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Laplace'sche Integraltransformation und
Intégration partieller Differentialgleichungen
vom hyperbolischen und parabolischenTypus
(Ein Beitrag zum Heaviside'schen Operatorenkalkill)

Von W. MACHLER, Zurich

Im Jahre 1917 hat T. J, L A. Bromtvich*) eine Arbeit veroffentlicht
betitelt: „Normal coordinates in dynamical Systems". Bromwich gibt
hier eine intéressante Méthode an zur Losung von Anfangswert-Rand-
wertproblemen fur partielle Differentialgleichungen vom hyperbolischen
und parabolischen Typus, fur die aber bisher kein Beweis gegeben wurde.
Die vorliegende Abhandlung hat nun den Zweck, im Anschlufi an eine

Arbeit von M. Plancherel*), die Méthode von Bromwich einer genauen
Analyse zu unterziehen.

Die Bromwich'sche Méthode hangt mit dem Operatorenkalkul von
0. Heaviside1) eng zusammen, so daf3 die von uns erhaltenen Resul-
tate den ersten strengen Beweis der Anwendbarkeit dièses Kalkuls fur
eine groCe Klasse von Problemen mit zwei unabhangigen Variablen
und nicht konstanten Koeffizienten5)6) liefern*).

§ 1. Formulierung des Problems, der Voraussetzungen und Àngabe
der Resultate

Wir betrachten die folgenden zwei Problème :

Problem I :

t x / x
à2u _ du r rlJi) ^(;r)Â^ + ^ W-Â7 —^M^/^ h o^-x<^- i, o<^<

» (^, O) «0 (*),
I i bu (x, t)

bt ux(x),

.1 Li (u) #u ^ (O, 2f) -|- #12 ^' (O, £) -f- ^u ^ (i, t) -f- ^12 ^' (i, t) O,
^ » ^2 («) #21 ^ (o, ^) + #22 u' (o, z4) + *tl u (i, *) + ^22 u1 (i, /) o.

*) G, Doetsch^) 6) untersucht spezielle, einfachere Falle des vorliegenden Problems mit
konstanten Koeffizienten und andern Randbedingungen.
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Die GroGen atk, bth [z, k= i, 2) sind Konstanten und die Striche be-
deuten Ableitungen nach x. Ferner ist:

Problem II:

II,) (a(x) X2 + ô(x)l)])- — L(\ï)= (a (x) X -

IL) / Li{V) o,

l A(V)=o

Dabei ist X ein komplexer Parameter und g{x,\), f{x,t) sind durch
die Formeln (Laplace'sche Integraltransformation)

(2)

(3) f(x, *) -!-
2 Slt

miteinander verknupft

Voraussetzungen : Es sei o Z ^ Z 1, dann fordern wir :

Ia
[x\ p (x) zweimal stetig differentnerbar,

b (x), q (x) einmal stetig differentnerbar,
r\x) stetig,

und

\a(x)->o**)

*) Ueber die Définition dièses Intégrais verweisen wir auf die Bemerkungen in der Em-
leitung des § 8

**) Ware a (x) ~ o, b (x) > o so liefie sich dieser Fall analog behandeln, mdem man
îm Problem II X fz2 setzen wurde
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Ferner,

Iu0
(x) dreimal stetig differentiierbar,

Mi (x) zweimal stetig differentiierbar,
und mq {x), ux (x) sollen die Randbedingungen I3) erfullen.

Von den Funktionen

(7) f(x, t), 1 1 1
dt' dt2' àx'

fordern wir die Stetigkeit in x,t fur o^ x ^-1, /^ o und die Intégrale

oo oo oo

(8) f\r{x,t)\dt,fmdt,f dt

sollen gleichmafiig konvergent in x sein fur o ^- x ^- i *).

Fur die Koeffizienten in den Randbedingungen soll gelten:

(9)
a12

O.

Wie weit man sich von dieser Bedingung befreien kann ist in der
vorliegenden Arbeit gezeigt (§5). Die Rechnungen werden aber nur
durchgefuhrt wenn (9) besteht.

Unter diesen Voraussetzungen lafit sich beweisen, dafi das Problem
I losbar ist und das Problem II, mit Ausnahme von abzahlbar unend-
lich vielen Werten von X, ebenfalls losbar ist, wobei zwischen den

Losungen dieser Problème die Beziehungen bestehen

(10) u (x, t) j^z (J) eXi })> (x, X) d X, ") V (*, X) J e~u u (x, t) dt.
a—zoo 0

Es ist o ^> o und grofier als die obère Schranke der Realteile der

Eigenwerte des Problems IL (§ 8). Die Funktion u (x, t) ist einmal stetig
nach x und t differentiierbar und erfullt bis auf eine zweidimensionale

Punktmenge vom Mafi Null die Differentialgleichung It). Mit Hilfe des

Residuensatzes laCt sich fur das Funktionenpaar u0 (x)y ux (x) ein Ent-

wicklungssatz herleiten. (Satz VIII, § 14).

**) Smd die Bedmgungen (8) mcht erfullt, so lafit sich die Losuog u (x, t) in jedem
Intervall o^t^T noch durch (10) ausdrucken, wenn man fur t ^> T, f(X,f) o setzt

und g (x, X), \j (AT, X) entsprechend berechnet.
*+) Man beachte die Bemerkungen zu Beginn des § 8.
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§ 2. Lôsung der homogenen Differentialgleichung IL)

Unter der homogenen Differentialgleichung IIJ verstehen wir die folgende
Gleichung :

{a {x) À2 ~\-b(x)k) v~L (v) o.

Ueber dièse gilt ein grundlegender Satz, der von G. D. Birkhoff1)
und y. Tamarkinn) 13) herruhrt. Eine Nachprufung des BirkhofFschen
Beweises gestattet es, diesen Satz in folgender Form auszusprechen :

Satz I: Sind die Bedingungen 4), 5) erfullt und setzt man

(11)

bedeuten ferner /, L endliche positive Zahlen, wobei L genugend grofi
ist, so gibt es zwei linear unabhàngige Losungen z», (x, X), vt (x, K) der
homogenen Differentialgleichungen Ili), die transzendente Funktionen von
X sind und die ferner im Gebiet *) | À. | > Z, H (X) ^ / fur o ^ x ^ i
folgende asymptotische Darstellung haben :

\Jfk(x)dx

(12) (*=I, 2)

dabei ist ^ (^r) zweimai stetig differentiierbar in o^x ^1 1 und es ist

(13)

*) H(>.) bedeutet den Realteil von X.
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Ebenso existiert ein zweites derartiges Fundamentalsystem v* (x, X),

v l {x, X) mit folgender asymptotischen Darstellung im Gebiet | k | > L,
fur o

(14) (k I, 2)

—L=e \cpk(x)

Fur die Funktionen Ekv (x, \) bezw. E£ (x, X), (k — i, 2), (v 0,1), gelten
in o ^ x ^ 1 die Ungleichungen :

(15)
<[ M im Gebiet | X | > L, H (X) ^ /,

< J^im Gebiet | X | > Z, X (X) ^ — /,

wobei J/ eine von ^r unabhangige Konstante ist.

