir nehmen also an, daf3 wir ein Lagrangesches Variationsproblem mit »
Differentialgleichungen als Nebenbedingungen vor uns haben, was gleich-
bedeutend damit ist, daf3 der Rang der Matrix (¢;;) gleich (z—p) sein soll.

9



Wir fithren nun die Bezeichnung ein
(r1.1) v; () = ¢ (2) - M (2).

Setzen wir fiir die ¢, beliebige Losungen der Differentialgleichungen
(10. 1) ein, so sind die Funktionen (11. 1) mindestens p Mal stetig differen-
tiierbar, falls, wie wir von jetzt ab annehmen wollen, die Hamiltonsche
Funktion A mindestens (p 4 2) Mal stetig differentiierbar ist. Aus (11. 1)
und (10. 1) folgt dann

dv; . .

ar Gk + ¢y 7y
= (i — €u702) 7 -

Setzt man also zur Abkiirzung

(11.2) i = Cop— Ciib

und allgemein fiir m =1, 2, ...

(I I. 3) Cz'k(m-*-l) — Cik(m) - 6‘ij(m) bjk ’

so hat man fiir alle betrachteten Werte von

an v;
(11.4) S G T

Es handelt sich jetzt darum, die Anzahl der linear unabhingigen Losungen

972“) von (10.1) zu bestimmen, fiir welche alle

04
(11.5) 712'“) == Cik 772)

identisch verschwinden.

12. Zu diesem Zweck betrachten wir die Matrix

Cik

(1)
cilk

(12.1) Ay = ,

(m)

10



die » Kolonnen und s -# Zeilen besitzt und bezeichnen mit »,, ihren
Rang. Das heif3t »,, soll die Ordnung der gro3ten Unterdeterminante
von (12. 1) darstellen, die auf dem betrachteten Extremalenstiick ¢, nicht
zdentisch verschwindet. Es ist jedenfalls

(12. 2) (—p)=r=..=v7rs.

Hat man nun 7, —#, so gibt es keine einzige nicht identisch ver-
schwindende Lésung #; von (10. 1), fiir welche die rechten Seiten von
(11.1) und von (11.4) fiir » = 1, ..., p alle identisch Null sind. In diesem
Falle muf3 die Klasse von ¢* gleich Null sein.

Ist dagegen #, <7, so gibt es wegen (12. 2) einen kleznsten Wert fiir
m zwischen Null und (p — 1), sodaf3

(12' 3) Vindl =— Vi
ist; auf3erdem ist
(12. 4) n—7, > O.

Es gibt ferner auf der #Achse ein Intervall J, auf welchem eine
7,.-reihige Unterdeterminante der Matrix A,, von Null verschieden ist.
Man kann dann Koeffizienten

&0, g7 0, . g7 0
finden, die auf J stetig sind und fiir welche die Gleichungen

1y a ( .
(12.4) Z =g catgioen st .+ &5 o (i k=1, .., 7)

samtlich erfiillt sind.

Aufderdem konnen wir (z—»,,) linear unabhingige Losungen ﬂf&a) von
(10. 1) ausfindig machen, die in einem Punkte #° von J den Bedingungen

i (1) 4" o (1)
-_ 0, ...
at >y atm

(12.5) 7 (") = o, =0
geniigen. Aus (11.4) und (12. 4) folgt aber andererseits daf3 diese Funk-
tionen 7%’ simtlich Losungen der linearen homogenen Differential-
gleichungen

artly, a dv; () ar Vi

dim+ 1] =gu + Lin 7;_ + oo A &y Y7

sind.
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Hieraus folgt, daf3 die 2¢” in ¢ identisch verschwinden miissen, und
es mufd daher die Klasse ¢ unseres Variationsproblems der Relation

(12.7) §=H— 7V

gentigen.
Andererseits ist der Rang 7, der Matrix 4, hochstens gleich (z—g);
man hat daher, mit Beriicksichtigung von (12.2)

(12. 8) rw =1y = (n—q).

