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Laplace’sche Integraltransformation und
Integration partieller Differentialgleichungen
vom hyperbolischen und parabolischenTypus

(Ein Beitrag zum Heaviside’schen Operatorenkalkiil)

Von W. MACHLER, Ziirich

Im Jahre 1917 hat 7. 7 /. A. Bromwzck*) eine Arbeit verdffentlicht
betitelt: ,Normal coordinates in dynamical systems“. Bromwich gibt
hier eine interessante Methode an zur Losung von Anfangswert-Rand-
wertproblemen fiir partielle Differentialgleichungen vom hyperbolischen
und parabolischen Typus, fiir die aber bisher kein Beweis gegeben wurde.
Die vorliegende Abhandlung hat nun den Zweck, im Anschluf3 an eine
Arbeit von M. Plancherel®), die Methode von Bromwich einer genauen
Analyse zu unterziehen.

Die Bromwich’sche Methode hingt mit dem Operatorenkalkiil von
O. Heaviside™) eng zusammen, so dafd die von uns erhaltenen Resul-
tate den ersten strengen Beweis der Anwendbarkeit dieses Kalkiils fiir
eine grofde Klasse von Problemen mit zwei unabhidngigen Variablen
und nicht konstanten Koeffizienten?®)®) liefern*).

§ 1. Formulierung des Problems, der Voraussetzungen und Angabe
der Resultate

Wir betrachten die folgenden zwei Probleme:
Problem 1I:

L) a(e) o 6@ — L) = /(58 0LrLr, 0<1< o0,

] u (x, 0) = u, (%),
L) l oz (b:;, ?)

I Li(w)=a,u(0,t)+ a,u' (0,8 + b, u(1,2) + by o' (1,7 =0,
s { L, (#) = @y, (0, %) + @ o' (0, 2) -+ byy 2 (1, 8) + by 0’ (1,¢) = 0.

= % (%) 4

t=o

I

*) (. Doetsdh®) €) untersucht spezielle, einfachere Fille des vorliegenden Problems mit
konstanten Koeffizienten und andern Randbedingungen.
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Die Grofden a;, 6, (4, # =1, 2) sind Konstanten und die Striche be-
deuten Ableitungen nach x». Ferner ist:

(1) Le)=p ) o+ 702 4 r (@)

Problem 11:

1) (2(@) ¥+ 6 @) 0) —L () = (e 0) ) +6(2) () + a(2)m (2)
-+ & (% A),

| Z.(U}) =
= L L.} =

Dabei ist A ein komplexer Parameter und g (1, \), f(x,¢) sind durch
die Formeln (Laplace’sche Integraltransformatlon)

(2) g%M:fﬁ“ﬂ%Aﬂ
G470
(3) £ (2, 8) = fe” (x, )\,

miteinander verkniipft.

Voraussetzungen: Es sei 0 £ x £ 1; dann fordern wir:

a (x), p (x) zweimal stetig differentiierbar,
(4) {6(x), g () einmal stetig differentiierbar,
7 (x) stetig,
und
(5) {2002 ™)
2 &) >o.

*) Ueber die Definition dieses Integrals verweisen wir auf die Bemerkungen in der Ein-
leitung des § 8.

#*)Wire a (x) =0, b(x) > o so liefle sich dieser Fall analog behandeln, indem man
im Problem II A = u? setzen wiirde.
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Ferner,

#, (¥) zweimal stetig differentiierbar,

#, (x) dreimal stetig differentiierbar,
(6) {
und #, (), #,(x) sollen die Randbedingungen I;) erfiillen.

Von den Funktionen

() o, O 8L 00
fordern wir die Stetigkeit in x, 7 fir o= xr <1, /2> 0 und die Integrale
(8) f |/ (x, 2)| at, |af dt, g; dt

0

sollen gleichmif3ig konvergent in x sein fir oL x < 17).
Fiir die Koeffizienten in den Randbedingungen soll gelten:

@y by,
@ss bys

(9) l 7= 0.

Wie weit man sich von dieser Bedingung befreien kann ist in der
vorliegenden Arbeit gezeigt (§ 5). Die Rechnungen werden aber nur
durchgefiihrt wenn (9) besteht.

Unter diesen Voraussetzungen lif3t sich beweisen, daf3 das Problem
I losbar ist und das Problem II, mit Ausnahme von abzihlbar unend-
lich vielen Werten von A, ebenfalls losbar ist, wobei zwischen den
Losungen dieser Probleme die Beziehungen bestehen

G+ 700 oo

(10) u(',z‘)::z;z. ﬁemU‘ X, \) d A, **U(x,)\):ff_”u(x,z‘)dz‘.

C—7oo

Es ist ¢ > 0 und grof3er als die obere Schranke der Realteile der
Eigenwerte des Problems II. (§ 8). Die Funktion « (x, #) ist einmal stetig
nach x und ¢ differentiierbar und erfiillt bis auf eine zweidimensionale
Punktmenge vom Maf3 Null die Differentialgleichung I,). Mit Hilfe des
Residuensatzes a3t sich fiir das Funktionenpaar #, (¥), #, (¢) ein Ent-
wicklungssatz herleiten. (Satz VIII, § 14).

#) Sind die Bedingungen (8) nicht erfiillt, so lifit sich die Ldsung u (x,{) in jedem
Intervall 0 <~ # << T noch durch (10) ausdriicken, wenn man fir ¢ > 7, f(X,f)=o0 setzt

und g (x, A), \r (x, ) entsprechend berechnet,
##) Man beachte die Bemerkungen zu Beginn des § 8.
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§ 2. Lésung der homogenen Differentialgleichung I,

Unter der homogenen Differentialgleichung II,) verstehen wir die folgende
Gleichung:

(a(x))f—}—é(x)l) v— L (v) = o.