§ 3. Die Green'sche Funktion des Randwertproblems II 2) 3) 12} 14)

Bilden die Funktionen vk {x, X), (k 1,2) irgend ein Fundamentalsystem
der homogenen Differentialgleichung Ili) und setzen wir

(16) J(j,X)

so ist

v,' (s, X) vt' (s, X)

Vi {s, X) vt (s, X)
8(o,\)e °

±
Vi (s, X) ^2 (j, X)

-j- fur x ^> s

— fur x ^ s

eine Grundlosung der homogenen Dififerentialgleichung lit).
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Wir benutzen ferner die Abkurzungen

(18)

wobei

(Xy s; X)

vt (x, X) vs(x, À) g {x,s;\)
AN AW Lx{g)x
A W A A (g)

{g)x

ist, und

(19)

,s;\)-\~ ak2
èg{x,s;\)

1, s\\) + bk
àg(x,s; X)

X =1
(k I, 2)

A (^1) A

Damit ist die Green'sche Funktion des Randwertproblems II gegeben
durch

(20) w à (x, s;\)

Da wir vk {x, X), {k 1,2) als ganze transzendente Funktionen von À

voraussetzen konnen, so folgt, dafi 6 (s, X), J (X) ganze transzendente
Funktionen sind und g [x, s; X), A (x, s; X), G (x, s; X), im allgemeinen
meromorphe Funktionen von X.

Die Funktionen g {x, s ; X), G {x, s; X) sind zweimal stetig nach x bezw.

s differentiierbar fur o ^ x, s ^ 1 sobald x ^z£ s ist. Bei x s hat die
erste Ableitung beider Funktionen eine Unstetigkeit, gegeben durch

(21.)

und

l 2J

à g (x, s;
dx

à G(x,s;
dx

o g (x, s ;

^ s -f o è ^

è G (x, s ;

* * + <) à x

x)

X)

P(s)

x= s —0
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§ 4. Existenz von Nullstellen von â (À) fur grosse À

Wegen der Invarianz der Green'schen Funktion bezuglich der linearen
Transformationen der Losungen eines Fundamentalsystems, wobei die
Koeffizienten unabhangig von x sind und eine nicht verschwindende
Déterminante haben, konnen wir, je nach Bedarf, das Fundamentalsystem
12) oder 14) benutzen.

Setzt man
1

(22) Ccpk (x) dx =ziyk (£ 1, 2)

so folgt unter Verwendung von 12)

Li(vk) \\ ahcpk{6)rik{0)

(23)

¦al2(pk{o)Ekl(o,\)

Benutzen wir die Abkurzungen

(24) y^ ai2 cpk (O) ^ (o), Bik ài2cpk{l)Vk(l)

und verstehen wir, nach einer Bezeichnung von Birkhoff1), unter [«] den

Ausdruck

(25) [«] «+
wo £ eine von X und eventuell auch anderen Variablen abhangige Gro(3e

bedeutet, die fur groCe | X im Gebiet H (X)^/ oder im Gebiet H (X) ^ — /
gleichmafiig beschrànkt ist in diesen Variablen, so ergibt sich, sobald
H (X) ^ /

(23O A- M x {[^*] +
und der Ausdruck 19) wird

A (X) X2

[Bik] }
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Fur zweireihige Determinanten verwenden wir die Abkurzung

m2i m22

woraus folgt:

(26) A (X) X21 \A

Setzt man

(27) A (X) | {A!k\ + é*k [_Bik-\

so ergibt sich, wegen y1 — y2 un(^ 24)

(27l) Jt (X)

wobei Ao, A±, A2 durch

Ao

(28) l A, — o

^2

definiert sind. Nach Voraussetzung (9) und wegen (pk (x) 7^ o, tjk (x) 7^ o
m ° ^z x <= T> smd Ao und A2 von entgegengesetztem Zeichen. Aus

(V I, 2)

und mit folgender Définition von A (X)

(29) A(\) A0 +
ergibt sich

*> J, (X) A (X) +

eine Beziehung, die fur groCe | X | und H (X) £^ / besteht.
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Die Funktion A (X) ist periodisch mit der Période — und hat die ein-

fachen Wurzeln

(30) X, —Lg --0 H (* o, ± i,±2,

wo Lg den Hauptwert des Logarithmus bedeutet*). Wir finden nach

28) und 13)

1
A l~\

dx
}/ a{x)p{x)

(31) -%
also insbesondere wenn in o

b (x) O ist, wird H (X*) o
b (x) > o ist, wird H (X*) < O

b (*)< o ist, wird H (X*) > o.

Wir untersuchen jetzt das Verhalten von A (X) im Streifen**)

(32) -iL *
2 y1

Setzen wir X £ + z V> so *st

(33) | ^ (X) | > L^J sobald 11| > ^ und

passend gewâhltes h ^> o. In dem durch die Ungleichungen deflnierten
Rechteck

(34)

liegt nur eine Nullstelle von A (X), wobei h geniigend groB gewâhlt sei.

Umgibt man dièse mit einem genùgend kleinen Kreis vom Radius q und
bezeichnet m das Maximum von | A (X) | auf der Kreisperipherie, so ist

*) Das Argument sei zwischen — 7r, % gewahlt.
**) 5^(X) bedeutet den Imaginârteil von X.
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im Rechteck (34) und wegen (33) auch im ganzen durch (32) definierten
Streifen

(35) MWI^w.
Aus der Periodizitat von A (X) folgt also, daB man die Nullstellen von
A (X) mit Kreisen von festem genugend kleinem Radius q so umgeben
kann, dafi in der ganzen X-Ebene, ausschliefilich dieser Kreise, die Un-
gleichung (35) gilt, wobei m nur eine Funktion von ç ist.

Als ,,gelochte X-Ebene" wollen wir die X-Ebene ausschliefilich dieser
Kreise um die Nullstellen von A (X) bezeichnen.

In der gelochten X-Ebene betrachten wir die Funktion

A

fur grofie | X |. Nach (30) konnen wir eine Zahl lt > o so wahlen, dafi
H (kk) | < A ist. Da | Ev

Konstante ist, so folgt :

(X) | < M fur | X | > L und H (X) ^ lly wo Même

Eo (X) + Et (X) (X)

Dieser Ausdruck wird kleiner als Eins, sobald | X | genugend grofi ist.
Wendet man also den Satz von Rouché auf die Funktionen

A(\) und

an, so sieht man, dafi fur H (X) ^ ^ und | X | genugend grofi, die Funktion
à (X) unendlich viele einfache Nullstellen besitzt die in den oben be-
trachteten Kreisen liegen.

Analog ergibt sich, wenn man (14) gebraucht

X (X) ^ — A. Da die Funktionen
die gleichen Nullstellen haben, so

mit | El (X) | < M* fur | X | > Z, und
^f (X) und (?2X/2 yî (X) Ao e*Mi + A2

ergibt sich der
Satz II: Unter der Voraussetzung (9) hat die Funktion à (X) unendlich

viele Nullstellen die, abgesehen von ^endlich vielen, einfach sind und in
den oben betrachteten Kreisen mit dem festen Radius ç liegen.
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§ 5. Bemerkungen zum § 4

Wir haben bei der Herleitung des Satzes II vorausgesetzt, dafi die

Bedingung (9) erfullt sei. Wenn dièse Déterminante (9) gleich Null ist, so

kônnen wir den Satz II im allgemeinen doch aufrecht erhalten, eventuell
mit dem Zusatz, daG die Déterminante A (X) fur grofie | X | auch Doppel-
wurzeln haben kann. Im besonderen werden wir erkennen, daC der Satz

