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Les probabilités continues ,en chaine*

par Maurice FRECHET, Paris

Résumé

Le présent mémoire est un essai de mise au point en ce qui concerne
Ja détermination exacte des champs de validité des résultats antérieu-
rement connus de la théorie des probabilités continues dites «en chaines.
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introduction

Markoff a appelé événements «en chaine» des événements fortuits tels
que, dans une suite d’épreuves, la réalisation de l'un d’eux dépende du
résultat de I’épreuve précédente. Il a étudié¢ particulierement le cas ou
les événements possibles considérés sont en nombre fini. Divers auteurs,
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— a sa suite, ou indépendamment, — ont étudié le méme probléeme
dans le cas ou ces événements sont en nombre infini: dans le cas des
probabilités continues. On trouvera un excellent résumé de leurs recherches
dans un petit ouvrage dia a M. Hostinsky (I)1).

Dans ces travaux, on s’est d’abord préoccupé, comme il est légitime,
d’aller de l'avant et d’arriver aux applications. Toutefois, il nous a paru
qu’il était maintenant utile de cowmsoleder les résultats acquis en les reve-
sant au point de vue de la rigueur wmathématique, puzis de procéder a
leur extenszon. Nous nous sommes consacrés a cette tiache dans notre
cours du Premier Semestre 1931—32. Et nous publions ici une partie
de ce cours.

[étude critique des cas de validité des propriétés antérieurement
énoncées nous a conduit a introduire des distinctions qui, malheureuse-
ment, ne simplifient pas l’exposition, mais qui serrent de plus pres la
vérité. Telles sont les notions de cas positivement régulier, de cas quasi-
régulier. En ne limitant pas les recherches au cas des densités continues
et des domaines bornés, on a aussi introduit des complications nouvelles,
mais des complications auxquelles on ne peut échapper, méme dans les
applications.

Il n’est guere possible de résumer ici les résultats nouveaux contenus
dans ce travail. On ne pourra s’en rendre compte qu'en le comparant
en détail avec les travaux antérieurs sur le méme sujet.

Position du probléme

Dzffusion. L'un des problemes physiques ou s’est présenté naturelle-
ment la conception des événements «en chaine» est celui de la diffusion.
On considére un liquide comme formé de molécules soumises a des
chocs incessants. Une premiere approximation consiste a admettre que
la probabilité de la position B de la molécule apreés un choc ne dépend
que de B et de la position 4 qu’avait la molécule lors du choc précé-
dent. Lorsque le nombre des positions possibles de la molécule n’est
pas supposé limité, il faut faire intervenir au lieu du point 5, un inter-
valle, de la fagon que nous allons préciser.

Cas rectiligne. Prenons pour commencer le cas simple d’une molécule
dont le mouvement est rectiligne. Nous supposerons qu’il y a une pro-
babilité déterminée pour qu’une molécule occupant une abscisse x vienne

1) On a reporté & la fin du mémoire les titres complets des publications distinguées dans
le texte par des chiffres romains.
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prendre, apres » chocs, une position comprise dans un intervalle déter-
miné (', »"). Nous admettrons que cette probabilité ne dépend que
des positions initiale et finale — c’est-a-dire de x, »’, " — et du nombre
de chocs qui ont produit ce déplacement, indépendamment du nombre
et de leffet des chocs qui l'ont précédé. La probabilité en question
devrait se mettre sous la forme d’une intégrale de Stieltjes étendue a
lintervalle 9’ »". Mais en abordant le cas des probabilités continues,
on rencontre plusieurs difficultés qui ne se présentent pas dans la régu-
larisation des probabilités discontinues. Les intégrales qui représentent
des probabilités nécessairement finics peuvent s’étendre a des régions
illimitées et a des fonctions infinies en certains points. Iétude de la
régularisation étant elle-méme assez récente, il sera peut-étre préférable
de ne pas aborder toutes les difficultés a la fois; nous nous contenterons
donc de Détudier dans le cas ou les probabilités en question ont des
densités de probabilité généralement finies. Plus précisément, nous sup-
poserons que la probabilité ci-dessus se représente par une intégrale
ordinaire. Son ¢lément diftérentiel dépendra naturellement de x, de 7 et
de la variable d’intégration y. En résumé, nous supposerons que la pro-
babilité en question soit représentable sous la forme

},IV
f P (2, 3) dy.

}"

On exprime ce fait d’une maniére bréve, mais peu rigoureuse, en disant
que la probabilité élémentaire pour que la molécule passe, apres »
chocs, de l’abscisse x a une abscisse comprise entre y et y -} dy est
P (2, ) dy. On aura évidemment @ (r, y) >> 0. Et, puisque apres »
épreuves il est certain que la molécule partant de x se trouvera quelque
part, on a

+ oo
fP"“ (x, ) dy = 1.

Dans le cas particulier ou la molécule reste dans un vase de dimensions
finies, y devra rester dans un intervalle fixe (a, 4) et on pourra se con-
tenter d’écrire

5
fP(’” (%, ») dy = 1.
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Pour simplifier les notations on posera

2 (% y) = PW (2, ).

Pour aller de la position x a une position située dans lintervalle y,
y -+ dy a la n 4 mtm épreuve, il faut aller, a la #tme épreuve, a une
certaine position qu’on peut situer dans un intervalle #, z |+ du et, de la,
a la position située entre y et y + &y a la » -} m*™e épreuve. Plagons-
nous dans I'hypothése ou ce dernier déplacement a la méme probabilité
que si les deux positions dernieres successives étaient prises avant la
premicre épreuve et a la méme. Alors, si 'on suppose en outre que les
P® (z,9) sont des fonctions continues de x et de y, on aura, en faisant
varier seulement z,

+ oo

Plmtm) (x9) dy — f P (x,u) du P (u, y) dy

—= Q0

en vertu du théoréme des probabilités composées; d’ou la relation
d’itération
+ oo
P Oontn) (1) ) :f P (x,u) PO (u, y) du.
—

On a, en outre, pour chaque entier »

+ oo
[ por ety =

puisque la molécule partant de x doit bien arriver en quelque position y.
On voit que, connaissant p (r, y), la relation d’itération permet, en prenant
m =— 1, avant et aprés y avoir permuté s et », de calculer successive-
ment tous les P ) (x,7) par 'une ou l'autre des formules

-+ oo
P+ (x, 9) :fP(") (%, u) p (u, y) du

+
POt (5,5) = [ p ) PO (17) d
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Cas de lespace. Plus généralement, supposons que la molécule puisse
se déplacer dans P'espace a trois dimensions, alors on fera intervenir la
probabilité élémentaire £ (A4, B) dvg pour que la molécule primitive-
ment en A se trouve a la #me épreuve dans un volume Jdvp entourant le
point 3. Plus précisément, on étudiera le cas ou la probabilité pour que
la molécule, primitivement en A4, se trouve a la #®me épreuve dans un
volume R est représentée par une intégrale triple de la forme

f P (A, B) dvg.
R

Cas général. On peut encore généraliser et considérer le cas d’'un systeme
dépendant de # parameétres qui ne sont plus nécessairement de nature
géométrique, mais dont la connaissance définit 1'état du systeme. On
pourra désigner par £ et /7 deux états du systéme et par v une région
de lespace a 4 dimensions. Et l'on pourra étudier le cas ou la proba-
bilit¢ pour que le systéme passe, en » épreuves, de l'é¢tat £ a T'un
quelconque des états /7 appartenant a v est représentée par une inté-
grale multiple de la forme

f])(”) (E, I) drg
c’est-a-dire de la forme
f(ﬁ“‘)(ql, Qoy o Qr; Ui, Uz, ... Up) dity ... duy

Qi oo Qi Uy ... u, désignant les parametres qui définissent respective-
ment / et /7. En raisonnant comme plus haut, on voit qu'on devra avoir

ou, sous une forme plus condensée

(T) f P (E, F) drp == 1
v

et de méme

I Pontn (B, F) = J P (E, G) P (G, F) dig

14
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en désignant par /7 la région de l'espace a 4 dimensions formée par
I'ensemble des états possibles du systéeme (7 peut étre bornée ou illimitée).
Enfin, on aura évidemment la condition p (£, /) > o, d’ou, d’apres (I),
PO (E, F)>o.

Puisque les P (£, G) sont > o0 et vérifient (T), P»+n (E, F7) est
une moyenne «pondérée» des P (G, /). Sidonc on nomme P (F) et
2 (F) les bornes finies ou non de P (G, F) quand G parcourt V
on aura

0 L P (F) Lpitn (F) £ POt () £ PO (F).

Lorsque 7 croit indéfiniment p ™ (/) et P® (/) ont des limites déter-
minées, finies ou non, p(#) et P(F) et l'on a

0 = p(F) < P(F).

Nous pourrons prendre pour }J un ensemble tres général. Nous sup-
poserons seulement que ce soit un domazne, entendant par la que J est
formé par la réunion des états intérieurs a 7 et de leurs ¢états limites.
C’est ce qui a lieu pour toutes les figures simples. Les deux conséquences
qui nous seront utiles par la suite sont les suivantes. D’une part, } sera
«fermé» au sens de la théorie des ensembles c’est-a-dire comprendra
tous les états limites d’une suite d’états de J/. D’autre part, pour tout
état £ de [, et quel que soit 7 >0, il existe un état /7 intérieur a }/

et a distance 2) de /£ < —727— Donc, il y aura une sphere v de centre /7

et de rayon assez petit pour qu’elle soit formée uniquement d’états de
tous a distance de £ inférieure a 3. En appelant mesure de [ linté-

grale fa’z, on voit ainsi que pour tout état Z de }J/ (méme pour un état
v

appartenant a la frontiere de [7) et pour tout nombre v << o, il existe
une partie v de }/ a distance de £ de moins de 7 et dont la mesure
est positive.

Nous allons maintenant étudier les conséquences qu’on peut déduire
de T'hypothese particuliere que l'une des densités itérées P ™ (£, /) est
uniformément continue. ‘

2) Si E, F sont déterminés respectivement par les parametres gy,... ¢, ; %,... %, , on
pourra appeler distance de E & F la quantité Y (¢—u;) 4 ...+ (9, — u,)? par exemple.
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Intervention de la continuité.

Continuzté ébventuelle des bornes. Faisons d’abord un raisonnement
général s’appliquant aux bornes inférieure ¢ (/) et supérieure @ (F),
quand / est fixe, d’'une fonction @ (£, /) uniformément continue quand
FE, F varient simultanément sur J/, et partout > o sur V.

Alors @ (/) est partout finie et >~ 0 et on a

Or, pour tout ¢ > o il existe un nombre > 0 et indépendant de £
tel que

| @ (£, F)— @ (E, F)| <e pour FF, < 5.

On a donc

O(EF) > — e+ @(F)
et puisque le second membre est indépendant de £

¢ (F) > —¢+ @ ()
On a de méme @ (F)> — ¢ 4 @ (£)
et finalement
| ¢ (F) — @ (#) | =< & pour FIL 9.

Aznsi, que V soit borné ou non, @ (F) est uniformément continue sur V.
Et méme, puisque tout couple g 7 convenant pour @ (£, /) convient a
@ (F), on voit que ¢ (/7) est, en ce sens, au moins aussi continu que @ (£, ).

Le résultat correspondant pour @ (F) est moins simple, car @ (&) peut
étre infini. Toutefois, si 'on suppose @ (£, /) non seulement uniformé-
ment continu, mais encore borné sur [/, des raisonnements analogues
aux précédents montrent que @ (/) sera aussi borné et uniformément
continu sur J. Clest, en particulier, ce qui aura lieu pour toute fonction
@ (E, F) > o et continue quand £ et F varient sur un domaine fini V.
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En passant au cas général, supposons qu’il y ait au moins un état
Fyou @ (F,) soit fini. Comme on a, pour FF, < 7

P(EF)=[P(LF)— D(E )]+ O F) <&+ @(F)
quel que soit £, on aura
O(F) Lo+ D (F)

et en particulier @ (/) sera aussi fini.

Ainsi, étant donnés deux états 7, F, de V/, a distance <7, @ (&) et
@ (F,) sont en méme temps infinis, ou bien tous deux finis et on a

|0 (F) — 0(F)| <e

Dans la partie I/’ de I ou @ (&) est fini, @ (/) est donc uniformé-
ment continu. On peut d’ailleurs observer que si U/ est une partie de V'
qui est d’'un seul tenant, {/ appartient enticrement a }”' ou appartient
entiérement & J/—J7'. Par hypothese, si /, /' appartiennent a U, alors,
a tout 1 >> 0 correspond un nombre fini d’états 7, 7, ... /'y de U tels
de FF, F,F, ..., F, F' soient tous < . Si donc, par exemple, /7
appartient a V', alors @ (#) est fini, donc @ (#,) est fini; @ (%) étant fini,
il en est de méme de @ (#,), etc..... Finalement @ (/") est aussi fini.

Remarqgues. 1. On peut observer, en suivant la démonstration de plus
pres que le résultat subsiste si on remplace l'uniforme continuité de
@ (£, F) quand £, F varient simultanément par une condition moins stricte,
«I’égale continuité» des fonctions de F, @ (£, F) qui correspondent chacune
a un état /£ déterminé. Autrement dit, il suffit de supposer qu’a tout
& > 0, correspond 7 tel que

o (&, F)— @(E F,) | < & pour FF, <n

E variant sur J. Cette remarque sera utile plus loin (p. 183).

I, Supposons qu’on sache que @ (/) est fini presque partout sur /|
circonstance qui se présentera souvent plus loin. Alors '— ' est vide
ou de mesure nulle: Si J/—J' n’était pas vide, il y aurait un état /7
appartenant a J/—J}’' et pour toute valeur de > 0, la sphére de centre 7,
rayon v, contiendrait comme on I'a vu p. 180 une sphere appartenant a J et
par suite n’appartenant pas entierement a ' qui est de mesure nulle.
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Il y aurait donc un état /4 de }/ ou @ (/) est fini et a distance < 7
de /. Par suite, @ (F) serait fini contrairement a I’hypothese. Ainsi
dans ce cas V' = I/ Clest-a-dire que: si @ (&) est fini presque partout
sur V, @ (F) est fini partout sur }/ et y est uniformément continu.

Un cas intéressant, que nous rencontrerons souvent par la suite est
celui ol ¢ (% /) est > 0 et est majoré, quels que soient £, /7 sur V)
par une fonction y (/) sommable sur /. Alors, 'ensemble sur lequel y (#)
est infini, est vide ou de mesure nulle. Il en est donc de méme de @ (F).
Par suite, @ (/) est fini et uniformément continu sur tout le domaine V.

Continuité éventuelle des p™ (F). Supposons que l'une au moins £ )
des fonctions P® (F, F) soit uniformément continue. Ou meéme, plus
généralement, supposons que les fonctions de £, I’ (E, F) correspondant
respectivement aux divers états £ soient <« également continues» (p. 182)
en /. Alors, a tout ¢ positif correspond un nombre v tel que | P (E, F)
— P (E, F) | < ¢ pour /F, < v, E variant sur V, & et 7 étant indé-
pendants de /. Alors

P (G, F)— (G, F)

fP(“*‘m)(E,F)——])(“L m)(E, /?l)\éf/)(s)(b" G) dtc < ¢
v

pour £/ < .

On voit que pour 7, n fixes, °® ([, ) sera une fonction de / uni-
formément continue et que les fonctions de la famille de fonctions de #
obtenue en faisant varier £ et » (> ) seront aussi « également continues ».
Il en résulte, d’apres la p. 182, que l'on aura

|2 (F) —p ()< e

pour 2 > m et [7F, < v En passant a la limite pour 7 /| fixes, on
aura aussi

|2 (F) —p (F) ]| e

En résumé: que le domaine V soct fing ou non, il suffit que [une des
probabilités itévées P™ (E, F) soit uniformément continue en E, FF sur V,
pour que les p™ (F), a partir d'un certain vang, et leur limite p (F)
sozent chacune uniformément continues sur V et ménie y Ssoient dans leur
ensemble <également continues».

En ce qui concerne les bornes supérieures /°(®) (/7), le résultat précédent
subsistera si 'une au moins des probabilités /) (£, /') qui est supposée
uniformément continue est en méme temps bornée sur } et alors les P (F)
et P (/") seront méme «également» bornées a partir d'un certain rang. Il sub-
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sistera aussi quand I'une des probabilités P (£, F°) sans &tre bornée est ma-
jorée par une fonction (/') sommable sur J.

Enfin, dans le cas général, soit },’' Pensemble sur lequel P (F) est fini
et J' Tensemble sur lequel P (/) est fini: }J/,' appartient & 7'. Si
FF, < etsi F,F, appartiennent a [/, alors pour 7 assez grand /7, /|
appartiennent a },'. Or pour » > m, les P™ (FE, /) sont des fonctions de
£ telles que

' P (E, F) o PV} (E, FI) I < é.
D’aprés ce qu'on a vu, p. 182
| PO(F)— PO (F) ][ &
pour #» assez grand et par suite, a la limite,

| PF)— L) | £Ze

Ainsi, dans le cas général, /°*'(F) est uniformément continu sur /,’ et /7 (/)
est uniformément continu sur tout lensemble }/' ou (/) est fini.

