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Ein Satz liber die Ring- und Strahlklassen-
zahlen in algebraischen Zahlkorpern

Von RUDOLF FUETER, Ziirich

Nach Hurwzts') ist die Klassenzahl eines algebraischen Zahlkorpers
gleich der Anzahl nicht dquivalenter Zahlbriiche des Korpers, wobei die
Gruppe aller ganzzahligen unimodularer Substitutionen des Koérpers zu-
grunde gelegt wird. Fiir reguldare Ringe und Strahlen ist meines Wissens
kein solcher Satz bekannt. Im folgenden gebe ich fiir diesen Fall das
sehr einfach zu beweisende Resultat. Es scheint mir bemerkenswert, da
es auf die Untergruppen der genannten Gruppe ein neues Licht wirft.

1. Es sei s ein Strahl in einem gegebenen algebraischen Zahlksrper 4.
Derselbe sei aus allen (mod f) kongruenten Zahlen einer Untergruppe
beziiglich der Multiplikation von Restklasssen (mod f) gebildet?). f ist sein
Fiihrer. Die gebrochenen Zahlen, deren Zihler und Nenner zu f teiler-
fremd sein miissen, und die in den betreffenden Kongruenzklassen liegen,
werden ebenfalls zu s hinzugenommen. /# diese Definition fallen auch
dee reguliren Ringe mit dem Fiihrer f°).

Es sei S —= (;‘f g) irgend eine der Substitutionen in £, die folgenden Be-
dingungen geniigen:

a) «, B3, v, ® sind ganze Zahlen von £, die die Gleichung:

al—fy = 1
befriedigen.
b) ,8 sind im Strahl s, und y ist eine Zahl von f.

Alle S bilden eine Gruppe in Besug auf Multiplikation, die mzt ® (s, f)
beseichnet werde. Denn nach dem Multiplikationsgesetz ist:

a(’)p(f) “ﬁ
Ty 7) — — . —
S S"=35, S= (y(’)B('))’ =12 5= ),

1) A. Hurwitz: Die unimodularen Substitutionenineinemalgebraischen
Zahlkoérper, Nachr. Ges. Wiss. Gottingen, Math. phys. Klasse 1895, S. 332.

2) Siehe etwa die Ausfiihrungen von H. Hasse: Bericht iiber neue Untersuch-
ungen und Probleme aus der Theorie der algebraischen Zahlkérper, Jahres-
ber. der D, M. V. Bd. 35 (1926), S. 5 u. ff., wo s als H() bezeichnet wird.

3) Siehe Rud. Fueter; Die Klassenkorper der komplexen Multiplikation
und ihr Einflufl auf die Entwicklung der Zahlentheorie, Jahresber. D, M. V.
Bd. 20 (1911), S. 9—1o0.

21 Commentarii Mathematici Helvetict 319



wo S wieder ganze Koeffizienten hat. Anderseits ist:
Y — YI a// __}_ 5! /l’
also wieder durch f teilbar, da es y/, y” sind. Aufderdem ist:

a—=a o +p 1 =aa (mod f),
5 — _YI p// + 5! 8” = 5/ 8” (mOd f),

sind also beide wieder in s. Ferner ist((l) (I))und die Im/erse(__i_‘-fc
der in & (s, f).

2. Jedes zu f teilerfremde Ideal i — (s, ) kann als grof3ter gemein- .
samer Teiler einer Zahl ¢ von s und einer zu f teilerfremden Zahl t auf-
gefaf3t werden. Ist i/ = (¢’, 1) ein zweites Ideal, wo o', ¢’ dieselben Be-
dingungen erfiillen, und sollen i, i’ in der gleichen Strahlklasse liegen,

so muf3 es eine Zahl ¢ von s geben, fiir die:

) wie-

ist. pt' ist dann sicherlich eine ganze Zahl in 2. Wir nehmen jetzt eine
Zahl ¢ von f mit der Eigenschaft, daf3 sie zu ¢ und o' teilerfremd ist.
Dann ist auch:

i = (o, 91), ' = (d¢', 97'),

und es muf3 eine Substitution S = (: g) mit ganzen Zahlen a, §, v, 8 in

k£ geben?), fir die:

pet =agpt+ Bo,
a5-—@7: I, (I)
po' =yet+ 3o,

ist. Aus der ersten Gleichung folgt, daf3 § durch ¢ teilbar ist, da ¢ zu
¢ teilerfremd ist und pt’ ganz ist: § = B'¢. Somit erhdlt man, wenn
man y' = ¢v setzt, die neuen Gleichungen:

pt = at + o,
aa-—-—ﬁ/ = 1. (2)

pe’' =vy't4 3o,

4) D. Hilbert: Zahlbericht, Satz 53, oder Hurwitz, a.a.O.
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/
5t = (?’BB) liegt aber in ® (s, ). Denn ¥’ ist durch f teilbar, und ps' = 8o

(mod f); woraus folgt, daf3 & in s liegt, da p, o', o in s liegen nach An-
nahme. Wegen a8 =1 (mod f) mu3 dann auch « in s liegen. Wenn
also it = (g,7) und {' = (¢’,7’) in derselben Strahlklasse liegen, und o, o’
in s sind, so gibt es eine Substitution von @ (s, f), so daf3 die Zahlbriiche
t/e, t' /¢’ dquivalent sind.

3. Sind umgekehrt zwei Zahlbriiche, deren Zihler und Nenner zu f
teilerfremd sind, nach @ (s, f) dquivalent, so kann man die beiden Zahl-
briiche stets in der Form t/g, 1'/¢’ darstellen, wo o, ¢’ in s liegen. Man
ordnet den Zahlbriichen die Ideale (s, t) =1, (¢',1') =1’ zu. Verschiedenen
Darstellungen eines Zahlbruches in dieser Form entsprechen zugeord-
nete Ideale (g, 1) derselben Strahlklasse. Aus (2) folgt dann, da y' durch
f teilbar ist, daf3 ps’ =8¢ (mod f), d. h. p muf3 in s liegen, da es o', 3,
¢ nach Annahme tun. Somit sind die den Zahlbriichen zugeordneten Ideale
i, i’ in derselben Strahlklasse.

Aus 2. und 3. folgt der

I. Satz: Die Strakhilklassenzakl von s ist gleich der Anzahl der in
Bezug auf & (s, f) indquivalenten Zahlbriiche von k, deven Zihler und
Nenner zu § tedler fremd sind.

Man kann dieses Resultat mit Hilfe eines entsprechenden Beweises auch
anders aussprechen, was fiir die Formentheorie wichtig ist: Es sei & (s, )
die gleiche Gruppe wie @ (s, f), nur daf3 statt der y die § durch den
Fiihrer teilbar sind. Dann gilt der

11. Satz: Dic Strahlklassenzakl von s ist gleich der Anzahl der in
besug auf ® (s, §) indquivalenten Zaklbriiche von k, deren Zihler durch
den Fiihrer § teilbar, deren Nenner su | teilerfremd sind.

4. Nimmt man als Anwendung die gewoOhnlichen primitiven bindren
quadratischen Formen im Bereiche der ganzen rationalen Zahlen mit der
Diskriminante f?#, wo 2 negativ und quadratfrei sei:

F=Ax"+ 2Bxy -+ Cy*, B — AC = [* m,
so gibt es, wie man sofort sieht, in jeder Klasse eine Form, in der 5

durch £, und C durch /* teilbar ist. Man kann sich also auf die Frage
der Aequivalenz der Formen:

F=Ax"~+ 2 Befy + C(fy), B'— AC = m,
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beschrinken. Dieselben gehen aber durch:

J/ — ayl + lel,
ad— By =1,
r =y 48«
dann und nur dann ineinander iiber, wenn y' =0 (mod f) ist, also durch

die Substitutionen von ®(s, /). Setzt man /B’ = B, v' = [y, so geht
dann:

F'=Ax* + 2Bxy + Cy*, B — AC = m,

durch S= (: g), f=o0 (mod /) in eine entsprechende Form der Diskrimi-

nante » iiber. Die Ringklassenzahl ist also gleich der Zahl indquivalenter
Formen der Diskriminante » in bezug auf die Untergruppe der Modul-

gruppe, fiir die § = o0 (mod /).

(Eingegangen den 1. Marz 1933)
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