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Ein allgemeines quadratisches Reziprozi-
tatsgesetz in denjenigen algebraischen
Zahlkdrpern, worin 2 voll zerfallt.

Von Th. SKOLEM, Bergen.

Im folgenden betrachte ich in Zahlkorpern, worin 2 vollstindig zer-
fallt, Jacobische Symbole, die in gewohnlicher Art als Produkte von
Legendreschen Symbolen definiert sein sollen. Dabei soll aber nicht wie
gewohnlich der Fall ausgeschlossen sein, daf3 ein Primfaktor [ von 2
unter dem Strich (im , Nenner*) auftritt. Weil jede zu [ prime Zahl = 1
(mod. I) ist, wenn 2 voll zerfillt, und also quadratischer Rest mod. I ist,
so soll immer

gesetzt werden; dabei ist also natiirlich « nicht teilbar durch [. Es
sollen ndamlich immer der ,Ziahler“ und der ,Nenner“ der Jacobischen

Symbole relativ prim sein, Nach der gemachten Vereinbarung hat dann
das Symbol

immer denselben Wert wie

)

wenn a der zu 2 prime Bestandteil von a ist, d. h. das Produkt der-
jenigen Primfaktoren von a, die in 2 nicht aufgehen. Man erkennt sehr
leicht, daf3 die fundamentalen Sitze iiber die Jacobischen Symbole
noch giiltig bleiben, namlich

0 (3) = (5)(5) ) (%) = () (5)
3) Aus a=g (mod. a) folgt (%) _ (ﬁ)
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Diese Erweiterung der Bedeutung des Jacobischen Symbols wird nun

zuerst im absoluten Korper %# gemacht. Ich setze, wenn ( a;]/e) solche

Symbole im erweiterten Sinne sind,

cz,/e b,k signe—1  signé—1
() () ™

Dann ist (@, &, 6) = (b, k, @) und (a, &, bc) = (a, &, b) (@, %, ¢), wie man
leicht konstatiert. Folgende Tatsachen konnen bemerkt werden:

Satz 1. a) Sind a und b ungerade, so ist (a, k, b) bestzmmt durch
die Restklassen, wosu a und b gehiven mod. 4.

Bewezs. Es ist fiir @ und & ungerade

a—1 6—1

(@ by 0) = (—1) = 2.

b) Ist a ltezlbar durch genau 2%, n > 0, b ungerade, so ist (a, k, b)
bestemmt durch die Restklassen, wosu a und b besw. mod. 2"+2 und 2°
gehoren.

Bewess. Es ist

a,k b,k sign a—1 sign 6—1 Z,k "/ a
@k 8= (25) (25) =0 T = (2E) (%, ae),

und (2’&/6> ist bestimmt durch den Rest von & mod. 8, wiahrend nach

. . . a
a) (—;, &, Z)) bestimmt ist durch die Reste von p und 4 mod. 4.
Weiter betrachte ich einen beliebigen Korper X vom Grade », worin

2 voll zerfallt, Ich setze

(2) f— Il Iz o In'

Die Zahlen aus K sollen durch kleine griechische Buchstaben, die Ideale
aus K durch kleine deutsche Buchstaben bezeichnet werden, wihrend
absolut rationale Zahlen durch kleine lateinische Buchstaben bezeichnet
werden.

Indem (ac, ﬂK) das Jacobische Symbol im erweiterten Sinne ist, setze ich

. sign ®—1 sign §—1
(a,K) (ﬂ,K) (__I)s 5 3
g o

1) Augenscheinlich ist wieder (a, K, ) = (8, K, &) und (=, K, BY) = (%, K, B) (%, K; ¥).