Dans le cas particulier ou /~ (/) est fini presque partout, soient /v, /7
deux états quelconques de [/, & distance <. Alors, si /(/7) est fini,
il en est de méme de P® (/) pour » assez grand. /£ ([, [7) étant, en
supposant » >> 72 «également continu» en /£ quand /[ varie, il en résulte
d’aprés la p. 182 que P (/) est aussi fini et par suite que /~(/7) est aussi
fini. Ainsi 7' contient tout état & A distance < v dun état A, de }' et
JV— 17" est de mesure nulle. D’apreés le raisonnement de la p. 182 il en résulte
que V—1F"" est vide ou que J/' = . En résumé, si 'une des fonctions
P (F, F7) est uniformément continue quand /<, /7 varient sur }/, alors, que
/' soit limité ou non, si 'on est certain que /Z (/) est fini presque partout
sur J, on peut affirmer que /°(F) est fini et uniformément continu partout
sur /. Nous savions déja qu’il en est de méme pour p (/).

Continuzté éventuelle des P (FE, F). Par contre, le raisonnement pré-
cédent ne prouve pas que si 'une des fonctions P® (£, /) est unifor-
mément continue sur J/, il en soit de méme pour les autres a partir
d’'un certain rang. Il y a cependant des cas simples ou cette conclusion
est légitime.

Par hypothése, pour tout ¢ > 0 il existe un nombre 7 tel que pour
EE, < m FF, <7 on ait

| P (B, ) — P (E, F)| < s. On a donc
t])(s+m) (El, Fl) — Pls+m) (E’ F) t =

<]

J PO (B, G)| P™ (G, F) — P (G, F) | drg
14

+- f | P (E,, G)— P (E, G)| PO (G, F) drg.
vV
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Si PO (G, F) est une fonction de G sommable sur J, le second mem-
bre est < ¢[1 4 [P (G, F)dzs].
v

Nous aurons alors plusieurs cas:

I. Si IV est borné, alors P (E, I') supposée continue sur }J y a une
borne supérieure finie ¢ et il en est de méme pour P (£, /&) pour
s>m. On a donc pour n>x2m, FEE, < v, FF, <.

| P (E, ) — PO (£, F)| < &[1 + gmes. V].

Ainsi, quand le dowmaine V est borné izl suffit que lune des fonctions
P& (E,F) soit continue quand E, IX parcourent V — et par suite uniz-
Jormément continue — pour que toutes ces fonctions Soient a pariir & un
certain rang, chacune uniformément continue et méme, dans leur en-
semble, «également continues».

II. Ne supposons plus le domaine }” borné; alors si l'une au moins
des fonctions /2 (FE, /7) est uniformément continue, et si, en outre,

lintégrale [ °™ (G, /") dr; est, pour z assez grand, inférieure a un
v

nombre indépendant de /< et de #, la conclusion précédente subsiste.
La deuxieme condition sera satisfaite en particulier dans le cas ou est
vérifiée une certaine condition 7, dont nous reconnaitrons plus loin
(p. 222) P'importance.

Cette dernieére condition sera aussi satisfaite dans le cas ou P (£, F)
est non seulement uniformément continu mais encore borné supérieu-
rement sur J/ et méme avec une borne inférieure positive a. Alors,
on a

_P(n+m)(E’ F) :f[)(m) (E, G)])(n) (G, ]4‘) af’l’G > af])(n) (G, F) dZ'G .
v Vv

Or, puisque P (E, /) a une borne supérieure A/ il en est de méme
de Pw»+m ([ F) et I'on a

F— f P0G, F)dre < 2
178

et ceci quels que soient » et /. Il en résulte encore que P (E, F),
Pt (E F), ... seront des fonctions «également continues» et «égale-
ment» bornées.
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Si lintégrale ¥— [/ P (G, F) drg a, pour s assez grand, une borne
v

simplement indépendante de #, mais variable avec s et si P (G, F)
est seulement supposée uniformément continue sur }/, alors chacune des
fonctions P (£, ) sera, pour 7 assez grand, uniformément continue
sur V.

Enfin, dans le cas plus général ou P (G, /) étant uniformément
continue sur }/, on suppose simplement que, quel que soit s assez grand
P (G, /) est une fonction de G sommable sur 7 quand / est en £,
alors P (E, F) sera simplement, pour 7 assez grand, une fonction con-
tinue de £ et de / pour le couple d’états £, /#, ou £/, est arbitraire.

Notons d’ailleurs que, dans bien des cas, I'’é¢tude directe des fonctions
P (E, F') permettra d’établir leur continuité, a partir d’un certain rang,
sans recourir aux propositions précédentes. Tel est le cas de I’exemple
de la p. 189.

Introduction de la régularisation

On a P (F) L PO (E, F) £ P (F)

Les bornes pt (F) et Pt (F) ne peuvent jamais (p. 180) s’éloigner I'une de
l'autre quand 2 croit. En général, elles vont se rapprocher quand le
nombre s des épreuves augmente. [En sorte qu’en général 'accroisse-
ment du nombre des épreuves a pour effet de diminuer 'amplitude des
oscillations possibles — quand on envisage plusieurs positions possibles
de £ — des densités de probabilités. C’est en cela que consiste, a un
premier point de vue, la régularisation des probabilités. L'’étendue limite
de l'oscillation sera mesurée par P (F)— p(#). Il est dailleurs clair
que cette régularisation sera d’autant plus marquée que /7 (/) — p(F)
qui est > 0 sera plus petit et qu’elle atteindra son maximum quand
P(F)—p(F) sera nul.

C’est la recherche des cas ou cette circonstance se produira qui va
nous occuper maintenant.

Supposons d’abord que p (X, /) ou plus généralement 'un, P (E, F'),
des P® (F, F) a une borne supérieure ¢ indépendante de £ et de /7,
au moins quand ceux-ci varient sur V. Alors P (F) < u et PW (E, F)
< u pour n > m et enfin P(F) < u.
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Notons, d’autre part, que la loi de formation des P®*) (F, /) définie
par la condition (I) de la page 179, est la méme que celle des noyaux
itérés de 1'équation intégrale de Fredholm

JY(M) V_:f(M){—f;?(E,F)X(F)th

La théorie de cette équation sera utilisée plusieurs fois par la suite. Des
maintenant, nous pourrons y renvoyer pour la démonstration de plusieurs
propriétés, Il faudra toutefois observer que les démonstrations en sont
faites, généralement en supposant }” borné et que leur extension au cas
d’une région | illimitée n’est pas toujours immédiate. Elle conduirait
méme parfois a des énoncés inexacts si ceux-ci n’étaient pas convena-
blement appropriés a ce cas. Par exemple on ne pourra pas, dans ce
cas, considérer toute fonction continue comme bornée, intégrable et uni-
formément continue; et une fonction uniformément continue dans une
région illimitée n’y est nécessairement ni bornée, ni intégrable. Par
contre, quand la région J est bornée, on sait (II, p. 343) que si le
noyau p (£, /) y est continu, il en est de méme de tous les noyaux
itérés P (£, /7). Cette propriété qui va nous servir immédiatement a
été établie plus haut, p. 185, comme cas particulier de propositions plus
générales.

Définztion du cas régulzer. Plagons-nous d’abord, pour simplifier, dans
les hypotheses suzvantes: la fonction p (£, /) est uniformément continue
quand £ et / varient simultanément dans J et la région I est bornée.
Alors p (£, /) a une borne supérieure u et les fonctions ) (£, ) sont
uniformément continues et au plus égales a w. Du fait que P (£, I)
est uniformément continue par rapport a I'ensemble de £, 7, résulte que
P (F) et p" (F) sont aussi uniformément continues et d’ailleurs <= u.
Ceci étant les inégalités

L PIF)ZpNF) < Zp N P(F) £ PO E) Z POF) £

(1) 0L PW(E, F)—p (F)| L | P (F)—p» (F) |
et P(F)—p(F) = lim [P"(F)— p» (F)]

montrent que, dans le cas ol on aurait p (/)= P (F) la suite des
noyaux itérés P (£, /) aurait une limite déterminée p (/) indépen-
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dante de £. Ce serait la une circonstance bien remarquable: la densité
de probabilité du passage en » épreuves de I'état £ a l'état # devien-
drait, pour 7~ croissant, de plus en plus indépendante de I'état initial £.

L’égalité P(F)=p(F)
se traduit par I'égalité

lim [P (F)— p» (F)] = o.

n->» oo

Dans les hypotheéses actuelles la convergence du crochet est nécessai-
rement uniforme. Car il en est ainsi pour toute suite non croissante et
convergente de fonctions @@ (/) continues sur une région }  bornée
(et, comme on le supposera naturellement toujours ici, fermée, c’est-a-
dire comprenant ses éléments limites).

En effet si @ (/) est la limite de ¢, (/), si 'on pose D, (/) =
@n (F7)— @ (£) et si on désigne par ./, le maximum de D, (/) sur V
M, ne peut croitre quand 7 croit. Donc A7, a une limite 7/ > o0. Il sagit
de montrer que 4/ — o. Dans le cas contraire, ensemble .S, des états 7 de

Y —M . . 4 ) L3
V oou D, (F&) > - > 0 comporterait au moins un etat /7, . De la suite

des /7, on pourrait tirer une suite /4, , /7, , ... convergeant vers un eétat
F'de V. Comme F, s> L7ny4y> --. appartiendraient a Supr £ ' appartiendrait
a S, ;5 on aurait donc D, (F I %/{ > o alors que la suite des D,, (/')
tend vers o.

Dans ces conditions, en vertu de ’(1), P (E, F) converge uniformé-

ment vers p(#) quand £, / varient indépendamment sur }/. Par suite,
on a

”n =

f P(F) m:f 2 (F)dep=lim | P (E, F)drp= 1.
14 14

Réciproquement, si, dans les mémes hypothéses sur p (K, F7) et V, les
intégrales de P (F) et de p (F) sont égales a I'unité, on aura

[P — s aee=o

14

et par suite, la fonction P (F)— p (/) étant continue et >0 sur 'y
sera nécessairement nulle partout.
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Car, si y (F) est une fonction continue dans une région F/, bornée ou non
telle que / W (F)dFF = o0 avec w(F)=o0 et sl existait un état /, de [/

ou y (7 )> o, alors, il existerait (p. 180) une région v de mesure positive,
appartenant a }/ et toute entiére assez voisine de /7, pour que l’on ait sur

v,zp(ﬁ)éyf‘i ) d’ouo-~fy) dﬁ>/y}(ﬁ)dflw /dFA

d’ot [/ dF = o, contrairement & la définition de .

k4

Alors, la suite non croissante de fonctions continues P ™) (F)— p" (F)
qui converge uniformément sur V' vers F(/7)—p (/) convergera vers
o et finalement P® (£, F) converge uniformément sur v vers une limite
2 (F) indépendante de 7.

Dans les hypotheses actuelles, les trois conditions suivantes sont donc
équivalentes:

1° P (FE, F') converge uniformément quand £ et /& varient sur }/
vers une fonction limite indépendante de £

2° p(F) = P(F) sur V.
3°;ﬁ(F)th:V/P(F)th::I.

L’équivalence des trois propriétés ne subsiste plus dans le cas général
comme va le montrer 'exemple suivant. Nous serons donc amené a ne
retenir que l'une de ces conditions pour définir le cas régulier dans les
hypotheses les plus générales

Exemple. Supposons le systéme matériel défini par un seul parametre
numérique et revenons aux notations de la p. 178. Considérons le cas

T N I —(z— .
particulier ol p(r,7) = —— ¢ ~*™" | On aura bien

Va
+ oc
ﬁ(x,J’)}_O,fﬁ (x, 7)dy = 1.

Or la relation d’itération fournit aisément ’expression

— (=)
”n

Vi) (x,y) —

I
— 0
Viz
que d’ailleurs on vérifie plus facilement encore.
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Les bornes #® (y) et p® (y) quand x varie, de ™ (x,y) sont évi-
demment

P (5) =

et p (1) =0
na

+ ® + o
de sorte que [ p" (y)dy =0, et [ P" (y)dy est infinie quel que soit 7.

Pourtant P")( y) et p)( y) tendent vers la méme limite P(y) = p(y) = o
Et méme la convergence de I'un et de lautre est uniforme. Dans ce
cas P (x, y) converge vers une limite p(y) = 0 et cela uniformément

+ o
quand x, y varient indépendamment. Et les intégrales / P (y) dy et

+ o
/J 7 () dy sont toutes deux finies et égales. Mais leur valeur commune

n’est pas 'unité.

En revenant au cas d’un nombre quelconque de variables, on voit
que cet exemple fournit 'apparent paradoxe suivant. Il peut arriver:
que P (E, F) converge vers une limite indépendante de £ et cela uni-
formément quand £ et / varient arbitrairement sur J/, qu’en outre
P(F)=p(F), qu’enfin les intégrales [ p (F)dtr et J P(F)dtyr existent

4 14

et soient égales et cependant que leur valeur commune soit 2 1 c’est-
a-dire que

7> 0o
14

f P(F)drp = lim (PO (E, F)dp.
14

Naturellement cet ensemble de circonstances ne peut se présenter que
si 17 est illimité.

Ainsi donc, dans le cas général les conditions 1°, 2°, ne sont plus
équivalentes a 3°.

Or, si la condition 1° est celle qui semble fournir dans les applications
la propriété la plus importante, son utilité serait bien diminuée si 3° n’était
pas réalisée. Car, d’apres 1° il y aurait bien une fonction p (/) qui serait
limite de densités de probabilités. Mais c’est seulement si 3° était réalisée
que cette limite serait elle-méme une densité de probabilité (bien entendu,
on a toujours p (#)>0, P(F)>0).

Or, dans le cas général, nous allons voir que la condition 3° a pour
conséquence des propriétés qui sont presque les mémes que 1° et 2° et
qui conservent tout l'essentiel de l'utilité de la condition 1° pour les
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applications. Cela nous permettra de définir le cas régulier — quand
on n'impose a p(/, /) et a IV que les conditions (#), (7), (/) — comme
celui ou 3° est réalisé.

Commengons d’abord par une observation qui s’applique qu’on soit ou
non dans la cas régulier.

Si p (£, F) n'est pas borné, alors, comme on suppose toujours
S PP (E, F) dtp— 1, la fonction p (F) qui est > 0 et <Z PW (E, F) sera
v

aussi une fonction sommable sur 17 (c’est-a-dire dont I'intégrale sur [ est
déterminée et finie) telle que [p™ (/) drtp<_ 1. Et, puisque p® (/) tend
1%

sans décroitre vers p (/) (finie ou non), p (/) est aussi sommable sur I/
et fp(F)dtp=1 (Ill, p. 120). Par suite, non seulement p (/) ne peut
14

étre infini partout, mais p (/) ne peut étre infini que sur un ensemble
vide ou de mesure nulle.

Appelons mesure d’un ensemble .S d’états /' lintégrale /datz. Alors si S est
5

I'ensemble des états ~ de [/ ou p(F)>> A4 > o0, on aura 1 > [p (F)dtp>
v
A fdrg, dou [fdrp —;— L’ensemble «w (qui est peut-étre vide) ou p (/)
s S

est infini, est compris dans .S. Sa mesure est donc inférieure a pour tout

I
A’
nombre positif 4. Elle est donc nulle.

Définition du cas quasi-végulzer. Nous avons dit qu'on appellerait cas

régulier le cas ou les deux intégrales [/ p (/) dtr et [ P (F)dtp existent
v v
et sont égales a l'unité. Ce cas est compris dans le cas plus général que

nous examinerons d’abord, sous le nom de cas quasi-régulier, ou 1’on
suppose seulement que ces intégrales existent et ont la méme valeur
finie. D’ailleurs on a vu que p(F) est toujours sommable sur 7 et que
JP(F)dip< 1. Si donc on n’est pas dans le cas régulier la valeur
v

commune de ces deux intégrales sera < I.
On a dans le cas quasi-régulier

J[P(F)———p(F)]th:o avec P (F)—p (F)>o0.
v
Or si une fonction 0 (/) positive ou nulle sur 7 a une intégrale nulle
sur J alors — qu’elle soit continue ou non, bornée ou non sur J —
elle y est nulle «presque partout», c’est-a-dire que I'on a fdtr=—=0, en

désignant par v l'ensemble des états 7 de [/ ou 6 (/)z£o0.
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Car, soit v, 'ensemble des états / ou 0 (/) > A4->o0. On a:

O == f@ (F) d‘l’,’pé A fd‘tp .0 d’ot fd’tp =0
VvV ’ZIL Y4

A

la «mesure» [dtr de v, étant nulle quel que soit 4, I'ensemble v qui
v4

est la réunion de v,, v1l/e, ... v1/, ... aura aussi une mesure nulle,
Donc P (F)— p (F) est nul presque partout sur }J/, c’est-a-dire, sauf

peut-étre sur un ensemble =, de mesure nulle. Comme p (/) ne peut

étre infini que sur un ensemble w, de mesure nulle, on voit que P (F)

et p (/) sont finis et égaux sur J sauf peut-étre sur un ensemble de

mesure nulle 7 formé de la réunion de w, et w,. La relation

0L |PW(E, F)—p(F)| <L PH(F)—p® (F)

montre alors que P® (£, /) converge vers une limite p (/) indépendante
de £ — et cela uniformément pour / fixe quand £ varie sur }J/ —
sauf peut-étre quand £ est sur w.