Die Vergleichung von (12.7) mit (12.8) und (12. 2) liefert schlief3lich
die Relationen

(12.9) Vw = Vgl = ... = #p = (—¢).
Man sieht auf3erdem, daf3 fiir ¢ die Bedingungen
(12. 10) O=¢g=p

gelten, und man kann durch Beispiele feststellen, daf3 ¢ alle Werte
zwischen Null (inklusive) und p (inklusive) annehmen kann.

Es ist sehr bemerkenswert, daf3 man den Rang der Determinante
4(¢,2°) des §8 bestimmen kann, ohne die Differentialgleichungen (6. 7)
zu integrieren. Es gilt also der

Satz 4. Die Klasse q der Extremale e ist immer gleich (n—rvy),
wenn vy den Rang der Matrix A, beseichnet.

13. Probleme von der Klasse Null.

Aus unseren fritheren Ausfiihrungen folgt, daf3 alle gewohnlichen
Variationsprobleme von der Klasse Null sind. Aber auch fiir Lagrangesche
Variationsprobleme sind die Probleme von nicht verschwindender Klasse
die Ausnahme. Wir nehmen als Beispiel die Hamiltonsche Funktion

(13.1) H=%1yn+x..

Hier ist » =12 und man findet, daf3 die Matrizen der ¢; und (,‘2-)
folgendermaf3en lauten:

(13.2) =0k @@=

0,0
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hieraus folgt dann sofort, daf3 »p — 1 und ¢ — o0 ist. Die kanonischen
Differentialgleichungen der Extremalen

(13.3) =P, Hh=—, H=x, F=0

lassen sich sofort integrieren. Z. B. konnen die Extremalen, die durch
den Anfangspunkt der Koordinaten hindurchgehen, folgendermafden ge-
schrieben werden

x, = 3at’ 4 264, x, = at® -+ b,

und man berechnet, daf3 die Funktionaldeterminante

0 (¥, &) S
0(a,b)

wie es sein soll, nicht identisch Null ist.

Fir die Probleme der Klasse Null ist es auf3erordentlich einfach, die
hinreichenden Bedingungen fiir die Existenz eines Minimums und auch
die Theorie der konjugierten Punkte aufzustellen. Diese Dinge sind
wiederholt, zuletzt von Morse (s. Ful3note 2) ¢)), behandelt worden. Die
Behauptung von Morse, dafd die iiblichen Methoden hier versagen, ist
aber nur bedingt richtig. Man kann sehr gut die gewohnliche Methode
benutzen, wenn man sich eines Kunstgriffes bedient, den L. Zoncllz et-
funden hat 7).

14. Probleme mit endlichen Gleichungen als Neben-
hedingungen.

Unter den Lagrangeschen Problemen, deren Klasse nicht verschwindet,
sind dicjenigen am einfachsten zu behandeln, die unter den Neben-
bedingungen einige von der Gestalt

»

(14. 1) y (¢, x;) = const,,

oder, was auf dasselbe hinauskommt, Nebenbedingungen von der Form

(14.2) —}— () — 0

,t]

" L. Tonelli. Sul problema isoperimetrico con un punte terminale
mobile (Mem. R. Acc. Bologna (7) Vol. 10, 1922—23). S. auch Geod. Aequid. p. 217.
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enthalten. Allgemeiner kann man verlangen, daf3 nach einer geeigneten
Punkttransformation die Hamiltonsche Funktion A (¢, x;, ;) in den neuen
Koordinaten die Veridnderlichen (,,4+1, ..., ¥,) nicht enthilt.

Die Behandlung dieser Probleme kann man offenbar auf diejenige eines
Problems in einem Raume niedrigerer Dimension zuriickfilhren, und in
diesem reduzierten Raume kann die Klasse des Problems sehr wohl
gleich Null sein.