= (o K, ) 1)
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Das Ziel dieses kleinen Aufsatzes ist nun zu zeigen, daf3 jedes Symbol
(¢, &K, B) als ein Produkt von » ,Komponent“symbolen (e, £, &) ausge-
driickt werden kann, wobei die » Komponentsymbole den 7 Primfaktoren
von 2 entsprechen. Wie dies zu verstehen ist, wird aus dem folgenden
hervorgehen. In den Beweisen hierfiir benutze ich keine hoheren Mittel
als die elementare Idealtheorie; freilich muf3 ich aber das quadratische
Reziprozititsgesetz fiir Zahlen, die prim zu 2 sind, als bekannt voraus-
setzen, namlich 2)

—1 3—1 sign —1 sign 3—1
o g gn g
(a)(ﬂ) vrow ST T

B8

(94

:(ml) - = N

Bisweilen werde ich die bekannte ,Nenner“transformationsformel

5= (%)

benutzen, deren Richtigkeit in fast trivialer Weise beweisbar ist3). Daf3
diese Formel auch giiltig bleibt bei der gemachten Erweiterung des
Begriffes ,,Jacobisches Symbol“ ist ohne weiteres klar.

Zuerst sollen 2 Hilfssitze bewiesen werden.

Hilfssats 1. Es sei @ eine ganze primitive Zahl in A und =

(mod. V), dagegen =0 (mod. ), wenn 7 > 1 ist. Dann ist Sw = 1

(mod. 27)-
Bewezs. Die irreduzible Gleichung, der o geniigt, sei f(w) = 0. Sobald
¢ hinreichend grof3 ist, gilt die Funktionenkongruenz

)= —a) ... *x—a,) (mod 2¢)

und zwar derart, 4) daf3 fiir jedes 2 4 aufgeht in w — a;. Also gelten
dann die Kongruenzen

2, =1 (mod. 1), a, = o (mod. I4), ..., ,= 0 (mod. [%)

und also auch

a=1, a,=a, = ... = a, = 0 (mod. 2/).

i

®) Vgl. H. Hasse, Bericht iiber neuere Untersuchungen und Probleme
aus der Theorie der algebraischen Zahlkérper, Teil II, S. 77.

8) H. Hasse, Uber das allgemeine Reziprozititsgesetz etc, Journal fiir
Math. 154, S. 107.

4) Vgl. R. Fricke, Lehrbuch der Algebra, Bd. 3, Kap. 2, § 14.
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Folglich wird, da ¢ = f,

So=a, +a+ ...+ a,=1 (mod. 2/),
w. z. bw. w.
Hilfssats 2. Es sei a eine ganze Zahl in K und fiir jedes 7 teil-
bar durch genau [ und = a; mod. [*%, Dann ist 5 Na = Ila; mod.

T/f;t2
21

Bewez's. Zuerst zeige ich, daf3 der Satz gilt fiir jede Wahl der Zahlen «;,
falls er fiir eine solche gilt. Es sei nimlich fiir jedes 7 a; = &; (mod. 27 * %),
Dann ist 4; genau durch 2’* teilbar wie a;, so daf3 man

H

= 2%%al, b; = 2778}, a}=b}= + 1(mod. 4)

schreiben kann. Dann wird

[l = IT# (mod. 4),
woraus 1 ‘

X/

Ile; =2

25 2/ +2).

Ha' = 27 ]117’- ::IIb,— (mod 27

Ich betrachte erstens eine primitive Zahl . Die Gleichung fiir « in
k sei f (e) =o. Dann gilt fiir beliebiges ¢ eine Funktionenkongruenz

frR)=@x—26) ... (x —4b,) (mod. 2¢),

und wenn ¢ hinreichend grof3 ist ), so ist a— &;teilbar durch (7it%  Auf3er-
dem soll ¢ = 3 f; 4 2 gewdhlt werden. Dann ist

Sfite
Na_,]I& mod. 2¢ und also auch mod. 2¢ X

Ist fiir jedes z dann a = @; (mod. I/7* %), so ist a; = &; (mod.2/**?). Nach

zfz + 2
der zuerst gemachten Bemerkung folgt daraus N« = /la; (mod 3t )

7
Zweitens sei ¢ imprimitiv. Dann kann man sicher eine primitive Zahl

Sf+2
g finden, welche =@ mod. 2¢  ist. Fiir jedes 7 ist dann auch g=a

5) Uberall im folgenden bedeuten II und 3 dasselbe wie II bezw. E

Z 7 r=1 i=1
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Zf;+2
(mod. [7* **), woraus man nach dem schon bewiesenen NV g= /I 2;mod. 27

S+
bekommt. Da aber offenbar Na = N g (mod. 27 ), folgt Na= lla;

,?_‘,fz— + 2
mod. 2¢ .