Ceci va nous permettre de donner une définition du cas quasi-régulier,
moins condensée mais plus intuitive que celle qui consiste dans I’égalité
de deux intégrales d’ailleurs non directement données.

Nous appellerons cas guasz-régulzer le cas ou la densité de probabilité
P» (E, F) converge—sauf peut-étre quand / appartient 2 un certain en-
semble zw de mesure nulle — vers une limite s (/) finie et indépendante
de £, la convergence ayant lieu uniformément pour / fixe quand £

varie sur }/ (mais en cessant d’exiger I'égalité [« (/) dtp = 1).
4
Dans ce cas, pour / fixe, en dehors de w, et pour ¢ positif donné,

il existe un entier NV tel que
a(F)—el PW(E, )Y a(F)+¢

pour 2> N. Dol o (F)—e = p™ (F) < PP (F)L o (I7) + ¢ pour 2 > V.

Autrement dit, en dehors de w, p® (#) et P» (F) — qui tendent tou-

jours vers p (/) et P (F)— tendent vers la limite finie &« (/). Donc en

dehors de w, p () et P (F) sont finis et égaux. D’ailleurs, dans tous les

cas, lintégrale [p (F)dtp existe et est<_1. Donc [/ P (/) drr existe aussi
v 12

et on a

fP(F) dtp‘::fp (F) dop £ 1.
V Vv
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(Si 'on n’est pas dans le cas régulier la valeur commune de ces intégrales
sera < 1). La réciproque a été établie plus haut et compléte l'identité
des deux définitions du cas quasi-régulier.

On peut méme obtenir une sorte de convergence uniforme relative-
ment non seulement a £ mais encore a /. Pour cela, considérons une
partie bornée arbitraire mais fixe W de I/ et, pour ¢ positif arbitraire,
désignons par S, 'ensemble des F de I¥ ou P (F)— pt(F) > ¢ L'en-
semble S commun aux .5, étant évidemment compris dans w est de
mesure nulle. D’autre part S,.; appartient a S,,. On peut donc écrire

Si= S+ (S5 —8) F(Se—8) + (Ss—S) e
d’ol, en posant /drr — mes. G.
e
mes. .S, — [mes. S; — mes. S;] 4 [mes. S; — mes. S,] -+ .........

Le second membre est donc une série convergente. Pour % positif donné,
il existera un rang ¢ tel que le reste de cette série de rang ¢ soit < .
Donc mes. S, < 7. Jusquici ¢ et v étaient arbitraires. Donnons a ¢ et

w .
une méme valeur g, = —, en prenant successivement pour 7 les valeurs

1, 2, 3...; alors ¢ prendra une suite dec valeurs ¢,, ¢, ... qu'on peut
supposer croissantes et .S, deviendra successivement un des termes oy,
0,, ... d’'une certaine suite d’ensembles. La mesure de ¢, sera inférieure

A

w . ;o \
A et celle de l'ensemble 7, = ¢, + 0,41 + ...... sera inférieure a

Comme ¢, est 'ensemble des /# de W ou P4 (F) — p@n) (£)

zn-—l '

> &,, on voit que sur IV, on aura en dchors de 7,
P (F) __p(r) (ﬁ‘) .4__ Ents

pour » >g¢,,, et s =1, 2 .... Autrement dit [P® (F) — p© (F)] con-
verge uniformément vers zéro sur I/ en dehors d'un ensemble 7, de
mesure aussi petite que l'on veut.

En résumé, dans le cas quasi-régulier, la densité de probabilité
P@ (FE, F) converge, quand # croit, vers une limite P (/) indépendante de £
et cela uniformément quand d’une part £ varie arbitrairement sur
quand d’autre part et simultanément / varie arbitrairement sur une partie
bornée quelconque W de V' sauf peut-étre sur une partie 77 de ¥ dont
on peut supposer la mesure aussi petite que l'on veut.
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(Il doit étre rappelé que, si, pour tout nombre positif §, on peut sup-
poser 7 de mesure inférieure a 0, il n’en résulte pas qu'on puisse sup-
poser 77 de mesure nulle. Car, 7 varie avec §; or, en appelant ¢ la
partie commune a une infinité d’ensembles 77 il y aura bien dans IV
convergence en dehors de 7 mais non convergence nécessairement uni-
forme).

Les raisonnements ci-dessus et leur conclusion subsisteraient si on prenait

pour W une partie de J/ qui soit illimitée pourvu qu'on suppose sa
mesure finie.

Cas régulier. — Cherchons la condition pour que le cas quasi-régulier
soit en méme temps le cas régulier,

On a toujours?)

”n~»w

lim J.p(”) (F)dF ::fﬁ (F)dF <1 :J’P(”) (£, F) d F.
v v v
Et, dans le cas quasi-régulier
(2) f]) (F) dF :fP(F) ar.
v v
Pour qu’on soit dans le cas régulier quand la condition (2) est remplie,

il faut et il suffit
lim | [P® (£, F)— p» (F)| dF = o.

7 > 00

Soit alors ¢ un nombre positif arbitraire il y aura un entier ¢ tel que,
pour z > ¢ on ait

f [P0 (B, F) — po) () dF <

Vv

Pour toute partie v de I on aura donc, st 2 > g

L

[P ar <y [y ar <Lt [y ar

v v v

et si v est une partie de V telle que /p (F)dl < %, on aura

(3) . f P (E,F) dF < ¢ .

8) Pour abréger, nous remplacerons dans la suite la notation d<t, par la notation plus

simple d F.
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La fonction p (/) étant, en tout cas, sommable sur }, y est, comme on
sait, (III, p. 109), «absolument continue» c’est-a-dire qu’a chaque nombre
positif w correspond un nombre 7, tel que l'on ait [ p (#) dF < w pour

. , & :
toute partie v de ) de mesure < v,. En prenant o =, on voit

qu’on aura, pour z >gq, [IPW(F F)dF < ¢ Dailleurs, chacune des

fonctions PO ., P@  étant sommable sur }/, y sera absolument continue,

c’est-a-dire qu'’il existera des nombres v, ... v, tels que, pour mes. v < v,

on ait / P® (F, F') dFF < e. Finalement, si v est le plus petit des nombres
v

No> My -+ 7y » ON VoIt que, pour toute partie v de }J/ de mesure <7, on
aura f, °™ (E, FF) dIF <&, quel que soit #—, ¢, m, v étant indépendants de 7.
C’est ce que nous exprimerons en disant que ’absolue continuité des
fonctions de F, P™ (F, /) doit étre, pour £ fixe, uniforme quand » varie.
Considérons maintenant deux cas. Supposons d’abord I/ borné ou
plus généralement de smesure finie. Alors, cette condition nécessaire
d’uniformité est suffisante, En effet, soit ¢ arbitraire > o, il y a, par
hypothése, pour £ fixe, un nombre 7 > O tel que pour toute partie v

de } de mesure < v, on ait / PW (£, I7) dF < —z— D’autre part, d’apres

la p. 193, puisqu’on est déja dans le cas quasi-régulier, il y a une partie 7°
de V' de mesure inférieure a % et telle que P®(E, F) converge uni-
formément vers p () quand F varie hors de 7. Deés lors, on a

; P (E F)dF < ~§— et il existe un nombre ¢ tel que

.NPW@ﬂﬂmpWHﬂkigmmn>ﬁ.Uw
e

V-

fP(F)a’Féfﬁ(F) dF>f[)(n)(E, F) dF — z*

14 v-T V-

:I_j}wmﬁmﬂ—§>x—e.
T

Pour tout ¢ > 0 on a donc

1w—3<f;>(F)dF: fP(F)a’FéI
V [

on est bien dans le cas régulier.
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On observera que si la condition d’uniformité de l'absolue continuité
de fPW (E, F)dF a été prouvée nécessaire pour chaque état £ fixe
4

de JV, la démonstration qu’elle est suffisante suppose simplement qu’elle
ait lieu pour au moins un état £ de V.

Si V n’est pas de mesure finie, cette uniformité n’est plus suffisante
comme le montrerait 'exemple de la p. 189. On doit compléter par une
autre, cette condition d’uniformité de la continuité absolue des intégrales

/P (E, F) dF.
Vv

Pour cela, rappelons que, par définition de lintégrale d’une fonction
@ (F7) sur un ensemble non borné |/

R ]

5

f@ (F)dF =1lim [@(F)ar
14

ou W,, W,, ... W, ... est une suite de parties bornées de }J telles
que IV, appartienne a W ., et que }V soit identique a la réunion des
W,. Posons v, = V'— W, . Des lors, pour chaque entier #z, il existe

un entier s, , tel que f/ PW (E, F) dF < & pour s s, et un entier s* tel

Vs

que [p (F)dF —Z- pour s s’, Or, si 'on est dans le cas régulier, on
aura en vertu de l'inégalité (3)

fﬂ”) (B, F)dF < &

pour s ' et » > g, g étant indépendant de s. Appelons alors s" le

plus grand des nombres s,, ... s,, s, on aura
fP(”) (E, F)dF < ¢

pour toute valeur entiére de », s" étant indépendant de ». D’ou

f P (E, F)dF — f P (E, F)dF < ¢
Vv W

$
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pour s > s", quel que soit ’entier arbitraire ». C’est ce que nous ex-
primerons en disant que, dans le cas régulier, la convergence, exprimée
par la formule

lim [fpw (E, F) dFF — fP(n) (E, F) a’F] — o
7 W

§—>
s

des intégrales a limites infinies / P (£, /7)dF, est uniforme quand
i
varie.

Réciproquement, supposons — toujours dans le cas quasi-régulier —
que non sculement l’absolue continuité mais la convergence de chaque

intégrale a limites infinies [/ /" (£, F')dF soient uniformes quand #
v

varie, et ceci au moins pour un état /~ fixé. Alors, pour tout ¢ >0
il existera une partie bornée J¥ de [ telle qu’en posant v = V — W,
on ait a la fois

fp(F)a’F( & ff)(")(E,F)<e

v

et ceci quel que soit ». Or, en vertu de 'uniformité de l'absolue con-
tinuité de fP" (E, ) dF et, par suite, de celle de / P™ (E, F)dF, le
v W

raisonnement fait plus haut dans le cas ou V' est borné conduira a rem-
placer dans le cas actuel les inégalités (4) par

fp(F)dF> fP(”)(E,F)dF——-a:: quP(")(E,F}dF—e>I—-25.
w ‘ w v
On a donc pour tout ¢ > 0
Iéfp(F)a’F>I-——2&
v

et on est bien encore dans le cas régulier.

Une condition suffisante plus simple. Il y a un cas particulier o on
peut obtenir une condition suffisante plus simple en utilisant un théoréme
(IIl, p. 120) d’aprés lequel, si les fonctions d’une suite non croissante de
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fonctions @® (/) 0 sont sommables sur %), il en est de méme de
leur limite @ (/) et on a

" —p 0

(5) f O (F)dF = lim [ o (7)dF.
V 14

Les fonctions P (/) majorent les fonctions P (£, /), sommables
quand / varient sur I. Il n’en résulte pas que les 2" (/) soient som-

mables. L’intégrale /P ® (F)dF peut étre infinie, soit parce que P (F)
v

est infinie sur un ensemble de mesure non nulle, soit méme quand
P (F) est finie et méme borné, si J7 est non borné, comme le montre
exemple de la p. 189.

Par contre, si I'une des fonctions P (F) est sommable sur J, il en
sera de méme de P4V (F), P#»+d(F) . et I'on aura une relation ana-
logue a (5). D’ailleurs, on aura aussi dans ce cas

f P (F)dF > f P (E, F)dF — 1
V 14

dov / P(F)dF > 1.
174

En résumé, qu’on soit ou non dans le cas quasi-régulier, s’il existe

une fonction ¢ (/) sommable sur V, qui majore — quels que soient £
et /' sur I/ — l'une au moins des fonctions P® (£, /) — et, par suite,
si 'une au moins des P (F) est sommable sur 7 — alors P (F) est

sommable sur }J et on a

fP(F)a’Fé 1.
V

Quand une telle fonction ¢ (/) n’existe pas, deux circonstances aussi
opposées que possible peuvent se présenter: lintégrale / P (/) dF peut
v

étre infinie, ou au contraire < 1 et méme nulle comme dans I'exemple
de la page 189.
Quand la fonction ¢ (/) existe, on a a la fois

[ounar <1 = [P ar

4) Nous entendons ici le mot sommable pour intégrable au sens de M., Lebesgue (III
p. 107). D’ailleurs, dans tout ce mémoire, nous supposons mesurables au sens de M, Lebesgue
toutes les fonctions employées,
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Si donc on se trouve dans le cas quasi-régulier ces deux intégrales sont

égales et par suite sont égales a l'unité. Nous obtenons ainsi la condition
suffisante plus simple annoncée:

Pour que le cas quasi-régulier se trouve étve enm méme temps le cas
régulier, il suffit qu'zl existe une jfonction @ (F) sommable sur V quz
majove quels que sozent FE et IF sur V, mais pour un méme rang n, L'une
an moins des densités itévées P (E, F).

Un cas simple ou l'existence de la fonction ¢ est assurée est celu

ou J est borné (ou de mesure finie) et ou, en outre p (£, F), — ou
'une au moins des " (£, /) — a une borne supérieure finie quand
E, F varient indépendamment sur J. Plus particulierement encore, c’est
ce qui aura lieu quand, [ étant borné, p (%, /) — ou l'une au moins
des P™ (F, ') — est continue quand £, /© varient sur }.

Une autre simplification a déduire de lexistence de la fonction ¢
concerne le mode de convergence de ™ (£, /) vers P (/). Nous avons
vu que dans le cas quasi-régulier cette convergence qui a lieu presque
partout est uniforme sur chaque partie bornée 1V de V, quand on ex-
cepte de ¥ un ensemble peut-étre vide mais qu’on peut supposer de
mesure aussi petite que 'on veut. Lorsqu’zl existe une fonction ¢ (F)
sommable sur V et majorant U'une des [fonctions PW (E, F), le méme
résultat est valable en prenant pour VW toute la région V, que cette derniére
sozt bornée ou non.

En effet, dans ce cas, pour » assez grand (z > g), °® (/") est som-
mable sur J et l'on a

o= lim [ [2®(F) - p» (F)] dF.
7n—> 0
vV

Si AY est 'ensemble des # de V' ol P (F)—p# (F)>¢ on a

f [P (F) — p» (F)] dF > ¢ mes. A > 0
Vv

1 : oy
donc mes. 4Y tend vers o avec — Soit alors « un nombre positit

s 1. w
arbitraire; pour & = v il y a un nombre 7, > ¢ tel que mes. AP < 57
[

: 1
pour 7>z, . Soit enfin 4 la réunion des ensembles 4% pour & — —

’
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w
n=mn,, g=1,2 .... Sa mesure est <2—2—?: w et l'on aura, en

7
dehors de 4

| PO (E, F) = p (F)| £ P (F)—p (F) £

pour 7n ==z, et par suite pour » >#z,. Dés lors P® (£, F') converge
vers p (#) uniformément quand % est arbitraire sur ' et quand F varie
sur la région obtenue en enlevant de J7 un ensemble A4, peut-étre vide,
mais en tout cas de mesure inférieure a un nombre positif @ choisi
arbitrairement.

Conditions nécessazves pour le cas quasi-régulzer. Cherchons a déterminer
des conditions nécessaires pour que P (/) et p (&) soient finis et égaux
presque partout sur [

I. Condition (A). Deux cas sont a distinguer: 1° P (&) est nul presque
partout sur J7; alors il en est de méme pour p (#) et aucune condition
nécessaire n’est a envisager. 2° P (/) n’est pas presque partout nul. En
désignant par ve 'ensemble sur lequel 7 (/) > ¢, nous sommes dans le
cas ou 7, est de mesure non nulle. Or 7, étant formé de la réunion des
ensembles ¢ ol ¢ > 0 serait de mesure nulle s’il en était ainsi de tous
ces vg. Des lors: il existe au moins une valeur positive ¢ telle que we
soit de mesure positive.