Ueber diese gilt ein grundlegender Satz, der von G. D. Birklhoj")
und #. Zamarkin') ") herriihrt. Eine Nachpriifung des Birkhoff’schen
Beweises gestattet es, diesen Satz in folgender Form auszusprechen:

Sats [: Sind die Bedingungen 4), 5) erfiillt und setzt man

(11) %w:—%m:vgg,

bedeuten ferner /, L endliche positive Zahlen, wobei L geniigend grof3
ist, so gibt es zwei linear unabhingige Lo&sungen v, (x, ), v, (x, A) der
homogenen Differentialgleichungen II,), die transzendente Funktionen von
A sind und die ferner im Gebiet*) |A| >L,B(A) <L/ fir oZr =1
folgende asymptotische Darstellung haben:

}\;sok(x)dx 120 (X
vp(r, \) =¢" {77’? () =+ _é’f"_g\_’_},)}
(12) e
}\/xgok(x)dx X
éﬂké(’f—k):e" wk(x){ ) éﬂl,k)};

dabei ist 7, (¥) zweimal stetig differentiierbar in 0 <+ = 1 und es ist

dx

7(x) Ppx) — &(x)
ff

(13) w) = e e k=1, 2.

*) R (A) bedeutet den Realteil von A.
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Ebenso existiert ein zweites derartiges Fundamentalsystem o} (x, )),
v 3 (x,\) mit folgender asymptotischen Darstellung im Gebiet |A| > Z,
BA)>—/und firoLar L1

Zf; (x)dx - )
viwn=et T L 2R

(14) (#=1,2)
i) Mo B () )

—N = M N3 (x){’ik(’“’)_‘_—)\—}.

Fiir die Funktionen £, (x, \) bezw. £, (x, A), (£ = 1,2), (v = 0, 1), gelten
in 0 £ x < 1 die Ungleichungen:

(15) | B, (%,0)| < Mim Gebiet |\|> L, R(\) <L/,
'3 | Ez (%, 0) | < Mim Gebiet |A|> L, R(A\) <L —/,

wobei M eine von x unabhingige Konstante ist.

§ 3. Die Green’sche Funktion des Randwertproblems Il 2) 3) 12) 14)

Bilden die Funktionen v, (z, A), (£ = 1, 2) irgend ein Fundamentalsystem
der homogenen Differentialgleichung II,) und setzen wir

WS H w' ) e
(16)  d(s,N) = — §(o,Ne 0
Uy (S) )\) Uy (S, }\)
so ist
I vy (%, A) 72 (1, A) + fiir x > s

(17) &G s b)) = +

2?(3) 5(3, ;‘) 7, (3’ )\) U, (S, }\) — fiir » é s

eine Grundlosung der homogenen Differentialgleichung II,).
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Wir beniitzen ferner die Abkiirzungen

vy (2, N) v, (2, ) g (x,8;\)
(18) 4 (x, s; ) = | Li(@) Ly(vs) Li(g)x )
Ly (v) Ly (v) Ly(g)-
wobei
L (@e=an £(0,53 ) +an LD
bl g (1, 550) + b ag(a"’;‘ \ _*k=12)
ist, und
Ly (v) Ly (vy)
(19) 4 =
Ly (v1) Ly (vy)

Damit ist die Green’sche Funktion des Randwertproblems II gegeben
durch

4 (x, s; \)
O . et e sl
(20) G (%, s; \) 10)
Da wir v, (x,\), (£ = 1, 2) als ganze transzendente Funktionen von A

voraussetzen konnen, so folgt, dafd & (s, A), 4 (A) ganze transzendente
Funktionen sind und g (x, s; 1), 4 (x, s; 1), G (, s; ), im allgemeinen
meromorphe Funktionen von A.

Die Funktionen g (x,s; A), G (x, s; A) sind zweimal stetig nach » bezw.
s differentiierbar fiir 0 < », s £ 1 sobald x s ist. Bei x — s hat die
erste Ableitung beider Funktionen eine Unstetigkeit, gegeben durch

(21) 0g (¥, 5;4) _ 0gxms; N = !

' ox ¥ o=y 0x w=s—0  D(S)
und
(21) 0 G(x,s;\) _0G(x, 55 M) 1

. 0x x=s+0 ox x=s—-0” p(sj )
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§ 4. Existenz von Nullstellen von 4 (1) fiir grosse A

Wegen der Invarianz der Green’schen Funktion beziiglich der linearen
Transformationen der Losungen eines Fundamentalsystems, wobei die
Koeffizienten unabhingig von x sind und eine nicht verschwindende
" Determinante haben, konnen wir, je nach Bedarf, das Fundamentalsystem
12) oder 14) beniitzen.

Setzt man
1
(22) fgok (%) dx =y, (£ = 1, 2)
so folgt unter Verwendung von 12)
£y (O, A
an (1 ©) + 2220 4 04 (0) Bas 0,
Li (ve ) = A{ @i 92 (0) 72 (0) 4 X '
(23) PN
I, .
b (7 1) + 22 50 (1) i1,

+ M| 6 gu (1) 74 (1) + - )
Beniitzen wir die Abkiirzungen
(24) A = @i 9 (0) 72 (0)y  Bip = biy 1 (1) 72 (1)

und verstehen wir, nach einer Bezeichnung von Birkhoff1), unter [«] den
Ausdruck

(25) €] =+ 2,

wo F eine von A und eventuell auch anderen Variablen abhingige Grof3e
bedeutet, die fiir grof3e |A| im Gebiet X (\)<Z/ oder im Gebiet R (\) > —/
gleichmid3ig beschriankt ist in diesen Variablen, so ergibt sich, sobald
RMNLY

(234) L; (vp) = M [dax] + X [Ba] }

und der Ausdruck 19) wird

[Au] + &1 [Bu), [du] + s [B]
(] + &%, [Bal, [Au] + ¥a[Ba] |
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Fiir zweireihige Determinanten verwenden wir die Abkiirzung