II, unter Berucksichtigung der vorhin gemachten Bemerkung, fur die
meisten in der mathematischen Physik wichtigen Randbedingungen noch

gilt.
Ist der Ausdruck (9) gleich Null, also

a12 b22 — a22 bl2 O,

so sind folgende Falle moglich:

a) al2 a22 — bi2 ôi2 o

b) ai2 a22 — o, bi2 o, b22 7^ o
| al2 a22 o, bi2 ^éi O, b22 o
[ ai2 a22 o, b12 b22 ^£ o*)

c) a12 y± o, a22 b12 b22 o
| a12 o, a22 -yéi o, bi2 b22 O

alt a22 ^ o*), b12 =1 b22 o[

d) al2 o, a22 7^ o, bi2 o, b22 7^ o
J

alt y£ O, a22 o, b12 ^ O, b22 O

a12 a22 7^ o, b12 b22 7^ o

Bezeichnen wir die eventuell von Null verschiedenen Koeffizienten in
der Koeffizientenmatrix der Randbedingungen durch Punkte, dann konnen
wir die oben genannten Falle auf folgende Schemata zuruckfuhren (eventuell

durch Umnumerierung von Lx und L2 oder passende Linearkombi-
nationen von Lx und L2):

c) (¦°) d)1

v o - 0/ } V o • 0

*) Wenn zwei entsprechende Koeffizienten in den Randbedingungen von Null verschieden

smd, so kann man dièse durch Multiplikation mit emem konstanten Faktor stets als gleich
voraussetzen.
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Wie fruher wollen wir die Elemente in jedem Schéma wieder mit atk
bezw. btk (z, k i, 2) bezeichnen und untersuchen unter Benutzung von
(23) die Déterminante à (X).

Zu Fall a). Es wird:

A (X)

mit

^1 (0)17,(1)

Ay O

Es ist also der Satz II in § 4 wieder gultig, wenn man voraussetzt, daf3

z6 o ist.*)

Das ist auch zugleich die Bedingung dafur, da6 die Randbedingungen
voneinander unabhangig sind.

Zu Fall b). Hier darf man #12=^o voraussetzen, da sonst Fall a) vor-
liegt. Man erhalt:

Ao an b12 i/t (o) t\2 (1) cp, (1)

wo

A2 a2i bi2 ^ (1) ?/2 (o) <pt (1).

*) Als Beispiel erwahnen wir
V" — 7T2 X2 V O

t; (o) o J> mit den Eigenwerten X ±_ i, ± 2 /, +. 3 /,
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Es muC also, da bl2 ^z£ o ist, an ^ o vorausgesetzt werden, sonst versagt
hier Satz II. Aus der Gleichung

Ao + Ax ex^ + At e2X^ o

folgt dann:

A<» — Le /-^ + K^Î —4A^,\ iA^Li
* XtX 2.4 / Ti

{k O, ± I, ± 2,

X(2) — JL Lg1
~~

—
7i

wobei Lg den Hauptwert des Logarithmus bedeutet. Wir erhalten also,
Solange A\ — 4 Ao A2^O ist, zwei verschiedene Reihen von einfachen
Wurzeln und eine der fruheren analoge Ueberlegung zeigt die Gultigkeit
von Satz IL Ist aber A\ — 4i0i2 o, so sind die zwei Wurzelreihen
identisch, wir haben Doppelwurzeln. In diesem Fall kann also die Glei-
chung A (X) fur groGe | X | auch Doppelwurzeln haben.*)

Nehmen wir jetzt an, da6 im Schéma b) an — o sei. Es lafit sich
dann zuruckfuhren auf das folgende:

/•OOA
\o o • 0/

mit d2i ^O, sollen zwei unabhangige Randbedingungen vorliegen. Wendet
man auf dièses Schéma (23) an, so ergibt sich :

A (X) bn exh{[an Vl (o) n, (1)] + 2 \ bn [Vi (1) r/2 (1) Vl (1)] ex^

Man muC also bn o annehmen, sollen die Betrachtungen von § 4
auch hier gelten. Damit hat man aber den Fall a).

*) Betrachten wir z. B. das Problem

so ergibt sich A(k) Xe ^(i+O2 u°d die A-Werte A^ / (1 + 2 Ar) 7C, wo A o,
+ 1, + 2, smd Doppelwurzeln. Fur die Green'sche Funktion sind dièse A-Werte Pôle
zweiter Ordnung, wie man leicht nachrechnet.
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Zu Fall c). Es ist

J(X) X^T. {[A] + [A] ^ +
WO

4> #« *«i n^ (°) ^2(1)91 (o)

^ 2 a12 a2l ^ (o) 7/2 (o) <px (o)
^2 an b2l ^ (1) ^2 (o) (pt (o)

woraus sich ergibt, daG <212 • b2l ^ o sein mufi, damit wir Satz II be-
weisen konnen. Ist b2l o, dann mufi man das Schéma untersuchen

• o o 0

Wir erhalten*.

A (X) ^21 <to% { — [*u 7jt (o) yj2 (1)] + 2 X a12 [iji (o) 7j8 (o) y1 (o)]

Es mufi also gelten an o und a2i bn ^ o*) d. h. es liegt dann Fall a) vor.
Zu Fall d). Hier darf man al2 7^ o, bn ^z£ o voraussetzen, da sonst einer

der fruher genannten Falle vorliegt. Es wird :

à (\) X^.{[^o] + [A] ^1 + [A2] e21^ }

mit

Ao (a12 b21 <px (o) + a21 bl2 <px (1)) ^ (o) yj2 (1)

At 2 (al2 a2i <px (o) r)t (o) r\2 (o) + bl2 b2l <px (1) r\x (1) uj8 (1))

^2 =1 ^12 ^21 ^ (o) + a2i bî2 Ç9A (1)) yj! (i) f]2 (o).

Wir mussen also fordern

an b2l (p, (o) + a2l b12 cp, (1) zp£ o**).

*) z. B. hat das Randwertproblem

Vf (o) o l
V (o) o j

nur die triviale Losung v o und es existiert kein Eigenwert.

**) Betrachtet man das Randwertproblem
1 V" _ X2 if O |
^(0)4-^(1)== o }
t/ (o) — v(i)= o J

wo also al2 b2ï <p\ (o) -(- ^21 ^12 ^1 (I) ° istî so lst Je^er Wert X ein Eigenwert.
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Zusammenfassung: Satz II in § 4 bleibt, eventuell mit dem Zusatz,
daG auch Doppelwurzeln auftreten konnen fur grofie | X |, richtig bei
folgenden Randbedingungen :

a) an u (o, t) + bn u (i, t) o

a2iu(o,t) + b2iu(i, t) — o
mit

b) an m (o, /^) -f- bn u (i, ^f) -f- u' (i, i) o
\ ^ (o, ^) + #21 u (i, £) o

c) | ^u u (o, *) -f ^' (o, t) + £u ^ (i, t) o
\ a2i u (o, /) -f- u (i, /) o

d) r au ^ (o, ^) +an u (o,

\ «îi « (O,

wobei im Fall d)

%' (o, t) -(- £n ^ (i, t) + #12 u' (i, /) o

>i (o) + a2i b12 <pt (1) ^ o

sein mufi.
Man beachte, daf3 der Fall d) die Periodizitàtsbedingung enthalt;

man braucht nur

al2 a21 1

zu setzen. Es ist dann

^21 #12 ç?i (1) — (ç>i (o) + ç?! (1)) -^ 0#

§ 6. Das asymptotische Verhalten der Green'schen Funktion12)

Satz III: Fur grofie Werte von |X| gilt in der gelochten X-Ebene die

Ungleichung

wo Go nur eine Funktion von ç ist (§ 4).
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Zur Begrundung dièses Satzes beschranken wir uns zuerst auf den Fall
(X) £^ / und verwenden deshalb das Fundamentalsystem (12). Man hat:

Pis)

mit

3 (o, X)

Setzen wir

X <pt (o) \nx (o)], X <p2 (o) [Vl (o)]
[Vl (o)], fo, (o)]

X [2 ^,

so ist

wobei k (s) zpL o

g (x,s;\)= ±

und

2 [k (s)]

Damit wird :

i (x, X) v2 (s, X) — v2 (x, \) vx {s, X)
-|- fur x ^ s

X *— S

aix (— vx (o, X) v% (s, X) + v2 (o, X) vt (s, X))

4 a,t (— v,1 (o, X) vt (s, X) + vt' (o, X) », (j, X))

+ btl {vl (i, X) v2 (s, X) — v% (i, X) Wj (j, X))

+ b,% (v/ (i, X) v, (s, X) — vt' (i, X) », (j, X))

Indem wir in J (x, s; X) die

1.