Dies ist z. B. der Fall, wenn man das Lagrangesche Problem mit der
Hamiltonschen Funktion

7 — =)

(10.3) 5

betrachtet; man verifiziert sofort auch auf direktem Wege, daf3 man hier

(14. 4) n—2,p=1, ¢g=1

hat.

15. Die Mayerschen Probleme.

Eine andere Art von Lagrangeschen Problemen, deren Behandlung
bekanntlich keine Schwierigkeiten bereitet, sind die sogenannten Mayer-
schen Probleme, solange diese von der Klasse FEins sind.

Die Mayerschen Probleme sind solche, bei denen die Funktion Z (2, ;)
die Gestalt hat

(IS' I) L: []t“i— Uxij}i-

Definiert man dann nach (3.2) die Funktion 7, so hat man weiter mit
Benutzung von (15. 1)

(15.2) V= M;, = U.. + uw %i’f

(15. 3) H=— Lot yidy=— Ut o S
Setzt man also

(15. 4) Vi =yi— Us,y H=H-+ U,
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so muf3 man, um / zu berechnen, die x;, v, als Funktionen von (¢, x;, ;)
aus den Gleichungen

_ d G

(15.5) Vi = ur bx}: " Gy =0
entnehmen, und hierauf

(15. 6) H =7y,

setzen. Aus den Gleichungen (15.35) folgt, da3 die x; als homogene
Funktionen von der nullten Ordnung in den y, erscheinen, und daher
mufd A/ homogen erster Ordnung in diesen Grofden sein. Man hat also

— - 0H
(15.7) H———J/fgj—/;"
nun ist aber auch
O H
(15.8) ()j—/J — HJ’]"

und man kann statt der Gleichung (15.7) mit Benutzung von (15. 4) und
(15.8) schreiben

(15.9) H=— U+ (3,— U ) H,,

7

Die Identitdt (15.9) ist andererseits charakteristisch dafiir, daf3 das vor-
liegende Problem ein Mayersches sei; denn die Gleichung (15.1) folgt
aus

(15. 10) L=—H+y: H,, P

A

i
sobald (15.9) besteht.

16. Es ist sehr leicht zu zeigen, daf3 die Klasse der Mayerschen
Probleme, wie zu erwarten ist, immer von Null verschieden ist. Diffe-
rentiiert man namlich die Identitdt (15.9) nach z; und y;, so erhdlt man

(16- I) Hx;: _Utx,- —_Ux,-xj Hy,-+ ()’j _Ux“) H-f,'}’,‘

J

(16. 2) 0= (y; —Us;) Hyy; -
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Setzt man also jetzt, um Anschluf3 an die Bezeichnungen der §§ 8-12
zu bekommen,

(16. 3) 7 =Yi—Us,,

so folgt durch Differentiation lings einer Extremalen

Yi _Utx; _sz-xj xj
— Hyp —Upey — Uy, Hy,

V/r

I

also mit Beriicksichtigung von (16, 1) und (16. 3)
(16. 4) e =—05 ey, -
Andererseits hat man nach (16. 2) und (16. 3)
(16. 5) N5 Hyz.,j. = o0.

Sind also die Grof3en 7; nicht alle identisch Null, so besagen die
beiden letzten Gleichungen, daf3 die Differentialgleichungen (10.1) LO&-
sungen besitzen, die den Bedingungen (10.2) geniigen. Hier ist also
immer ¢ > O.

Die einzigen Extremalen auf welchen die vorige Schluf3weise nicht
anwendbar ist, sind diejenigen, lings welchen alle y; = U,, sind; diese
werden aber Ofters, wie das folgende Beispiel zeigt, auch aus anderen
Griinden ausgeschlossen.

17. Beispiel.

Es sei eine einzige Differentialgleichung, namlich

(17. 1) G=r}—1=0
1

gegeben. Man hat dann

(17.2) Y= 2u%;
und
H=y; ﬁ;'z- = 2u.
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Andererseits folgt aus (17.2) und (17.1)
3yt = 44

und es ist daher

(17.3) H=V253,

also nach (15. 4)

(17-4) H=—U+VZ(5:—U,} .
Fiir die Legendresche Bedingung hat man nun nach Geod. Aquid. p. 220.
D(p) = D(0)| 05— @ H,y,y, |

und man findet nach einigen Rechnungen

(17.5) D=2 (1—-L .