Or, on a vu (p. 193) que dans le cas quasi-régulier pour toute partie
W bornée de V' et tout nombre w >0, P(F)—p® (£) converge uni-
formément vers zéro sur IV sauf, peut-étre, sur un ensemble 7" de mesure
< w. En particulier, il existe un nombre » tel que pour >y

€

P (F)> P (F)— <

sur W — 7. Prenons, en particulier, pour ¥ I'ensemble v, ou une partie
de 7. qui soit bornée et de mesure positive et pour w la moitié de la
mesure positive de v ou de cette partie: alors 'ensemble w —= W — T
sera aussi de mesure positive et 'on aura sur w

p(">(F)>——:— pour 7> .
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Autrement dit, il existe dans ce cas une partie zw de I/ qui est bornée
et de mesure positive et telle que, a partir d’'un certain rang », la fonction
P (E, F) reste, quels que soient £ sur V, /7 sur w, supérieure a un
nombre positif indépendant de £, de # et de 7.

En particulier, il existe au moins un rang » tel que p™ (/) ne soit
pas nul presque partout., On dira, dans ce cas que la condition (A) est
réalisée.

Cette condition sera plus commode a employer parmi les conditions
suffisantes, que la précédente. Mais elle lui est équivalente. Car, si
W (F) > o sur un ensemble de mesure positive, alors il y a, au moins
un nombre 7 > 0 tel que la mesure de I'ensemble ou p™ (#) > # soit
positive. Dés lors, sur ce méme ensemble on aura, pour 7> p, p®(F) > ¢
d’ou F# (£, F7) > 4.

II. Condition nécessazre (B). Une autre condition nécessaire pour le cas
quasi-régulier est évidemment que P (/) ne puisse €tre infini que sur
un ensemble de mesure nulle, puisqu’il en est ainsi pour la fonction
sommable p (), et que p (#) et P (#) sont finis et égaux presque partout.

Semplificatzons. Si T'une au moins des fonctions " (E, F), soit
P9 ([, F), est uniformément continue quand £ et / varient sur V, la
condition (A) se simplifie.

Si elle a lieu, il existe au moins un entier » et uz état L tel que
W (L) > o. Réciproquement, s’il en est ainsi, on peut d’abord supposer
vy > » puisque p® (L) est une fonction non décroissante de ». Alors,
comme on a vu (p. 183) que p™ (#) est continue, il existe au moins un
nombre # >0, tel que pM(F) > 1 pV (L) >0 pour LF<7 On a
supposé (p. 180) le domaine J/, tel qu'il existe au moins une sphere v
composée d’états de )7 tous a distance de L inférieure a 7. Des lors
PV (F) >0 sur un ensemble v de mesure positive: (A) est réalisée.

D’autre part, si 'on suppose, en outre, que P" (£, F') est borné (ce
qui aura lieu nécessairement si 7 est fini) alors /°® (/) et par suite
P(F) sont bornés: (B) sera vérifiée d’elle-méme.

On observera que ces deux simplifications subsistent si 'on suppose
simplement que P (F, F) représente pour les situations diverses de E,
une famille de fonctions de /' «également continues» sur V.

Conditions suffisantes pour le cas quasi-régulier. Considérons un état
F tel que P (F) soit fini et trois états arbitraires %, £, G. Pour »
assez grand (z— 1> m), P»—D(F) sera aussi fini et par suite aussi
Pe=0(G, F), PW (F), PW(E, F), P»(E,, F). Etendons avec M. Hostinsky

201



(I, p. 44, I’s, p. 21) au cas actuel la méthode de Markoff. Formons la
différence

(6) PW(E F)—PW (B, F)= f[ﬁ(E, G)—p (B, G)|PD(G, 1) dG.
Vv

Soient V', " les deux parties de [ sur lesquelles le crochet est respec-
tivement >0, </ 0. En posant

Bzf[p(ﬁ, G)—p (&, G)]dG:deG

v

§ =— J[p(El, G)—2p(E, G)]ciG::f]{dG
v v
ou K est la valeur absolue du crochet, on aura >0 et § — 0’ —

SP(E G)dG— [p(E, G)dG=1—1 =0, dou
V Vv

g —H>o0.

Supposons d’abord 6 > o. Alors on pourra écrire

P (B, F) — P® (B, F) =
J K Pe=0 (G, F)dG | K P% (G, F)dG l
5

6!Z —
[ KdG [ K dG I
4 v
= [PV (F)—p=) F]
L’inégalité
(7) PW(E, F)— PW (B, F) < §[L*D (F) — p@=(F)]

qui vient d’étre établie pour 640, reste d’ailleurs exacte pour 6 = o,
car, dans ce cas, K serait nul identiquement ou presque partout nul
sur J et alors en vertu de I’égalité (6) le premier membre de (7) serait
aussi nul.

Dans cette inégalité, 6 est compris entre 0 et 1, car

oéeéfp(E, G) dG_._/__fp(E, G) dG = 1.
14 V
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Seulement, d’apres sa définition, 6 dépend de £ et de £,. Mais on a
(= fp(E, G)cz’(j»—fp(/:}, G)dG
12 %
— fp (£, G) dG — fp([i, G) dG — fﬁ (£, G) dG.
v v v

Or, sur }' comme sur ", p(E, G) > pD(G); p (£, G)>pD(G).

Donc 01— f/)“) (@) 4G — 0, .
vV

L.e nombre 6, est évidemment =<0, <Z 1 et ne dépend ni de £, ni de
/<. Comme on a

PO(E, F) — PO (B, F) Z 0, [P (F) — po= ()
on voit qu’on aura pour z > m
(8) POE)—=p» () = 8, [P0 (F) —p =D (F)]

ou §, est indépendant de 7= (pour n > m) et de F, avec 00, < 1.
Seulement si 6, = 1, on ne retrouverait qu'une inégalité déja obtenue.
Le cas intéressant est donc celui ou 6, < 1, c’est-a-dire ou p @ (G) n'est
pas presque partout nul sur J. Clest celui ou la condition (A) se trouve
vérifiée quand on suppose, comme nous allons le faire d’abord, que dans
son énoncé de la p. 201, I’entier » est égal a 'unité. Dans ce cas, 6, < 1
et, en vertu de (8), on aura

P () — p (F) Z 07 [P () — pt (F)].

Revenons maintenant a la condition (A), mais sous sa forme générale:
supposons qu’il existe un rang » pour lequel »™ (G) ne soit pas presque
partout nul sur V. On pourra recommencer le raisonnement précédent,
mais en partant de 1'égalité

[P (mtsv) (E, ﬁ‘) — Plmtsv) (El) F) -

f [P (E, @) — P (L, G)) P+s=D (G, F) dG.
V
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On trouvera alors
Pl () — pontan (7)) Z (8) [P (F) — p ()]

avec

oLy =1— [ pV (@) dG < 1.

LI,

Pour tout entier 2>, il y a un entier s > 0 tel que

mA-syZnm-+(s+4 1)y

PO (F) — p) (F) £ POt () — plors (£)

et

o < [0

1
En posant ¢, — (6,)¥, on aura

(9) | PONE, ) —p (F) | £ LW (F) — p (F) < (g)* B(F)

avec
PO () — p (£
ey

B(F) =

Comme ¢, est indépendant de # et de » et inférieur a l'unité, on voit
que PO (F)— p® (/) tend vers zéro. Finalement, quand la condition (A)
est réalisée, on a P(F)=p (F) pour tout état / ou P (F) est fini.
Drailleurs p (#) > pM (F), donc, P (F) ne scra pas, dans ce cas, presque
partout nul.

Faisons maintenant entrer en ligne de compte la seconde condition
nécessaire, la condition (B) de la p. 201; nous aurons alors un ensemble
a la fois nécessaire et suffisant:

Pour que — a [exception tout au plus d'un ensemble u de mesure
nulle d’états F de V — PW (K, F) converge -—— unzformément pour I -
fixe quand E varie sur G — vers une lemzte finie indépendante de ['état
initial E et non presque parvtout nulle sur V, 2l faut et zl suffit: I qu'sl
existe au moins un rang vy tel que pV (F) ne soit pas presque partout
nul sur V, II que P(F) soit fini presque partout sur V.
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Observons aussi que si la condition (A) n’est pas réalisée, tous les p( (@)
seront nuls presque partout. La fonction p(G) sera donc nulle sauf,
peut-étre, sur un ensemble dénombrable a d’ensembles de mesure nulle;
a étant alors de mesure nulle, p (@) sera nul presque partout sur J.
Nous pouvons donc dire. Pour qu'on soit dans le cas quasi-régulier:

Ou bien la condition (A) est réalisée et alors il faut et il suffit que
P (F) soit fini presque partout sur [

Ou bien (A) n’étant pas réalisée et, par suite, p (G) étant nul presque
partout sur J/, il faut et il suffit que 7 (#) soit nul presque partout sur
V. Dans ce dernier cas / P(F)dF —=o0. On sera certainement dans le

cas quasi-régulier proprement dit, c’est-a-dire sans étre dans le cas
régulier ®).

Nature de la convergence. Nous avons déja vu, p. 193 que, dans le
cas quasi-régulier, la convergence est uniforme sur toute partie 1/ bornée
de V, apres avoir retranché de 7 un ensemble convenable dont on peut
supposer la mesure aussi petite que 'on veut.

L’inégalité (9) permet de préciser un peu plus la nature de la con-
vergence. Elle montre d’abord qu’en tout état /~ ou /°(F) est fini, c’est-
a-dire presque partout sur }, la convergence de P (E, /) vers P (F) est,
a partir d’'un certain rang, au moins aussi rapide que celle des termes
d’une progression géométreque dont les termes dépendent de /F, mais
dont la raison ¢, (0 < ¢, < 1) est zndépendante de E et de F.

En limitant encore le champ de convergence, on peut méme s’arranger
pour que les termes de la progression soient eux-mémes indépendants
de / comme de £ (ce qui, en méme temps entrainera !'uniformité de
la convergence sur ce nouveau champ).

C’est d’abord ce qui aura lieu sur chaque ensemble ¥, en appelant
ainsi la partie de » ol l'on a P (F) < ». Car on a sur V™

| PO (E, F) — P (F) | < (gv)* pour z>m. C(C’est, par suite,

_r
(gv)™ Oy

aussi ce qui aura lieu sur Uensemble ¥, formé des ensembles V" en
nombre fini, pour lesquels » -4 # — s. Car en appelant A, le plus grand

r \
des nombres ———— ou » - m = s on aura sur V , pour z > s

(gv)" By

| PO (B, F) — P(F) | < A (gv)"

5) 1l serait d’ailleurs intéressant de chercher si 'on peut effectivement former I’exemple

d’un cas quasi-régulier od o < f P(F) dF < 1.
14
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Or, si w est encore l’ensemble -- peut-étre vide, mais de mesure
nulle — o /°(/") et p (#) ne sont pas finis et égaux, il est clair que tout
état de J/— w appartient a 'un des J/; et que ), appartient a gy .
Ainsi, on a formé une suite non décroissante d’ensembles [, rem-
plissant J7, & un ensemble de mesure nulle prés et sur chacun, 7,
desquels, la suite | 2" (/, /7) — [>(F)| est majorée a partir du rang s
par une progression géométrique indépendante non seulement de /~ mais
de /7. Cette progression change avec J/,, mais sa raison reste la méme.
Dans le cas ou [/ est borné, 'égalité symbolique

V=t A (Ve — V) + (Ve — Vi) + ...

peut ausst s’entendre en mesure, de sorte que ) — [ est de mesure
" : 1 ] ,
aussi petite que 'on veut avec — . Si J n’est pas born¢, alors pour
s
toute partie bornée ¥/ de J, c’est la partie de ) — [/, qui appartient
a W qui est de mesure aussi petite que l'on veut, pour s assez grand.

Précisions. On peut méme préciser dans des cas particulierement
importants dans les applications. Supposons d’abord qu’il existe un rang
m tel que P (/) soit borné sur J. ILa théorie des équations intégrales
(I, p. 344, 357, 362) fournit des exemples de noyaux p (%, /) discon-
tinus, non bornés, mais tels que, pour » assez grand, » = m, P" (E, F)
ait une borne supérieure finie ¢ quand £, /¢ varient indépendamment
sur V. Dans ce cas P® (F) sera borné sur } et méme on aura
P (F)Z u pour > m. Alors P(F) sera nécessairement borné aussi
et la condition (B) sera remplie d’elle-méme. De plus, si ¢ est la borne
de PU» (F) sur V, il résultera de la premiére condition, qu’on a d’apres
la formule (9)

0| PUE F)— P ()| £ ) S

Dés lors: si I'une au moins des probabilités itérées ™ (£, F) a une
borne supérzeure finze quand E, F varient indépendamment sur V, la con-
dition nécessazre et suffisante pour que P (E, F) converge — quel que
soit F sur V, el cela uniformément pour F fixe quand E varie sur V —
vers une limite P (F) indépendante de [’état initial E et qui ne soit pas
presque partout nulle sur V est qu'il existe aw wmoins un rang v pour
lequel pV) (F) ne sozt pas presque partout nul sur V.
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Et dans ce cas, non seulement la convergence est uniforme pour #
fixe, mais: 1° elle est uniforme quand £, F varient indépendamment
sur }, 2° la convergence de la suite des termes |P™ (£, FF)— P (F)|
vers zéro est au moins aussi rapide que celle des termes d’'une certaine
progression géométrique convergente indépendante de £ et de /.

D’autre part, sz lune au moins des probabilités itévées P (E, F) est
uniformément continite quand FE, F varient sur V, la condition nécessazre
et suffisante pour qu'on soit dans le cas quasi-végulier est

ou bien que P (F) soit nul presque partout sur V
ou bien que 1° P (F) sozt fini partout sur V
2° qu'zl existe un vang v el un état L tel que p™ (L) 0.

Il faut que P (#) soit fini presque partout sur [ mais on a vu p. 184,
qu'alors P (F) est nécessairement fini partout sur [/. Dans ces conditions
P (F) est uniformément continu sur } et P (E, F') converge vers P (F)
quels que soient £ et / sur }/. La convergence est uniforme quand £
varie sur } et / sur une partic bornée quelconque de V.

Ces énoncés se simplifient encore quand on les combine:

Sz Lune au moins des probabilités itévées PW (E, F) est bornée et uni-
Jformeément continue quand E, F varient sur V, la condition nécessazre et
suffisante pour qu'on soit dans le cas quasi-végulier est ou bien que P (F)
soit nul presque partout sur V ou bien qu’il existe un rang v et un état
L tel que p™(L)=~o0.

Et dans ce cas " (£, /) converge uniformément quand £, / varient
sur J, vers la limite P (/) (qui est continue). Dans les deux cas que
nous allons envisager maintenant, le cas quasi-régulier ne se distingue
pas du cas régulier.

Supposons que l'une au moins des P® (/) soit sommable sur }. Alors
P (F) sera fini presque partout sur }/; il en sera donc de méme de
P (F) et ici encore la condition (B) sera vérifiée d’elle-méme. De plus,

nous avons vu p. 198 que dans ce cas [P (F) dF est fini et > 1.
v

Ainsi dans ce cas P (/) ne peut étre presque partout nul. Alors, pour

qu’on soit dans le cas quasi-régulier, il faut que la condition (A) soit réalisée.

Mais alors 1 < [P (F)dF = f p (F)dFF < 1 donc [P (F)dF = 1; on sera
v v v

dans le cas régulier.

En résumé: 1° le cas quasi-végulier ne peut se présenter sans étre en
méme temps rvégulier que si aucune des fonctions P® (F) w'est sommable
sur V et
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2° lorsque lune an moins des [fonctions PW (E, F) est majorée par
une fonction de F sommable sur V, la condition nécessaive et suffisante
pour qu'on soit dans le cas régulier est que Pune au wmoins des p™ (F)
ne soit pas presque partout nulle. De plus, dans ce méme cas, si cette
condition est réalisée, nous avons vu (p. 193) que P™" (E, F) converge
uniformément vers P (/) quand £ variant arbitrairement sur [/, / varie
sur V, sauf, peut-étre, sur un certain ensemble indépendant de £ et dont
on peut rendre la mesure aussi petite qu'on veut.

Lorsque V' est borné ou de mesure finie, si I'un au moins des P (),
par exemple P (F), est borné sur [/, P™ (F) sera aussi sommable
sur J et on pourra appliquer a la fois les propriétés de deux des cas
qui viennent d’étre examinés:

Sz lune au moins dcs fonctions PW (E, F) a une borne supérieure
finte quand E, IF varient sur V et si V est borné ou de mesure finze,
la condition nécessaire et suffisante pour qu'on Ssoit dans le cas régulier
est que lune aw moins des [fonctions p™ (G) ne soit pas nulle sur V
vresque partout. De plus, dans ce cas, 1° P (E, F) converge uniformément
vers sa ltmite P (F) lorsque E, F varient arbitracrement sur tout [en-
semble V; 2° la série 3 | PW (E, F)— P (F)| est majorée par une certaine

n

progression géométrique convergente indépendante de E et de F.

Enfin, I'énoncé suivant s’obtient comme cas particulier de tous les
précédents:

St p(E, F) ou sz plus généralement Pune PP (E, F) des probabilstés
itévées est continue sur un domazue V borné alors la condition nécessazre
et suffisante pour qu'on soit dans le cas régulier est que, pour awu moins
un état L de V et un rvang v>>xm, PO (E, L) ne soit nul pour auwcun
état E de V.