2.

Kolonne mit
_i_ yt (s, X)

2 / (^ S (*, X)
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multiplizieren und zur letzten Kolonne addieren, erhalten wir

>i O> X) v2 (x, À) g0 {x, s ; X)

wo

J(x,s;X)

(j, A) A- (g)x + —

A Oi) A (v2) L2 (g)x

<7f { C î\ T VI (c 1\

/= 1,2)

und

g0 (x, s;X)

Wir erhalten weiter

- (s, X)

t, A) vt (s, X).

M* 00]

Indem wir die Abkiirzungen

(37) 9* (¦*) ^' ^ y \<Pk {s)

o o

einfùhren, erhalten wir mit (24)

ds=Sh

k(s)

und
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Die Ausdrucke (23^ schreiben wir folgendermaGen •

: (*=*.2)

und setzen zur Abkurzung

(3g)
E,xQ)-e rilA.A+e ^B'^ {l=ï>

dann wird

(39)
Z Vt ~ \M l (^=1,2)

Wenn man nun setzt

(40) E(l) exi* \&tk W|2

und

(41) G(x,s,i) g0 {x, s, X) + Gi0) {x, s, X),

so liefert eine einfache Umformung

(42) g0 (x, s;X)=z

und

k(s)

(-y)

k{s) \ E

f
^ (r)
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Die Funktionen —^ (z,k=i,2) sind fur grofie \K\ und X (X) ^ / in
h (a)

7^ / Y\

der gelochten ^-Ebene beschrankt. Wir zeigen dies z. B. fur ¦ *x ^

Es ist

wo Jj (>*) durch (27^ definiert ist. Mit (27) erhalt man :

=e^i {[Ao] + [^J ^Ti + [A2] e2X^)

also folgt mit (38)

F. m
(44)

E(X)
4 n^ 4-

und A (X) ist durch (29) erklart. Nach (35) ist in der ganzen gelochten
A-Ebene | A (X) | ^ m, mit m ]> o und weil

sobald H (X) £^ A so wirc^ ^er Nenner im Ausdruck (44) groi3er als

m

Fur genùgend grofie | X | ist er also grbfier als —. Der Zahler im

Ausdruck (44) ist beschrankt fur H (X) ^ /, wo / irgend eine endliche positive
Zahl bedeutet. Damit ist also (36) bewiesen, sobald H (X)^/; denn die
in (42) und (43) auftretenden Exponentialfunktionen sind fur H (X) £^ /
beschrankt.

Unter Benutzung von (14) und passende Umformung von A (x, s; X)

gelingt fur X (X) ^ — / eine analoge Darstellung der Green'schen Funk-
tion. Wir schreiben

(45) G(x,siX)= g* (x, s;X)+G*{x,s; X)

und die hier auftretenden Exponentialfunktionen sind fur X (À) ^— /
gleichmàfiig beschrankt. Damit ist (36) als richtig erkannt.*)

*) Fur die in § 5 angegebenen Randbedingungen erhalt man eine analoge asymptotische
Darstellung der Green'schen Funktion.
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§ 7. Lôsung des inhomogenen Problems II, wobei wir g {oc, X) ^ 0
voraussetzen

Jeder Pol der Green'schen Funktion ist ein Eigenwert unseres homo
genen Problems II12), also auch Nullstelle von A (À). Wenn nun À von
einem Eigenwert verschieden ist, so ist das inhomogene Problem losbar
und man hat:

(46) v{x,X) — C G(x,s;X){(a(s)ï+ b (s)) uo(s) + a(s)ul(s)} ds,
0

wobei also v (x, X) eine meromorphe Funktion von / ist.

Nach Voraussetzung (6) ist ut-(x) (i 1,2) Losung von

i - (a (*) A2 + b (x) X) v + L (v) — (a (x) X1 + * (x) k) n,(x) +L («,(*)

Lk(v) o {i, k — 1, 2)

d. h.

ut (x) f G (x,s ; X) { L (u, (s)) — (a (s) X' + b (s) x) u{ (s) } ds

0

woraus folgt:

1

— I G (x, s -, A) {a (s) À -{- b (s) } u0 (s) ds

0
1

^P- ^f G(x, s; A) L (u0 (s)) ds
0

und

1 1

— Ç G{x9s;i)a(s)ut{s)ds= ^ + 7 J C^^î^W^W*
0 0

1

~ "F j G ^ ^; ^ Z ^' ^ ds
0
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also

(48)

§ 8. Untersuchung des Intégrais

u {x, t) —. £ eU v {x, À) dX.
2$IZ J

Wir schicken zunâchst einige Bemerkungen voraus (iber die im Ver-
laufe unserer Ausfùhrungen auftretenden Intégrale

(49) (v * d\ bezw. (50) I * d\.J 2X1 J
O - zoo O -z'

Unter dem Intégral (49) soll der Grenzwert eines Kurvenintegrals ver-
standen werden, was durch den dem Integralzeichen beigefùgten Kreis
bezeichnet sei, wobei die auftretenden Integrationswege durch die unten
nàher beschriebenen Fig. 1 und 2 festgelegt sind. Im Gegensatz dazu

soll das Intégral (50) durch folgende Définition festgelegt sein:

O+ xoo O+ ZA2

f* d\ lim I * dX.
0—zoo • O — zJi1

Liefern (49) und (50) das gleiche Résultat, so gebrauchen wir die Dar-
stellung (50).

o > o bedeutet eine Zahi, die groGer ist als die obère Schranke der
Realteile der Eigenwerte des Problems IL Da nach § 4 aile Eigenwerte
innerhalb eines Streifens endlicher Breite liegen, welcher parallel zur
imaginàren Achse ist, so existiert eine solche Zahl o.
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Wir untersuchen nun den Grenzwert des Kurvenintegrals

wobei der Integrationsweg Fn durch die Figur 1 gegeben ist und
lim R- 00

0

H**

O+iR

dn

a

+

O-iR

Fig. i.

Fn treffe keinen der in § 4 betrachteten Kreise mit den Radien q.
Setzen wir zur Abkùrzung

(52) v* O, k) -i- I £(*,*; ^){^(«o(^)) — * W«i(O + 4Z (^ W))^
0

so konnen wir unter Benutzung von (48) schreiben

2 $1 Z J 2 SI Z J
Vn Vn

Das Intégral rechts ist aber gleich

Nun hat man fur grofie \k\, \G(x, s; X\ <y^, gleichmàCig in x und

s, also hat der Integrand die Ordnung ry^, woraus sich ergibt, dafi die
ri
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ersten drei Intégrale mit wachsendem n gegen Null streben, wàhrend
das vierte dem endlichen Grenzwert

(53) Çektv*(x,X)d\

zustrebt. Die Konvergenz ist ùbrigens gleichmàGig in x fur o ^ x- <^~ i
und in t fur o £^ t <^ oo

Wegen der gleichmàfiigen Konvergenz von (53) bezùglich / fur
/ < 00 hat man

lim

a + î'o© o+zoo

—. Çeu v* {x, X) dk -i-. \ v* {x, X) dk.OiDièses letztere Intégral ist aber gleich Null. Denn die einzig moglichen
singulâren Stellen der meromorphen Funktion v* in der ^-Ebene sind
die Pôle von G (x, s ; X) und X o ; folglich ist v* regulàr im Gebiet
H (X) ^ a. Es verschwindet also das Intégral

wenn F* der Integrationsweg der Fig. 2 ist.