Die Legendresche Bedingung ist also dann und nur dann erfiillt, wenn
H > o ist, woraus folgt, daf3 nicht alle y; = U,, sein diirfen.

18. Hohere Singularitdaten.

Die Lagrangeschen Probleme der Variationsrechnung, die nicht unter
die schon genannten Kategorien fallen, sind fast gar nicht erforscht
worden.

Das einzige mir bekannte derartige Beispiel, das in allen Einzelheiten
behandelt ist, befindet sich in meiner Dissertation®). Es handelt sich um
folgendes Problem:

Lizne Kugel wird von ihrem Mittelpunkt aus auf eine ihrer Tangen-
tzalebenen projisiert; man verlangt swei Punkte dieser Ebene durch eine
Kurve von gegebener Linge su verbinden, die den Schatten einer mog-
lichst kurzen splhirvischen Kurve darstellt.

Die Losung besteht hier immer aus zwei geradlinigen einen Winkel
bildenden Strecken, wobeci die Winkelhalbierende stets durch den Be-
rihrungspunkt der Kugel mit der Ebene hindurchgeht.

8) C. Carathéodory. Ueber die diskontinuierlichen Lésungen in de
Variationsrechnung. (Gétt. Diss. 1904) p. 50—62.
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Als Lagrangesches Problem aufgefasst, ist die Klasse dieses Problems
gleich Eins, solange man nur kontinuierliche Extremalen betrachtet;
durch die Einfihrung der diskontinuierlichen Losungen geht nun das
Problem in ein solches von der Klasse Null iiber.

19. Es gibt aber auch Fille, in denen auch die Betrachtung diskon-
tinuierlicher Losungen nichts niitzen kann. Nehmen wir z. B. die
Hamiltonsche Funktion

. (1 — F(8) 21 ) (@) iy,
%13 A="Tn = 2

an. Man setze zur Abkiirzung

(19.2) Y — () x: 7 —
I — 9,

Die Differentialgleichungen der Extremalen lauten dann

(19-3) Hn= H, —a
(19. 4) ;é‘z = H,, = _a_z — f) 2y a — f(l’) X

2 2
(19.5) Py = — H, = f()pa-} f(l‘)yz 7,
(196) }"2:*““sz == 0.

Man hat hier in der Tat p — 1, weil aus (19. 3) und (19. 4) folgt

#5

-

x:

(19.7) ,i’z:»;——f(t)xl.iq*f(t)

Andererseits entnimmt man aus (19. 3) und (19. 5)

: d
V1= (Fz1) 5
da nun nach (19.6) y, konstant ist, folgt aus der letzten Gleichung

(19. 8) ¥y — [ %, ¥, — const.
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und es ist daher auch a« eine Konstante. Jetzt kann man, wegen (19. 3)
schreiben

(19.9) Hn=—at+f

und aus (19. 7) folgt dann die Berechnung von x, (#) durch eine Quadratur.
Aus dem letzten Resultat sieht man, daf3 die Gesamtheit der Extremalen
durch einen Punkt eine zweidimensionale Fliche bilden, und daf3 daher
g =1 ist.

Diskontinuierliche Losungen sind hier nicht vorhanden; aus (19. 2) bis
(19. 4) folgt nimlich, daf3, wenn man y, und y, vorgibt, die GroBen x,
und z, etndeutzg bestimmt werden.

Endlich sieht man daf3 die Legendresche Bedingung immer erfiillt

ist, wenn p, < 1 ist, denn man berechnet ganz dhnlich wie im §17

(1 — ) -+ (1 — )
B (1 — ) 0) .

Eine eingehendere Untersuchung scheint also hier notwendig zu sein.

(Eingegangen den 27. Februar 1932)
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