Wy My
— l iy !z
Moy gy
woraus folgt:
(26) A ()\) — )\2 I [Az'k] + 5)\Yk [Bt'/z] 12'
Setzt man
(27) 4, (\) = | (4] + Ve [Ba] |
so ergibt sich, wegen y, — —y, und 24)
(27,) 4y () = N2 { [Ao] + [A,] M+ [4,] e22T: )
wobei A4, A, A, durch
Ay By Ay by,
A, = = @ (0) 7, (0) @2 (1) % (1)
Ay By, Ay sy
(28) Ay, =o0
By A @y byy
Ay = = — @ (1) 7. (1) ¢ (0) 7. (0)
By Ay Ay gy

I

definiert sind. Nach Voraussetzung (9) und wegen ¢, (x) £ 0, 7z (¥) 3£ 0
in o L x <L 1, sind 4, und 4, von entgegengesetztem Zeichen. Aus

[A,,]::A‘,+§-"->\(i) (v=1, 2)

und mit folgender Definition von A4 (A)

(20) AN = Ay + Ay ™M

ergibt sich

M1 B, (V) e?M1

Madi ()= AN+ ZIVRET S

eine Beziehung, die fiir grof3e |A| und R (A) <</ besteht.
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Die Funktion A4 (\) ist periodisch mit der Periode Z)” und hat die ein-

fachen Wurzeln

I A tka
o) P— L (————‘3) k—o,=%+1,=%£2, ..
(3) k 2),1 g A2 + }’1 ( )

wo Lg den Hauptwert des Logarithmus bedeutet*). Wir finden nach
28) und 13)

y Va(x)px)
o 0 .
(31) T4, £ ;

also insbesondere wenn in 0 £ x <1

b(x)=o ist, wird R (\;) = 0
b (x) >oist, wird B (\g) << 0
b (x) << oist, wird R (\;) > o.

Wir untersuchen jetzt das Verhalten von A4 () im Streifen *¥)

(32) —
Setzen wir A = & -} 2 9, so ist
(33) |A(}\[>| *soba1d|c|>/zund

passend gewihltes 2 > 0. In dem durch die Ungleichungen definierten
Rechteck

— R RN LA
(34)
gt .
—-2—7—147() 27

liegt nur eine Nullstelle von A (A), wobei % geniigend grof3 gewihlt sei.
Umgibt man diese mit einem geniigend kleinen Kreis vom Radius ¢ und
bezeichnet » das Maximum von |4 (\)| auf der Kreisperipherie, so ist

*) Das Argument sei zwischen — m, ® gewihlt.
*¥) ¥ (X) bedeutet den Imaginirteil von A.
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im Rechteck (34) und wegen (33) auch im ganzen durch (32) definierten
Streifen

(35) AN | > .

Aus der Periodizitit von 4 (A) folgt also, da3 man die Nullstellen von
A (\) mit Kreisen von festem geniigend kleinem Radius ¢ so umgeben
kann, daf3 in der ganzen \-Ebene, ausschlief3lich dieser Kreise, die Un-
gleichung (35) gilt, wobei s nur eine Funktion von g ist.

Als ,gelochte A-Ebene“ wollen wir die A\-Ebene ausschlief3lich dieser
Kreise um die Nullstellen von 4 (A) bezeichnen.

In der gelochten A-Ebene betrachten wir die Funktion

N 4 ()

e = e 4 (\) =AM + Ey (\) -+ E,(N) eM1 - E, ()) e2A7s

A

fiir grof3e |X|. Nach (30) konnen wir eine Zahl /, > o so wihlen, daf3
| B ()| </ ist. Da | Ey(\) | < M fir |A| > L und R (\) </, wo M eine
Konstante ist, so folgt:

Ey (\) - E,(\) X1 - E, ()) e2A71 M (14 e¥1 |- g271)
h A} x| - '

Dieser Ausdruck wird kleiner als Eins, sobald | \| geniigend grof3 ist.
Wendet man also den Satz von Rowucké auf die Funktionen

AV1 .
A() und %@
an, so sieht man, daf3 fiir X (\) << /, und |A| geniigend grof3, die Funktion
4 (\) unendlich viele einfache Nullstellen besitzt die in den oben be-
trachteten Kreisen liegen.

Analog ergibt sich, wenn man (14) gebraucht

AY 2 Iy ¥ AY1 , AY1
o M) gonrs 1 g, 4 BeW+EL) N 5 () e

mit | Ey (\)| << M* fir |\] > L und B (A) > — /,. Da die Funktionen
A(X) und 272 4 (A) = A, 222 |- A, die gleichen Nullstellen haben, so
ergibt sich der

Satz I7: Unter der Voraussetzung (9) hat die Funktion 4 (A) unendlich
viele Nullstellen die, abgesehen von endlich vielen, einfach sind und in
den oben betrachteten Kreisen mit dem festen Radius o liegen.
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§ 5. Bemerkungen zum § 4

Wir haben bei der Herleitung des Satzes II vorausgesetzt, dafd die
Bedingung (9) erfiilit sei. Wenn diese Determinante (9) gleich Null ist, so
konnen wir den Satz II im allgemeinen doch aufrecht erhalten, eventuell
mit dem Zusatz, daf3 die Determinante 4 () fiir grof3e |A| auch Doppel-
wurzeln haben kann. Im besonderen werden wir erkennen, daf3 der Satz
II, unter Beriicksichtigung der vorhin gemachten Bemerkung, fiir die
meisten in der mathematischen Physik wichtigen Randbedingungen noch
gilt.