Fig. 2

Da der Integrand die Ordnung hat, gilt

und daher auch

(54)
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Definiert man also ti (x, t) durch

(55)
j

„+,_ 0+_
u {x, t)=-^- (f)e'Ktv(x,X)dk uo (x) + «, (*) t — ÇeUv* {x,X)dl,

d—zoo G—z'oo

so ist

lim u {x, t) u {x, 6) uo {x),
t

gleichmaCig in x fur o ^ x ^- i.
Wenn man weiter beachtet, da!3 nach einer leichten Abschatzung

sich ergibt, gleichmatëig in /fur o < e ^ t £^ T < oo, und daG

2 $1

a —

fur 0<££^/.£^Z<oo gleichmafiig konvergent ist, wie der zweite
Mittelwertsatz zeigt, so kann man auch schreiben

u {x, t) I e v (x, X) d X
2 5T t J

fur t > o und dièses Intégral ist fur o ^x ^-\,
gleichmàGig konvergent. Es gilt zudem*)

lim b v (x,\) d \ u0 (x)
2sitJ v

*) Das Intégral I V (X, X) d X ist nach den zu Beginn des § 8 gegebenen Erklarungen
2%lJ

Q—ioo
G+zR

T /* 11 l V
naturlich smnlos ; es existiert aber der Grenzwert lim j v (X, X) d X ——- Wir

R-><*> J
o-iR

machen von dieser Tatsache îm folgenden kemen Gebrauch.
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§ 9. Untersuchung des Intégrais

2%t
Q — t

Es werde der Grenzwert des folgenden Intégrais untersucht fur km Rn

Dabei bedeutet Fn wieder den Integrationsweg der Figur I. Wir
benutzen dazu die asymptotische Darstellung der Green'schen Funktion.

Es ist

G(x,s; l)= s; (x, s;

und die rechts auftretenden Funktionen sind durch (42), (43) gegeben.
Die Einsetzung liefert:

CàeU v*{x,X)dX= feXtdX fg-,(x, s; X) \l («,(s)) — b (s) «t (s) +

ds+ Ceu L(uo(s))-

Nach § 8 genugt es, die folgenden zwei Intégrale zu betrachten.

(57) %--

und

i
(58) J2= Ce^dX l'Gm(.x,s;l)\L{u0(s))-è(s)ul(s)\ds.
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Setzen wir

(59)
(s)

und beschaftigen wir uns zunachst mit (57). Nach (42) ist

wo

(570 £' iji(*

und

(57») y: îi.

Untersuchen wir (57i). Nach Voraussetzung (6) und wegen

liefert eine partielle Intégration nach s

X

0,{s)e • '* —

also hat der Integrand die Ordnung > |2
d. h.

\À\

lim ^* z= o

gleichmaCig in x fur o^x^-\ und in / fur o^/^Z<^oo. Analog
fur (57,).

Betrachten wir nun (58). Nach (43) genugt es, ein Intégral der Form
zu untersuchen

1
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wo £(ty fur grofie \À\ beschrankt ist und <Py (s) die Bedeutung (59) hat.
Beachtet man, dafî h' (s)^£o ist in o^s^-i, so liefert eine partielle

Intégration nach s fur den Integranden die Ordnung nj2 woraus folgt,•Idaf3 y2 mit wachsendem n gleichmafiig in x fur o -^ x ^ i und in t fur
O ^lt ^1T <C^ oo gegen Null strebt.

Die Intégrale uber die horizontalen Strecken gehen mit — gegen Null,

wieder gleichmaCig in x, t fur die vorhin genannten Intervalle. Wir
schlieCen also daraus, daC das Intégral

fx

gleichmai3ig in x und t konvergiert furo^ x ^ 1, o ^ t ^ T
Man hat nun

Wegen der gleichmaCigen Konvergenz bezuglich t gilt:

u (x, t) à u (x, t)
,im àt ht Ul (x)

z? o

a-f-z oo a + z °°
I

Das vorletzte Intégral ist aber gleich Null, wie eine analoge Betrachtung
zu der des § 8 zeigt. Man braucht sich dazu nur der Beziehung (45) und
der dort gemachten Bemerkung zu erinnern.

Wir haben damit den
Satz IV: Unter den oben gemachten Voraussetzungen darf man in

der Formel (55) unter dem Integralzeichen einmal partiell nach t deri-

vieren. u (x, t), —^ ' ' sind stetige Funktionen in x, t und es gilt
o t

u (x, 6) lim u (x, t) — u0 (x) *)

à u (x, t)\ ô u (x, t)
- Y 1 l«n —ff-J- u% (x)

Man beachte die Définition von u (x, t) durch (55), § 8.
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§ 10. Die Funktion u (x, t) erfullt die homogenen Randbedingungen

Wir weisen nach, da!3 man in der Formel (55) die Intégrale rechts
einmal unter dem Integralzeichen nach x ableiten darf. Aus (12) und den

Herleitungen des § 6 ergibt sich die asymptotische Darstellung von
àG(x,s; X)

à £<

à x ~~ à x
~] àx

mit

und

à go
èx

it (x)

k(s) E

12

k(s) J E

1 II» (P2(x)r}2(x)r}2(s)lE2l \
~r I -»n -—T77\ \~^ — ^21

k {s) ^

-\~Ë)e

ç>* fc) >)2 (*) iji (*)i£« \A ^M^fhM]^ii

Wir betrachten jetzt das Intégral

a 4- i 00 a 4- *

1 Z (a, (*)) J
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Die asymptotische Darstellung von ^— zeigt aber, da!3 die Ordnung

von ^— fur groGe \?^\ durch 0 (i) gegeben ist, gleichmaGig in x und s
0 x

fur o £^ x, s £^ /. Die gleiche partielle Intégration, wie sie in § 9 benutzt
ô v* 1

wurde, liefert fur -^— die Ordnung yj^ gleichmafiig in x, * fur o ^ x,à x I a I

s ^.1 ; also konvergiert das obige Intégral gleichmaGig bezuglich x und /
fur o^-x^ 1, o^/^Z< 00. Man schlieGt daraus

und es gilt zudem*.

lim ^^(^^) _*-#> bx dx t=o

0-f-

àx

Wie fruher zeigt man auch hier, daf3 das letztere Intégral Null ist.
Also gilt:

b u(x, t)\ N

O X I t o

Nun erfullt î; (x, \) und wegen (6) und (52) auch v* (x, X) die Rand-
bedingungen, also gilt das gleiche fur u (x, t).