Satz 2. Es seien a und B ganse Zallen in K, relativ prim und prim
su 2. Es sez

a=a;, #=b; (mod. ;).
Dann st

(o, K, 8) = 1 (a;, &, ;).

Bewezs: Man kann » ganze und primitive Zahlen w,, ..., w, in K
finden derart, daf3

w; = 1 (mod. [;), &; =0 (mod. l;), wenn j £ 7.

Nach dem Hilfssatz 1 ist dann fir alle z Sw; = 1 (mod. 4). Aufler-
dem hat man

a=a,w,... +a,w,, B=b v, + ...} b, w, (mod. 4);

denn jede dieser Kongruenzen gilt ja mod. [} fir alle 7, und deshalb
wird

a—1 a;— 1 g—1 b;— 1
z = N wy, B a= ; (mod. 2
2 = 2 w7, 2 ? 2 wj ( )

und

a—183—1 a,— 1 b,—1
— ? (mod. 2);
2 2 %‘ 2 2 Ok ( )

denn so oft z 72 j ist, ist w;w; = 0 (mod. 4). Nach dem Hilfssatze wird
aber auch Swj =1 (mod. 4), und deshalb bekommt man

Sa—l g—1 :Zg}fﬁléh;—l

5 ;- 7 (mod, 2).

Da
set et a=14=1
(e, K, ) = (—1) * 2 und (e, k, b)) = (— 1) 2 % |

so ist hierdurch Satz 2 bewiesen.

309



Satz 3. FEs sezen a und B swei relativ prime ganse Zaklen, § = 1

(mod. 2), a teilbar durch genau |7 und =1 (mod. vf—) Ist & = a, (mod. I{*?)
1

und fiiv jedes ¢ > 1 = a; (mod. |;), wikvend 8 = b, ist mod. [y und fiir
Jedes 7 > 1= b; (mod. |;), so ist

(a; I{’ ﬂ) — ”(ai, k} bz)

z

Bewezs: Zuerst soll der Satz bewiesen werden fiir eine beliebige Zahl
2 aber gewisse spezielle Zahlen @, namlich

a=7y —@8r,

wo » eine solche der Zahlen 1, 3, 5, 7 ist, daf3 g» =1 (mod. [}) ist,
wahrend y so bestimmt wird, daf3

y* — B7 teilbar durch genau [{ wird und y =o0 (mod. —IZ~>,
1

was offenbar alles stets moglich ist. Man kann auch y prim zu @ wahlen,
so daf3 auch ¢ prim zu g wird.

Der zum Zahlenpaare (¢, 8) gehorende Signaturfaktor ist — -} 1;
denn ist eine Konjugierte zu @ negativ, so ist die entsprechende Kon-
jugierte zu y* — g augenscheinlich positiv. Also wird, wenn man bemerkt,

daf3

v v
ist,
o, K\ (8, K\ (¥, K\ (y*r, K\
(1) (“’K’ﬂ)“‘( ] >( p )“( g )(“"}}" )=
K\ (a, K\ (7, k\ (Na, b\
< a )( y )“(Na)( r \}__(r,/e,Na).
Nun ist (Va, £, 7) = (z’f )(-fv;‘i‘— Z, r) und nach dem Hilfssatze 2
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so daf3 nach Satz 1

Da » = 4, (mod. 8), so ist

(EL, k‘y 7’) = (ﬂ’ k’ [71).
2¢ 2¢ )

N

Wenn z > 1 ist, so hat man ¢; = — &,» (mod. 4), woraus augenscheinlich
(@;, &y, ») = (a;, &, b;).

Aus den drei letzten Gleichungen folgt

Na a, e
(b r) = (e & 1) T (s, ke, 52).
Da aber » = 4, ist mod. 8, so ist (3’7/6—) e (2’[)/‘7), so daf3
1
2, k\/Na L
(2) (Na, &, ) = < p ><2e ,,43,7’)_~

”

(Z’bk\)e (g_:’_’ k’ bl) ﬂ(ai’ k’ [72') — H(lli, k’ [’i)'
1

=2 z

Aus (1) und (2) folgt die Richtigkeit des Satzes in diesem Falle.