Ist der Ausdruck (9) gleich Null, also

@y by — @3 0,, = O,

so sind folgende Fille moglich:

a) Ay = By = by = by, = O
b) [ @y == @y = O, by, = O, by, Z 0
@y = @y = O, by 3£ 0, by, = O
l @y — @y — O, by, = by £ O‘)
C) [dm;ﬁo;azz: by = by — O
!l @y =— O, @y 2 0, by = b, — O
l Ay =— @y T 0'), by = by = O
d) I @, = O, ay % O, b, =— 0, b3, == O
Ay £ 0, @y — O, b1 = O, by, =— O
l Ay — Ay £ 0, by = by 7= O

Bezeichnen wir die eventuell von Null verschiedenen Koeffizienten in
der Koeffizientenmatrix der Randbedingungen durch Punkte, dann konnen
wir die oben genannten Fille auf folgende Schemata zuriickfithren (even-
tuell durch Umnumerierung von Z;, und L, oder passende Linearkombi-
nationen von Z, und L,):

9 (o0 5 (o)
9 (09 o (o)

*) Wenn zwei entsprechende Koeffizienten in den Randbedingungen von Null verschieden
sind, so kann man diese durch Multiplikation mit einem konstanten Faktor stets als gleich
voraussetzen.
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Wie friiher wollen wir die Elemente in jedem Schema wieder mit «;;
bezw. &, (¢, # = 1, 2) bezeichnen und untersuchen unter Beniitzung von
(23) die Determinante 4 (}).

Zu Fall a). Es wird:

AN = A {[4e] + (A + [4,] M |

mit
@y Oy
Ay = 7, (0) 72 (1) |
2y bzx}
A, = o
@y by,
Ay = — 7, (1) 7 (0)
A3y by

Es ist also der Satz II in § 4 wieder giiltig, wenn man voraussetzt, daf3

ayy by

= 0 ist.¥)

Qs gy

Das ist auch zugleich die Bedingung dafiir, daf3 die Randbedingungen
voneinander unabhingig sind.

Zu Fall b). Hier darf man é,,220 voraussetzen, da sonst Fall a) vor-
liegt. Man erhilt:

40) = 2 {[4] + [A4] 21 A [A] 1)
WO
Ay = ay by, 7 (O) N2 (I) ®1 (I)
A1 =2 ém bzx M (I) 2 (I) 121 (I)
Ay == a3 by3 77, (1) 5 (0) s (1).

#) Als Beispiel erwihnen wir
v/ — 7wt A2y=—o0
v(0)=o0 } mit den Eigenwerten A =— + i, + 20, + 34, ----.
v (I) =0
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Es muf3 also, da 4,, 520 ist, @, 0 vorausgesetzt werden, sonst versagt
hier Satz II. Aus der Gleichung

Ao+ A, M 4,22 =0

folgt dann:
I — A, VA —4 4,4  2ksa:
O —
)\k )\1 Lg( 2A2 >+ }’1
(=0, + 1, +2,..)
I — A, —V A2 — 44,4\  2ka:
e )+242%
k 1 & 2 A, i 71

wobei I.g den Hauptwert des Logarithmus bedeutet. Wir erhalten also,
solange A} — 4 A, A, 240 ist, zwei verschiedene Reihen von einfachen
Wurzeln und eine der fritheren analoge Ueberlegung zeigt die Giiltigkeit
von Satz II. Ist aber A} — 4 A, A, — 0, so sind die zwei Wurzelreihen
identisch, wir haben Doppelwurzeln. In diesem Fall kann also die Glei-
chung 4 () fiir gro3e |A| auch Doppelwurzeln haben.¥)

Nehmen wir jetzt an, daf3 im Schema b) a,, — 0 sei. Es laf3t sich
dann zuriickfiihren auf das folgende:

(oo-o)
c0-0

mit &,, 5240, sollen zwei unabhingige Randbedingungen vorliegen. Wendet
man auf dieses Schema (23) an, so ergibt sich:

4 (\) = by "M?{ [@ 71 (0) 72 (1)1 2 X bz [77: (1) 972 (1) @1 ()] M
— [@u 7. (1) 72 (0)] "217‘}'

Man muf3 also 4, — o0 annehmen, sollen die Betrachtungen von § 4
auch hier gelten. Damit hat man aber den Fall a).

*) Betrachten wir z. B. das Problem
12’0——-’(/”:1[10—}—!!1
.L] (U) EU’ (I, 7&1) =0
Ly (v) =v(0,A)+v(1,A)=0

so ergibt sich 4 ) =2 e (1 -{-e)‘)2 und die A-Werte Az —i(1 4 2k&)w, wo k=o,

+ 1, + 2, ..., sind Doppelwurzeln. Fiir die Green’sche Funktion sind diese A-Werte Pole
zweiter Ordnung, wie man leicht nachrechnet,
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Zu Fall c¢). Es ist
40\ = X\ e T {[Ao] -+ [44] e My + [4,] 527‘71}

WO
Ay = ay; by 71 (O) /e (1) @1 (O)

Ay =2 a, a (/i (O) 2 (0) @1 (O)
Ay = ay; by N (I) (7 (O) @1 (O)

woraus sich ergibt, daf3 a,, - 4,, 7 0 sein muf3, damit wir Satz II be-
weisen konnen. Ist 4,, — 0, dann muf3 man das Schema untersuchen

i (O- -0
.00 o) )
Wir erhalten:

A(\) = ay M2 { — [bm, (0) 1a (1)] + 2% @4 [ (0) 72 (0) p, (0)] €7
~+ [61m: (1) M2 (0)] "217‘} .
Es muf3 also gelten «,, =— 0 und a,, 4,, = 0*) d. h. es liegt dann Fall a) vor.

Zu Fall d). Hier darf man a,, 7% 0, 6,; 7% 0 voraussetzen, da sonst einer
der frither genannten Fille vorliegt. Es wird:

40) = AL [4)] + [A] M [4y] e )
mit
Ay = (2 by @1 0) + s by @1 (D) 1, (0) 72 (1)
Ay = 2 (@ @ 91 (0) 1 (0) 7 (0) -+ bus b o (1) 7y (1) s (1))
Ay = (@ by @4 (0) + @ b @1 (1)) 4 (1) 72 (O).
Wir miissen also fordern
@12 by @1 (0) - @y b1y py (1) £ OFF).