§11. Die Funktion u {x, t) erfullt fast ûberall in .** und t die homogène
Differentialgleichung h)

Wir zeigen jetzt, dai3 die nach x und ^ integrierte homogène
Differentialgleichung Ii)

/ v
à2 u N

d // r x

durch (5 S) erfullt wird.
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Die integrierte Gleichung lautet:

(6o) I a(x)ljj—u^
0

t
du -J

0

q (p) u (o, *) — I ^'
«y
0

I r (x) dx I u dt o.
0 0

— \q {x) u
J I
0 l

u dx \dt

Wegen der gleichmajGigen Konvergenz des in (55) auftretenden Intégrais

eltv*(x,\)d\
2 TC Z

hat man

J 2 2 n t
e

m J

Das zweite Intégral rechts ist aber Null, wie die Ausfuhrungen des

zeigen. Es bleibt:

r f 1 *y
(61) J «(j,^/=«d(^ + k1Wj-— J

Substituieren wir (55) und (61) in die linke Seite von (60), so wird dièse

linke Seite :
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X X

(62) t\ Cb{x)Ul (x) dx — (p (x) «o' (x) —p (o) «,' (o)) + Cp' (x) «.' (*) <

l 0 0

I
— {q {x) u0 (x) — q (O) «0 (o)) _j_ Cq' {x) u0 (x) dx — Cr {x) u0 (x) dx

0 0 '

—Çkp {*) «.' W - P (o) «x' (o)) -Cp1 {x) a,' (A-) ^-
l o

W «i W — q (o) «i (o)) _ Çq' (x) u, (x) dx + Cr {x) ux (x) dx l

0 0 '
a-f-z' » f x

—Ai i I(*(vit J * \J
a-ioo ^ o

X) W* dx - (p

+ fp' (x) ^ dx - (q (x) v*-q (o) v* (o, X)

0

x x \

+ Çqf(x)v*dx— Çr(x)v*dx\dk.
o o f

Die Vertauschung der Integrationsfolge ist nâmlich wegen der gleich-
màCigen Konvergenz der auftretenden Intégrale gestattet und nach den

§§ 8, 9, io hat man:

Nun genùgt

der Gleichung

+g(x) ^ + r(x)v
Ç ^ u0 (x) + a (x) ux (x),
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also ergibt sich durch Einsetzung und mittelst partieller Intégration nach x

T fà (a) «t (*) dx — (p (x) «„' {x) — p (o) «,' (o)) +J/ (*) «„' ix) dx

x \
(V) u0 (x) — q (o) u0 (o)) + f^' (^) #0 (*) ^ — fr {x) u0 {x) dx |

o o J

+ (<7 (^) «iW — q (O) «!; (O)) ___ Çg' (x) ux {x) dx + Cr (v) ux (x) dx

o o /

— (^ (x) v* — q (O) ^* (O, ^)) + f^' (x) v* dx — fr {x) v*dx l

Multipliziert man dièse Gleichung mit
I e"

2 n t
und integriert nach \, so

sieht man, daC der Ausdruck (62) gleich Null ist

Wir schreiben nun (60) in der Form

(60,, dt

t X X X

dt I p' (x) -^— dx ~\- \ a {x) u± (x) dx — \ b (x) {ti—u0 (x)) dx
U U X «y c/

t X

(x)u — Ç (°) tl (°> ^)) dt—\dt\q' (x) udx + | r (x) dx j udt.
0 0000Die rechte Seite dieser Gleichung ist nach x differentuerbar, also auch

die linke, woraus folgt*

,bu b fbu
0

=: a (x) Ux (x) — b (x) (u—îc0 (x)) I q (x) -^— dt -\- r (x) I udt
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Da die rechte Seite nach t differentiierbar ist, so ergibt sich weiter

(63)

a (x) -^ - P (x) -^J -^ dt j q {x) ^- - b (x) y- + r (x) «.

Wir setzen nun
0 + *oo

(64) «* (x, t) ^~~. Çelt v* (x,
2 711 J

d2 ta-
und weisen nach, dafi -v~i~ fas^ ùberall existiert fur jedes x.

0 t
Wir haben

1 /-

G {x s; k) jPa/V (x, X) dk yXtdx\ G {x, s; k) j L («, (j)) — b (s) w,

-f | L («,

Setzen wir

(65) 1

$(x,\) 'k2v*(x)'k) l I G(x,s;\)} L(uo(s)) — b(s)ul{s)-\--rL{ux
0 V

und À o + i r\, so gilt nach den fruheren Betrachtungen

d. h. das Intégral

konvergiert gleichmàfiig in x îùy o ^Lx ^li. Wir haben daher

TT
(66) J |5(*

— 00

wo J/ von x unabhàngig ist.
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Man hat nun

0+z*o© 0 + zo©

r, l)dl— \ ^$(*, \)d\
%) À

a—zoo

und daraus schliefit man10) u) :

existiert fur jedes x fast uberall, d. h. mit Ausnahme einer Menge vom

Maf3 Null. Nach (55) gilt also das gleiche von -^~2.

Differentiiert man (6ot) zuerst partiell nach t und dann nach x, so folgt
uberall in x und t\

(68)

A A
o

Nun gilt:

,du

fast uberall in t fur jedes ^, wobei u* durch (64) erklart ist. Beachtet

man, da!3 die Beziehung (66) besteht, so ergibt sich10) u) :

J\a(x)^jxe^tv* {x, K)dX dx ~J Xe^tdX Ja {x) v*(x, X)dx.
0 C—1*00 0—**o© 0

Differentiiert man nach #, so erhalt man, abgesehen von einer zwei-
dimensionalen Punktmenge vom MaC Null,

d. h.

(69)

0+100

1 x ^^
Q—tac,

a
d2u* d

dt2 dx

a—zoo

X\ s*0 [ „ A

bt J

UdX
•/
0

^ du*

\(x)?>*(x,X)dxj

dx\.
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Es muf3 nun ^~ p (x) v— fast uberall in x existieren, d. h. fast uberall
dx V v ' àx!

in x gilt:

Wenn man jetzt (63), (68), (6g) kombiniert, so erhalt man den

Sats V: Abgesehen von einer zweidimensionalen Punktmenge vom
O + z'o©

Ma6 Null genugt die Funktion u (x, t) I e^v (x,k)dk der homo-
Q—ioo

genen Differentialgleichung It).

§ 12. Lôsung des inhomogenen Problems

Fur / (x, i) seien die Voraussetzungen (7) erfullt. Wir betrachten nun
die Funktion

(70) § e-Xt§ e-Xtf{x,t)dt.

Nach einem Satz von M. Lerch%) folgt, wegen der gleichmaCigen

Konvergenz von I | f (x, t) | dt bezuglich x in o £^ x £^ i, daf3 g (x, X)

o

fur H (X) ^> O analytisch in X ist und stetig in x.
Wir haben:

t Q A
0

dt.

Nun hat G (x, s ; À) die Ordnung r—¦-r, also gilt :

(72)

1

j G (x, s;k) g (s, k)ds =0
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d. h. das Intégral

*)1 r c(73) U ix> t) -=. p4 dh G (x, s; X)g(s, X) ds
2 n t J J

konvergiert gleichmàfiig in x fur o ^1 x^-1 und in / fur o ^ t £^ T s0 oc.

Es gilt also:

U{x, o) — I dk i G (x, s-, X) g (s, X) ds.
2 71 l J J

— ioc 0

Da g (x, h) analytisch ist fur H (X) ^> o und G (x, s ; X) analytisch fur
X (l) ^ (7, so folgt:

i
Ç dX Ç G [x, s;K)g (s, X) ds o,

wenn Pw* der in Fig. 2 angegebene Integrationsweg ist. Da weiter die

Ordnung des Integranden r—p ist, so strebt das Intégral lângs des Halb-
I A I

kreises K* gegon Null und zwar gleichmàGig in x fur o ^1 x ^- i,
woraus sich ergibt:

U{x,o)=o.

