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Les probabilités continues ,,en chaîne"

par Maurice FrèCHET, Paris

Résumé
Le présent mémoire est un essai de mise au point en ce qui concerne

la détermination exacte des champs de validité des résultats antérieurement

connus de la théorie des probabilités continues dites « en chaîne ».
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Introduction

Markoff a appelé événements «en chaîne» des événements fortuits tels

que, dans une suite d'épreuves, la réalisation de l'un d'eux dépende du

résultat de l'épreuve précédente. Il a étudié particulièrement le cas où
les événements possibles considérés sont en nombre fini. Divers auteurs,
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— à sa suite, ou indépendamment, — ont étudié le même problème
dans le cas où ces événements sont en nombre infini* dans le cas des

probabilités continues. On trouvera un excellent résumé de leurs recherches
dans un petit ouvrage dû à M. Hostinsky (I)1).

Dans ces travaux, on s'est d'abord préoccupé, comme il est légitime,
d'aller de l'avant et d'arriver aux applications. Toutefois, il nous a paru
qu'il était maintenant utile de consolider les résultats acquis en les revisant

ati point de vue de la rigueur mathématique, puis de procéder a
leur extension. Nous nous sommes consacrés à cette tâche dans notre
cours du Premier Semestre 1931—32 Et nous publions ici une partie
de ce cours.

l'étude critique des cas de validité des propriétés antérieurement
énoncées nous a conduit à introduire des distinctions qui, malheureusement,

ne simplifient pas l'exposition, mais qui serrent de plus près la
vérité Telles sont les notions de cas positivement régulier, de cas quasi-
régulier. En ne limitant pas les recherches au cas des densités continues
et des domaines bornés, on a aussi introduit des complications nouvelles,
mais des complications auxquelles on ne peut échapper, même dans les

applications.
Il n'est guère possible de résumer ici les résultats nouveaux contenus

dans ce travail On ne pourra s'en rendre compte qu'en le comparant
en détail avec les travaux antérieurs sur le même sujet

Position du problème

Diffusion. L'un des problèmes physiques ou s'est présenté naturellement

la conception des événements «en chaîne» est celui de la diffusion.
On considère un liquide comme forme de molécules soumises a des

chocs incessants. Une piemière approximation consiste à admettie que
la probabilité de la position B de la molécule après un choc ne dépend

que de B et de la position A qu'avait la molécule lors du choc précédent.

Lorsque le nombre des positions possibles de la molécule n'est

pas supposé limité, il faut faire intervenir au lieu du point B, un intervalle,

de la façon que nous allons préciser.
Cas rectihgne. Prenons pour commencer le cas simple d'une molécule

dont le mouvement est rectihgne. Nous supposerons qu'il y a une
probabilité déterminée pour qu'une molécule occupant une abscisse x vienne

*) On a reporte à la fin du mémoire les titres complets des publications distinguées dans

le texte par des chiffres romains.
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prendre, après n chocs, une position comprise dans un intervalle déterminé

(y\ y"). Nous admettrons que cette probabilité ne dépend que
des positions initiale et finale — c'est-à-dire de x, yf, y" — et du nombre
de chocs qui ont produit ce déplacement, indépendamment du nombre
et de l'effet des chocs qui l'ont précédé. La probabilité en question
devrait se mettre sous la forme d'une intégrale de Stieltjes étendue à

l'intervalle yf y". Mais en abordant le cas des probabilités continues,
on rencontre plusieurs difficultés qui ne se présentent pas dans la
régularisation des probabilités discontinues. Les intégrales qui représentent
des probabilités nécessairement finies peuvent s'étendre à des régions
illimitées et à des fonctions infinies en certains points. L'étude de la

régularisation étant elle-même assez récente, il sera peut-être préférable
de ne pas aborder toutes les difficultés à la fois ; nous nous contenterons
donc de l'étudier dans le cas où les probabilités en question ont des

densités de probabilité généralement finies. Plus précisément, nous

supposerons que la probabilité ci-dessus se représente par une intégrale
ordinaire. Son élément différentiel dépendra naturellement de x, de n et
de la variable d'intégration y. En résumé, nous supposerons que la
probabilité en question soit repré^entable sous la forme

f /><«> (x, y) dy.

On exprime ce fait d'une manière brève, mais peu rigoureuse, en disant

que la probabilité élémentaire pour que la molécule passe, après n
chocs, de l'abscisse x à une abscisse comprise entre y et y -f- dy est
/>(«) (x, y) dy. On aura évidemment P^n) {x, y) ^ o. Et, puisque après n

épreuves il est certain que la molécule partant de x se trouvera quelque

part, on a

<*> (x, y) dy — i.

Dans le cas particulier où la molécule reste dans un vase de dimensions

finies, y devra rester dans un intervalle fixe (a, b) et on pourra se

contenter d'écrire
b

1jPV>(x,y)dy=\.
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Pour simplifier les notations on posera

Pour aller de la position x à une position située dans l'intervalle y,
y -f- dy à la n -f- mhmc épreuve, il faut aller, à la nhmc épreuve, à une
certaine position qu'on peut situer dans un intervalle u, u -f- du et, de là,
à la position située entre y et y -f- dy à la n -\- mkm* épreuve. Plaçons-
nous dans l'hypothèse où ce dernier déplacement a la même probabilité
que si les deux positions dernières successives étaient prises avant la

première épreuve et à la mkme. Alors, si l'on suppose en outre que les
/><») (x,y) sont des fonctions continues de x et de y, on aura, en faisant
varier seulement u,

+ 00

[x,y) dy j P^ (x, u) du P^ (u,y) dy

en vertu du théorème des probabilités composées ; d'où la relation
d'itération

+ 00

+ n) (^ y)z=z f /><*) (x, II) /><*> (U,y) dit.

On a, en outre, pour chaque entier n

+ 00

P<*> (x,y) dy i

puisque la molécule partant de x doit bien arriver en quelque position y.
On voit que, connaissant p (x, y), la relation d'itération permet, en prenant
m i, avant et après y avoir permuté m et n, de calculer successivement

tous les PW(x,y) par l'une ou l'autre des formules

p(n + 1) (Xfy) — | P^) fa u}p
— 00

+ 00

P <« + J> (^, y)= \ p (x, u) P <
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Cas de l'espace Plus généialement, supposons que la molécule puisse
se déplacer dans l'espace à trois dimensions, alors on fera intervenir la

probabilité élémentaire P ^ [A, B) dvB pour que la molécule primitivement

en A se trouve à la nlemQ épreuve dans un volume dvB entourant le

point B. Plus précisément, on étudiera le cas où la probabilité pour que
la molécule, primitivement en A, se trouve à la niemc épreuve dans un
volume R est représentée par une intégrale triple de la forme

Cas gênerai. On peut encore généraliser et considérer le cas d'un système
dépendant de k paramètres qui ne sont plus nécessairement de nature
géométrique, mais dont la connaissance définit l'état du système. On

pourra désigner par h et F deux états du système et par v une région
de l'espace à k dimensions. Et l'on pourra étudier le cas où la probabilité

pour que le système passe, en n épreuves, de l'état E à l'un
quelconque des états F appartenant à v est représentée par une
intégrale multiple de la forme

P^ (E, F)
z

c'est-à-dire de la forme

> gk •> Miy ^2, Mk) dui dui

<h > gk > U\ y nk désignant les paramètres qui définissent respectivement

h et F. En raisonnant comme plus haut, on voit qu'on devra avoir

r r ,t wJ J 0{n) (ql9 qk; ui9 uk) dux duk I

v

ou, sous une forme plus condensée

(T) JV<»> (/z, F) ^ ^ i

et de même

(I) /><*.+«> (a, //) — J y^«) (£, ^;) /><*> (6?, /r) rfTc
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en désignant par V la région de l'espace à k dimensions formée par
l'ensemble des états possibles du système (V peut être bornée ou illimitée).
Enfin, on aura évidemment la condition p [E, F) ^ o, d'où, d'après (I),
PW {E, F) ^ o.

Puisque les /><*> {E, G) sont ^ o et vérifient (T), /> <*»+«> (E, F) est
une moyenne «pondérée» des P^m> [G, F). Si donc on nomme Pw (F) et
p{m) (j?^ \es bornes finies ou non de P^{G9F) quand G parcourt V,

on aura

o ^/(«) (F) ^ïp <>»+») {F) ^ /><*+«> (F) ^L /><«> (F).

Lorsque n croît indéfiniment p^n) (F) et P^ (F) ont des limites
déterminées, finies ou non, P(F) et P(F) et l'on a

Nous pourrons prendre pour V un ensemble très général. Nous

supposerons seulement que ce soit un domaine, entendant par là que V est
formé par la réunion des états intérieurs à F et de leurs états limites.
C'est ce qui a lieu pour toutes les figures simples. Les deux conséquences
qui nous seront utiles par la suite sont les suivantes. D'une part, V sera
« fermé » au sens de la théorie des ensembles c'est-à-dire comprendra
tous les états limites d'une suite d'états de V. D'autre part, pour tout
état E de V> et quel que soit rj ^> o, il existe un état F intérieur à V

et à distance 2) de E <C —. Donc, il y aura une sphère v de centre F

et de rayon assez petit pour qu'elle soit formée uniquement d'états de V,

tous à distance de E inférieure à 7/. En appelant mesure de V l'intégrale

I dz, on voit ainsi que pour tout état E de V (même pour un état
V

appartenant à la frontière de V) et pour tout nombre y|<o, il existe
une partie v de V h. distance de E de moins de r\ et dont la mesure
est positive.

Nous allons maintenant étudier les conséquences qu'on peut déduire
de l'hypothèse particulière que l'une des densités itérées P^ (E9F) est
uniformément continue.

2) Si E, F sont déterminés respectivement par les paramètres g, qk ; Wj ;... uk ; on

pourra appeler distance de E à F la quantité \/ (q1—w,)* + -Ç(q.k — ^)2, par exemple.
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Intervention de la continuité.

Continuité éventuelle des bornes. Faisons d'abord un raisonnement
général s'appliquant aux bornes inférieure çp (F) et supérieure 0 (F),
quand F est fixe, d'une fonction 0 (E, F) uniformément continue quand
E, F varient simultanément sur V, et partout ^ o sur V.

Alors cp (F) est partout finie et ^ o et on a

Or, pour tout a > o il existe un nombre ?/ > o et indépendant de E
tel que

| 0 {E, F) — 0 {E, F,) | < s pour FF, < n.