Dans ce cas, les probabilités ztévées P® (E, F) sont aussi continues a
parter d'un cevtain rang, elles convergent uniformément quand E, F
varient sur V vers une limite P (F) continue sur V et la convergence
de |PW (E, F)— P (F)| vers zéro est au moins aussi rapide que celle
des termes d’une cevtaine progression géométrique indépendanie de E et
de F.

Dans ce cas, il y a correspondance absolue entre la condition trouvée
ici et celle qu'on obtient dans le cas plus simple des suites discontinues
d’états (IV, p.p. 2, 3).

Cas positivement régulier. Par analogie avec le cas d'un nombre fini
d’états possibles, il serait, 2 premiére vue, naturel, d’appeler ainsi le cas
régulier ol p (/) serait partout 20 sur }. Toutefois p (/) n’est pas
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une probabilité, mais une densité de probabilité. II semblerait donc plus
indiqué d'imposer la condition que la probabilité / p (#) 4/ soit toujours

différente de zéro. Comme cette intégrale est, quel que soit p (#'), nulle

quand v est de mesure nulle, on est amené a une réserve, a supposer

seulement que /[ p (/) dF >0 pour toute partie v de 7 de mesure
v

positive. Pour cela, il faut et il suffit que p (&) soit presque partout
positif. Ceci sera d’ailleurs d’accord avec I'équivalence observée dans les
questions précédentes entre les fonctions égales presque partout.

On pourra définir finalement cas presque positzvement (Quasi) régulzer,
tout cas (quasi) régulier ou p (/) est positift presque partout sur J.
Commengons par le cas presque positivement quasi-régulier, c’est-a-dire
celui ou p (F) et P(F) sont presque partout a la fois finis, positifs et
égaux. L’ensemble (vide ou non) g ou p (/) =0 doit étre de mesure
nulle. Or c’est évidemment ’ensemble commun aux ensembles 8,, £,
étant I’ensemble ou p" (/) =o0. I Si donc J est de mesure finie la
limite de la mesure de 2, tend vers zéro avec —:? II. Sinon pour toute
partie I¥ de mesure finie de J/, la mesure de la partie commune a ¥/

I , . . :
et 2, tend vers 0 avec Pt Réciproquement; si (I) a lieu, # est de me-

sure nulle; si II a lieu, la partie commune a g et IV est de mesure
nulle quel que soit le choix de IW. Par conséquent, 8 est encore de
mesure nulle. De plus, la condition (A) est alors nécessairement remplie.
Nous arrivons donc a la conclusion suivante.

Pour que PW(E,F) converge uniformément quand, F étant [ixve,
E varze sur V, vers une limite finze, indépendante de E et positive, sauf,
peut-étre, quand F appartient a un certain ensemble de mesure nulle, 7l
Jaut et 7l suffit: 1° que pour tout & positif, il existe un rang v tel que
PV (F) > 0 sauf peut-étre sur un ensemble de mesure < g¢; ou sz V est
de mesure infinte que cect ait liew pour foute partie de V de mesure
finze; 2° que P(F) soit fini presque partout.

Sz lune des fonctions PW (F) est sommable sur V, ce qui précede seva
ausst la condition mnécessaive et suffisante pour qu'on soit dans le cas
presque positivement régulzer.

On peut aussi donner la condition suffisante suivante:

Pour qu’on soit dans le cas positivement régulier, il suffit que, J étant
borné ou de mesure finie, 'une au moins des fonctions P (E, F) ait,
lorsque £, F varient indépendamment sur }” une borne inférieure positive
et une borne supérieure finie. En effet, dans ce cas, p* (/) est, pour
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au moins une valeur de », partout positif donc la condition (A) est
réalisée et p (/) est partout positif. D’autre part, les fonctions P (F)
sont bornées a partir d’'un certain rang et par suite sommables.

La condition que }/ soit de mesure finie ne peut étre évitée ici:
[ P (E, F') dF ne pourrait étre égale a l'unité si P%W (£, /') ayant une
14

borne inférieure positive, la mesure de }/ était infinie. On peut cepen-
dant, en modifiant la condition, la rendre applicable au cas de } non
borné:

On sera certainement dans le cas positivement régulier, si 'une des
fonctions P (/) est sommable sur [ et si, en outre, 'une des fonctions
P® (E, F) a une borne inférieure positive lorsque £ variant sur V,
F varie sur toute partie bornée ¥ de }/. Car, dans ce cas les conditions
(A) et (B) sont visiblement vérifiées et I'une des 2 (/) étant sommable
sur J/, on est dans le cas régulier. En outre, 'une des p® (#) — et, par
suite, p (/) — a une borne inférieure > 0 sur toute partie bornée de V.
Donc P (F) est partout 20 sur V.

On a un résultat plus simple quand l'une au moins des densités
P (E, ) est uniformément continue Sur }. On a vu (p. 183) qu’alors
p (#) y est aussi uniformément continue.

Supposons, en outre, pour commencer que } soit borné. Alors, comme
on sait, p (/) y atteint sa borne inférieure; si donc p (/) > o0 sur /,
# (F) a sur [/ un minimum positif «. Or, sil’on est dans le cas quasi-régulier,
P (F) converge uniformément vers p (#) (p. 188). Donc, pour 7 assez

grand, p" (F) > % quel que soit / sur [ et par suite P (£, F) >0

pour £, /7 arbitraires sur J/. Cette condition est d’ailleurs suffisante,
car si P (E, F') =40 sur [/, son minimum »" (/7) quand £ varie étant
atteint pour un certain état £ sera 72 0. En résumé:

Sz une au moins des densetés etérées PP (E, F) est uniformément
continue quand E, F varient sur V et si le domaine V est borné, la con-
dition nécessaive et suffisante pour que l'on soit dans le cas positivement
régulier est que ['une au moins de ces densités P (L, F) soit partout
positive quand E, I varient sur V.

Abandonnons l'hypothése que le domaine }/ soit borné. p (/) sera
encore uniformément continu, mais ce n’est que sur chaque partie bornée
W de IV qu’il atteindra son minimum. Ce minimum gy est alors positif.
Or, sur W, il y a convergence uniforme de p" (/) vers p (/). Donc,

pour » assez grand, p" (F) > f—z—pﬁ > 0. Réciproquement si nous spé-

cifions que sur toute partie bornée W de V, p" (F) reste positif pour
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un certain rang, éventuellement variable avec W, alors la condition (A)
sera réalisée, et P (/) sera partout positif,

Ainsi, lorsque 'une au motns des densités P (E, F) est uniformément
continue quand E, I" varient sur le domaine V — borné ou non — la
condition nécessazrve et suffisante pour qion soit dans le cas postiivement
quast-régulicr est que: 1° sur toute partic bornée W de V, l'un awu moins
des p (F) reste positef sur W, & pariir d’un certain rang, variable en
généval avec W mars indépendant de la position de F sur W. 2° P(F)
sozt fini presque partout.

En particulier, si [’une, au moins, des densités P (E, F) est bornée
et uniformément continue quand E,F varient sur V, borné ou non, pour
qu'on soit dans le cas positivement quasi-régulier, 2l faut et il suffit que,
sur toute partie bornée W de V, l'un au moins des P (F) veste positif.

Dans ce cas, il y a convergence uniforme de P (E, F) vers P (F)
quand FE, F varzent sur V. De méme, si ['une au moins des densités
P& (E F) est quand E, F varient sur V, borné ou non, uniformement
coniinue et najorée par une fonction U (F) sommable sur V, la condztion
nécessazre et suffisante pour qi’on soit dans le cas positivement régulier est
que pour toute partie bornie, IV de V, I'un au mozins, des p» (F) reste positzf.

Condition de M. Hostinsky. En étendant au cas actuel sa remarque
relative au cas discontinu, M. Hostinsky a observé (I, §30, p. 50) que
pour se trouver dans le cas positivement régulier, il suffit, si J est
borné et p (£, /) continu, que p (X, F) soit 2 o lorsque, £, F variant
dans [, la distance /~/ (voir la note (2) de la p. 180), reste inférieure
a un certain nombre positif o (si petit soit-il choisi). La démonstration
revient a prouver qu’au bout d'un nombre 7 assez grand d’épreuves
P (E, F) — qui est continu — est partout positif.

Toutefois, il est bien clair que si le domaine }~ n’est pas d’un seul
tenant, si, par exemple, on peut y distinguer deux parties [/, et }; dont
les points sont a des distances toutes supérieures a un nombre positif «,
alors on peut imaginer d’une infinit¢ de fagons une répartition de la
probabilité telle que le passage de [/, a ), soit impossible et que le
passage de n’importe quel état de [/, a n’importe quel état de [ soit
possible en une seule ¢épreuve pour £ =1, 2. Alors, en prenant ¢ in-
férieur a la plus courte distance de }/; a ,, on aura bien p (£, ') >0
pour /z F < p et pourtant on n'aura F® ([, /) > 0 quand £ appartient
a V, et i I, pour aucune valeur de 7.

Reste donc 4 examiner le cas ou } est d'un seul tenant; nous con-
tinuerons a supposer, en outre, que la frontiere de }/ n’est pas trop
irréguliere, au sens précisé p. 180 et que } est borné.
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Observons d’abord que, } étant borné, si p (£, /') >0 pour EF < o,
alors p (£, F) a une borne inférieure positive ¢ quand EF <69, 6
étant un nombre positif fixe < 1. Sans quoi, il existerait pour tout

entier » un couple £,, /, de | tel que p(E,,,F,,)<~;IZ— et B, 7, < lp.

On pourrait extraire de la suite des entiers » une suite d’indices 7,, 7, ...
tels que £, ., E,, ..., F,,, F,, ... tendent vers £, /, de V. On aurait
Ey Fy < B9 et, puisque p est supposé continu p (%,, /,) = O contrairement
a I'hypothese.

Ceci étant, utilisons 'hypothése que J est borné et d'un seul tenant.
Nous entendrons par la que pour tout nombre 7 positif, il existe un
entier V tel que pour tout couple d’états £, / de I, il existe des états
H,, H,, ... H; de I/ en nombre < MV tels que EH, < q, H H, < %, ..
H, FF < 9. Rien n’empéche, d’ailleurs, de supposer s =— /N — 1 car au cas
ou s < N—1 on poserait H,4 1= ... = Hy_1 = H, . D’apres 'hypothése
(p. 180) sur la frontiere de J, dans toute sphere de centre /; et de

rayon —z— il existe une portion v; de IV de mesure positive. Et si G,

G ;41 appartiennent a v;, v;,;, on a
Gj Gj+1 __é G]HI+ Hj'fff+1 + f]j-H GJ'-H < 279

et en particulier £G, < 29, Gy /< 2. Prenons 29 =0p. On aura

PO (E, Gy) > J "P(E G p Gy, Gr) dGi > & [mes. 7]

PO (E, Gy) f.P(“‘) (E, G5) p (Gy, Gy) dG, > & (mes. v,) (mes. v,)

Y2

P (E, F) f PED(E,Gp1) p(Cr—1 F)dG y_1> 6V (mes.vy)...(mes.vy_q).

YN--1

Le second membre peut varier quand £, / varient; mais, en tout cas,
il est 20, de sorte qu’il existe un entier /V, indépendant de £ et de
F sur @&, tel que

PW(E, F)™>o.

On est bien dans le cas positivement régulier. Plus généralement, sup-
posons qu'il existe un entier » et un nombre ¢ > o tels que PW (£, F)>o0
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pour EF < . Alors en raisonnant sur P®™ (£, F) comme sur p (E,F)
on voit quiil existe un entier NV tel que PV (E, F)s£0 quels que
soient £, / sur /. On est alors encore dans le cas positivement régu-
lier. Drailleurs, si 'on est dans le cas positivement régulier, la derniére
condition est bien nécessaire puisqu'elle est méme réalisée pour toute
valeur positive de ¢o. Donc:

Sz V est borné et d’un seul tenant et si 'une au moins, P (E, F), des
densttés P (E, F) est continue sur V, la condition nécessaive et suffisante
pour qu’on soit dans le cas positivement régulier est qu'sl existe un nombre
posztif o et un entier v > m tels que PO (E, F) > 0 pour EF < p.

Dans le cas ou p (£, /) n’est pas continu, on peut recommencer la
démonstration, mais en faisant entrer cette fois dans la condition de
M. Hostinsky ce qui en était déduit précédemment comme conséquence :

quand p (£, F), ni aucun des PW (£, F') n’est supposé continu, la
condition de M. Hostinsky consistera en ce que pour 'une au moins des
densités itérées P" (£, ') — soit PV (E, F) — il existe un nombre
o > o tel que PW (£, /) a une borne inférieure positive ¢ quand £, F
varient arbitrairement sur }” de sorte que £/ < p.

Alors, en supposant encore )/ borné et d’un seul tenant, on verra
comme plus haut qu’il existe un nombre NV tel que

PO (E, F) > &Y (mes. vy) ... (mes. vy_1).

Il en résulte que, pour » assez grand, P® (E, F) reste =0 quels
que soient £, / sur }/. Cela ne veut pas dire que la borne inférieure
P (F) soit %40, car le second membre varie avec £, /. Mais, I/ étant
borné et d’un seul tenant, on peut certainement choisir sur }J7 des états
K,, ... Ky assez nombreux pour que tout état de }J soit a distance
< 7 de 'un des K; et pour qu'on puisse choisir les états H,, ... A, de
la démonstration précédente parmi les K, ... K. Cette fois, le produit
w = &¢¥ (mes. v,) ... (mes. vy_;) sera indépendant de £ et de / sur I/
et on aura en particulier p(™ (') X w, d’oll p™ (F) > w > 0 pour z > Vv,
quel que soit / sur J. Il en résulte que la condition (A) sera vérifide;
dailleurs p (£) > p™ (F) >o0. Si la condition (B) est vérifiée, on aura
donc non seulement le cas quasi-régulier, mais le cas positivement
quasi-régulier.

En résumé: si J est borné et d’un seul tenant et si — condition de
M. Hostinsky généralisée — p (£, /) étant ou non continue — il existe
un rang » et une distance ¢ tels que A" (£, F) ait une borne inférieure
%40 quand EF L, alors la condition nécessaire et suffisante pour
qu'on soit dans le cas positivement quasi-régulier est que P (/) soit fini
presque partout sur V.
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On peut aussi particulariser les énoncés de la p. 208 :

Si 'un des " (£, F) a, en outre une borne supérieure finie quand
£ et /' varient indépendamment sur I/, ou si plus généralement I’un
des P (E, ) est majoré constamment par une fonction ¥ () sommable
sur V, alors, si la condition de M. Hostinsky, modifiée comme il vient
d’étre dit, est vérifiée, on est sirement dans le cas positivement régulier.

Convergence des moyennes arithmétiques. Revenons a linégalité

(9) | P (E, F)—p (F)| < gy ) B(F) pour 7z > m.

Puisque, dans le cas quasi-régulier P® (£, /) tend vers p (/) sur len-
semble /' ou P(F) et p(F) sont finis et égaux, alors, en vertu d'une
propriété connue des séries convergentes, il en sera de méme de la
moyenne arithmétique
(1) (n) o
oW (B, F) = PO(E, F)+ ... 4+ P» (£, F).

n

Non seulement la diftérence 9, (£, /) =11 (E, F') —p () est sur I/’ infini-
" I . . 7 o, 7 b 2
ment petite avec —, mais l'inégalité (9) va nous permettre d’obtenir un
n

renseignement sur son ordre. En effet, la série

§ (B, F)= S [PO (5 F)—p(F)]

=1

est d’apres (9) convergente quand F est sur /7' et cela uniformément
quand £ varie sur }. Or on a évidemment

lim 7 [[I® (B, F) — p(F)] = s (E, F)

7-> 00
c’est-a-dire que: ou bien s (£, /') est fini et 220 et 7, (£, /) est un
infiniment petit du premier ordre en —:Z—, avec une partie principale égale
a s(k£, F); ou bien s (£, FF)=o0 et 7, (£ F) est un infiniment petit
d’ordre supérieur a -:Z—— Il faut cependant observer qu’il reste une troi-

sieme hypothése, celle pour celle ou s (%, /) serait infini. Bien que restant
convergente sur /' a partir d'un certain rang, il peut en effet arriver
quavant ce rang, certains termes de s (%, /) soient infinis. Cette diffi-
culté¢ disparait quand au lieu des densités, on étudie les probabilités
elles-mémes.
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Comoportement des probabilités. Passons de I'étude des densztés de pro-
babilités a celle des probabilités. Soit z une portion quelconque de 7V,
de mesure positive. La probabilité qu'on passe en » épreuves de 1’état
E a T'un quelconque F# des états de v est:

w!(E) = f P (E, F) dF

Soit A, = 0" (E fp VdF — I,— 3,

avec

0L 7, = ‘J [P(E, ) — pt ()] I

éf[P(") (£, F)—pP (F)] dF =1 — f PA(F) dF
% v
et de méme

o=, = [lo(F)—pwiEN ar < [ pryar— [ po () ar.
v 14 14

Nous avons vu p. 198 que dans tous les cas ce dernier membre et par
s . , 1
suite aussi ¥, tendent vers zéro avec — . Le comportement de 4, quand
7
n croit est donc le méme que celui de /7,. Donc, dans le cas régulier
A, tend vers zéro, c'est-a-dire que la probabilité cherchée w™ (E) tend
vers une limzte indépendante de E et qui est égale a [/ p(F) dF.
v

Si l'on n’est pas dans le cas régulier, alors, par définition il n’en est
pas ainsi déja pour v=1": 1 == 0% (£) ne tendra pas vers /p (F)dF.
v

On vient de voir que dans le cas régulier 0 (£) tend vers / PF) dF.

t=n
Il en est donc de méme de la moyenne arithmétique /" (£) = LE w(")(E ).