Wir betrachten jetzt das Intégral

O-j-z» 1

J Xeudl f G (x, s;k)g (s, k) ds

O—iaO 0

*) Wir verweisen auf die in § 8 gegebene Définition dièses Intégrais.
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Zur Konvergenzfrage fur dièses Intégral genugt es also, das Folgende
7\x betrachten

0+«oo t

(74) JeXt dl f G (x, s,k)f (s, o) ds.

ff-l'oe, 0

Wegen der in (7) vorausgesetzten stetigen Ableitung ' hefert

eine partielle Intégration nach s zusammen mit der asymptotischen Dar-
stellung von G (x, s; A), genau wie in § 9, fur den Integranden die Ordnung

r—Tg, gleichmafiig in x fur o ^ x ^ 1 und in t fur o ^ ^ ^ T <Ç qq,
\M
woraus die gleichmaBige Konvergenz des Intégrais (74) sich ergibt fur
o ^.x ^ 1, o^/^Z<oo.

Wir haben daher

mit

das letztere wie in den §§ 8, 9. Die Betrachtungen des § 10 lassen unter
den Voraussetzungen (7) sogleich die gleichmafiige Konvergenz des

Intégrais

Q—tOO 0

erkennen, wobei wieder o^-x^. i, o <^-t ^- 7"<oo. Daraus folgt somit

2stz

Da die Green'sche Funktion die Randbedingungen erfullt, so gilt das

gleiche von U (x, t).
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Nun bleibt noch der Nachweis, dafi die Funktion U (x, f) der Dif-
ferentialgleichung lt) genugt. Wir zeigen auch hier zunachst, daC U (x, t)
die integrierte Gleichung It) befriedigt.

Dièse lautet:

au, i

0

t x

— \\ç (x) " — <1 (°) n (°> t) — ]*
0 0

udx

x t

dt—\r (x) dx \ udt

x t

JdxJf(x,t)dt.
0 0

Setzen wir die Abkurzung

(75) V{x, X) =-

i

j*G (x, s; À) g (s, À) ds

und substituieren wir die rechte Seite von (73) in die linke Seite der
integrierten Differentialgleichung, so folgt:

h {x} k)v dx ~ [p & ï"hSt dx f(a {x)
a—too 0

X

_ JV(*) ^ dx- (q {x) V- q (O) V (O, À)

àV
àx x=0

(76)

Jq1 (x) Vdx Jr (x) Vdx
0 0

Da aber

(a(x)\* ±b{x)k)V -j>(x)<Ç^-ç V g (x, À)

du{x,f)
*) Wir bemerken, daC wir hier m (x, o) o, ~~ o voraussetzen durfen.
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ist, so liefert eine Intégration nach x, da6 der Ausdruck in der ge-
schweiften Klammer von (76) gleich

X

I g (x> ^) dx
o

ist. Damit ist (76) dem folgenden Intégral gleich

J
0—zoo 0

Nun weisen wir nach, dai3 dièses Intégral gleich ist

J dx J' f{x,t)dt.
0 0

Setzen wir dazu

X

0 (X, t) J /(*, t) dx,
0

so konvergiert

j \0(x,t)\dt

gleichmàfiig in x fur o ^ x £^ 1.

Denn wegen der vorausgesetzten gleichmai3igen Konvergenz von

JV (*,*)|*
0

gilt:

^T °° oto X

jdxf\f{x,t)\ dt =j dt JI f(x, t)Idx,
0 0
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und da

Ç\0(x,t)\dt Çdt Ç f(x,t)dx ^ Çdt Ç\f(x,t)\dx
0 0 0 0 0

ist, so konvergiert das Intégral

A x

0 {x, t) | dt

gleichmaOig in x fur o ^ x ^ I.
Wir setzen

X t t X

(77) F (x, t) =JdxJf(x, t) dt =fdtj"f(x, t) dx
0 0 0 0

und zeigen, daG das Intégral

r \Xyt) ai

fur S (X) ^ k > o absolut konvergent ist.

Man hat

A t x

0| dx =—\ooo A x

T J e-ktdt§\f(x,i)\dx,
0 0

woraus fur A -> oo folgt :

o© t X

J f-ktdt§dtJ | f(x, t)\d
o o

^zzz-LJ e~ktdt J \f{x,t)\dx,
0 0
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da ja das letztere Intégral existiert. Die Konvergenz ist ùbrigens gleich-
màf3ig in x fur o ^ x ^L I. Wir haben also :

X) </X y Çe^tdtJ f(x, t) dx.

Multiplizieren wir dièse Gleichung mit è^t und integrieren nach X, so

liefert die Laplace'sche Integraltransformation

F (x, t) -1-. (V* dX Ce-** F {x, x) dx
2 SI t J J

Q—i OO 0

e—^T dx I f (xf x) dx.I
27rV J X

Da wegen der gleichmafiigen Konvergenz bezùglich ^r die Gleichung
besteht

g {x, X) dx J ^-Xx A J />, r) .&
0 0 0

so ergibt sich

O—/oo 0

Nach (77) ist damit nachgewiesen, daC (73) Losung der integrierten
Gleichung ist.

§ 13. V{x91) erfUllt fast Uberall in oc, t die Differentialgleichung L)

Wie in § 11 sieht man, dafi iiberall in x, t die Gleichung gilt:
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Nach § 12, No. (71), (75), wissen wir, dafi die Beziehung besteht

woraus folgt10) n), daC das Intégral

1

-, f X el* V{x, X) d\ -1-. f ^ X2 V{x, X) dX
2M J V ' 2 ni J X

V '
0—i 00 a—/ 00

fast uberall nach / differentiierbar ist fur jedes x.
Der § 11 zeigt ferner, da6 abgesehen von einer zweidimensionalen

Punktmenge vom Mal3 Null die Gleichung besteht

à à f r ^U-^- I <J [X) ~r
0

so dafi man erhàlt:

Satz VI: Die Funktion U (x, t) ist bis auf eine zweidimensionale Punktmenge

vom Ma6 Null eine Lôsung der Gleichung Ij). Sie erfùllt ferner

die Randbedingungen I8) und es gilt : U (x, o) o, - ^ ' o.

Nach den §§ 8 bis 13 gilt ferner der

Satz VII: Bedeuten v (x, À) und V(x, X) die Losungen der folgenden
zwei Problème,

f
L2 (v)=:o ^ ' ~~

so ist, abgesehen von einer zweidimensionalen Punktmenge vom Mafi
Null, die Funktion

g + jfao 0 + *°°

u {x, t) =-—. (f J* v {x, \)dX + -i-. f tfW J^(jr, X) rfX
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eine Losung des Problems I. g bedeutet dabei eine positive Zahl, die

groCer ist als die obère Schranke der Realteile der Eigenwerte des

Problems II.
Fur t ^> o làCt sich die Funktion u[xyt) noch in der Form darstellen :

i r.
' ' 2 71 t J

O—* o©

wenn unter "[/" {x, X) v {x, X) + V[xy X) die Losung des Problems II ver-
standen wird.

Die zweite der Formeln (io) folgt aus der ersten mittels der La-
place'schen Integraltransformation.

§14. Der Entwicklungssatz

Es ist (§§ 8, 9, io)

(78) // {x, t) -Lr S e^tv {x, \)d\

(79)

(80)
271 Z

0—* 00

wobei die Intégrale als in x, t gleichmâGige Grenzwerte von Kurven-
integralen zu betrachten sind fur o^^r^i, o^/^7< 00.