Um Satz 3 vollstandig zu beweisen, braucht dann weiter nur folgendes ge-
zeigt zu werden: Satz 3 gelte fiir (, 8), wihrend « eine beliebige Zahl
von der im Satze erwidhnten Beschaffenheit ist. Dann gilt Satz 3 fiir

(o, B)-

Man hat, dai3 —fz- — @ geschrieben werden kann, wo ¢ und ¢§ beide

a 0
prim zu 2 und zu @ sind. Ich setze o = 2, (mod. I{*?) und = z; (mod. [})
fir Z > 1, wihrend a=a, bezw. 4; nach diesen Moduln ist. Ebenso

schreibe ich & bezw. J fiir jedes z = d; bezw. d; mod. [;. Aus ad — ¢ d
folgt

(@9, K, B) = (a9, K, 8),
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und nach Satz 2 und der gemachten Annahme hat man

(&5: K’ ﬂ) — (&’ K’ 19) (‘59 K’ ﬂ) e H(a—i’ k,b,-) H(di» k’ bz’) - H(gz’di’ k’ bz‘)'

. . .

z z 4

Hieraus wieder nach Satz 2

(3) (&K 8 — (0 K, 90, K 8 = Ila.d:k, &) Il k&, ).

H H

Nun ist

ad = a,d, und ¢ = a,d, (mod. [{*?),

wie man leicht findet. Aus der Gleichung ad = «d folgt deshalb

a,d, = a,d, (mod. 2°*?),

woraus nach Satz 1
(Clx Jla k, bx) = (&1 di, k, 61)-

Ebenso hat man fiir z > 1

a;d; = a;d; (mod. 4),

woraus nach Satz 1

(d;d,', k, b,) == (d,‘d,’, k’ bz)

Aus den beiden letzten Gleichungen folgt

H(aidi: ky bz) == H(d_idi, k, bl‘)’

z 7
woraus

(4) .”(az" k’ &i) — ”(‘zidi, k’ bz’) .[I(d—z’ k} bi)'

. . .

z 4 H

Aus (3) und (4) folgt

(@, K, 8) = Il (a:, k, &;).

z

Hierdurch ist Satz 3 vollstindig bewiesen.
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Satz 4. Die ganzen ZLaklen o und B sezen velativ prim, a fiir jedes
¢ teilbar durch gemau 1, 8 dagegen prim su 2. Ist @ = a; (mod. 1#+7)

und 8= 0b; (mod. 1f*), wo g;,== 2 oder = 3 ist, je nachdem e; = o oder
> 0 st, SO zst

(o, K, 8) = II (a:, , &;).

z

Bewezs: Den Satz beweise ich zuerst fiir beliebiges 8, aber nur ge-

wisse a. Es sei namlich fiir jede Zahl j der Reihe 1, 2, ... 7 a, prim
2 . : . .

zu B und T aber teilbar durch genau [;/. Dann ist @, ; ... a, cine
7

spezielle Zahl®) ¢ der im Satze erwdhnten Art, und der Satz soll zuerst
fir das Zahlenpaar (//a;, 8) bewiesen werden.
7

Ich setze

o, = a;, ; (mod. [¥*?) und = a,; (mod. [}), wenn 7 £ j.

Nun ist

({]aj, K, 5) = Il (o, K, )

J

und nach Satz 3 fiir alle ;

(a7, K, 8) = ]] (@, k, 6:);

z

denn fiir alle 7 ist ja g = &; (mod. l?) und falls ¢;> o ist, # sogar _-4,
(mod. [}).
Also wird

(5) ({Iaj, ) Hﬂaﬁ, k, b;) H(ﬂaﬂ, k, b; )

Aufderdem ist

II ;= ]I a;; (mod. I;Z-) ,

F==i JE=9)

6) Ist die Zahl der Idealklassen in K gleich 1, so kann freilich jede Zahl a in dieser
Form geschrieben werden,
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s . . ; 2 .
woraus, da «; teilbar ist durch I und = @;; mod. [ 17 ist,