On a donc

et puisque le second membre est indépendant de E

<P (F) ^ - e + <P

On a de même <p (/^) ^ — e -\- (p (F)

et finalement

I <P [P) — V (-^i) I £= £ Pour

Ainsi, que V soit borné oit non, <p (F) est uniformément continue sur V,

Et même, puisque tout couple c, ?/ convenant pour 0 (E, F) convient à

g) {F), on voit que (p (F) est, en ce sens, au moins aussi continu que 0 (E,F).
Le résultat correspondant pour 0 (F) est moins simple, car 0 (F) peut

être infini. Toutefois, si Ton suppose 0 {E, F) non seulement uniformément

continu, mais encore borné sur V, des raisonnements analogues
aux précédents montrent que 0 (F) sera aussi borné et uniformément
continu sur V. C'est, en particulier, ce qui aura lieu pour toute fonction
0 {E, F) ^ o et continue quand E et F varient sur un domaine fini V.
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En passant au cas général, supposons qu'il y ait au moins un état
Fo où 0 (Fo) soit fini. Comme on a, pour FF0 < 7]

0 (E, F) [0 (E, F)-0 (E, Fo)] +0{E,Fo)^e + 0 (FO)

quel que soit E, on aura

et en particulier 0 (F) sera aussi fini.

Ainsi, étant donnés deux états F, Fo de V, à distance < y}, 0 (F) et
0 (Fo) sont en même temps infinis, ou bien tous deux finis et on a

Dans la partie V' de V où 0 (F) est fini, 0 (F) est donc uniformément

continu. On peut d'ailleurs observer que si U est une partie de V
qui est d'un seul tenant, U appartient entièrement à V' ou appartient
entièrement à V—F'. Par hypothèse, si F, F' appartiennent à U, alors,
à tout y] ^> o correspond un nombre fini d'états Fu F2, Fs de U tels
de FFU FiF2 Fs F' soient tous < r\. Si donc, par exemple, F
appartient à F', alors 0 (F) est fini, donc 0 (F,) est fini; 0 (FJ étant fini,
il en est de même de 0 (F2), etc Finalement 0 (F') est aussi fini.

Remarques. L On peut observer, en suivant la démonstration de plus
près que le résultat subsiste si on remplace l'uniforme continuité de

(p {E, F) quand E, F varient simultanément par une condition moins stricte,
« l'égale continuité » des fonctions de F, (p {E, F) qui correspondent chacune
à un état E déterminé. Autrement dit, il suffit de supposer qu'à tout
s ^> o, correspond yj tel que

\q>(E, F) — (p(E, Fo) | < e pour FF0 < yj

E variant sur V. Cette remarque sera utile plus loin (p. 183).

//. Supposons qu'on sache que 0 (F) est fini presque partout sur V,

circonstance qui se présentera souvent plus loin. Alors V—V est vide
ou de mesure nulle : Si V— V ' n'était pas vide, il y aurait un état F
appartenant à V— V et pour toute valeur de y) ^> o, la sphère de centre Ff
rayon y], contiendrait comme on l'a vu p. 180 une sphère appartenant à F et

par suite n'appartenant pas entièrement à V—V1 qui est de mesure nulle.
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Il y aurait donc un état Eo de V ou 0 (Fo) est fini et à distance < tj
de F, Par suite, 0 (F) serait fini contrairement à l'hypothèse. Ainsi
dans ce cas Vr ^ V c'est-à-dire que si 0 (F) est fini presque partout
sur V, 0 (F) est fini partout sur F et y est uniformément continu.

Un cas intéressant, que nous rencontrerons souvent par la suite est
celui ou (p (F, F) est ^o et est majoié, quels que soient F, F sur V,

par une fonction y) (F) sommable sur V Alors, l'ensemble sur lequel yj (F)
est infini, est vide ou de mesure nulle II en est donc de même de 0 (F)
Par suite, 0 (F) est fini et uniformément continu sur tout le domaine V

Continuité éventuelle des p^ (F). Supposons que l'une au moins F{m)
des fonctions P<«) {E, F) soit uniformément continue Ou même, plus
généralement, supposons que les fonctions de E, P^m) {h, F) correspondant
respectivement aux divers états .£ soient «également continues» (p. 182)
en F. Alors, à tout e positif correspond un nombre r\ tel que j P^m) (F, F)
— P^m) {E, E\) | <^ 6 pour FFx <^ r\, h variant sur F, £ et 7] étant
indépendants de E Alors

f

pour FFx < r\

On voit que pour E, n fixes, JJM(E,F*) sera une fonction de F
uniformément continue et que les fonctions de la famille de fonctions de F
obtenue en faisant varier E et n Q^ /;/) seront aussi « également continues ».

Il en résulte, d'après la p. 182, que l'on aura

pour ;/ > ;;/ et FE\ <^ y En passant a la limite pour E] E\ fixes, on
aura aussi

\p{F)—p{Fl)\<6
En résumé- qiu le doniaim V soit fini ou non, il suffit que l'une des

probabilités itérée* P<n> (E, F) soit uniformément continue en E, F sur V,

pour que les p{n) (F), a partir dun certain rang, et leur limite p (F)
soient chacune uniformément continues sur V et même y soient dans leur
ensemble ^également continues-».

En ce qui concerne les bornes supérieures P^ (F)} le résultat précédent
subsistera si l'une au moins des probabilités P^ (E, F) qui est supposée
uniformément continue est en même temps bornée sur V et alors les P^ (F)
et P [F) seront même «également» bornées à partir d'un certain rang. Il sub-
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sistera aussi quand l'une des probabilités P^n) (E, F) sans être bornée est
majorée par une fonction \p (F) sommable sur V.

Enfin, dans le cas général, soit Vr' l'ensemble sur lequel P(r) [F) est fini
et V' l'ensemble sur lequel F (F) est fini: Vr' appartient à F'. Si

FFx <^ rj et si F, Ft appartiennent à F', alors pour r assez grand F, Fx
appartiennent à F/. Or pour r ^> /;/, les P^n) (E, F) sont des fonctions de

F telles que

\P<*(E,F)—PV(E,Fl)\<e.
D'après ce qu'on a vu, p. 182

i P^ (F) — P^ (F,) | < e

pour r assez grand et par suite, à la limite,

Ainsi, dans le cas général, P^r)(F) est uniformément continu sur V J et F (F)
est uniformément continu sur tout l'ensemble V où F (F) est fini.

Dans le cas particulier où P (F) est fini presque partout, soient F, Ft
deux états quelconques de F, à distance <^ ï|. Alors, si P{1\) est fini,
il en est de même de P^ (Ft) pour r assez grand. P^ (E, F) étant, en
supposant r ^> m « également continu » en F quand E varie, il en résulte
d'après la p. 182 que P^ (F) est aussi fini et par suite que P(F) est aussi
fini. Ainsi Vf contient tout état F à distance <^ tj d'un état Fx de V' et
V— Vf est de mesure nulle. D'après le raisonnement de la p. 182 il en résulte

que V—V* est vide ou que V zel V. En résumé, si l'une des fonctions
P(fl) {E, F) est uniformément continue quand E, F varient sur V, alors, que
V soit limité ou non, si Ton est certain que P (F) est fini presque partout
sur F, on peut affirmer que P (F) est fini et uniformément continu partout
sur V- Nous savions déjà qu'il en est de même pour p [F).

Continuité éventuelle des P^ (E, F). Par contre, le raisonnement
précédent ne prouve pas que si l'une des fonctions P(w) [E, F) est
uniformément continue sur F, il en soit de même pour les autres à partir
d'un certain rang. Il y a cependant des cas simples où cette conclusion
est légitime.

Par hypothèse, pour tout a ^> o il existe un nombre r\ tel que pour
EEX < y), FFX < rj on ait

PM {E,, Fx) — PW {E, F)\<e. On a donc

/><*+«) (£; 9 Ft) — /><*+*> (E, F) | <

J F® {Ex, G) | PW (G, Fx) — PW (G, F) \ dzG

v

W (Et, G) — P^ (E, G) | P^ (G, F) dxG.
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Si jPw (G, F) est une fonction de G sommable sur V, le second membre

est < £ [i +//>« {G, F) dtG-\.
V

Nous aurons alors plusieurs cas :

I. Si V est borné, alors P^m) (E, F) supposée continue sur V y a une
borne supérieure finie ta et il en est de même pour PW (E, E) pour
s^ m. On a donc pour n ^ 2m, EEt <^ yj, FFt <^ yj.

/><«> (£, F) — 7J<*> (^, F,) |< a [i + Lu mes. F].

Ainsi, quand le domaine V est borné il suffit que l'une des fonctions
P^ (E, F) soit continue quand E, F parcourent V — et par suite
uniformément continue — pour que toutes ces fonctions soient à partir dun
certain ranç, chacune uniformément co?itinue et même, dans leur
ensemble, «également continues».

IL Ne supposons plus le domaine V borné ; alors si l'une au moins
des fonctions P('l> (E, F) est uniformément continue, et si, en outre,
l'intégrale f P(n) (G, F) dtG est, pour n assez grand, inférieure à un

v
nombre indépendant de 7^ et de n, la conclusion précédente subsiste.
La deuxième condition sera satisfaite en particulier dans le cas où est
vérifiée une certaine condition Z/ dont nous reconnaîtrons plus loin
(p. 222) l'importance.

Cette dernière condition sera aussi satisfaite dans le cas où P^ (E, F)
est non seulement uniformément continu mais encore borné supérieurement

sur V et même avec une borne inférieure positive a. Alors,
on a

pi»+>»)(E, F) =fpw (E, G)PW [G, F) dtG > a ÇpW{G,F)drG.

Or, puisque P^ (E, F) a une borne supérieure M il en est de même
de P^+m) (^ /r) et l'on a

JMP(«)(G,F)drG<~-
a

et ceci quels que soient n et F. Il en résulte encore que P^ (E, F),
P(m+1) (E, F), seront des fonctions «également continues» et «également»

bornées.



Si l'intégrale y=fP(*)(G,F)dTG?L, pour s assez grand, une borne
v

simplement indépendante de F, mais variable avec s et si P^ (G, F)
est seulement supposée uniformément continue sur V, alors chacune des

fonctions P{n) (Ef F) sera, pour n assez grand, uniformément continue
sur F.

Enfin, dans le cas plus général où P^ (G, F) étant uniformément
continue sur V, on suppose simplement que, quel que soit s assez grand
P^(GjF) est une fonction de G sommable sur V quand F est en Fo,
alors P^ (E, F) sera simplement, pour n assez grand, une fonction
continue de E et de F pour le couple d'états Eo, Fo où Eo est arbitraire.

Notons d'ailleurs que, dans bien des cas, l'étude directe des fonctions
p{n) (jf j?^ permettra d'établir leur continuité, à partir d'un certain rang,
sans recourir aux propositions précédentes. Tel est le cas de l'exemple
de la p. 189.

Introduction de la régularisation

On a /<«¦> (F) ^ PM {E, F) ^ /><*¦> (F).