Sei nun X Xv ein Pol von v (x, X). Wir bezeichnen das zu ihm ge-
horige Residuum von e^t v (x, X) bezw. e^t X v (x, X) mit e^t R^ {x, i)
bezw. e^tR^{xtty\ Dann gilt:

(81) u {x, t) lim

*) R!® (x, i), R^ (ce, t) sind im allgemeinen Polynôme in t.
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(82)
_d»CfL0. lim 21 M R? (x, t)

(83) dU^t}- lim

gleichmadg in x, t fur o <^Lx ^-\, 0£^/^Z<^oo. Wird ferner das

zu X Xv gehorige Residuum von v (x, X) bezw. Xv {x, X) mit ^0) (*)
bezw. r^ (x) bezeichnet, also r^ (x) R^ (x, o), r^ (x) Tv?*1* (#, o), so

gilt der

Satz VIII: Ist u0 (x) dreimal stetig differentiierbar, ist u± (x) zweimal

stetig differentiierbar und erfullen uQ {x), ut (x) die Randbedingungen Is)

des Problems I, so gelten gleichmaCig in x im Intervall o £^ x ^- I die

Reihenentwicklungen fur das Funktionenpaar uQ (x), u^ (x)

u0 (x) lim 2/ rT (x)>

ux (x) z=z lim 2J r^ (.x)-

Ferner ist, ebenfalls gleichmaBig in x fur o ^ x ^ i,

t v r V drf {x)
7i0 (x) lim 2* ~j •

Fur den Fall emfacher Pôle wollen wir noch die Struktur der oben
auftretenden Residuen und Reihenentwicklungen genauer angeben.

Sei also X Xv ein einfacher Pol der Green'schen Funktion G{x,s; X).

Àv kann dann ein einfacher oder zweifacher Eigenwert des homogenen
Problems II sein. Ist vy (x) eine zugehôrige Eigenfunktion, so gilt:

O (x) XI + b (x) Xv vv (x) — L <>v (x)) o

A K) o
1

oder

L (vj — (a {x) X2 + * (x) X) v, - (X —X v) [a (x) (X + Xv) + * (*)} *v
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Wir haben daher, solange X von einem Pol von G{x, s; X) verschieden ist

ï-v (x) =—(1 — Xv) Jg(x, s;X){a (s) (X + Xv) + * (s)} vv (s) ds.
0

Nun hangt aber vv {x) nicht von À ab, so da6 auch

i

vv {x) - lim (X — Xv) Çg(x, s;X){a (s) (X + Xv) + b [s)} vv (s) ds

ist und da wir voraussetzen X Xv sei ein einfacher Pol, konnen wir
schreiben

i
(84) ï-v (x) —§R, (x, s) {2 Xv a (s) + b (s) } pv (s) ds.

Das zu Xv gehôrige Residuum von G(x,s;X) ist dabei mit Rv (x, s) be-

zeichnet worden. Schreibt man das homogène Differentialsystem II in
der Form

(85)

{(« (x) Xv2 + b (x) Xv) + (X- Xv) 2 a (x) Xv + b (x)) +
+ (X — Xvya(x))v — L 0) o

Lt (v) o

Z2 (v) o

und benutzt man die Entwicklung

(86) G (x, s;X) ~^fi- -j-P(x,s;X- Xv),

so liefert die Einsetzung*) von (86) in (85), dafi Ry (x, s) eine Losung
des homogenen Problems II ist. Daher mu(3 i?v (x, s) eine lineare Kom-
bination der zu X Xv gehôrigen Eigenfunktionen des homogenen
Problems II sein.

Die Green'sche Funktion ist ferner als Funktion von s betrachtet

Lôsung des zu II adjungierten Differentialsystems3) u) und fur beide

Fur x~\~S ist G(x, s; X) Losung des homogenen Problems II, wenn X von emem
Pol verschieden ist.
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Differentialsysteme ist der Eigenwert Xv von gleicher Ordnung3). Be-
zeichnet man daher mit z>v(1) (x), vj® (x) die Eigenfunktionen des homo-

genen Problems II fur X Xv und mit wv{1\ wj2) die des adjungierten
Differentialsystems, so gilt:

(87) R^ {x, s) ^ p vj*> (x) «;/) (s).

Unter Berucksichtigung von (84) erhàlt man somit

1

(88) VW (x) —2c^ vfù {x) (V> (s) wv«» (s) (2 Xv a (s) + b (s)) ds
M.» M t 0

(* I, 2).

Nun kann man aber, in Verbindung mit (88), stets voraussetzen *), daC

1

(88.) fzV«> (s) wv© (s) (2 Xv « (j) + * (s)) ds { ° "^ ^
0 v r

woraus sich nach (88) ergibt:

v> (1) /^ (r 7; ^^

Wegen der linearen Unabhangigkeit von v^x\ v^> in o^-x^-\ folgt
daher

cn
^21 =z

£12 ^
^22

O

O

I

-I.

und analog

Man hat also

(89) Rv (x, s) — (yym (x) wW (S) + <2> (x) a/vW (s)).

*) Vergleiche: Goursat, E.: Cours d'analyse, t. III, vierte Auflage (1927), S. 391.
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Nun ergibt sich, nach (46) und (89), das zu X Xv gehorige Residuum

r^ (x) von v (x, X) im Fall eines einfachen Eigenwertes

1

(9O) rv<°> (x) v, (*)J* wv (s) { (Xv a{s) + b (s)) u0 (s) + a (s)

0

und fur den Fall eines zweifachen Eigenwertes

(0) tx\ —. y7 v o£
Das Residuum

J <*> (s) {(Xv a (j) + b (s)) «, (j) + « (j) «, (j)} ds.
0

I von X v {x, X) fur X Àv wird

Hat man also nur einfache Pôle und einfache Eigenwerte, so lauten die

Reihenentwicklungen fur u (x, t), U^' ' nach (78), (79), (80),

m {x, t) lim 2J ^v elvtvv (x)>

2J X
\XV\<A

gleichmaCig in x, t fur

mit
^i, o^lt^T<j 00,

gleichmài3ig in ^r fur O^-x^-\. vy(x) ist dabei die zu X Àv

gehorige Eigenfunktion des homogenen Problems II und Av berechnet
sich nach (90) zu

A, (5) + * a (s)
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Hienn bedeutet wv (s) die zu X Ày gehonge Eigenfunktion des zu II
adjungierten Differentialsystems und uber vw (x), w^ (x) ist nach (88!)
so verfugt, dafi

i

J ^v (s) Wv (s) ^2XV a (s) ds

ist.
Ist das Problem II speziell selbstadjungiert 3), so kann man ^v {x)

w^ (x) setzen und dabei z/v (^r) mit einer passenden Konstanten multi-
plizieren um

J(s) (2^ a (s) + * (s)) ds 1

zu erhalten In diesem Fall gilt dann-

1

Ay =J vv (s) {(kv a(s) + b (s)) u, (5) -f a (s) u, (s)) ds. *)
0

/-£§¦*
*) Man kann stets voraussetzen, eventuell nach Multiphkation mit ——-- e ° '' P(x)

dafi (1) selbstadjungiert sei. Das zum homogenen Problem I gehonge Problem II lautet
dann

Smd Xj, X2 zwei verschiedene Eigenwerte und vx, v% zugehorige Eigenfunktionen, so gilt
die verallgememerte Orthogonahtatsrelation

\ + X2) I A (x) vt v2 dx +fB (x) vx v2dx <

sobald P(x)(vtvx' -vxvj) 0, d h. das Differentialsystem ist dann selbstadjungiert.

Unter gewissen Voraussetzungen uber die Funktionen A (x)j B (x) lassen sich daraus emige leicht
herzuleitende Aussagen uber die Lage der komplexen Eigenwerte m der X-Ebene machen.
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