(6) ﬂaj = ,I_Iaj,- (mod. [f7 13,
J 7

Aus (5) und (6) folgt die Wahrheit des Satzes in diesem Falle.
Danach soll eine beliebige Zahl « der im Satz erwdhnten Art be-

trachtet werden. Ich setze der Kiirze halber //a; — a, 1T @; = a;, und

7 7
man hat

R1|R

| e,

wo J und 0 prim zu 2 und @ sind, und es soll fiir jedes 7

)

i

d;, 0 = d; (mod. I})

sein. Da ad — a¢ ist, bekommt man unter Benutzung des schon be-
wiesenen

(@0, K, 8) = (ad, K, B) = (&, K, B) (0, K, ) =
_II(CZ,-, k’ bt) II(dz'7 k, bz) e H(a—idz', k‘: bz)

z z z

und

i) (e K, 8) = (@, K, )0, K, 8) = I (a:di, k, &) L] (d:, B, 6:).

z z

Nun ist
ad =a;d; und ad = a;d; (mod. [ *?
und also
a;d; = a;d; (mod. 2% %3,
woraus nach Satz 1
(@:d;, k, b;) = (@:d:, &, ;)
oder

(8) (a;, k, b;) = (a:d;, k, &;) (ds, F, &;).
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Aus (7) und (8) folgt wiederum

(o, K, B) = I (a;, k, b;).

z

Hierdurch ist Satz 4 bewiesen.

Satz 5. Die gansen Zahlen o und @ seien relativ prim und [fiir je-
des 7 o genau teilbay durch 157, @ tezlbar durch genan V. Weiter set fiir
Jedes 7 a=a; (mod. §7), 8 = b; (mod. i), wobei g;— ¢; + 2 oder = 3
25ty je nachdem f; = o oder > o ist, und ebenso h; = f; + 2 oder = 3,
Jje nackhdem e; = o0 oder > o0 ist. Dann gzlt die Gleichung

(0(, ](’ ﬂ) — H(az’: k, bZ)

H

Bewezs: Indem £ beliebig ist, beweise ich den Satz zuerst fiir gewisse
spezielle o, namlich

So oft ¢; > o sein soll, wird £ so gewdhlt, daf3
9) gE=1 (mod. [;)

wird, und danach y so bestimmt, da3 ¢ teilbar durch genau [ wird. Ist
/i > 0O, setze man y =1 (mod. [;); dann wird ja ¢; =— 0. Soll endlich
¢; = O sein, indem auch f; — o ist, so setze man y = o (mod. [;). Auf3er-
dem kann man § total positiv und iiberhaupt prim zu 2 wihlen. Dann
hat man, weil der Signaturfaktor offenbar — -} 1 wird,

0 o= (4) () = () < () (45) <

Nach Satz 4 ist nun

(1) (¢, K, &) = H(di: ky ),

1

wenn & = z; mod. [; ist, wenn ¢; > 0, und mod. [; sonst. Nun wird aber
nach (9) 6;x2; = 1 (mod. 8), so oft ¢; > o ist, woraus folgt (a;, k, x;) =
(@;, k, 0;). Ist ¢; = f; = O, so st @; = — b, x,; (mod. 4), woraus (a;, k, x;) —
(@:, k, 6;). Es bleibt der Fall f; > 0. Dann ist 8 = 4; mod. *? und
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also in jedem Falle mod. [;. Weiter ist y =1 (mod. [;), woraus bekannt-
lich y» =1 (mod. ;). Da auBBerdem & = @; mod. I;, bekommt man

a; =1 — b;x; (mod. 8),

und 4, ist eine gerade Zahl, nimlich teilbar durch 2/7. Nun wird

2, k\/i b;
(CZ,', k’ bz) :( ) (d,‘, k’ "'272‘)

3

Ist f; = 3, so ist @; =1 (mod. 8), woraus (a;, k, ;) = 1 = (a;, k, x;).
Ist /; = 2, so ist ;= 1 (mod. 4), woraus wiederum (a;, k,8;) —= 1 =
(a;, k, z;). Ist endlich f; = 1, so hat man

b; x;
entweder ——~

=1 oder =—1 (mod. 4).
Im ersten Falle ist 2; = — 1 (mod. 8) und deshalb
b;
(aiy k; é:) _— (d,‘, k’—Z_) e (LZ;, k; xz')-
Im zweiten Falle ist @; = 3 (mod. 8), woraus
b;
(@2 b b2) = — a2, 1 5) = (@, b, x2).