Les bornes/W (F) et P^n) (F) ne peuvent jamais (p. 180) s'éloigner l'une de

l'autre quand m croît. En général, elles vont se rapprocher quand le
nombre m des épreuves augmente. JEn sorte qu'en général l'accroissement

du nombre des épreuves a pour effet de diminuer l'amplitude des
oscillations possibles — quand on envisage plusieurs positions possibles
de E — des densités de probabilités. C'est en cela que consiste, à un
premier point de vue, la régularisation des probabilités. L'étendue limite
de l'oscillation sera mesurée par P (F)—p (F). Il est d'ailleurs clair
que cette régularisation sera d'autant plus marquée que P(F)—fi(F)
qui est ^o sera plus petit et qu'elle atteindra son maximum quand

P(F)—p(F) sera nul.
C'est la recherche des cas où cette circonstance se produira qui va

nous occuper maintenant.
Supposons d'abord que p (E, F) ou plus généralement l'un, P^m"> {E, F),

des P(n) {E, F) a une borne supérieure 14 indépendante de E et de F,
au moins quand ceux-ci varient sur V. Alors P{m) (F) ^ u et P<*) (E, F)
^~ ff pour n > m et enfin P(F) ^ La.
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Notons, d'autre part, que la loi de formation des P^ {E, F) définie

par la condition (I) de la page 179, est la même que celle des noyaux
itérés de l'équation intégrale de Fredholm

X(M) f [M) + fj> (E, F) X (F) dzF.

La théorie de cette équation sera utilisée plusieurs fois par la suite. Dès

maintenant, nous pourrons y renvoyer pour la démonstration de plusieurs
propriétés. Il faudra toutefois observer que les démonstrations en sont
faites, généralement en supposant V borné et que leur extension au cas
d'une région V illimitée n'est pas toujours immédiate. Elle conduirait
même parfois à des énoncés inexacts si ceux-ci n'étaient pas convenablement

appropriés à ce cas. Par exemple on ne pourra pas, dans ce

cas, considérer toute fonction continue comme bornée, intégrable et
uniformément continue ; et une fonction uniformément continue dans une

région illimitée n'y est nécessairement ni bornée, ni intégrable. Par

contre, quand la région V est bornée, on sait (II, p. 343) que si le

noyau p {E, F) y est continu, il en est de même de tous les noyaux
itérés P{n) {E, F). Cette propriété qui va nous servir immédiatement a

été établie plus haut, p. 185, comme cas particulier de propositions plus
générales.

Définition du cas régulier. Plaçons-nous d'abord, pour simplifier, dans
les hypothèses suivantes: la fonction p (E, F) est uniformément continue

quand E et F varient simultanément dans V et la région V est bornée.
Alors p {Ey F) a une borne supérieure La et les fonctions P(w> (E, F) sont
uniformément continues et au plus égales à {i/. Du fait que P(*> (E, F)
est uniformément continue par rapport à l'ensemble de E, F, résulte que
P(n) (F) et pW (F) sont aussi uniformément continues et d'ailleurs ^ f/.
Ceci étant les inégalités

(1) o^| /><«> (E, F) —p (F) | ^ | P^ (F) —/«> (F)

et P {F) —p[F)= lim [/><»> (F) —p{n) {F)]

montrent que, dans le cas où on aurait p(F)~P{F) la suite des

noyaux itérés />(*) (E, F) aurait une limite déterminée p (F) indépen-
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dante de E. Ce serait là une circonstance bien remarquable : la densité
de probabilité du passage en n épreuves de l'état E à l'état F deviendrait,

pour n croissant, de plus en plus indépendante de l'état initial E.

L'égalité P(F)—p(F)

se traduit par l'égalité

lim [/»<«> (F) — /«> {F)] o.
n-> oo

Dans les hypothèses actuelles la convergence du crochet est nécessairement

uniforme. Car il en est ainsi pour toute suite non croissante et
convergente de fonctions (p^n) (F) continues sur une région V bornée

(et, comme on le supposera naturellement toujours ici, fermée, c'est-à-
dire comprenant ses éléments limites).

En effet si çp (F) est la limite de cpn (F), si l'on pose Dn (F)
(fn (F) — (p (F) et si on désigne par AIn le maximum de Dn (F) sur V,
Mn ne peut croître quand n croît. Donc Mn a une limite M^ o. Il s'agit
de montrer que M o. Dans le cas contraire, l'ensemble Sn des états F de

MV où Dn (F) ^ — ^> o comporterait au moins un état Fn De la suite

des Fn on pourrait tirer une suite FMl, Fn2, convergeant vers un état
F1 de V- Comme Fn Fn appartiendraient à Sn Ff appartiendrait

M
à Sn ; on aurait donc Dn AFf) ^— ^> o alors que la suite des Dm(Ff)
tend vers o.

Dans ces conditions, en vertu de (i), F^ (E, F) converge uniformément

vers p (F) quand E, F varient indépendamment sur V. Par suite,
on a

fp{F)drF=\im Cj
J n -> oo *-'
V V

Réciproquement, si, dans les mêmes hypothèses sur p {E, F) et V, les

intégrales de P(F) et de p (F) sont égales à l'unité, on aura

f[P(F)-p{F)]dTj?=o
V

et par suite, la fonction P (F) — p (F) étant continue et ^ O sur V y
sera nécessairement nulle partout.

188



Car, si xp (F) est une fonction continue dans une région V, bornée ou non
telle que / w (F) dF o avec w (F) -br o et s'il existait un état Fo de V

v
où yj (Fo) ^> o, alors, il existerait (p. 180) une région v de mesure positive,
appartenant à V et toute entière assez voisine de Fo pour que l'on ait sur

v, ip{F)^ V!i^, d'où o—
2 V

^d'où J dF o, contrairement à la définition de v.
V

Alors, la suite non croissante de fonctions continues F(n^{F)—p^{F)
qui converge uniformément sur V vers P (F) —p (F) convergera vers
o et finalement P^ (is, F) converge uniformément sur v vers une limite

p (F) indépendante de F.
Dans les hypothèses actuelles, les trois conditions suivantes sont donc

équivalentes :

i° pw (F, F) converge uniformément quand E et F varient sur V
vers une fonction limite indépendante de E,

2° p(F) — P(F) sur V.

y jp{F)dzF=JP(F)dzF i.
V V

L'équivalence des trois propriétés ne subsiste plus dans le cas général
comme va le montrer l'exemple suivant. Nous serons donc amené à ne
retenir que Tune de ces conditions pour définir le cas régulier dans les

hypothèses les plus générales

Exemple. Supposons le système matériel défini par un seul paramètre
numérique et revenons aux notations de la p. 178. Considérons le cas

particulier où p [x9 y) =: /— e
~^x~y)<l On aura bien

V

— 00

Or la relation d'itération fournit aisément l'expression

que d'ailleurs on vérifie plus facilement encore.
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Les bornes /><»> (y) et /<*> (y) quand x varie, de PM(x,y) sont
évidemment

\J I — j/ *~*. Jf \J J — w

+ 00 +00
de sorte que j p^ (y) dy o, et J PI") (y) dy est infinie quel que soit n.

— 00 — 00

Pourtant pW(y) etp^(y) tendent vers la même limite P(y) p [y) o
Et même la convergence de l'un et de l'autre est uniforme. Dans ce

cas PI") {x, y) converge vers une limite p (y) o et cela uniformément
+ 00

quand x, y varient indépendamment. Et les intégrales j P{y) dy et
— 00

J p {y) dy sont toutes deux finies et égales. Mais leur valeur commune
— oc

n'est pas l'unité.

En revenant au cas d'un nombre quelconque de variables, on voit
que cet exemple fournit l'apparent paradoxe suivant. Il peut arriver:
que ptâ {E, F) converge vers une limite indépendante de E et cela
uniformément quand E et F varient arbitrairement sur V, qu'en outre

P(F) =p(F), qu'enfin les intégrales / p {F)dzF et J P{F)dzF existent
v v

et soient égales et cependant que leur valeur commune soit ^z£ i c'est-
à-dire que

Çp (F) dxF ^ lim Çpw (E, F) dxF.
J n + co J
V V

Naturellement cet ensemble de circonstances ne peut se présenter que
si V est illimité.

Ainsi donc, dans le cas général les conditions i°, 2°, ne sont plus
équivalentes à 30

Or, si la condition i° est celle qui semble fournir dans les applications
la propriété la plus importante, son utilité serait bien diminuée si 30 n'était

pas réalisée. Car, d'après i° il y aurait bien une fonction p (F) qui serait
limite de densités de probabilités. Mais c'est seulement si 30 était réalisée

que cette limite serait elle-même une densité de probabilité (bien entendu,
on a toujours p (F) ^ o, P(F)^o).

Or, dans le cas général, nous allons voir que la condition 30 a pour
conséquence des propriétés qui sont presque les mêmes que i° et 2° et
qui conservent tout l'essentiel de l'utilité de la condition i° pour les
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applications. Cela nous permettra de définir le cas régulier — quand
on n'impose à p (E, F) et h V que les conditions (P), (T), (/) — comme
celui où 3° est réalisé.

Commençons d'abord par une observation qui s'applique qu'on soit ou
non dans la cas régulier.

Si p (E, F) n'est pas borné, alors, comme on suppose toujours
Jp{n) (^ /r) dxF~ i, la fonctionp^n) (F) qui est ^o et ^ P^n) {E, F) sera
v
aussi une fonction sommable sur V (c'est-à-dire dont l'intégrale sur V est
déterminée et finie) telle que fp^n) (F)dxF^L i. Et, puisque pw (F) tend

v
sans décroître vers p (F) (finie ou non), p (F) est aussi sommable sur V

et fp (F) d%F^-i (III, p. 120). Par suite, non seulement p (F) ne peut
v

être infini partout, mais p (F) ne peut être infini que sur un ensemble
vide ou de mesure nulle.

Appelons mesure d'un ensemble »S d'états F l'intégrale j dxF. Alors si vS est
s

l'ensemble des états F de V où p (F) ^ A > o, on aura 1 ^/p (F) dxF^
v

AfdxF, d'où fdxp^—. L'ensemble w (qui est peut-être vide) où p (F)
s s d

est infini, est compris dans S. Sa mesure est donc inférieure à —, pour tout
A

nombre positif A. Elle est donc nulle.

Définition du cas quasi-régulier. Nous avons dit qu'on appellerait cas

régulier le cas où les deux intégrales J p (F) dxF et j P (F) dxF existent
v v

et sont égales à l'unité. Ce cas est compris dans le cas plus général que
nous examinerons d'abord, sous le nom de cas quasi-régulier, où l'on
suppose seulement que ces intégrales existent et ont la même valeur
finie. D'ailleurs on a vu que p (F) est toujours sommable sur V et que

jp{F)dxp<^\* Si donc on n'est pas dans le cas régulier la valeur
v
commune de ces deux intégrales sera <^ 1.