*) z. B, hat das Randwertproblem

v/ —2v=o0
v (0) =0
v()=o0
nur die triviale Losung v =—o0 und es existiert kein Eigenwert.
**) Betrachtet man das Randwertproblem
19 —RBv=o0 1
v'(0)4v'(1)=0
v(0)—v(1)=o0 J
wo also a3 by ¢; (0) + ag byg ¢y (1) = 0 ist, so ist jeder Wert X ein Eigenwert.
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Zusammenjfassung: Satz II in § 4 bleibt, eventuell mit dem Zusatz,
daf3 auch Doppelwurzeln auftreten konnen fiir grof3e |A|, richtig bei
folgenden Randbedingungen:

@y by
mit

a) {auu(o,z‘)~|—bnu(l,z‘):o
=

Ay % (0, 2) + by (1,7) = O

Qs by

b) {auu(o,t)—{—buu(l, )+ w(1, ) =o
#(0, %) + by u(1,2) =0

c) {auu(o, £)+4u' (0,8) + by u(1,¢) =0

@y u (0, 2) + u (1, 2) =0

d) [ @,u(0,%)+anu' (0,8 byu(1,£) 4 b’ (1,/) =0
{ @y % (0,8) + bpyu (1, ) = O

wobei im Fall d)

@ys by 12 (0) + ayy b5 2 (I) Z0

sein muf3.
Man beachte, daf3 der Fall d) die Periodizititsbedingung enthilt;
man braucht nur

ay = by, =0
Qg — Ay — 1
by = by = — 1

zu setzen. Es ist dann

Qg5 0y @1 (O) + Ay bys @1 (I) —_— (fpl (O) + 1 (I)) ¢ 0.

§ 6. Das asymptotische Verhalten der Green’schen Funktion®)

Satz I1/: Fiir grof3e Werte von |A| gilt in der gelochten A-Ebene die
Ungleichung

(36) G (@ s W| < 2

ll 0L x,sL 1

wo G, nur eine Funktion von g ist (§ 4).
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Zur Begriindung dieses Satzes beschrinken wir uns zuerst auf den Fall
R (\) £/ und verwenden deshalb das Fundamentalsystem (12). Man hat:

, L ~ Eas

P8, \) =p(s)8(0,\)e ® *
mit

oy = PO Ob L OON (2,0 0) o
Setzen wir
- /s‘l_(_‘ld
k(s)=22(s)e ¢ 77 . 7,(0)%:(0) . (0)

so 1st

2 (5)3(s, ) = A [ (s)]
wobei £(s)z%£0 ino é x < 1. Damit wird:

I fir r > s
vy (2, ) w2 (85, X)) — v, (%, ) 2, (s, A) t ) x_Z__s

g(x,s;0) = L3 TE )]

und

a; (— v, (0, N) v, (5, \) 42, (0, N7y (s, 1))

I
RN )]
+an (=2 00 %)+ 7' (0,1 (s, 1)

+ ;4 (v, (1, ) w5 (s, A) — 2, (1, M) 7, (5, }\))
—+ b (2 (1, ) 2, (5, N) — 2/ (1, N) 2, (s, )\)) .

Indem wir in 4 (x, s;A) die

L]

2 (s, A
I Kolonne mit l 2 298N
2

I 7,(s5 M)

ENISHGN

[ I 7,(5 M)

~
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multiplizieren und zur letzten Kolonne addieren, erhalten wir
v, (£, A) v, (%, 1) go(#,5; Q)

dx,s;0) = | Li(v) L, () Li(2)x
Ly (v)) Ly(v:) L:(9)x

wo

— L(e) L P& RERACYVENS
sl =L@t 5 g n TS rween
(z=1,2)
und
1
—————— 7, (%, A) ¥y (5, &) X
pesiy = |76
m?]2 (/’V, )\,) U (S, )\). x_és
Wir erhalten weiter
7y (S, A)

21 (5,0) = brv v (1,0 bs0 20! (1, 2) 2

Alk(9)]

vl(s,h)sa' o
3 [ @D 00

Indem wir die Abkiirzungen

(37) f(pk (x)dr = X, f‘Pk (s)ds = S,

einfilhren, erhalten wir mit (24)

y—1 A (H—S) [ii,%),..___.(g“)] £

NEEYe ARKH [77_(?(_:7)_@] ¥

Lo (X, 8;A) =

und

P [ A, 92 ((j))] n ;A(Xl—sl) [B,.1 ’—71(%)]
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Die Ausdriicke (23,) schreiben wir folgenderma(3en:

Li(v) = XeMe {2 [4,] + 411 [By])

, z=—1,2
Li(v;) = Ae 2T {€ 2AT3 (4] + e T [Bz'2]} ( )

und setzen zur Abkiirzung

Eiy Q) =-¢ AT 4; 52%{1 By .
(38) . ®) -.[ 1 . 8 (=1, 2)
-ﬁi2 (A) — £ M [Az'z] + 57”1 [Bz'2] >

dann wird

Liw)=2Ae™s Ey ()
=1,2
(39) L) — e s I, (i), (f=1,2)

Wenn man nun setzt

(40) EQ) = e | Lx (D],
und
(41) G(x,s;0) = g, (x,5; ) + G2 (x,5; ),

so liefert eine einfache Umformung

a1 = so[m () 75 (s)] S s

(42) go (%, 55 ) = A (Xy—S.) (k)(S) (s) -
—1 2= I )| W2 \X) T
A=1e ,_mk(s) ] x5
und
N D)) Lo [, m@) %) L\ X, A, —S)
GOz, 55 )= A {([B e ]b [Buwk(s) ]E)g s
(43) [ 1 (2) 71 ()] Ee P AGEADIEZAWS A
- (_A" Ko 1z 14 2e) | "Zz‘")" et
[ 72 (%) 772 ()] B [ 7 () 72 (9)] £ 1— X)) | Mn—$
+(LB“ AGEE N R IO 75“>" ¥ A
O] B [, @O L — &), S,
+ ( 4, k(s) ) E Ay —*7’(3)— f) (r ) }
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Eu(3)
£(4)

der gelochten A-Ebene beschrinkt. Wir zeigen dies z. B. fiir
Es ist

Die Funktionen

(¢, £ = 1,2) sind fiir grof3e |A| und R (A) </ in

Es (V)
E@®

E — eM>

Ex ()| = 10 4, (3
wo 4, (A) durch (27,) definiert ist. Mit (27) erhilt man:

E (L) =e A {[AO] ~+ [A44] AT + [4,] 627‘71}
also folgt mit (38)

(44) Ei OL) = [Ail] + [Bz'x] e;‘"h
sli A () + Ey(A) + £ (A) Ak -+ £, (A) e2M 1
A

und A4 () ist durch (29) erklart. Nach (35) ist in der ganzen gelochten
A-Ebene | A )| > m, mit » > o und weil

B A+ £ N M B () M| M (14 €Ta A 2

A — |2
sobald R (A) £/, so wird der Nenner im Ausdruck (44) grof3er als
M (1 €M1 )
m — 7] .

Fiir geniigend grof3e |X| ist er also grof3er als i;f Der Zahler im Aus-

druck (44) ist beschrinkt fiir R (\) £/, wo / irgend eine endliche positive
Zahl bedeutet. Damit ist also (36) bewiesen, sobald 8 (A) £ /; denn die
in (42) und (43) auftretenden Exponentialfunktionen sind fir & (A) £/
beschrankt.

Unter Beniitzung von (14) und passende Umformung von 4 (x, s; A)
gelingt fiir X (A\) > — / eine analoge Darstellung der Green’schen Funk-
tion. Wir schreiben

(45) G, s;A) = g%, s;0) -+ G*(x, 5; A)

und die hier auftretenden Exponentialfunktionen sind fiir R (A) >—/
gleichmif3ig beschrankt. Damit ist (36) als richtig erkannt.¥)

*) Fiir die in § 5 angegebenen Randbedingungen erhilt man eine analoge asymptotische
Darstellung der Green’schen Funktion,
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§ 7. Lésung des inhomogenen Problems I, wobei wir g (o, X) =
voraussetzen

Jeder Pol der Green’schen Funktion ist ein Eigenwert unseres homo-
genen Problems II **), also auch Nullstelle von 4 (). Wenn nun A von
einem Eigenwert verschieden ist, so ist das inhomogene Problem losbar
und man hat:

(46) © (x, ) LfGXSMIwUL+bD%)+ (5) s () } s,

wobei also # (#, 4) eine meromorphe Funktion von 4 ist.

Nach Voraussetzung (6) ist #;(x) (¢ = 1, 2) Losung von

— (2@ 2 4-6(@) 2) v+ L(0) = —(a () £+ 6 (x) () +-L (:(2))

f
(47) | Li(v)=o0 (Z, k=1, 2)

d. h.
— f G, 3 2) {L (s (s) — (a(s) 2 4 2(s) ) we(s) } s

woraus folgt:

-——f G (x, 55 0){a(s) A+ b(s)} u(s)ds

und

—~fo, u,(s) ds = ull(f)—i——}f G(x, s; A) b (s)u, (s)ds



also

(43) 0

§ 8. Untersuchung des Integrals

O+7oo

w (x, 1) = 5-;; ‘(ﬁe“v (x, 2) dX.
G—7oo

Wir schicken zunichst einige Bemerkungen voraus iiber die im Ver-
laufe unserer Ausfiihrungen auftretenden Integrale

S+ oo G-t7 oo
I I
(49) ‘—2-;-{——;0—(]; * dl beZW. (SO) —2-*‘;;‘2'6 Lf *® dl .

Unter dem Integral (49) soll der Grenzwert eines Kurvenintegrals ver-
standen werden, was durch den dem Integralzeichen beigefiigten Kreis
bezeichnet sei, wobei die auftretenden Integrationswege durch die unten
niher beschriebenen Fig. 1 und 2 festgelegt sind. Im Gegensatz dazu
soll das Integral (50) durch folgende Definition festgelegt sein:

G+ioo G+7Ro

% dA—= lim f*a’l.

2az
Gl—-ioo . R1, RQ—')ooo__iRl

I

Liefern (49) und (50) das gleiche Resultat, so gebrauchen wir die Dar-
stellung (50).

o > 0 bedeutet eine Zahl, die grof3er ist als die obere Schranke der
Realteile der Eigenwerte des Problems II. Da nach § 4 alle Eigenwerte
innerhalb eines Streifens endlicher Breite liegen, welcher parallel zur
imagindren Achse ist, so existiert eine solche Zahl o.
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Wir untersuchen nun den Grenzwert des Kurvenintegrals

! . fe)‘tv(x, A d A
2sz .

Ty

(51)

wobei der Integrationsweg I, durch die Figur 1 gegeben ist und
lim R,,::. o0,

7 —>» oo

! Hin_o+iR,

/ & d

) o

Kn 4\
| A% G"iRn

Ho,
Fig. 1.

I', treffe keinen der in § 4 betrachteten Kreise mit den Radien g.
Setzen wir zur Abkiirzung

(52) o*(x, A) = —)IT fG(x, s; 4) {L(uo () — b (s) 2, () + —;—L (24 (s))}a’s,

so konnen wir unter Benutzung von (48) schreiben

RN _ . fm ”
zﬂz,fe v(x, ) dd =uy (x) + u, () 2 pyll (x, ) d A

I‘n I‘n

Das Integral rechts ist aber gleich

Ll L

G, . P
Nun hat man fiir gro3e ||, |G (z,s; 4] <—|7°|—, gleichmif3ig in + und

s, also hat der Integrand die Ordnung DEF——, woraus sich ergibt, daf3 die
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ersten drei Integrale mit wachsendem » gegen Null streben, wihrend
das vierte dem endlichen Grenzwert

O+7oo
(53) fe)‘tv* (x, D) dA
G—7 oo
zustrebt. Die Konvergenz ist iibrigens gleichmidfdig in x fir o= r < 1
und in 7 fiir 0 <L ¢ < oo.