Man hat also fiir alle Z, da@3 (@, k, x;) = (a;, k, &;) ist. Dies in Verbindung
mit (10) und (11) zeigt die Richtigkeit von Satz g fiir die speziellen a.
Um die Allgemeingiiltigkeit des Satzes zu zeigen gehe ich in derselben

Weise wie frither vor. Der Satz sei also giiltig fiir («, 8), und « sei eine
beliebige Zahl der im Satze erwihnten Beschaffenheit. Ich setze

a
- ’
a

| o,

wo & und J prim zu 2@ sind. Weiter sollen § und ¢ = d; bezw. d; mod.
[#sein, wo #; = 2 oder — 3 ist, je nachdem f; — o oder > 0 ist. Wie
frither hat man

(@, K, 8) = (&, K, §) (0, K, B) 0, K, B),
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und nach der gemachten Voraussetzung und nach Satz 4 erhilt man

(12) ((1, Ka ﬂ) - H(c;z dz’; k: 51) ) H((iz’ k: 61’)'

H 4

Andererseits folgt aus der Gleichung ad = a J, daf3 wenn zuerst die
fir welche f; = o ist, betrachtet werden

Q; JiE -L_l_,' d,‘ (mOd. 2% +2)

.

I

P42 . . 8 -
[;* =7, wie leicht einzusehen. Da a;d,

ei+l

denn ad = a;d; und ad = a; d; mod.,

und «;d; teilbar sind durch 2/, aber nicht 2 , so folgt nach Satz 1, da3

(@idy, ky b;) = (a;d;, ke, b;),
woraus

(13) (@:, k, b;) = (@:d;, k, &;)(d;, &, 5;).

Ist ;> 0, so hat man ad = a;d; und ad=a,d; mod. [, woraus

a; (Z-E cZ-d,- (mod. 8);

auBBerdem sind a;d; und a;d; ungerade.
Aber dann ist offenbar wiederum

(d,‘ﬁ,‘, k; bz) - (_L-Z,‘dl-, k: bz)
oder

(14) (a:, k, &;) = (@:dy, k, b;) (ds, F, b;).

Aus (12), (13) und (14) folgt die Richtigkeit des Satzes 5, der hierdurch
vollstindig bewiesen ist.

Bezsprel: Im Korper k (V—7) ist 2 = A, A,, wobei
14—z , _1—=V—7

Ay, — —m8Mm——
1 2 ’ 2

sind. Es wird z. B.

a:m5»+3V—~7, B 1 2Y—

2

gewahlt. Hier ist # =1 (mod. 2); dagegen ist e prim zu A,, aber teil-
bar durch ),, indem

“:(2+V:—7))\1
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ist. Man findet

w8 V=7 e 37
2 2
Mod. A} sind dann
aE:—-Szwl'r’—_——Io_—”:é und B =1—10==—09 = 7.
Mod. A} sind
aE::—5~2—:2:~7EI und =1 —6 = —5=3.

Deshalb wird (dies folgt schon aus Satz 3 oben)

(& k(V—7), 8) = (6, k, 7) (1, &, 3).

Nun ist (1, k, 3) = 1, wahrend

(6, k, 7):(2’7k)(3,k, 7)) =4+ 1.—1 = —1.

/

Also, da der Signaturfaktor in einem total imaginaren Korper immer

= -} 1 ist,

(a, k (:;:7)) ((9’ k (aV:;)) — — 1.

Nun findet man leicht, dal3 =4 ist mod. #; also ist (a, £ (l;"__)> =1 1.

Weiter ist nach der gemachten Vereinbarung

(ﬂ, k (l;— 7)) _ (ﬂz i (VV——;__))

__.7.

Mod. 2 +V:7 ist aber § = — 3 und (_“ 3’k(E)) meae (“Isl’k) —

(”3’ k) = (_— ;’ k) — — 1. Dadurch ist das obige Ergebnis bestitigt.

(Eingegangen den 15. November 1932.)
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	Ein allgemeines quadratisches Reziprozitätsgesetz in denjenigen algebraischen Zahlkörpern, worin 2 voll zerfällt.