On a dans le cas quasi-régulier

/•¦[P(F)—p(Fj\dtF=zO avec P {F) —/ {F) ^o.
v

Or si une fonction 0 (F) positive ou nulle sur V a une intégrale nulle

sur V alors — qu'elle soit continue ou non, bornée ou non sur V —
elle y est nulle t presque partout», c'est-à-dire que l'on a/dr^—O, en

désignant par v l'ensemble des états F de F où 6 {F) ^z£ o.
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Car, soit vA l'ensemble des états F où 0 (F) > A*^> o. On a:

0 (F) dxF^ A j dxF ^ o d'où j dxF oo

v

la « mesure » y^Tp de vA étant nulle quel que soit A, l'ensemble v qui
VA

est la réunion de vl9 v V2, z> V» • • • aura aussi une mesure nulle.
Donc P[F)—p (F) est nul presque partout sur V, c'est-à-dire, sauf

peut-être sur un ensemble wx de mesure nulle. Comme p (F) ne peut
être infini que sur un ensemble wz de mesure nulle, on voit que P(F)
et p (F) sont finis et égaux sur V sauf peut-être sur un ensemble de

mesure nulle w formé de la réunion de wx et w2. La relation

^ | P<«> (E, F)—p{F)\^ /><«> (F) —/<«> (F)

montre alors que p(n) [E> F) converge vers une limite/ [F) indépendante
de E — et cela uniformément pour F fixe quand E varie sur V —
sauf peut-être quand F est sur w.

Ceci va nous permettre de donner une définition du cas quasi-régulier,
moins condensée mais plus intuitive que celle qui consiste dans l'égalité
de deux intégrales d'ailleurs non directement données.

Nous appellerons cas quasi-régulier le cas où la densité de probabilité
/>(«) (^? /?) converge—sauf peut-être quand F appartient à un certain
ensemble w de mesure nulle —- vers une limite st (F) finie et indépendante
de E, la convergence ayant lieu uniformément pour F fixe quand E
varie sur V (mais en cessant d'exiger l'égalité f$i(F)dxF:=z 1).

v
Dans ce cas, pour F fixe, en dehors de w, et pour s positif donné,

il existe un entier N tel que

pour n>N. D'où n [F) — a^p{n) {F) ^ /><«> (F)^. % {F) -f- a pour » > N.
Autrement dit, en dehors de w, p{n) (F) et P^n) (F) — qui tendent
toujours vers / (F) et P (F) — tendent vers la limite finie n {F). Donc en
dehors de w, p (F) et P (F) sont finis et égaux. D'ailleurs, dans tous les

cas, l'intégrale Jp (F) dxF existe et est^ i. Donc/P (F) dxF existe aussi
v v

et on a

I P(F) dxF I p (F) dxF ^11.
v v
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(Si l'on n'est pas dans le cas régulier la valeur commune de ces intégrales
sera <^ i) La réciproque a été établie plus haut et complète l'identité
des deux définitions du cas quasi-régulier

On peut même obtenir une sorte de convergence uniforme relativement

non seulement à E mais encore à F. Pour cela, considérons une

partie bornée arbitraire mais fixe W de V et, pour e positif arbitraire,
désignons par Sn l'ensemble des F de W ou PM(F)—p{n){F) > e

L'ensemble 6* commun aux Sn étant évidemment compris dans w est de

mesure nulle D'autre part Sn±i appartient a Sn On peut donc écrire

S,= S + (5,-5.) + (S2 — Ss) + (Ss — S.)

d'où, en posant J dxF mes G
G

mes St — [mes St — mes S2] -f- [mes S2 — mes 58] +
Le second membie est donc une série convergente Pour r) positif donne,
il existera un rang q tel que le reste de cette série de rang q soit <^ r\

Donc mes Sq <^ r\ Jusqu'ici s et y] étaient arbitraires Donnons a £ et y]

une même valeur sn — en prenant successivement pour n les valeurs

I, 2, 3 alors q prendra une suite de valeurs çl9 q2 qu'on peut
supposer croissantes et Sq deviendra successivement un des termes <7i,

<j2, d'une certaine suite d'ensembles La mesure de an sera inférieure

a — et celle de l'ensemble fn on + On + i + sera inférieure a

-^ Comme on est l'ensemble des F de W ou />(*») (F) - p(*n) {F)

> en on voit que sur ÏF, on aura en dehois de Tn

pour r^qH+s et ^=1,2 Autrement dit [P& (F) —j>{r) {F)] con-

veige uniformément vers zéro sur W en dehors d'un ensemble Tn de

mesure aussi petite que l'on veut
En résumé, dans le cas quasi-régulier, la densité de piobabihté

P^ {E, F) converge, quand n croît, vers une limite P (F) indépendante de E
et cela uniformément quand d'une part E varie arbitranement sur V,

quand d'autre part et simultanément F varie arbitrairement sur une partie
bornée quelconque W de V sauf peut-être sur une partie T de Wdont
on peut supposer la mesure aussi petite que Pon veut
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(Il doit être rappelé que, si, pour tout nombre positif 8, on peut
supposer T de mesure inférieure à 0, il n'en résulte pas qu'on puisse
supposer T de mesure nulle. Car, T varie avec 9 ; or, en appelant t la

partie commune à une infinité d'ensembles T il y aura bien dans W
convergence en dehors de t mais non convergence nécessairement
uniforme).

Les raisonnements ci-dessus et leur conclusion subsisteraient si on prenait
pour W une partie de V qui soit illimitée pourvu qu'on suppose sa

mesure finie.
Cas régulier. — Cherchons la condition pour que le cas quasi-régulier

soit en même temps le cas régulier.
On a toujours3)

lim lp<») (F) dF p {F) dF ^ i | /><»> (// F) dF.
V V V

Et, dans le cas quasi-régulier

(2) fp(F)dF=fp(F)dF.
V V

Pour qu'on soit dans le cas régulier quand la condition (2) est remplie,
il faut et il suffit

lim ([/><«> (H, F) —pi») (F)] dF ^ o.

V

Soit alors e un nombre positif arbitraire il y aura un entier q tel que,

pour n > q on ait

v

Pour toute partie v de V on aura donc, si n > q

fP<«> (E, F)dF<i~-\~ ÇpM (F) dF < y f [p {F) dF

et si v est une partie de V telle que jp (F) dF < —, on aura

(3)

3) Pour abréger, nous remplacerons dans la suite la notation dxp par la notation plus

simple dF.
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La fonction p {!*) étant, en tout cas, sommable sur V, y est, comme on
sait, (III, p 109), « absolument continue * c'est-à-dire qu'à chaque nombre
positif m correspond un nombre yj0 tel que l'on ait fp (F) dF < w pour

toute partie v de V de mesure <^ yj0 En prenant w — —, on voit

qu'on aura, pour n > q fP^ {I\ F)db <^ £ D'ailleurs, chacune des

fonctions P^ P^\ étant sommable sur V, y sera absolument continue,
c'est-à-dire qu'il existera des nombres r^ t\q tels que, pour mes. 2/<r^,
on ait f PW (/*, /?) <^ < £. Finalement, si tj est le plus petit des nombres

*)o> iQi> *fc > on volt °llle> Pour toute partie v de F de mesure < rj, on

auray^ P(n) (B, F) dF<^ e, quel que soit n—, e, v\,z étant indépendants de n.
C'est ce que nous expnmeions en disant que l'absolue continuité des

fonctions de F, P^ {E, h doit être, pour E fixe, uniforme quand n varie
Considérons maintenant deux cas Supposons d'abord V borne ou

plus généialement de mesure ft?iu. Alors, cette condition nécessaire

d'uniformité est suffisante. En effet, soit e arbitraire > o, il y a, par
hypothèse, poui h fixe, un nombre r\ ^> o tel que pour toute partie v

de V de mesure < y^, on ait /PW (E, F) dF < — D'autre part, d'après

la p 193, puisqu'on est déjà dans le cas quasi-régulier, il y a une partie T
de V de mesure inférieure a y] et telle que /><*> {E, F) converge
uniformément vers p (F) quand F varie hors de T. Dès lors, on a

j P^n) (E, F) dF < et il existe un nombre q tel que
t 2

/ | /><*> {E, F) p (F) \dF<
€

pour n > q D'où
V T 2

(4)

\

V-T V-T

3= 1 — f P(") (E, F) dF— — > 1 —

Pour tout e ^> o on a donc

1 — c < Çp(F)dF= \ P(F) dF^ 1

v

on est bien dans le cas régulier
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On observera que si la condition d'uniformité de l'absolue continuité
de fPW [Ey F) dF a été prouvée nécessaire pour chaque état E fixe

v
de V9 la démonstration qu'elle est suffisante suppose simplement qu'elle
ait lieu pour au moins un état E de V.

Si V n'est pas de mesure finie, cette uniformité n'est plus suffisante

comme le montrerait l'exemple de la p. 189. On doit compléter par une
autre, cette condition d'uniformité de la continuité absolue des intégrales

JPW(E,F)dF.
v

Pour cela, rappelons que, par définition de l'intégrale d'une fonction
0 (F) sur un ensemble non borné V

Ç<P (F) dF lim f0 (F) dF

où Wl9 W%, Ws y est une suite de parties bornées de V telles

que Ws appartienne à Ws+\ et que V soit identique à la réunion des

Ws Posons vs — V— Ws Dès lors, pour chaque entier n, il existe
un entier sn tel que y P<«) [Ey F) dF < e pour s ^ sn et un entier sr tel

que fp (F) dF<—pour s^/. Or, si l'on est dans le cas régulier, on

aura en vertu de l'inégalité (3)

Ç

pour s ^ s' et n > g, q étant indépendant de s. Appelons alors s" le

plus grand des nombres sif sq s1} on aura

'<«> {Ey F)dF<e

pour toute valeur entière de n9 s" étant indépendant de n. D'où

Çpw (Ey F) dF~ fp<*> (Ey F)dF<Ce
v ws
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pour s ^> s", quel que soit l'entier arbitraire n. C'est ce que nous
exprimerons en disant que, dans le cas régulier, la convergence, exprimée
par la formule

lim T Cpi») (E, F) dF — f/><«> (E,

des intégrales à limites infinies J PW [E, F) dF, est uniforme quand n
v

varie.

Réciproquement, supposons — toujours dans le cas quasi-régulier —
que non seulement l'absolue continuité mais la convergence de chaque
intégrale à limites infinies JPW (E, F) dF soient uniformes quand n

v
varie, et ceci au moins pour un état E fixé. Alors, pour tout e^> o
il existera une partie bornée W de V telle qu'en posant v V—W,
on ait à la fois

{F) dF< e, JV<«> (£, F)

et ceci quel que soit n. Or, en vertu de l'uniformité de l'absolue
continuité de //><«> [E, F) dF et, par suite, de celle de //><*> (E, F)dFy le

v w
raisonnement fait plus haut dans le cas où V est borné conduira à

remplacer dans le cas actuel les inégalités (4) par

(p(F)dF>
W W

On a donc pour tout e > o

dF> 1 — 2e

et on est bien encore dans le cas régulier.
Une condition suffisante plus simple. Il y a un cas particulier où on

peut obtenir une condition suffisante plus simple en utilisant un théorème
(III, p. 120) d'après lequel, si les fonctions d'une suite non croissante de
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fonctions 0(*> (F)^o sont sommables sur K4), il en est de même de

leur limite 0 (F) et on a

(5) [0{F)dF— Km P #<«> (F) dF.