Wegen der gleichmiafdigen Konvergenz von (53) beziiglich 7 fiir
0Lt < oo hat man

O + foo G+ ioo
. I I
lim —— fe“v* @Ddl= — fv* (x, ) dA.
£>0 2%20 ) Zﬂizc .

—7 oo —7 oo

Dieses letztere Integral ist aber gleich Null. Denn die einzig moglichen
singuliren Stellen der meromorphen Funktion z* in der A-Ebene sind
die Pole von G (x, s; 4) und A —=o0; folglich ist o* regulir im Gebiet
R (A) > 0. Es verschwindet also das Integral

f v* (x,A) d A
r'y*

wenn I, der Integrationsweg der Fig. 2 ist.

K
_\
d,
O O\ &
I
Fig. 2
Da der Integrand die Ordnung | ; E hat, gilt
lim 2" (x,\) &\ = 0,
R,—»oo
und daher auch
G- foo
(54) " (%, \) d A =o.
0—17foo

278



Definiert man also # (x, #) durch

(55) 6+ 7% o B SP LS
. A I s
u (%, ?) S Eﬁg bo (e, ) d A =u, () + u, () zf——»z—y;;.fe)‘tv (%, ) d4,
O—7oo G—7o0
so ist

lim u (x,4) = u (x,0) = u, (),
t—>»o

gleichmiaf3ig in x fir o= x < 1.
Wenn man weiter beachtet, daf3 nach einer leichten Abschitzung

X I e M
lim | — dh=o0
K

”n

sich ergibt, gleichmif3ig in ¢ fir 0 < ¢ <L # = 7 < oo, und daf3

0’-}—1'0;\
I e Mt
— |5 dA
2wz

O~—17oo

fir o<eLt L 7T oo gleichmia3ig konvergent ist, wie der zweite
Mittelwertsatz zeigt, so kann man auch schreiben

G4 7oo
u(x, ) = 2—;—; My (z, M)A

G — foo

fiir £ > 0 und dieses Integral ist fir o Zx L1, o< e Lt LT < o0
gleichmif3ig konvergent. Es gilt zudem*)

G + 7oo
. IN
lim e v N)AdN=u,(x)
t—>0 22
G — oo
C+ioo
*) Das Integral LI (x, A)d ) ist nach den zu Beginn des § 8 gegebenen Erklirungen
2m1
G —zZoo
G+iR
. 1 ug (x _
natiirlich sinnlos; es existiert aber der Grenzwert lim —— | v(x,\)dA= L(—z . Wir
2mi 2
R>o0 2
C—i

machen von dieser Tatsache im folgenden keinen Gebrauch.
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§ 9. Untersuchung des Integrals

6+doo
L ‘(ﬁie)‘tv (%, \) & \.
2mz2
G —ioo

Es werde der Grenzwert des folgenden Integrals untersucht fiir Zzm R, — oo
7n-> oo

1
Ln

Dabei bedeutet I', wieder den Integrationsweg der Figur 1. Wir
beniitzen dazu die asymptotische Darstellung der Green’schen Funktion.

Es ist
G(x,5;0) = g0 (%, 5; )+ GO (2, 5; %)

und die rechts auftretenden Funktionen sind durch (42), (43) gegeben.
Die Einsetzung liefert:

1
f/l M v* (x, )\)a’)\:J M\ fgo(x, s;N)
K, K, 0

TL ) ds+ [Man [60G s
£, 0

L (to (5)) — b (s) %1 (5) +

L (us (5)) —

b () 2y (5) +— L (s () .

Nach § 8 geniigt es, die folgenden zwei Integrale zu betrachten.

(57) .%zfé’?\td'{ fgo (%, 85 N) | L (0 () — & (5) w, (5)] s

Ky

und

(58) F= fe“a’)\ I.G“” (2, 53 4) {L (2, (5)) — & (5) u, () }a’s.

”
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Setzen wir

v ()
(5)

(59) Dy (5) = L (2t (5)) — & (s) . (s)

und beschiftigen wir uns zunidchst mit (57). Nach (42) ist

F=FH"+F
wO
e > A (X,—S
(571) Fr=n (@) | —dn | @ (s) " EaT5) gs
,{ ' a[
und
(57) % =1 () f 4\ f @, (s) & K759 g

Untersuchen wir (57,). Nach Voraussetzung (6) und wegen

4.5 (s)

s ——(P1(S)¢O

liefert eine partielle Integration nach s

A NES) L, () x(er])g” TP () XSy
J e e rAr A1) “

0

also hat der Integrand die Ordnung | I|2 , d. h.

7n-yoo
gleichmif3ig in » fir oL xr <1 und in ¢ fir oL ¢ L7 < oo. Analog

fiir (57,).
Betrachten wir nun (58). Nach (43) geniigt es, ein Integral der Form

zu untersuchen

I
f_%_d)\ @v (S) é’(l) eMf(x) | eMa () s
0

Ky
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wo &'(4) fiir grof3e |4| beschriankt ist und @, (s) die Bedeutung (59) hat.
Beachtet man, daf3 7' ()20 ist in 0<Zs <1, so liefert eine partielle

Integration nach s fiir den Integranden die Ordnung - {_é , woraus folgt,

daf3 ¥ mit wachsendem » gleichmid3ig in » fir o< xr <1 und in 7 fiir
0L tL7T < oo gegen Null strebt.