Non seulement la différence e, (£) == /) ( / P (F)dF est mﬁmment

, I . , :
petite avec —, mais nous pouvons avoir des renseignements sur son
n

ordre. On a en effet

t=n
e, ()= 2[] PO (I, FYdF — fj) £) a’F]

=1
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Tout d’abord, chacun des crochets est, en valeur absolue < /P @ (£, F7) dF
v
+ [P (F)dF 2. Dautre part si v appartient a }/, I'ensemble I, ou
v

P (FY < r, avec » + m — s, on aura

SV

fP(n)(E, F)dF — rﬁ(F)a’F‘é(qv)”W pour n > m.

La série
=100

(10) mm:g[fﬂmamw—fﬂmﬁ]

t=1

a donc ses termes tous finis quand % parcourt } et elle est majorée
par une série convergente indépendante de £, quand v appartient a
Vs . Ainsi quand v est contenu dans 'un des ensembles 3, Vs, ... Vs, ...
(dont la réunion forme }’), g, (£) est une fonction bornée sur } et alors
pour chaque état initial %, ou bien ¢, (£)3£0 et alors, non seulement

. . . I . /7 \ . /7
&, est infiniment petit avec —, mais son ordre est égal a I'unité et sa
”

. .. I .
partie principale est Pl (£); ou bien g, (£)=0 et g est dordre
supérieur a l'unité.
Remargue. Si Ton voulait calculer la partie principale du moyen de

la formule (10), il faudrait auparavant calculer toutes les densités itérées
P® (E, F). On verra plus loin, p. 227, qu’on peut obvier a cet inconvénient.

Valeur de la densité limite P (F')

Cas quasz-régulzer. Nous avons vu que, dans ce cas, P (/) et p (/) sont
finis et égaux partout sur J/, sauf peut-étre sur un certain ensemble w
de mesure nulle. De plus P (£, F) converge vers P (/) quand » tend
vers linfini, si / est sur V— w. Pour essayer de déterminer 2P (F), il
parait indiqué de passer a la limite dans les formules

(L) waam:fpwampmﬁua
Ve—w
(T) P® (E, F)dF = 1.
J
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Toutefois, nous avons déja vu qu'on n’a pas le droit, sans précaution,
de substituer dans (T) a P® (£, /), sa limite P (#). Ainsi, dans 'exemple
de la p. 189, P(F)=o0. Et méme nous avons réservé le nom de cas
régulier au cas ou cette substitution est légitime, c’est-a-dire ou

v
On a vu que, dans le cas quasi-régulier, on peut seulement écrire

fP(F) AF < 1.

Considérons de méme le passage a la limite dans (I,) ou plus générale-
ment dans la formule

(1) Pontn) (E, ) — f PW (E, G) P (G, F) dG.
14

Si la substitution était légitime a la limite, 'expression

P(F)— fP(G) P (G, F)dG

serait nulle.
Pour qu’elle ait d’abord un sens, il faut que P (#) soit fini.
Si F appartient a 'ensemble V' = V' — w, P(F) est fini et, par suite,
pour # assez grand, P0=+» (E, F) est fini. Alors fp™ (G) P (G, F) dG
14

< | PW(E, G) P (G, F)dG = P™*» (E, FF). Pour ¢ positif donné, on
4

aura, pour n > n', P77 (E, F)< P(F)-4e Donc p®» (G) P™ (G, F)
est une fonction (> 0) de G qui est sommable sur }'; elle reste sur I’
au plus égale a P (G) P"™ (G, F), tend sans décroitre vers cette fonction
quand # croit et son intégrale sur I/’ reste inférieure ou égale a P(F) 4 e.
Dés lors P (G) P™ (G, F) est sommable sur I/’ et son intégrale sur J’
est £ P(F) +e. Comme ¢ est arbitraire, on voit finalement que: dans
le cas quasi-régulier, pour tout état F de V', P(G) P (G, F) est sommable
sur V' et lon a, sur V'

(11) fP(G) P (G, F) dG £ P (F).
v

217



En particulier,

(12) fP(G)p(G, F) dG £ P(F).

14

On peut méme préciser la variation avec » de I’expression
0w\ (F) = f P(G) P (G, I) dG.
v

On a vu que 0™ (F) <L P(F).

Or W) () = f P(G) [ f Po0 (G, H) p (H, F) dH]a’G

_—_IJ‘[IP(G) P (G, H) a'G]p(H, F) dH:f w (H) p (H, F) dH.

14 14

Donc «®(F) = f W (H) p (H, F) dH < f P(H) p (H, F) dH = o (F).

14

et en général si 0™ (F)Z w7 (F), alors

i+ (F):f‘”('”’ (H)p(H, F)dH < f‘”(’”"” (H)p(H, I)dH = o™ (F).

Deés lors, o™ (/) est une fonction de s non croissante et > 0. Elle a
donc une limite w (F) >0 et l'on a sur '

(13)  ©F)L ... LoD (F) Lo (F) L ... Lot (F)L P(F).
L.a question se pose maintenant de savoir si la relation (11) qui a lieu
partout ou elle a un sens, c’est-a-dire quand # est sur [/’ peut devenir
une égalité, unc égalité permettant de concourir a la détermination de
P (F) partout ou P (F) est défini, c’est-a-dire une égalité ayant lieu
partout sur }'.

Observons d’abord que, si 'on a pour une valeur particuliere de
et quel que soit / sur J/':

(o) | 7 P (6, 1) a6 = P )
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alors, en multipliant par P (F, H)dF et intégrant, on aura si /A est
sur [’

f P(G) Pem (G, H)dG = P (H)
1%

et de méme, en général

jz) (G) Pom™ (G, H) dG = P (H)
%

quel que soit l'entier ». On a alors w" (H) = P (H) sur V' pour une
infinité de valeurs »» de » et par suite a la limite w (&) = P (H) sur
V'. En raison des relations (13), on voit donc que w® (#) = P (H) sur
V' quel que soit x. Ainsi, lorsque I'égalité () a lieu pour une valeur
de m, elle a lieu pour toute valeur entiére de #. Or, si 'on a I'égalité

(Fwm) en un état / de V', comme d’aprés le raisonnement fait plus
haut, on a

(14) lim | p® (G) P™ (G, F)dG = f]) (G) P (G, F) dG
7 1%

7> o

on aura

0 = lim [Pon4n ([, F)— p(F)| =lim | [P®(E, G)— p» (G)] P (G,F)dG.

”n->» o 7y

La derniére intégrale est

0 (F) [1— [ 59(6) dG).

On a donc, a la limite

0 pu (M) [1— | P(6)d6) >0
174

Dés lors si I'on est dans le cas quasi-régulier proprement dzt, celui ou
/P(G) dG< I, on devra avoir p<m) (F) — ),
vV

Or, si Iéquation () a lieu presque partout sur V, il en est de méme
de (HFm) quel que soit lentier », donc p@ (/7) =0 et par suite, a la
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limite, P (/) —=— 0 presque partout sur }. En résumé, dans le cas quasz-
régulier proprement dit, P (F) vérifie la relation (11) quel que soit m
sur V', mais P (F) n’est, pour aucune valewr de wm, une solution non
zdentiquement nulle de 'équation intégrale homogene de Fredholm ().
Ainsi, le passage a la limite qui fournit ({f,) n’est jamais a la fois
légitime et utile que dans le cas régulier.
Cas régulier. D’apreés la formule (14), on a

fp ) P (G, F) dG = lim A, (F)

7-»0

avec, d’apres (9)

0L A, ( __f P (E, G)— p® (G)] P™ (G, F) dG

= Por (F) [ — [ p(G) 6]

si P0») (F) est fini. Si donc, on est dans le cas régulier, on aura
fP P (G, F)dG

pour tout état F ou P (F) est fini

Or, pour tout état / de J/', il y a un entier V tel que P (F) soit
fini pour » > N. On a donc o™ (F) = P(F) pour m > NN et par suite
o (F) = P(F). Ainsi, pour F sur }'

P (F) = w(F) Lo (F) £ o (F) £ P (F).

On a donc w® (F)= P(F) sur V' quel que soit 7.
En résumé, dans le cas régulier, la densité-limate P (F) est une so-
lution, verifiant les conditions

(15) [ puyar=r P(F)>o,
1%
de léquation intégrale homogene de Fredholm
&) P#)= [ P(@)s6 F) a6
Vi
et de ses équations itérées“
(Tm) P(F)= f P (@) P™ (@G, F)dG.
P

220



Les conditions (15) montrent d’ailleurs que c’est une solution . effective®
de (&F), c’est-a-dire une solution non identiquement nulle sur }'.

Cas de la densité-limate constante. On a vu que, dans le cas quasi-
régulier, PW" (£, F) converge presque partout sur }/ vers une limite
indépendante de £. On peut se demander dans quel cas cette limite
sera aussi, quand /£ varie presque partout sur J/, indépendante de Z.
Alors, la limite étant indépendante de ~ et de / aura une valeur cons-
tante . On a d’ailleurs vu qu’on a toujours dans le cas quasi-régulier

(16) oéfp(p)dﬁé I,

Ceci montre aussitot que dans ce cas sz la mesure de V est infinie, P(F)
ne peut étve constant que s'zl est nul.
Si, au contraire, }/ est borné ou de mesure finie, on aura

I
= )
= mes.

Supposons P ~> 0 et, par suite, }J de mesure finie. On a vu (p. 217,
pour » — 1) que dans le cas quasi-singulier, si 7 estsur ', P(G)p (G, )
est une fonction de G sommable sur }. Donc, ici, l'intégrale

/ # (G, F) dG doit avoir une valeur finie. D’autre part, on a sur }’
v

(12) PE) [ P(6)5(6, F) a6,
Donc ici g
(17) Iéfp (G, F) 4G. ,

En multipliant par &/ et intégrant
mes. V:}_f [fp(G,F)dGJdF
v

:f[fp(G,F)dF]a’G:mes. V.

L’avant-derniére ligne est donc une égalité et I'on a

J

14

dF — o.

1— | p(G, F)dG
/
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L’accolade étant > 0, en vertu de (17), doit donc étre nulle presque
partout. Ainsi, on a la condition

(T,") f;) (G, F)dG —= 1, presque partout sur .

v

Observons d’ailleurs que, s’il en est ainsi, la relation (17) devient une
égalité sur I/’'. Or nous savons (p. 220) que pour P > 0, il ne peut en
étre ainsi dans le cas quasi-régulier proprement dit. Ainsi, pour que
P (F) soit presque partout égal a une constante positive, il faut:

1° gu'on soit dans le cas régulier,
2° que la condition (T)') soit réalisée,
3° que V soit de mesure finze.

- ; . I
Et alors la limite constante est égale a 7 Car on a [P (F)dF =1
d’apres 1°. d

Réciproquement, supposons d’abord simplement vérifiée la condition
(T,") et posons

L, (F)= f P& (@, F)dG, dob

(18) L,,+1(F)—:.f[fP(”)(G,H)p(H,F)dH]dG
- = [ L(et)p et 7

et L, () = 1 presque partout. Si Z,, (/) = 1 presque partout pour <"z,
on aura, d’apres (18)

Lyy1(F)= fp (H, FF) dH = 1 presque partout.
v

Ainsi, si (T,") a lieu, on a nécessairement aussi
(T") J P" (@, F)dG — 1 presque partout sur J,
v

quel que soit lentier 7.
Supposons, en outre, maintenant qu’on soit au moins dans le cas
quasi-singulier, de sorte qu’il y ait d’abord presque partout une limite
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P (F) de P™ (F, F) indépendante de /. En vertu de (T'), on a, presque
partout sur [/

1 éf];(n) (F)dG = p" (I7) mes. }.
v

Deés lors, si la mesure de }/ était infinie, on déduirait de 2° que p) (/7) =0
presque partout sur }7 et par suite que p (/) est nul presque partout
sur ).

Si donc la condition 2° est réalisée: ou bien la densité limite £ (/)
est nulle presque partout sur [, ou bien } ne peut étre de mesure in-
finie et la condition 3° est réalisée. Si /° (F) était nul presque partout
sur J/, on ne serait pas dans le cas régulier. Donc, si 1° et 2° sont
réalisées, il en est de méme de 3°.

Or, dans cette hypothese, on déduit de la derni¢re formule que

I
INEY £
: (ﬁ)—mes. V

et en multipliant par &/ et intégrant

,
Oéj [ . ;m])(F)]dF:: 1 — f P () dF —=o.
mes. ) .

v v
Le crochet est > 0 et son intégrale sur J est nulle. Donc, il est nul
presque partout, c’est-a-dire que / (/7) est presque partout égal a la
constante ~I;

14

En particulier, s'z/ existe wune fonction ¥ (F) sommable sur V et qui
majore, quels que sozent E et F sur V, lune des densités itérées P» (E, F),
alors la condition nécessazve et suffisante pour que la suite des PP (E, F)
converge vers une constante non nulle quand F varie presque partout sur
V (et cela uniformément quand E varie sur V) est: 1° que la condition
(T}') soit vérzfice, 2° que pour ume asses grande valeur de v, pO (F) ne
soit pas nul presque partout sur V.

Plus particulierement, sz /le domaine |V est borné et si les densités itérées
P (E, F) sont continues sur V a partir dun certain rang n, alors la
condition nécessaire et suffisante pour que la suite des I’ (E, F) converge
vers une constante non nulle et cela uniformeément quand E, F varient
arbitracrement sur V, est que
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1° [P (E, F)dE = 1 quand F est arbitraive sur V.
4

2° [l existe au wmoins un état L de V tel que pour v asses grand,
PO (E L) ne sannule jamais quand FE parcourt V ou que PV (L,FE)
ne Sannule jamars quand E parcourt V.

Cas du domaine infinz. Nous avons vu que si le domaine est de me-
sure infinie, on ne peut, dans le cas régulier, avoir pour densité limite
une constante. Si le domaine étant infini, la condition (T') est cependant
réalisée, on aura, presque partout sur }

szpwmﬁmwéjpwwmméa
vV vV

Si p® (F) n’était pas nul, la derniere intégrale serait infinie. Donc
2™ (F) est nul, presque partout sur J, quel que soit lentier » et par
suite p (/) =0, presque partout sur [/, qu’on soit ou non dans le cas
quasi-régulier. Dés lors:

Quand, le domaine V étant de mesurve infinie, la condition (IT') est
réalisée, p (F) est nul presque partout sur V et on ne peut étre dans le cas
quasz-régulier que st la densité limite P(F) = p(F) est nulle presque
partout sur V.

Exemples de réalzsation de T'. On peut signaler deux catégories simples
de fonctions p (£, ') pour lesquelles la condition (T') est réalisée né-
cessairement quand la condition (T) Pest déja.

La premiere catégorie est formée des fonctions symeétriques, c’est-a-
dire telles que p (&, F)=p (F, E).

Une autre catégorie (qui n’a pas son analogue dans le cas d'un nombre
fini d’états possibles) est celle ou — le systéme aléatoire, ne dépendant que
d’'un parametre numérique pouvant prendre toutes les valeurs possibles,
et ou par suite p (£, /) se réduisant a une fonction p (#, y) de deux
variables numériques —, on suppose que p(x, y) est une fonction de y —x,
soit /(y — x).

La condition
-+ o

(1) [riv—na=r

— Q0

étant supposée vérifiée, il suffit d’observer, en posant y —x =z que
I'on a toujours

jﬂu—@@;Jimw:jiw—@w
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d’ou la condition

(T") ff(_j/-—x)dx: I.
Dans le cas ou les états du systeme sont définis par £ parameétres:

PEF)=@ (g1, ... qr; wy, ... up),

la condition (T) entrainera encore d’elle-méme la condition (T') si @
ne dépend de ¢,, ... #;, que par lintermédiaire des différences corres-
pondantes (g, — #,), ... (gz — #z).