V V

Les fonctions /><«> (F) majorent les fonctions P&) (Ey F), sommabies
quand F varient sur V. Il n'en résulte pas que les P^ (F) soient
sommables. L'intégrale /pi»> (F) dF peut être infinie, soit parce que /><*> (F)

est infinie sur un ensemble de mesure non nulle, soit même quand
p{n) (j?j est f[nje et meme borné, si V est non borné, comme le montre
l'exemple de la p. 189.

Par contre, si l'une des fonctions P^n) (F) est sommable sur V, il en

sera de même de /J>(»+1) (F), P(n+2^ (F)... et l'on aura une relation
analogue à (5). D'ailleurs, on aura aussi dans ce cas

f /><*> (F) dF^ Çpw (F, F) dF

d'où y P(F)dF^ 1.

En résumé, qu'on soit ou non dans le cas quasi-régulier, s'il existe
une fonction <p (F) sommable sur V, qui majore — quels que soient E
et F sur V — l'une au moins des fonctions P^ (E, F) — et, par suite,
si l'une au moins des P<n) (F) est sommable sur V — alors P(F) est
sommable sur F et on a

Quand une telle fonction 99 (F) n'existe pas, deux circonstances aussi

opposées que possible peuvent se présenter: l'intégrale j P{F) dF peut
v

être infinie, ou au contraire < 1 et même nulle comme dans l'exemple
de la page 189.

Quand la fonction q> (F) existe, on a à la fois

f/ (F) dF^ 1 ^ \P {F) dF.

4) Nous entendons ici le mot sommable pour intégrable au sens de M. Lebesgue (III
p. 107). D'ailleurs, dans tout ce mémoire, nous supposons mesurables au sens de M. Lebesgue
toutes les fonctions employées.
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Si donc on se trouve dans le cas quasi-regulier ces deux intégrales sont
égales et par suite sont égales a Punite Nous obtenons ainsi la condition
suffisante plus simple annoncée

Pour que le cas quast-reguher se trouve ttre en même temps le cas

régulier, il suffit qu'il existe tme fonction (p (F) sommable sur V qui
majore quels que soient h et F sur V, mais pour un même rang n, l'une

au moins des densités itérées P^ (E, F)

Un cas simple ou l'existence de la fonction cp est assurée est celui

ou V est borne (ou de mesure finie) et ou, en outre p (E, F), — ou
l'une au moins des /J><*> (E, F) — a une borne supérieure finie quand
h, F varient indépendamment sur V Plus particulièrement encore, c'est

ce qui aura heu quand, V étant boine, p(E,fi) — ou Tune au moins
des P^n>> (E, F) — est continue quand E, F varient sur V

Une autre simplification a déduire de l'existence de la fonction cp

concerne le mode de convergence de PW [E, fi) vers P{F) Nous avons

vu que dans le cas quasi-regulier cette convergence qui a heu presque
partout est uniforme sur chaque partie bornée IF de V, quand on
excepte de W un ensemble peut-être vide mais qu'on peut supposer de

mesure aussi petite que l'on veut. Lorsqu'il existe une fonction çp (F)
sommable sur V et majorant l'une des fonctions P^ (E, F), le même

résultat est valable en prena?it pour W toute la région V, que cette dernière

soit bornée ou non
En effet, dans ce cas, pour n assez grand (n > q)y P{n) (F) est

sommable sur V et l'on a

o hm f [/'<»> (/< pw (F)] dF.
n—>~oo J

V

Si A^] est l'ensemble des F de V ou /><*> (F) —p{n) (fi) > e on a

f [/><«> (F) - /<«> {fi )] dfi > e mes. A[n) ^ o

donc mes A^ tend vers o avec — Soit alors w un nombre positif

arbitraire, pour e •=¦ — il y a un nombre nq > q tel que mes A£ < —

pour n^nq Soit enfin A la réunion des ensembles A^ pour e —,
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n~nq, q 1,2 Sa mesure est < J£* — w et l'on aura, en

dehors de A

/><*> (£, /^) —/ (F) | ^ /><*> (/?) —/«> (/?) ^
pour n~nq et par suite pour n^.nq Dès lors PM (/s, i^) converge
vers / (i7) uniformément quand jE est arbitraire sur F et quand F varie
sur la région obtenue en enlevant de V un ensemble A, peut-être vide,
mais en tout cas de mesure inférieure à un nombre positif w choisi
arbitrairement.

Conditions nécessaires pour le cas quasi-régulier. Cherchons à déterminer
des conditions nécessaires pour que P (F) et p (F) soient finis et égaux
presque partout sur V.

I. Condition (A). Deux cas sont à distinguer: i° P (F) est nul presque
partout sur V\ alors il en est de même pour / (F) et aucune condition
nécessaire n'est à envisager. 2° P(F) n'est pas presque partout nul. En
désignant par ve Fensemble sur lequel P (F) > e, nous sommes dans le
cas où v0 est de mesure non nulle. Or v0 étant formé de la réunion des
ensembles ve où e ^> o serait de mesure nulle s'il en était ainsi de tous
ces ve Dès lors : il existe au moins une valeur positive e telle que vB

soit de mesure positive.
Or, on a vu (p. 193) que dans le cas quasi-régulier pour toute partie

W bornée de V et tout nombre w > O, P{F)—p{n) (F) converge
uniformément vers zéro sur W sauf, peut-être, sur un ensemble T de mesure
<^ w. En particulier, il existe un nombre v tel que pour n^*i>

sur W— T. Prenons, en particulier, pour W l'ensemble v% ou une partie
de vz qui soit bornée et de mesure positive et pour w la moitié de la

mesure positive de vs ou de cette partie: alors l'ensemble w W—T
sera aussi de mesure positive et l'on aura sur w

p{n){F)> — pour n>v.
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Autrement dit, il existe dans ce cas une partie w de V qui est bornée
et de mesure positive et telle que, à partir d'un certain rang v, la fonction
P{n) (E, F) reste, quels que soient E sur V, F sur w, supérieure à un
nombre positif indépendant de E, de F et de n.

En particulier, il existe au moins un rang v tel que p^ (F) ne soit

pas nul presque partout. On dira, dans ce cas que la condition (A) est
réalisée.

Cette condition sera plus commode à employer parmi les conditions
suffisantes, que la précédente. Mais elle lui est équivalente. Car, si

p(v) (j?} ^> o sur un ensemble de mesure positive, alors il y a, au moins

un nombre T( > o tel que la mesure de l'ensemble où p^ (F) ^> r\ soit
positive. Dès lors, sur ce même ensemble on aura, pour ;/ ^ v, p^(F) ^> r\
d'où pw {E, F) > v.

II. Condition nécessaire (B). Une autre condition nécessaire pour le cas

quasi-régulier est évidemment que P (F) ne puisse être infini que sur
un ensemble de mesure nulle, puisqu'il en est ainsi pour la fonction
sommable/ (F), et que p (F) et P (F) sont finis et égaux presque partout.

Simplifications. Si l'une au moins des fonctions P^ {E, F), soit
P*<r) (E, F), est uniformément continue quand E et F varient sur F, la
condition (A) se simplifie.

Si elle a lieu, il existe au moins un entier v et un état L tel que
/(v) (L) ^> o. Réciproquement, s'il en est ainsi, on peut d'abord supposer
v^> r puisque pM (L) est une fonction non décroissante de n. Alors,
comme on a vu (p. 183) que pM (F) est continue, il existe au moins un
nombre t] > o, tel que /<v> (F) > \p^ (L) > o pour L F < r\. On a

supposé (p. 180) le domaine V, tel qu'il existe au moins une sphère v
composée d'états de V tous à distance de L inférieure à <rj. Dès lors

p{y)(F)^>o sur un ensemble v de mesure positive: (A) est réalisée.

D'autre part, si l'on suppose, en outre, que P^r) {E, F) est borné (ce

qui aura lieu nécessairement si V est fini) alors PM (F) et par suite

P(F) sont bornés: (B) sera vérifiée d'elle-même.

On observera que ces deux simplifications subsistent si l'on suppose
simplement que P<r> (E, F) représente pour les situations diverses de E,
une famille de fonctions de F « également continues » sur V.

Conditions suffisantes pour le cas quasi-régulier. Considérons un état

F tel que P (F) soit fini et trois états arbitraires E, El9 G. Pour n
assez grand (n — 1 ^ m)f P^n~^ (F) sera aussi fini et par suite aussi

P**-1* (G, F), PW (F), /><*> (E, F), /><«> (Et, F). Etendons avec M. Hostinsky
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(I, p. 44, Ibis, p. 21) au cas actuel la méthode de Markoff. Formons la
différence

(6) PW (E, F) —P<*) (El9F) f[p(E, G)—p(EuG)]P<"-»(G,F)dG.

Soient V', V" les deux parties de F sur lesquelles le crochet est
respectivement ^ o, <. o. En posant

G) —p (Et, G)]dG^J KdG
V V

6' j[p (E,, G) —p {E, G)]dG f KdG

où K est la valeur absolue du crochet, on aura 8^0 et 6

fp (E, G) dG —Jp (Et, G) dG ~ 1 — 1 =0, d'où

Supposons d'abord 6 ^> o. Alors on pourra écrire

j KP^-v [G, F)dG J KPi*-* {GyF)dG
6 v v

f KdG J K dG
v v*

^ 8 [P<»-v {F) —-/(«-D F\
L'inégalité

(7) PM (E9 F) — F^ (El9 F)^Q [Pi»-» {F)

qui vient d'être établie pour G^o, reste d'ailleurs exacte pour 8 o,

car, dans ce cas, K serait nul identiquement ou presque partout nul

sur V et alors en vertu de l'égalité (6) le premier membre de (7) serait
aussi nul.

Dans cette inégalité, 8 est compris entre o et 1, car

r^ p(Ef G)dG= 1.
«y

v v
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Seulement, d'après sa définition, 0 dépend de E et de Ex. Mais on a

0 ~ Jp {E, G)dG — Cp {E,, G) dG

fp (E, G) dG — jp (E, G) dG — Jp (Et, G) dG.
V v v

Or, sur V comme sur V", p {E, G) ^pw {G) ; p (E,, G)

Donc 0^1— JpW {G) dG $l.