Die Integrale iiber die horizontalen Strecken gehen mit %gegen Null,

n

wieder gleichmidf3ig in v, ¢ fiir die vorhin genannten Intervalle. Wir
schlief3en also daraus, daf3 das Integral
G+ 7oe
jkﬂﬁmmdx
g—7Zoe
gleichmi(3ig in » und ¢ konvergiert fir o =< v+ < 1,0 L¢ L 7 < oo,
Man hat nun

du(x, 1 g "

ulx, 1 ' 1

Y, — U, (x)—" 2z J}\ EM‘Z}*(;L’,)\)d}\ :::-z—}—t—; l(ﬁ)\ E)\t‘Z/(JL',}\) &\
G —7oo C—7o0

Wegen der gleichmi3igen Konvergenz beziiglich ¢ gilt:

ou(x, ) _ou(x,9|
e 07 07 limo “)
O-ioe o s
. I
—-;:,chxw(x,x)d;\: 2 w2 «4)‘}\7}(%)\)[“\'
— 7 0o O —7ee

Das vorletzte Integral ist aber gleich Null, wie eine analoge Betrachtung
zu der des § 8 zeigt. Man braucht sich dazu nur der Beziehung (45) und
der dort gemachten Bemerkung zu erinnern,

Wir haben damit den

Satz IV: Unter den oben gemachten Voraussetzungen darf man in
der Formel (55) unter dem Integralzeichen einmal partiell nach # deri-

0 % (x, £)

vieren. # (x, ?), 57 sind stetige Funktionen in x, # und es gilt
# (x, 0) = lim u (x, £) = u, (x) ¥
t=>o
0% (x| — lim 0« (x, ?) — m, 2}

O0f |imo 150 OF

*) Man beachte die Definition von u (x, £) durch (55), § 8.
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§ 10. Die Funktion u (x, t) erfiillt die homogenen Randbedingungen

Wir weisen nach, daf3 man in der Formel (55) die Integrale rechts
einmal unter dem Integralzeichen nach x ableiten darf. Aus (12) und den
Herleitungen des § 6 ergibt sich die asymptotische Darstellung von
0G(x,s; M)

A

wie folgt:

0G _ dg |, OGO

 r —ox T ox

mit
¢ A (Xl"Sl) rqjl (X) 'fh (:L’) 7]2 (S)_
g0 X % (s)
08 s [ (9 7 () 1 5)
’ % (s)
und
0 G© ¢1(1’) R -’v) 72 (5) £y,
R ('B" & (s) ] E
@1 x) M (x) Uk (S) 2\ AX, A1:i—8))
[Bu 2 (o) ] Z ) e e
@ () e () 7, (9)] £ @1 (%) 0 (8) 0 ()] E\ A X0 AS,
|4 2 ) |7 a2 © ]5) ¢ e
(Pz( )7)2 (3') Y2 (S) (P2( ) 7)2(17) 7)2(5) _@__1_1 My~ Xy) ] A(1:—8))
“l‘([’)“ % (5) ]E [B“ % (s) ]F)" ¢

A

_A12992 () me (%) 7. () lm _I ) () ma (2 )nl()] u) RUES SRR

0) % (s) E

Wir betrachten jetzt das Integral

G4 700 ot oo

*(r ok 6(;
[oedv el - f L j ACAT)
g — 7o C—7iom

b () )+ 7 L) 1 ds.
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Die asymptotische Darstellung von g—g zeigt aber, daf3 die Ordnung

von %}C;f fir gro3e |4| durch O (1) gegeben ist, gleichmi3ig in x+ und s
fir oLz, s< 1. Die gleiche partielle Integration wie sie in § 9 beniitzt
wurdf:, liefert fiir %7 die Ordnung MIZ gleichmif3ig in x, s fir o < x,
s Z 1; also konvergiert das obige Integral gleichmi(3ig beziiglich x und ¢
fir o<Zxr =1, 0Lt L7 < oco. Man schlie3t daraus

O+7o° G4 oo
ou(x, ¢ 0 v* I dv(x, N
6( )_ # (#) ' (x )Z_29zz f)\tb d}\—znz' {ﬁg)\t 6(x )d}\’
C—7o° G—7 oo
und es gilt zudem:
du(x,?) _dulz, 1) T du @)
lim O #(x, ¢ _ ou(x, 1 v (x, o,
>0 ox  0x t=o_2‘n:z"(_ﬁ 0x dr=u(x)
G2 o0
G-+ zo0
%k
- f LKA
2wz 0x
0 —7o0

Wie frither zeigt man auch hier, daf3 das letztere Integral Null ist.
Also gilt:

0 % (x, 2)

6.27 t:o: Z{0’(}:)'

Nun erfiillt »(x, A) und wegen (6) und (52) auch o* (x, \) die Rand-
bedingungen, also gilt das gleiche fiir « (x, ).

§ 11. Die Funktion % (x, ?) erfillt fast tiberall in & und ¢ die homogene
Differentialgleichung 1,)

Wir zeigen jetzt, daf3 die nach » und # integrierte homogene Dit-
ferentialgleichung I,)

a3 6@ — L@ =0

durch (535) erfiillt wird.
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Die integrierte Gleichung lautet:

(60) fa(r){yh ztl(x)}dx+fb(x) {u—uo(x)} dx
af{q(x)umq uo;‘)—-Jg ) u dx }dz‘
——jr(x)dxfudz‘:o.

Wegen der gleichmif3igen Konvergenz des in (55) auftretenden Integrals

O+ 7o

1
: f oM (2, \) d A
2me

C—io®

hat man
4 t2 1 G+i°°€)\t
f u (¥, £) dt = uy (%) ¢ -+ u, (x) AT, r 7 v¥ (v, \) &\
0 c:-z'oo
1 i’f"” 7 (50
+2 ™z A
g —7oo

Das zweite Integral rechts ist aber Null, wie die Ausfiihrungen des § 8
zeigen, Es bleibt:

A 2 Shi=
¢ I e
(61<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>