Mais, comme nous ’avons vu plus haut, ce second cas ne peut con-
duire au cas régulier puisque }/ est ici illimité. Plus précisément, on
aura p (/)= 0 et: ou bien on n'aura méme pas le cas quasi-régulier
c’est-a-dire que p (/) << P (/) sur un ensemble de mesure positive, ou
bien — comme dans l'exemple de la p. 189 — la limite P (#) = p (&)
de Pw (£, F) sera nulle sur V',

Expression de la densité-lzmite P (F). Laissons maintenant de coté la
condition (T'). On a vu que, dans le cas régulier, la limite 7 (/) de
P (E, F) vérifie sur 7' les conditions:

) Py = [P(6) G F)aG
v

(15) fP(G) dG = 1.
v
Ainsi, dans le cas régulier, I"équation intégrale

(H) X (F)= f X(@) p(G, F)dG
vi

a, au moins, une solution non identiquement nulle et méme partout > 0:
X (F£) = P(F) et 'une au moins des solutions vérifie la condition

fX(G)a’G: I.

Nous allons méme démontrer que Péquation intégrale homogéne de
Fredholm (H) ne peut avoir, dans le cas régulier, qu’une solution
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sommable, non identiquement nulle X, (/) a un facteur constant pres.
S’il en est ainsi, on aura nécessairement sur V' P(F)=a X, (/) et on
déterminera la constante a par la relation 1 —=a / Xo(F)dF. Cette relation

montre que f Xo (F)dF =0 et par suite la resolutlon classique de I’équa-

tion de Fredholm permet de déterminer entierement P (F) par la formule

X, (F)

P(F)= XU

Pour démontrer le point admis, observons que I’équation (H) ayant au
moins une solution non identiquement nulle X, (#), alors en itérant (H),
on voit que X, (F) vérifie aussi, quel que soit 7, 'équation

(H,) X, (F) = f P (G, F) X, (@) dG-

Quand 7 croit indéfiniment, on peut passer a la limite sous le signe /.

Car
[roie, m x@as— [P xe e

120

_éfil)‘”)(G,F)-—P(F)(lXo(G)\dG

ciroim—pie f 150

On a donc X, (/) = P(F /X G)dG et il n'y a pas d’autre solution

de (H) que les fonctions proportlonnelles a P(F).

Ainsi, dans le cas régulier, 1° P'équation de Fredholm (H) a une solu-
tion non identiquement nulle et une seule, X, (#) a un facteur constant
pres; 2° la recherche de la densité limite est ramenée a la wvésolution
Xo ()

classique de cette équation de Fredholm et on a P (F)— X, () dE
7 0

Calcul de s (E, F). Supposons, pour simplifier que p (£, /) ait une
borne supérieure finie quand £ et / varient sur V. Alors la série

lf—=o0c0o

s(B,F)y=2 [PO(E F)— P(F)]

t=1
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est majorée par une série convergente indépendante de /7~ et de / va-
riant sur tout V.

Or, dans le cas régulier:

PmuzF%—fﬂF)zxfEPW”UiG%hlﬁGﬂpdiﬁﬂdG
d’oti: g
[P®(E, F)—P(F)] - ... + [PW(E, F)— P(F)] =
f ([P @) — P(G)] + ... +[P#=D (5 G)— P ()] (6, F) dG.

vV

et a la limite

ugﬂ_P@m+ﬁmpJQE®ﬂamm}

14

Ainsi le calcul de s (%, /) est ramené a la résolution d’une équation
intégrale de Fredholm.

HEH:P@F%JWW+rWEQp@FMG

dont on vient de prouver qu’elle admet au moins une solution. D’ailleurs,
une solution quelconque Y, (£, /) n’est pas nécessairement égale a s(E, F);
mais la différence de ces deux solutions vérifie évidemment I'équation (H),
de sorte qu’elle est de la forme Y, (&, F)—s (&, F) = B (£) X, (#).

Or, on a, avec convergence uniforme

J}ugmdﬁzgf[j}wwmaﬂuifpwym]:zuun:mx

>

S Y (& F)dF
s 4

DOU ﬂ(E)-—-— /.A,O(F)dF ’

v [ Yo (B, F)dF
J— 4 » _—— _V 7
et finalement s(E&, F) = Y, (&, F) X () dF X, (F).
14

Cecifait, on calculera la partie principale 71{ o, (E) de f7N(E)— JP(F)dF
(p. 215) par la formule o, (E) =/ s (&, F)dF.
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Remarque [. Le raisonnement qui précéde nous fournit, chemin fai-
sant, une condition nécessaire pour qu’on soit dans le cas régulier sous
une forme qui peut étre commode:

Pour qu’on soit dans le cas régulier, il faut que 1’équation intégrale
homogene de Fredholm (H) admette une solution partout > 0, non
identiquement nulle et qu’elle n’admette qu’une telle solution a un
facteur constant pres.

Remarque 7. On a vu que dans le cas régulier I’équation intégrale
homogeéne

() x(@) =1 [ X(6) (6, #) a6
v

a au moins une solution effective P (#) pour A—=1. C(’est ce qu’on
exprime en disant que l'unité est constante caractéristique pour ’équation
(H). Il n’est pas nécessaire pour obtenir ce résultat d’avoir établi que
la limite P (/) vérifie ’équation (H). En effet, la condition (7;) montre
immédiatement que 1’équation intégrale homogéene associée a (H,), soit

(H,') Y(F)::lfY(G)ﬁ(F,G)dG
12

admet pour A =1, la solution effective YV (G)=1. L’unité est donc
constante caractéristique de (H';) et ceci qu’on soit dans le cas régulier
ou non. On sait qu’alors, si les théoréemes de Fredholm s’appliquent
a (H,), unité sera aussi constante caractéristique de (H,).

Autrement dit, la théorie de Fredholm nous aurait permis d’établir
directement l'existence d’au moins une solution effective de (H), aussi
bien dans le cas singulier que dans le cas régulier. Mais elle ne suffisait
pas pour établir que dans le cas régulier P (F) est déterminé par les
conditions (15) et ({F). Et de plus, on n’a pas le droit d’appliquer cette
théorie a tout noyau et tout domaine. On sait en particulier que son
extension au cas des domaines illimités et aux noyaux discontinus ne
peut se faire sans de sérieuses restrictions.

Valeurs moyennes de variables et de fréquences aléatoires dépendant
d’événements ,en chaine“. Estimation de leurs dispersions

Valeur moyenne d’une variable aléatozre. Supposons qu’a chaque état
possible / corresponde une valeur déterminée Y (/) d'une certaine
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variable. C’est une variable aléatoire dont la valeur dépend de la réa-
lisation de l’épreuve qui doit fournir un des états possibles.

Appelons X (E) la valeur aléatoire prise par cette variable quand
n épreuves ont cu lieu a partir de Pétat £. Si, par exemple, ces »
épreuves ont abouti a I’état #, on aura X% (£)—= V(F). Mais quand £,
n sont donnés, / n’est pas déterminé et les deux membres de cette
égalité ont une valeur aléatoire dont nous désignerons la valeur moyenne
par

MX(E) = WF)

Avec les notations précédemment employées, cette valeur est égale a
fY(F) PO (L F)dF

et le probléeme a résoudre est d’abord de trouver comment se comporte
cette quantité quand » croit.

Si nous nous plagons dans le cas quasi-régulier alors P (£, /) con-
verge vers P (/) sauf peut-étre sur un ensemble = de mesure nulle.
Or on a en posant /' =V —w

(19) M X (E fY F)YPW(E, F)dF

et le probléeme est de savoir s’il est légitime de passer a la limite dans
le second membre sous le signe d’intégration.

Mais, déja dans le cas simple ou Y (&) est une constante non nulle,
nous savons que si l'on n’est pas dans le cas régulier

fy [lim P (E, F]dF——fy P(F)dF = Y(F)fP(F) AF
1244

=V (F) = lim f Y () P (E, F)dF.
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Il en est encore de méme dans le cas plus général ou YV (#) garde un
signe constant et reste en valeur absolue supérieur a une borne positive.
Car si YV (F) reste positif et supérieur a &

fy ) P (B F dFMfY F)P(F)dFF —
(20)

f V(E) [P0 (E, 1) — p (F)) dF — [ ¥ ()2 (7) — p9 () P,

La question du passage a la limite sous lintégrale ne peut se poser
que si les intégrales du premier membre sont finies. Dans ce cas V (/)
P (F) serait aussi sommable sur [’ et au plus égale a une fonction YV (#)
P (F) sommable sur /', vers laquelle elle tend sur 7' sans décroitre.
Donc la derniere intégrale du second membre tend vers zéro. Or

f Y (F) [P (£, F)— p® (F)] dF >¢[1 — f 2 (F)dF]> 0

Le premier membre de (20) ne peut donc tendre vers zéro que si la
limite [/ p(F)dF de [ p®» () dF est égale a 1, c’est-a-dire dans le cas
14 7

régulier.

Si YV (F) peut changer de signe, il pourrait se produire des compen-
sations de signe permettant le passage a la limite de (19) dans le cas
non régulier, pour des fonctions YV (#) particulieres. Mais nous savons
maintenant que cela n’aura pas lieu pour des fonctions choisies parmi
les plus simples. Dans la suite, nous allons donc nous borner au cas
régulier,

Si Pon suppose que Y (/) est borné sur }/ ou au moins sur V', si
par exemple, on a | V(F)| < A4 sur /', alors en vertu de (20)

(21) | f Y (F)P™ (E, F)dF — f Y (F) P(F)dF

Al —-fp<")(F)a’F].

Et par suite le premier membre tend vers zéro.
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Donc: si la fonction ¥V (/) est bornée sur [/, alors dans le cas régulier
AT X™ () tend vers une limite quand 7z croit indéfiniment et cette
limite est la quantité indépendante de £

M:fY(F)P(F) dF.

Cette quantité limite de valeurs moyennes est, elle-méme, une valeur
moyenne de YV (E) puisque P(F)>0 et f/ P(F)dF—=1 et c’est méme
la valeur moyenne de Y (/) qui correspond a la densité-limite P (F).

Enfin, dans ce méme cas, la convergence de Ul X™ (E)— M vers

zéro est, d’apres (21) jointe a la formule (19) de la p. 229, uniforme quand
E varie.

Observons d’ailleurs que

M Xt (E) = f P (E, @) [N X (X)] 4G.
14

Si donc Y (£) n’étant pas borné sur J, AT X (£) est borné sur } pour
une valeur convenable # de #, les résultats précédents subsistent puis-
qu'en remplagant YV (£) par 2IT X" (G) on retrouve a un décalage prés
la méme suite de valeurs moyennes.
Or, sile passage a la limite est 1égitime c'est que M — / V(&) P(F)dF
v

est finie et si la convergence de 2IT X (E) vers M/ est uniforme quand
E varie, alors, pour » assez grand UT X (£) est nécessairement bornée
quand £ varie. Donc:

Dans le cas régulier, la condition nécessaive et suffisante pour que la
valeur moyenne N XM (E) converge, uniformément quand E varze sur
V, vers une limite finie indépendante de I est que Y (E) (ou plus géné-
ralement 8 X" (E) pour aw wmoins une valeur de n) soit bornée quand
E varie sur V.

Si YV(E) n’est pas borné, un cas simple ou la condition de conver-
gence est remplie est celui ou YV (E) est sommable sur }J et ou, de
surcroit, " (E, F) est, pour » assez grand, borné quand £, /' varient
arbitrairement sur J. (Cest par exemple ce qui a lieu quand YV (£)
étant sommable sur un domaine }/ borné, 'un au moins des P®) (E, F)
est continu pour £, / arbitraires sur ).

En effet

M xw ()~ [v@E) PRI Z[ [P0 E)— PE] | V)| aF,
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Or si P (E, IF) a une borne supérieure finie 4 quand E, /7 varient sur
V, on a vu (p. 207) que P® (F)— P(F) est majoré pour » assez grand,
par le terme correspondant #, d'une progression géométrique indépen-
dante de /. Le second membre sera donc _.é_u,,w/] Y(F)|dF et par

) , I
suite tendra vers zéro avec el On a donc encore
(22) lim A X0 (£ f Y (F) P(F)dT
7~ ©

et la convergence est non seulement uniforme quand £ varie, mais au
moins aussi rapide que celle des termes d’une progression géométrique
indépendante de £. Il est vrai que dans ce cas T A (£) étant alors
borné pour » assez grand quand £ varie, on rentre dans un cas déja
examiné; mais il peut étre parfois plus commode de s’assurer que
P (E F) est borné que de le vérifier pour T X (£).

Méme dans certains cas ou la démonstration précédente ne s’applique
pas, il peut arriver qu'on ait encore l'égalité (22). Par exemple, dans le
cas envisagé p. 189 et avec les mémes notations, on posera

M X (x f Y (3) P (x, 9) dy

I _ =2 I
14 ”

3 Ty

me\X 7)| dy.

Si donc V() est sommable sur le domaine }/ actuel, c’est-a-dire sur
lintervalle (— oo, - o0), UT X (x) tend vers une limite qui est zéro.
Pourtant, on n’est pas dans le cas régulier, puisque P® (x, y) tend vers
zéro. Et cependant, on a encore

avec P (z,y) =

| MXW (2) | <

~4-o0
lim 2 X0 (z) = f Y (y) P(y) dy.

Remarque. Dans ce qui précéde nous avons cherché a déterminer

des cas assez généraux — au reste tous réguliers — ou l'on peut passer a la
limite sous le signe [ dans [ Y (F) PW (£, F)dF.
4
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Il peut cependant se produire des cas ou cette intégrale ait une limite
déterminée, sans que cette limite soit égale a / V(F) P (F)dF. Clest
14

ce que nous allons constater dans 'exemple suivant (qui releve du cas
quasi-singulier proprement dit).

Exemple. Généralisons un exemple dli & Lord Rayleigh. Considérons une
molécule qui effectue une suite de déplacements sur une droite et supposons
que la longueur de chaque déplacement ait pour un sens donné une proba-
bilité donnée. Ou, plus précisément que la probabilité pour que la molécule partant
de x arrive au bout d’un seul déplacement & une position comprise entre y et
¥ -+ dy soit le produit de &y par une fonction de la grandeur |y — x| du
déplacement et de son sens, C'est-d-dire une fonction de y—x, p (¥ — x).
Dans le cas examiné par Lord Rayleigh, des déplacements égaux en valeur
absolue et de sens contraire avaient la méme probabilité, la généralisation la
plus immeédiate consisterait donc & supposer que p (s) est une fonction paire
de 5. Mais nous allons considérer aussi le cas général.

Si nous prenons pour Y (y) la fonction y on aura T .X® (r) =
+ o
Sy P (y—x)dy.

Mais, sans rien changer a la question de l'exzszenzce d’'une limite du premier
membre, on a profit & en retrancher une certaine quantité indépendante de 7,
qui lui donnera une signification concréte plus simple et d'un plus grand in-
térét physique. Posons en effet

+ oo + ®
(23 V= [(y—0)P¥ (y—x)dy=m X" () —x [ P? (y—x) dy
— — 0

=MmXx" ()] —x
) est la valeur moyenne du déplacement résultant y — v aprés la z®me
opération & partir de labscisse x. On a

+ oo + oo
V:V<1>:f(y—x)p(y——x) dy:fup(u)du; valeur indépendante de la
—_— 00 —

position initiale + mais qui n’a pas nécessairement une valeur déterminée et
finie. Supposons p (#) tel que cette intégrale soit finie ainsi que celles qui
interviennent par la suite. }7 est «le premier moment» de p (#). De méme

+
v — / (y—x) PP (x, y) dy.

+ oo + @
P® (x, y) zfp (z2—x)p(y—2) dz:fp () p(y—x—u) du.
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En posant:
+ o
P20 = [ p @ p(t—u) du

on aura
P® (x, y) = p® (y—x).

De méme, en posant

+
PO = [P @) p(¢t—u) du,
— o0
si 'on a pour m < n, P (x,y) = p" (y — x), alors

+ o + ®
PW (x,3)=[ PP (z—x) p(y—2) de = [ p*~ () p (y— 5 —u) du

et I'on a
P (x, y)=p™ (y—x).

Donc:
4+ oo

i) = f (y—0)p" (y— ) dy = / up" () du

=[P @[ [¢+0) p0)do] at = f P O [t 4 VO = VO Ly,
Ainsi vy __ V(n —1) __ V(” ) _ye=2__ ve _yo

D’ol en ajoutant:
(24) Vo —=nl.

+ w
Si p (#) est une fonction paire, J' = fu p (u) du sera nul. Dans le cas

-~ Q0

contraire, J/ sera en général £ 0. Les deux cas seront tres différents:
I. Si V=0, V® sera nul quel que soit » et, naturellement, tendra
, I
vers zéro avec — .
n
II. Si V=0, V'™ croitra indéfiniment en valeur absolue et gardera
le méme signe.
On peut dire qu’en moyenne au cours d’une suite infinie d’épreuves:
ou bien la molécule oscillera sur place — c’est le cas de Lord Rayleigh
— ou bien elle s’éloignera indéfiniment.
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Drailleurs, on a: d’apres (23) et (24)

U X (x) =2 4 nl.

De sorte que si =0, UT.X™ (x) reste égal a x, quand » croit et si
V40, T X" (x) tend vers Pinfini.