Le nombre 6t est évidemment ^o, ^ i et ne dépend ni de E, ni de

Rv. Comme on a

Pin) (E) /?) ___ p(n) (^ 9 /T) ^ 9Â [/->(«-!) (/7) —

on voit qu'on aura pour ^ > w

(8) PW (E) —pi») {E) ^ 0, [P^~D (/r) _^(«-
où 0, est indépendant de n (pour /z > m) et de i^, avec o ^ 0t ^ i.
Seulement si 0t i, on ne retrouverait qu'une inégalité déjà obtenue.
Le cas intéressant est donc celui où 0! < i, c'est-à-dire où p{1)(G) n'est

pas presque partout nul sur V. C'est celui où la condition (A) se trouve
vérifiée quand on suppose, comme nous allons le faire d'abord, que dans

son énoncé de la p. 201, l'entier v est égal à l'unité. Dans ce cas, 0t <C i
et, en vertu de (8), on aura

pin) (/T) _pin) (/T) ^ Qn-m \p{m) (/?) __piim)

Revenons maintenant à la condition (A), mais sous sa forme générale-.

supposons qu'il existe un rang v pour lequel p^ (G) ne soit pas presque
partout nul sur V. On pourra recommencer le raisonnement précédent,
mais en partant de l'égalité

{E, G) — PW (Et, G)] P(-+(-Dv)
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On trouvera alors

avec

o <^^ Hv i — I ^* ' f (jt) a(jr ^c_ i •

%j

v

Pour tout entier n^tn, il y a un entier s ^ o tel que

m -\- sp ^.n <^ m -\- (s -\- i) v

d'où

et
J_l«—m— V

En posant ^v (8V)v on aura

(9) | PM (E, F) -p (F) | ^P^ (F) -/«> (F) ^ l

avec

Comme ^v est indépendant de i^ et de ^ et inférieur à Punité, on voit
que PW (F) —p{n) (F) tend vers zéro. Finalement, quand la condition (A)
est réalisée, on a P(F)=p(F) pour tout état F où F (F) est fini.
D'ailleurs p (F) ^/(v) {F), donc, /^(i7) ne sera pas, dans ce cas, presque
partout nul.

Faisons maintenant entrer en ligne de compte la seconde condition
nécessaire, la condition (B) de la p. 201 ; nous aurons alors un ensemble
à la fois nécessaire et suffisant:

Pour que — à Vexception tout au plus d'un ensemble u de mesure
nulle d'états F de V — P^ (E, F) converge — uniformément pour F •

fixe quand E varie sur G — vers une limite finie indépendante de l'état
initial E et non presque partout nulle sur V, il faut et il suffit: I qu'il
existe au moins un rang v tel que p^ (F) ne soit pas presque partout
nul sur V, II que P (F) soit fini presque partout sur V.
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Observons aussi que si la condition (A) n'est pas réalisée, tous les p^m) (G)
seront nuls presque partout. La fonction / (G) sera donc nulle sauf,
peut-être, sur un ensemble dénombrable a d'ensembles de mesure nulle ;

a étant alors de mesure nulle, p (G) sera nul presque partout sur V.

Nous pouvons donc dire. Pour qu'on soit dans le cas quasi-régulier :

Ou bien la condition (A) est réalisée et alors il faut et il suffit que
P{F) soit fini presque partout sur V.

Ou bien (A) n'étant pas réalisée et, par suite, p (G) étant nul presque
partout sur V, il faut et il suffit que P (F) soit nul presque partout sur
V. Dans ce dernier cas /P (F) dF o. On sera certainement dans le

v
cas quasi-régulier proprement dit, c'est-à-dire sans être dans le cas

régulier5).
Nature de la co?ivergence. Nous avons déjà vu, p. 193 que, dans le

cas quasi-régulier, la convergence est uniforme sur toute partie W bornée
de Vy après avoir retranché de W un ensemble convenable dont on peut
supposer la mesure aussi petite que l'on veut.

L'inégalité (9) permet de préciser un peu plus la nature de la

convergence. Elle montre d'abord qu'en tout état F où P [F) est fini, c'est-
à-dire presque partout sur F, la convergence de /><«> (E, F) vers P{F) est,
à partir d'un certain rang, au moins aussi rapide que celle des termes
d'une progression géométrique dont les termes dépendent de F, mais
dont la raison qv (o <[ çv < 1) est indépendante de E et de F.

En limitant encore le champ de convergence, on peut même s'arranger
pour que les termes de la progression soient eux-mêmes indépendants
de F comme de E (ce qui, en même temps entraînera l'uniformité de

la convergence sur ce nouveau champ).

C'est d'abord ce qui aura lieu sur chaque ensemble V^ en appelant
ainsi la partie de V où l'on a P^ (F) <^ r. Car on a sur V^m)

| P<«> (E, F) — P {F) | ^ (#v)« [ — pour n ^ nu C'est, par suite,

aussi ce qui aura lieu sur l'ensemble Vs formé des ensembles Jv en
nombre fini, pour lesquels r -f- m s. Car en appelant Ks le plus grand

rdes nombres —;—r^— où r -f- m s on aura sur Vs pour n^> s

5) II serait d'ailleurs intéressant de chercher si l'on peut effectivement former l'exemple
d'un cas quasi-régulier où o <^ J P (F) dF < I.J
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Or, si w est encore l'ensemble - - peut-être vide, mais de mesure
nulle — où P(F) et p (F) ne sont pas finis et égaux, il est clair que tout
état de V—w appartient à l'un des Vs et que Vs appartient à Vs+)

Ainsi, on a formé une suite non décroissante d'ensembles Vs

remplissant V, à un ensemble de mesure nulle près et sur chacun, Vs

desquels, la suite | PM {E, F) — P (F) | est majorée à partir du rang s

par une progression géométrique indépendante non seulement de E mais
de F. Cette progression change avec Vs mais sa raison reste la même.

Dans le cas où V est borné, l'égalité symbolique

y- u + [y\ _ yt) + (j/2 - V\) +

peut aussi s'entendre en mesure, de sorte que V— V
s est de mesure

aussi petite que l'on veut avec — Si V n'est pas borné, alors pour

toute partie bornée W de V, c'est la partie de y— Vs qui appartient
à W qui est de mesure aussi petite que l'on veut, pour s assez grand.

Précisions. On peut même préciser dans des cas particulièrement
importants dans les applications. Supposons d'abord qu'il existe un rang
m tel que P^(F) soit borné sur y. La théorie des équations intégrales
(II, p. 344, 357, 362) fournit des exemples de noyaux p (E, F) discontinus,

non bornés, mais tels que, pour n assez grand, n m, P(m) (E, F)
ait une borne supérieure finie fi quand E, F varient indépendamment
sur V. Dans ce cas PM (F) sera borné sur V et même on aura
P^ (F) ^. {/ pour n^m. Alors P(F) sera nécessairement borné aussi

et la condition (B) sera remplie d'elle-même. De plus, si fi est la borne
de P^ (F) sur V, il résultera de la première condition, qu'on a d'après
la formule (9)

F) - P (F) | ^
Dès lors: si l'une au moins des probabilités itérées P{n) (E, F) a une
borne supérieure finie quand E, F varient indépendamment sur V, la
condition nécessaire et suffisante pour que P^ (E, F) converge — quel que
soit F sur V, et cela uniformément pour F fixe quand E varie sur V—
vers une limite P (F) indépendante de l'état initial E et qui ne soit pas
presque partout nulle sur V est qu'il existe au moins un rang v pour
lequel p^) (F) ne soit pas presque partout nul sur V.
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Et dans ce cas, non seulement la convergence est uniforme pour F
fixe, mais* i° elle est uniforme quand E, /^varient indépendamment
sur V, 2° la convergence de la suite des termes | PM {E, F) — P (F) |

vers zéro est au moins aussi rapide que celle des termes d'une certaine

progression géométrique convergente indépendante de E et de F
D'autre part, si l'une au moins des probabilités itérées P^ (E, F) est

uniformément continue quand E, F varient sur V, la condition ?iecessaire

et suffisante pour qu'on soit dans le cas quasi-regulier est

ou bien que P (F) soit nul presque partout sur V
ou bien que I ° P (F) soit fini partout sur V

2° qu'il existe un rang v et un état L tel que p^ (L)^o

II faut que P (F) soit fini piesque partout sur V mais on a vu p. 184,

qu'alors P (F) est nécessairement fini partout sur V. Dans ces conditions
P (F) est uniformément continu sur V et P<n) (E, F) converge vers P{F)
quels que soient E et F sur V La convergence est uniforme quand E
varie sur V et F sur une partie bornée quelconque de V

Ces énoncés se simplifient encore quand on les combine •

Si l'une au moins des probabilités itérées PW (E, F) est bornée et

uniformément continue quand E, F varient sur V, la condition nécessaire et

suffisante pour qu'on soit dans le cas quasi-regulier est ou bien que P (F)
soit nul presque partout sur V ou bien qu'il existe un rang v et un état
L tel que /<v> (L) 7^ O.

Et dans ce cas PM {E, F) converge uniformément quand E, F varient
sur V, vers la limite P (F) (qui est continue). Dans les deux cas que
nous allons envisager maintenant, le cas quasi-régulier ne se distingue

pas du cas régulier
Supposons que l'une au moins des P^n) (F) soit sommable sur V Alors

pin) (/r) sera fim presque partout sur F, il en sera donc de même de

P (F) et ici encore la condition (B) sera vérifiée d'elle-même De plus,
nous avons vu p. 198 que dans ce cas fP (F) dF est fini et ^ 1

v
Ainsi dans ce cas P (F) ne peut être presque partout nul. Alors, pour
qu'on soit dans le cas quasi-régulier, il faut que la condition (A) soit réalisée.

Mais alors 1 ^/P{F)dF =// (F) dF^-i donc /P{F) dF— 1, on sera
v v v

dans le cas régulier
En résumé • 1 ° le cas quasi-regulier ne peut se présenter sans être en

même temps régulier que si aucune des fonctions P^ (F) n'est sommable

sur V et
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2° lorsque l'une au moins des fonctions P^n) (E, F) est majorée par
une fonction de F sommable sur V, la condition nécessaire et suffisante
pour qu'on soit dans le cas régulier est que l'une au moins des pi") (F)
ne soit pas presque partout nulle. De plus, dans ce même cas, si cette
condition est réalisée, nous avons vu (p. 193) que PW (E9 F) converge
uniformément vers P (F) quand E variant arbitrairement sur V> F varie
sur V, sauf peut-être, sur un certain ensemble indépendant de E et dont
on peut rendre la mesure aussi petite qu'on veut.

Lorsque V est borné ou de mesure finie, si Pun au moins des PM(F),
par exemple P^m) (F), est borné sur V, P{m) (F) sera aussi sommable

sur V et on pourra appliquer à la fois les propriétés de deux des cas

qui viennent d'être examinés :

Si l'une au moins des fonctions P(w) (E9 F) a une borne supérieure
finie quand E, F varient sur V et si V est borné ou de mesure finie,
la condition nécessaire et suffisante pour qu'on soit dans le cas régulier
est que l'une au moins des fonctions p^n) (G) ne soit pas nulle sur V
Presque partout. De plus, dans ce cas, i° P^n) (E, F) converge uniformément
vers sa limite P (F) lorsque E, F varient arbitrairement sur tout
l}ensemble V; 20 la série 2 \ Pin) (E, F) — P (F) | est majorée par une certaine

n
Progression géométrique convergente indépendante de E et de F.

Enfin, l'énoncé suivant s'obtient comme cas particulier de tous les

précédents :

Si p (E, F) ou si plus généralement l'une P^m) (E, F) des probabilités
itérées est continue sur un domaiue V borné alors la condition nécessaire

et suffisante pour qu'on soit dans le cas régulier est que, pour au moins

un état L de V et un rang v^_m, P(v) (E, L) ne soit nul pour aucun
état E de V.

Dans ce cas, les probabilités itérées P^ (E, F) sont aussi continues à

partir d'un certain rang, elles convergent uniformément quand E, F
varient sur V vers une limite P (F) continue sur V et la convergence
de \Pin) (E, F)—P(F)\ vers zéro est au moins aussi rapide que celle

des termes d'une certaine progression géométrique indépendante de E et

de F.
Dans ce cas, il y a correspondance absolue entre la condition trouvée

ici et celle qu'on obtient dans le cas plus simple des suites discontinues
d'états (IV, p. p. 2, 3).

Cas positivement régulier. Par analogie avec le cas d'un nombre fini
d'états possibles, il serait, à première vue, naturel, d'appeler ainsi le cas

régulier où p (F) serait partout =?£ o sur V- Toutefois / (F) n'est pas
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une probabilité, mais une densité de probabilité. Il semblerait donc plus
indiqué d'imposer la condition que la probabilité J p (F) dF soit toujours

différente de zéro. Comme cette intégrale est, quel que soit / (F), nulle
quand v est de mesure nulle, on est amené à une réserve, à supposer
seulement que J p (F) dF^>o pour toute partie v de V de mesure

V

positive. Pour cela, il faut et il suffit que p (F) soit presque partout
positif. Ceci sera d'ailleurs d'accord avec l'équivalence observée dans les

questions précédentes entre les fonctions égales presque partout.
On pourra définir finalement cas presque positivement (quasi) régulier,

tout cas (quasi) régulier où p {F) est positif presque partout sur V.
Commençons par le cas presque positivement quasi-régulier, c'est-à-dire
celui où p (F) et P (F) sont presque partout à la fois finis, positifs et
égaux. L'ensemble (vide ou non) fi où p (F) o doit être de mesure
nulle. Or c'est évidemment l'ensemble commun aux ensembles fin, fin
étant l'ensemble où pw (F) o. I. Si donc V est de mesure finie la

limite de la mesure de fin tend vers zéro avec — IL Sinon pour toute

partie W de mesure finie de V, la mesure de la partie commune à W

et fin tend vers o avec — Réciproquement; si (I) a lieu, fi est de me-

sure nulle ; si II a lieu, la partie commune à fi et W est de mesure
nulle quel que soit le choix de W. Par conséquent, fi est encore de

mesure nulle. De plus, la condition (A) est alors nécessairement remplie.
Nous arrivons donc à la conclusion suivante.

Pour que P^n) (E, F) converge uniformément quand, F étant fixe,
E varie sur V, vers une limite finie, indépendante de E et positive, sauf,
peut-être, quand F appartient à un certain ensemble de mesure nulle, il
faut et il suffit: i° que pour tout e positif il existe un rang v tel que
p{y) (F) > o sauf peut-être sur un ensemble de mesure <C e; ou si V est
de mesure infinie que ceci ait lieu pour toute partie de V de mesure
finie ; 2° que P (F) soit fini presque partout.

Si l'une des fonctions P^ (F) est sommable sur V, ce qui précède sera
aussi la condition nécessaire et suffisante pour qu'on soit dans le cas

presque positivement régulier.
On peut aussi donner la condition suffisante suivante:
Pour qu'on soit dans le cas positivement régulier, il suffit que, V étant

borné ou de mesure finie, l'une au moins des fonctions />(«) (E, F) ait,
lorsque E, F varient indépendamment sur V une borne inférieure positive
et une borne supérieure finie. En effet, dans ce cas, /<«) (F) est, pour
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au moins une valeur de /z, partout positif donc la condition (A) est
réalisée et / (F) est partout positif. D'autre part, les fonctions P<") (F)
sont bornées à partir d'un certain rang et par suite sommables

La condition que V soit de mesure finie ne peut être évitée ici

j /><») (e^ F} dp ne pourrait être égale à l'unité si /><»> [h, F) ayant une
v
borne inférieure positive, la mesure de V était infinie On peut cependant,

en modifiant la condition, la rendre applicable au cas de V non
borné

On sera certainement dans le cas positivement régulier, si Tune des

fonctions PW (F) est sommable sur V et si, en outre, Tune des fonctions
P(n) (E, F) a une borne inférieure positive lorsque h variant sur V,

F varie sur toute partie bornée W de V, Car, dans ce cas les conditions

(A) et (B) sont visiblement vérifiées et l'une des PW(F) étant sommable

sur V, on est dans le cas régulier. En outre, l'une des /<*> (F) — et, par
suite, p (P) — a une borne inférieure ^> o sur toute partie bornée de V

Donc P(F) est partout ^o sur V
On a un résultat plus simple quand l'une au moins des densités

PW(E,F) est uniformément continue Sur V On a vu (p. 183) qu'alors
p (F) y est aussi uniformément continue

Supposons, en outre, pour commencer que V soit borne Alors, comme
on sait, p (F) y atteint sa borne inférieure, si donc p (F) > o sur F,

p (F) a sur F un minimum positif a Or, si l'on est dans le cas quasi-regulier,
p(n) (F) converge uniformément vers p (F) (p 188) Donc, poui n assez

grand, /<*) (F) > — quel que soit F sur V et par suite Pi*> {h, F) y o

pour E, P arbitraires sur V Cette condition est d'ailleurs suffisante,

car si P^ (E, F) y£ o sur V, son minimum pM (F) quand E varie étant
atteint pour un certain état E sera ^z£ o. En résumé •

St l'une au moins des densités itérées P(n) (E, F) est uniformément
continue quand E, F varient sur V et si le domaine V est borne, la
condition nécessaire et suffisante pour que Von soit dans le cas positivement
régulier est que l'une au moins de ces densités P^ (E, F) soit partout
positive quand E, F varient sur V.

Abandonnons l'hypothèse que le domaine V soit borné p (F) sera

encore uniformément continu, mais ce n'est que sur chaque partie bornée

W de V qu'il atteindra son minimum. Ce minimum $w est alors positif
Or, sur W, il y a convergence uniforme de pw (F) vers / (F). Donc,

pour n assez grand, /<») (F) > -^- > o Réciproquement si nous

spécifions que sur toute partie bornée W de V, p^ (F) reste positif pour
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un certain rang, éventuellement variable avec W, alors la condition (A)
sera réalisée, et P(F) sera partout positif.

Ainsi, lorsque l'une au moins des densités P^ (E, F) est tmiformément
continue quand E, F varient sur le domaine V — borné ou non — la
condition nécessaire et suffisante pour qu'on soit dans le cas positivement
quasi-régulier est que : i° sur toute partie bornée W de V, l'un au moins
des pW (F) reste positif sur W, à partir d'un certain rang, variable en

général avec W mais indépendant de la position de F sur W. 2° P (F)
soit fini presque partout.

En particulier, si l'une, au moins, des densités PI") (E, F) est bornée

et tcniformément continue quand E, F varient sur V, borné ou non, pour
qu'on soit dans le cas positivement quasi-régulier, il faut et il suffit que,
sur toute partie bornée W de V, l'un au moins des p^ (F) reste positif.

Dans ce cas, il y a convergence uniforme de P^ (E, F) vers P (F)
quand E, F varient sur V. De même, si l'une au moins des densités
p{n) f£f pj esf quand E, F varient sur V, borné ou non, uniformément
continue et majorée par tme fonction W (F) sommable sur V, la condition
nécessaire et suffisante pour qu'on soit dans le cas positivement régulier est

que pour toute partie bornée, Wde V, l'un au moins, des p^ (F) restepositif\
Condition de M. Hostinsky. En étendant au cas actuel sa remarque

relative au cas discontinu, M. Hostinsky a observé (I, § 30, p. 50) que
pour se trouver dans le cas positivement régulier, il suffit, si V est
borné et p {E, F) continu, que p (E, F) soit y^ o lorsque, E, F variant
dans V, la distance EF (voir la note (2) de la p. 180), reste inférieure
à un certain nombre positif ç (si petit soit-il choisi). La démonstration
revient à prouver qu'au bout d'un nombre n assez grand d'épreuves
PM (E, F) — qui est continu — est partout positif.

Toutefois, il est bien clair que si le domaine V n'est pas d'un seul

tenant, si, par exemple, on peut y distinguer deux parties Vt et V2 dont
les points sont à des distances toutes supérieures à un nombre positif^,
alors on peut imaginer d'une infinité de façons une répartition de la

probabilité telle que le passage de Vt à V2 soit impossible et que le

passage de n'importe quel état de Vk à n'importe quel état de Vk soit
possible en une seule épreuve pour ^=1,2. Alors, en prenant ç
inférieur à la plus courte distance de Vx à V2, on aura bien p (E, F) > o
pour E F < p et pourtant on n'aura PW (E, F) > o quand E appartient
à P\ et F à F2 pour aucune valeur de n.

Reste donc à examiner le cas où V est d'un seul tenant; nous
continuerons à supposer, en outre, que la frontière de V n'est pas trop
irrégulière, au sens précisé p. 180 et que V est borné.
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Observons d'abord que, V étant borné, si p (E, F) > o pour EF <^ g,
alors p(EyF) a une borne inférieure positive e quand EF^-Qç, 0

étant un nombre positif fixe <^ i. Sans quoi, il existerait pour tout

entier n un couple En, Fn de V tel que p (En, Fn) <^ — et EnFn^~ Qç.

On pourrait extraire de la suite des entiers n une suite d'indices nly n2

tels que Eni, En2 Fn±, FH2 tendent vers Eo, Fo de V. On aurait
Eo Fo£^ Qq et, puisque/ est supposé continu p (Eo, Fo) o contrairement
à l'hypothèse.

Ceci étant, utilisons l'hypothèse que V est borné et d'un seul tenant.
Nous entendrons par là que pour tout nombre r\ positif, il existe un
entier N tel que pour tout couple d'états E, F de V, il existe des états

Hl9 H2, Hs de F en nombre < N tels que EHx < n> H, H2 < y,
Hs F <^. Rien n'empêche, d'ailleurs, de supposer s N — i car au cas

où s <^N— I on poserait Hs+1 i/^_i Hs D'après l'hypothèse
(p. 180) sur la frontière de F, dans toute sphère de centre Hj et de

rayon -*- il existe une portion vj de V de mesure positive. Et si Gy,

Gj+1 appartiennent à vj, Vy+1, on a

Gy Gy+l ^ GyHy+ JiyJIy+1 + Hy+1 Gy+1 < 2V

et en particulier EGt <C 2^> &n—i F <C 2^- Prenons 2^ 0p. On aura

Gt) ^ |V (^ ».)/ (0i - 0.) ^0i ^ «2 [mes- »J

{E, Qt) ^ fp*2» (£¦, Gt) p {G,, G,) dG2 ^ ês (mes. Wl) (mes. vt)

vN~l

Le second membre peut varier quand E, F varient ; mais, en tout cas,
il est y£ o, de sorte qu'il existe un entier N, indépendant de E et de

F sur Gy tel que

PW (£, F) > o.