Observons que, dans le cas actuel, la condition (T') étant vérifice et
le domaine des états possibles étant de mesure infinie, %" (x, ) ne peut
tendre vers une limite indépendante de 1'état initial que s'il tend vers
zéro (p. 224). De sorte que, sauf le cas particulier ot /== 0, on n'aura pas

+ =

lim Zn X ) (/‘f) h— f' |4 (,'V) P (]/) d}’)

7> 0w

puisque le premier membre est infini.

Notons d’autre part ce résultat intéressant que nous avons pu obtenir
lexpression de /™ en fonction explicite de z sans avoir besoin de con-
naitre la densité de probabilité pour une épreuve, c’est-a-dire indépen-
damment de la fonction p («).

Effet de la condition (T'). Dans le cas le plus régulier, celui ou P (F)
est une constante sur /', on a

1 S Y(F)dF
2 T i —h (n) f— ¥
P(F) T La formule (22) devient /7 ,}LH:OmX (£) TP
v

Ainsi, dans le cas le plus régulier, 4/ est, comme dans le cas régulier,
indépendant de %, mais, au lieu d’étre simplement une valeur moyenne
de Y (#) au sens du Calcul des Probabilités, c’est-a-dire une moyenne
pondérée, c’est une valeur moyenne de YV (/) au sens du Calcul Intégral.

Nous savons d’ailleurs que si le cas le plus régulier ne peut se pré-
senter que sur un domaine fini, la condition (T') peut avoir lieu sur un
domaine illimité, Dans ce cas, plusieurs circonstances peuvent se pro-
duire dont nous avons rencontré des exemples plus haut. Par exemple,

+ o
dans le cas de la p. 233, si fup (#)du 2 0, AT X (x) tend vers 'infini,

pour YV (y) = y. Sil'on prend p (u) = VI_ e—*', alors, dans le cas, ou V(y)=y,
14

AT X (x) tend vers une limite, mais cette limite n’est pas indépendante
de I'état initial, tandis que si ¥ () est sommable, non seulement 21T X (x)
tend vers une limite indépendante de l'état initial, mais cette limite étant
nulle est indépendante de la fonction Y (y) et 'on a
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n—)OO_oo Y n->
ce qui n'avait pas lieu dans les deux cas précédents.

M. Hostinsky a étudié également le résultat de la condition (T') dans
I'effet d’un grand nombre de rotations aléatoires d’une roulette ou d’une
sphere (I, p. 51).

Moyennes arithmétiques. Nous avons vu que, dans le cas régulier, si,
par exemple, V (/) est bornée sur J, la quantité

AT X (E) = f P»(E, F) Y (F)dF
v
tend vers la quantité

M:fpmnwmm

On peut aussi donner une autre interprétation de 47, en appelant //® (£)
la valeur moyenne de la moyenne arithmétique

Ao ()= XOE A+ + X (B)

On voit en effet que /™ (E) est la moyenne arithmétique de la somme
des » premiers termes d’une suite de nombres UT X® (£) qui tendent
vers J/. On a donc:

M = lim M= (E)

7>

et on voit que cette limite est indépendante de Z.

L’existence de la limite est ici établie dans le cas régulier; il est
vraisemblable qu’elle subsiste dans des cas plus généraux.

Nous allons particulariser ce qui précede, au cas ou X® (£) ne peut
prendre que les valeurs o0 ou 1.

Fréquences moyennes. Appelons encore répétition d'un événement A
au cours de z épreuves, le nombre R de fois que A se produit et

fréquence f de cet événement le rapport —i—g :

Appliquons au cas ou l'événement 4 consiste en ce que le systéme
matériel étudié se trouve dans 'un des états / appartenant a une por-
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tion v du domaine }/ des états possibles, et ceci en partant de I'état
initial /Z. Alors en employant des notations analogues a celles de la
p. 215, on aura:

t=n t=n
MRW(E)=2 0¥ (E)= 2 | PY(E, F)dF.
t==1 t=1

Et on aura pour la valeur moyenne de la fréquence / (E) avec laquelle
on passera au cours des z premieres épreuves par un des états de v,
a partir de l'état &

0 0 (E) = f a® (B, ) dF

v

E=n

ou a"(E, F)= ———ZPU) (£, /). Donc:
1 t=n
M £ (E) —f p(FYaF =" | X[PO(E F)—p(F)dF = H,— K,
: t=1
ou:
1 t=n
H,= | X [PO(E F) —p» (F)]dF
t=1
I t=nJ
= 2| fpw E, F)dF — fpw F)dF]
1 t=n f
:”Jg I — p(’) dﬁ ]
et

- f |2 (F)— 2% )]dFé-—Z U P\ a’F———f P dF]

Dans tous les cas [ p®(F)dF tend vers [ p (F)dJdF quand ¢ croit,
v 4

donc K, tend vers O avec % Dans le cas régulier, /@ (/) dF tend
v

vers 1 quand ¢ croit, donc A, tend aussi vers zéro.
Ainsi, dans le cas régulter, la fréquence moyenne QU [ (E) tend vers
une limite quand n croit indéfiniment et cette limzte est: [ P(F)dF quz
v

est indépendante de E. (Par analogie avec ce qui se passe dans le cas
d’'un nombre fini d’états possibles (IV, p. 18), on est porté a penser que
la premiére partie de cet énoncé sétend au cas singulier et que la
seconde partie s’étend a certains cas singuliers — prévision confirmée
dans la note V aprés rédaction du présent mémoire —.)
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Dispersion

Nous jugerons des dispersions des variables aléatoires qui viennent
d’étre étudiées en calculant leurs écarts quadratiques moyens.

1° Dispersion d’une variable aléatozre. Pour mesurer la dispersion de
X (), calculons d’abord son écart quadratique moyen ¢® (£). On a

(250 [u™ ()= f P& (L, F)[Y (F)— M X @ (E)) dF

— f v (F) P (E, F)a’F———[ f Y (F) P (E, F) a’F]Z.

Vv 14

De la relation

[« (E)] = WC[X @ (E)) — [T X (£)]

et du résultat établi plus haut p. 231, et appliqué a ¥ (#) et V?(F), on
déduit, que: dans le cas régulier, la condition nécessaire et suffisante
pour que AT X (E) et u™ (£) convergent uniformément, quand £ varie
sur V, vers des limites indépendantes de l’état initial %, est que Y (/)
soit borné sur %, ou que, pour une valeur asses grande de », T X @ (£)
et T [X ™ (E)]? soient bornés quand FE varie sur V.

Un cas ou Y (£) n’est pas borné et ou I'on peut cependant, s’assurer,
sans itération, que cette double condition est satisfaite est celui ou pour
au moins une valeur de », P (£, /) a une borne supérieure finie quand
F, F varient sur [ et ou V? (/) est sommable sur }. (On sait qu’alors
Y (F) est aussi sommable sur ).

Il est clair que dans ces deux cas, la limite 4 de I'écart quadratique
moyen w4 (£) est elle-méme un écart quddratique moyen, a savoir
celui qu'aurait V (#) si P (E, F) était remplacé par P (F#). Car on a

yzz—_lfp(ﬁ) [Y(F)—M]wF:VfP(F) Yz(F)a’F—LIP(F) Y(F)dF]-

Pour simplifier, nous allons pour la suite nous contenter de conditions
suffisantes; nous supposerons, qu’'on est dans le cas régulier et que
Y (F) est borné sur [ (ou bien que Y* (/) est sommable sur /" et que
P (E F) est pour n assez grand, borné supérieurement quand £,
varient sur V).
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On déduit de g™ (£) la valeur de I'écart quadratique moyen A" (E)
de X (FE) avec M. Car

[0 (E)] = [ (E)F + QT X () — M7

Par suite, quand 7 croit indéfiniment, A® (£) qui reste > ¢ (£), tend
vers la méme limite x indépendante de F£.

Dzspersion de la moyenne arithmétique. De méme, appelons p® (E) et
0® (E), les écarts quadratiques moyens de A (/) avec sa moyenne
M® (E) et avec la limite 4/ de cette moyenne. On a®)

n [0 (E . Z [L6) (E)]2 -+ L™,
=1

Le premier terme du second membre tend vers g’ quand 7 croit indé-
finiment. Reste a étudier

Lw=2 3 WX (E)— M][X® (E)— M]

7 y<y<n

:zf[X(F>~M][f (X (G) — M]R® (F, G, E) dG]a’F

v

avec RO (F,G,E)=— 3 P (E F)Po—u (F, Q)

R u<o<n

= \PO(E,F) PO(F, G)+ [PO(E, F) PO F, G)+ PO(E,F) PO(F, G)]+ ..

oo [PO(E, F) PO (7, G) - ... | Pe=Y (B, F) PO (F, G)]
— [SW(F, @, E) - TW(F, G, E)]

ou S et 7 sobtiennent en remplagant dans R® les PW (F, G) res-
pectivement par P& (F, G)— P(G) et par P (G). On pourra dans L®
remplacer R par S", car le terme négligé dans L) sera

f [X () — M] f [X (@) — M] P®(E, F)P(Q) dF dG
u<v<n
— f [X (77)— M P (E, F)dF- f (X (})— M] P (@) dG

ou la derniere intégrale est nulle.

6) Pour un calcul et des raisonnements analogues a ceux qui suivent, mais un peu plus
détaillés, voir IV, p. 23.
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n—1

Or S est le produit par de la moyenne arithmétique des 7z — 1

premiers termes de la série q;, +a, + ... + @, ... ou
oy = PO (E, F) oW (F, Q)+ ... + PHY(E F) o (F, G)

avec w™ (£, G)=P ™ (F,G) — P(G). Si on démontre que «, tend vers
a, il sera prouvé que S® tend vers a.

Supposons encore, pour simplifier, que non seulement ['un des
P (E, F) mais p (£, F) ait une borne supérieure finie quand Z, /
varient indépendamment sur V. Alors, dans le cas régulier, P (E, I7)
tend uniformément vers P (F) et la série | o™ (F, G)| est bornée et

”

uniformément convergente. Deés lors «, tend uniformément vers

S (F, G) EP(F)”—_SO;(”) (F, G) =P (F)s (F G).
Par suite
(26) . lim 7 [0 (B)) = p'®
avec

‘LII 2 — ‘ai! + L

ou
L=
o ":m [X(F)—M]P(F) ;f[X(G)——M] [PA(F,G)— P(G)] 4G g al.

On peut aussi écrire

@) w=[PE) X (F)—mTar
zf[X(F)——M] U[X(G)——M]S(F, G)a’G%dF.

D’autre part, on a évidemment
(28) n [0W (E)) = n [ (E)) + n [M"(E) — M T
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Et
Vi | M (E)— M| =Vn

u—n

> — | pw s F)— <F>]X(F>dﬁ|

u=1

= 3 dg [1X@#)|aF
V n=1
puisque, dans le cas actuel, les | P® (£, ') — P (F)| sont inférieurs aux

termes d’une série convergente X' A g*
®
Finalement on a:

(29) lim 7 [0W (E)) = u'*

n-» x

Ainsi, lorsque 7 croit indéfiniment, non seulement 4 (£) tend vers zéro,

Va'

Retour a lexemple. 1l n’est pas impossible d’étudier le comportement
de la dispersion en dehors du cas régulier. Reprenons l'exemple de
Lord Rayleigh et les notations de la p. 233, pour calculer la dispersion
du déplacement y — x. Soit ) I'écart quadratique moyen du déplace-
ment a partir de Pabscisse » apreés z chocs. On aura

mais nous connaissons maintenant sa partie principale

+oo
007 = [ (y—x— Vo PO ) dy = [ VT 0 )

C’est une quantité, [6*)]? indépendante de la position initiale .

On a:

(o]

<k
(007 = [ 4 p () e — (V) = 0, — n* V.

fu P () du —fu [fp(”‘l) (¢) p (u —- z)dz‘] du =
fp("—l) (z) [fuzp (w —¢) du ] dt
et

fuzp(u—-—t)a’u:f(z‘—}—v)zp(v)dv:tz—{—zz‘fvp(v)dv-}—fv“’p(v)dv

+ o

=4+t VW avec W::fvzp(v)dv

— 00

Or

241



+ o +
6 sera fini si / vp (v)dv et [ o' p (v) dv sont finis ce que nous allons

— 0

Supposer.

Alors
=[PV 2V W= a2 (1) VP W
d’ou
[0 — 09 = (a0, — atp1)— [*— (n— 1]V = W — V?, avec
(6] = I— V* Donc
[6]: = n 00,
0 — M Jn et 6O =)W — V-

Sous la condition que le premier et le deuxiéme moments, V et W,
de p (#) soient finis, on a généralisé le résultat établi par Lord Rayleigh
dans le cas de déplacement finis, constants et égaux, a savoir que @

est proportionnel a Va.

Observons qui si l'on prend pour VY (y), la fonction y, on a
y—UWMXP () =y—x— V@ et par suite écart quadratique moyen
u® de X (r) est aussi égal a 6®. On a donc ici un exemple d'un
cas quasi-régulier mais non régulier. Et ici ¢® au lieu de tendre vers
une limite, croit indéfiniment.

I1° Dispersion des fréquences. 11 y a plusieurs fréquences a distinguer,
La fréquence 7" (E ) avec laquelle dans NV groupes de z épreuves,
on aboutit a la #*=¢ épreuve a un état appartenant au domaine v apres
étre parti initialement de I'état £, a pour valeur moyenne la probabilité
w0l (E) = [P (E, F)dF de cet événement. Et son écart quadratique

v

(n) L ()
moyen est, comme on sait, la quantité g;,‘"’N ) (E) = \/w” (£) [IN Wy (£ )]_

On voit qu’'on aura dans le cas régulier

”n —p 0

/£ F)dE] ) P(F)dF]
lim g;}(n,]\f) (E) e v j\;/—-z;

lim M FY (F) = f P(F)dF

7> o

La premiére limite ne dépend ni de 7, ni de V, ni de l’état initial %
la seconde ne dépend ni de 7, ni de E.
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Passons maintenant i 'écart quadratique moyen & (£) de la fréquence

M (E). Les limites des valeurs moyennes de 7" (E) et de £ (E)
(p. 237) sont les mémes, quel que soit /V, lorsque = croit indéfiniment;
il n’'en est pas de méme de leur dispersion.

On aura avantage a calculer d’abord ’écart quadratique moyen G\ (E)
de 7" (E) avec la limite p, — S P(F)dF de la valeur moyenne de

[ (E). On aura évidemment

(30) (G (B = [EX(E) 4 A (E) — 2]

On connait déja le dernier terme
1 =n t=n 2
[ f PO (L, F)dF — /)w] - ; [P (E, F)— P(F)] dF

et on sait que si, pour simplifier, on suppose que p (%, /) a une borne
supérieure finie quand £, /7 varient sur V, l'accolade tend, quand #
croit, vers une limite finie /s (£, F)dF.

En ce qui concerne & on pourrait le calculer directement. Mais,
il est clair que si X (/)= 1 ou O suivant que 7 se trouve ou non sur

v, AR, M (E), M, " (E) se réduiront & £ (E), M f(E), 4., G&.
Alors d’apres les formules (26), (27), on a

lim » (G (E) = K" 4 H

avec: e
:fP(F)dF———[fP(F)dF]z, ou K= p, (1—p,)
et ’ ’
H = zf(l-— ,,)f(x——p,,)S(F,G)deF+ zf(mﬁz,)f(l— ) S (7, &) dG dF
2 [p f (4 S G)dar 42 | ) [ps00) a6 ar

:.2(1_-—;,,)2] S(F,G)a’GdF+2(/)v)2f fS(F,G)deF

—2p,(1 p,,[ffSFGdeF—{—ffSFGdeF]

V-v v
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Drailleurs, on a, avec convergence uniforme
t—=+4 o
fSFGd(; 2‘ fz ) [PY(F,G)— P(@)] 4G

:é: [fPUFGa’G fP a’G] Z?P (F)[1—1] =0,

et d’apreés (F,)

S(F, Q) dF = 2 U P (F)P® (F,G)dF»«P(G)fP(F)dF]

2 [P(G) — P(@)] =o.

=1

Dés lorsfS(F,G dG:-—fS F,G)dG, fS(F,G)a’F:——fS(F,G)dF
v V—ov v

et H se réduit a:

2 (1—2) f[fsm 46| ar—2(y, f[fsm 46| ar
2, (1) g_f[fspada]dp+f[fspa a6 ar|
oo [ foeeaalan—s, | s ] o
o) f5i0040 05—, [ i1+ si50105] 0
=+ [ ([t [0l

s f fsinaan

cu [ fstnrar] o f | foteraa]r=o

Ainsi H =2 ffS(F,G)a’GdF.
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Il résulte alors de la formule (26), quon aura, non seulement
GPNE)> &P (E), mais encore

lim V2 GP(E)= lim Vn EP(E)=VK*+ H

7n—»®x 7n—» ®©

:\/;,,, (=) + 2/ [ L(F)s(F,G)dG dF .

(Regu le 23 avril 1932)
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