On est bien dans le cas positivement régulier. Plus généralement,
supposons qu'il existe un entier v et un nombre ç > o tels que P<v> (E, F)^>o
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pour EF<^ç. Alors en raisonnant sur PM (E, F) comme sur p(E9F)
on voit qu'il existe un entier N tel que P^v> (E, F)y£o quels que
soient E> F sur V. On est alors encore dans le cas positivement régulier.

D'ailleurs, si l'on est dans le cas positivement régulier, la dernière
condition est bien nécessaire puisqu'elle est même réalisée pour toute
valeur positive de ç. Donc:

Si V est borné et d'un seul tenant et si l'une au moins, P^ {E, F), des

densités P(n) (E, F) est continue sur V, la condition nécessaire et suffisante
pour qu'on soit dans le cas positivement régulier est qu'il existe un nombre

positif q et tin entier v > m tels que P(v) (E, F) > o pour EF < ç.
Dans le cas où p (E, F) n'est pas continu, on peut recommencer la

démonstration, mais en faisant entrer cette fois dans la condition de
M. Hostinsky ce qui en était déduit précédemment comme conséquence :

quand p (E, F), ni aucun des P^ (E9 F) n'est supposé continu, la
condition de M. Hostinsky consistera en ce que pour l'une au moins des
densités itérées P^n) {E, F) — soit P<v> (E, F) — il existe un nombre

ç > o tel que P^ {E, F) a une borne inférieure positive e quand E9 F
varient arbitrairement sur V de sorte que EF <^ ç.

Alors, en supposant encore V borné et d'un seul tenant, on verra
comme plus haut qu'il existe un nombre N v tel que

p(Nv) (jr F) ^£*(mes. Vl) (mes. vN-X).
Il en résulte que, pour n assez grand, P^ (E, F) reste ^ o quels

que soient E, F sur V. Cela ne veut pas dire que la borne inférieure

p W (F) soit ^ o, car le second membre varie avec E9 F. Mais, V étant
borné et d'un seul tenant, on peut certainement choisir sur V des états

Kl9 Ku assez nombreux pour que tout état de V soit à distance

< t\ de l'un des K{ et pour qu'on puisse choisir les états H1, Hs de
la démonstration précédente parmi les Kx KN. Cette fois, le produit
m eN (mes. vt) (mes. z^-i) sera indépendant de E et de F sur V
et on aura en particulier pw> {F)^co, d'où p^ (F) ^ w > o pour n > JVv,

quel que soit F sur V. Il en résulte que la condition (A) sera vérifiée ;

d'ailleurs p (F) ^P(n) {F) > o. Si la condition (B) est vérifiée, on aura
donc non seulement le cas quasi-régulier, mais le cas positivement
quasi-régulier.

En résumé : si V est borné et d'un seul tenant et si — condition de

M. Hostinsky généralisée — p (E9 F) étant ou non continue — il existe
un rang v et une distance ç tels que P^ (E9 F) ait une borne inférieure

9^0 quand EF^ç9 alors la condition nécessaire et suffisante pour
qu'on soit dans le cas positivement quasi-régulier est que P{F) soit fini
presque partout sur F.

213



On peut aussi particulariser les énoncés de la p. 208 :

Si l'un des P^ (E, F) a, en outre une borne supérieure finie quand
E et F varient indépendamment sur V, ou si plus généralement l'un
des /><*> (E, F) est majoré constamment par une fonction W (F) sommable
sur F, alors, si la condition de M. Hostinsky, modifiée comme il vient
d'être dit, est vérifiée, on est sûrement dans le cas positivement régulier.

Convergence des moyennes arithmétiques. Revenons à l'inégalité

(9) | F* {E, F) —p (F) | ^ (q, Y B (F) pour n > m.

Puisque, dans le cas quasi-régulier />(«) (E, F) tend vers p (F) sur
l'ensemble Vf où P{F) et p [F) sont finis et égaux, alors, en vertu d'une
propriété connue des séries convergentes, il en sera de même de la

moyenne arithmétique

/7« (e, fi)
pw {E'F) + ;• + p(li^Z).

Non seulement la différence nn {E, F) /?<«> (E9 F) —p (F) est sur V' infiniment

petite avec — mais l'inégalité (9) va nous permettre d'obtenir un

renseignement sur son ordre. En effet, la série

s (E, F) Jf[PM (E, F)-p (F)]

est d'après (9) convergente quand F est sur V et cela uniformément
quand E varie sur V. Or on a évidemment

lim n [/7<«> {E, F) — p (F)] s {E, F)
»->oo

c'est-à-dire que : ou bien s (E, F) est fini et ^z£ o et r\n {E, F) est un

infiniment petit du premier ordre en —, avec une partie principale égale
n

à ^ (E, F) ; ou bien s (E, F) o et 7]n (E, F) est un infiniment petit

d'ordre supérieur à — .11 faut cependant observer qu'il reste une

troisième hypothèse, celle pour celle où s (E, F) serait infini. Bien que restant

convergente sur V' à partir d'un certain rang, il peut en effet arriver
qu'avant ce rang, certains termes de s (E, F) soient infinis. Cette
difficulté disparaît quand au lieu des densités, on étudie les probabilités
elles-mêmes.
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Comportement des probabilités. Passons de l'étude des densités de
probabilités à celle des probabilités. Soit v une portion quelconque de F,
de mesure positive. La probabilité qu'on passe en n épreuves de l'état
E à l'un quelconque F des états de v est:

w<«> (E) J pw (E, F) dF
V

An a, M (E) —jp (F) dF=/n — %
V

o ^ /„ J [P<«> (E, F) - /«•> [F)] dF
V

c c^- I [jT^' (ii, > —p{n> (p )\ dp I — I /(M) (/' dt1
J J
v v

de même

o ^Jn— j[p (F)—pM {F)] dF^- \ p (F) dF— JpM (F) dF.

Soit

avec

Nous avons vu p. 198 que dans tous les cas ce dernier membre et par

suite aussi Jn tendent vers zéro avec — Le comportement de An quand

n croît est donc le même que celui de /„ Donc, dans le cas régulier
An tend vers zéro, c'est-à-dire que la probabilité cherchée w ^ (E) tend

vers une limite indépendante de E et qui est égale à Jp (F) dF.
V

Si l'on n'est pas dans le cas régulier, alors, par définition il n'en est

pas ainsi déjà pour v=V: 1 café (E) ne tendra pas vers Jp{F)dF.
On vient de voir que dans le cas régulier w^ (E) tend vers Jp(F) dF.

V

II en est donc de même de la moyenne arithmétique f^ (E) — 2a){t)(E).

Non seulement la différence en (E) -- f^n) (E) Jp (F) dF est infiniment
V

petite avec —, mais nous pouvons avoir des renseignements sur son
n

ordre. On a en effet

n £„ {E) - 2j[f P* (E, F)dF- fp (F) d^
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f^(?v) / w POUr *

Tout d'abord, chacun des crochets est, en valeur absolue ^/P® (E, F) dF
v

~\~JP {F)dF^-2. D'autre part si v appartient à Vs l'ensemble Vs où
v

pifn) ^p^ ^ ^ avec r -\- m s, on aura

,,„,,„ „, ,_ r ,„,
V

La série

(10) av {E) V° r f PM {E, F) dF— fp (F)
V V

a donc ses termes tous finis quand E parcourt V et elle est majorée

par une série convergente indépendante de E, quand v appartient à

Vs - Ainsi quand v est contenu dans l'un des ensembles V\ V2 Vs,

(dont la réunion forme V')9 ov (E) est une fonction bornée sur F et alors

pour chaque état initial E, ou bien ov {E) 7^0 et alors, non seulement

en est infiniment petit avec —, mais son ordre est égal à l'unité et sa

partie principale est—av (E); ou bien gv (E) o et en est d'ordre

supérieur à l'unité.

Remarque. Si l'on voulait calculer la partie principale du moyen de
la formule (10), il faudrait auparavant calculer toutes les densités itérées

P^ (E, F). On verra plus loin, p. 227, qu'on peut obvier à cet inconvénient.

Valeur de la densité limite

Cas quasi-régulier. Nous avons vu que, dans ce cas, P (F) etp (F) sont
finis et égaux partout sur V, sauf peut-être sur un certain ensemble w
de mesure nulle. De plus P^ (E, F) converge vers P(F) quand n tend
vers l'infini, si F est sur V— w. Pour essayer de déterminer P (F)} il
paraît indiqué de passer à la limite dans les formules

(I.) ^-+1> (E, F) § /><»> {E,G)p{G, F) dG.

(T) f PM(E,F)dF= 1.
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Toutefois, nous avons déjà vu qu'on n'a pas le droit, sans précaution,
de substituer dans (T) à P^ (E, F), sa limite P (F). Ainsi, dans l'exemple
de la p. 189, P(F) o. Et même nous avons réservé le nom de cas

régulier au cas où cette substitution est légitime, c'est-à-dire où

Ç

On a vu que, dans le cas quasi-régulier, on peut seulement écrire

Considérons de même le passage à la limite dans (It) ou plus généralement

dans la formule

(I) pim+n) (E9 F) J /><*> {E, G) PW {G, F) dG,

V

Si la substitution était légitime à la limite, l'expression

P (F) — jP(G)I*"* {G, F) dG

v
serait nulle.

Pour qu'elle ait d'abord un sens, il faut que P (F) soit fini.
Si F appartient à l'ensemble V1 V—w, P(F) est fini et, par suite,

pour n assez grand, /*»+«> (E, F) est fini. Alors //<»> (G) Pim) (G, F) dG

^ y P<»> (E, G) P^ {G, F) dG P<^+«) (E, F). Pour e positif donné, on

aura, pour n > n\ /><«+«> (E, F) < P (F) + s. Donc /<«> (G) PM {G, F)
est une fonction (^ o) de G qui est sommable sur Vf ; elle reste sur V1

au plus égale à P (G) P(m) (G, F), tend sans décroître vers cette fonction

quand n croît et son intégrale sur V' reste inférieure ou égale à P(F) -f- e.

Dès lors P (G) P{m) [G, F) est sommable sur V' et son intégrale sur V'
est ^ P (F) -(- £• Comme e est arbitraire, on voit finalement que : dans
le cas quasi-régulier, pour tout état F de V\ P{G) P(m) {G, F) est sommable

sur V1 et l'on a, sur V

(Il)
t/
V
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En particulier,

(12)

V

On peut même préciser la variation avec m de l'expression

p^ p{m)

v

On a vu que

Or w<">+» (F) Jp (G) [ fp^ (G, H)p {H, F) dH^ dG
V V

f [ Jp(G) P*> (G, H)dG\p {H, F) dH J ««-) (7/)/ (H, F) dH.
V V V

Donc <o(2) (i^) J to(1) {H)p (H, F) dH ^- f P[H)p {H, F) dH co(1) {F).
V V

et en général si co(w) (F) ^ w^"1) (/^), alors

(oOk+D (F) J o)W (//)i> (iy, F) ^//^ fo)^-1) {H)p (H, F) dH

Dès lors, a)<w) (F) est une fonction de m non croissante et ^ o. Elle a

donc une limite w (F) ^o et Ton a sur V1

(13) w(^)^ ^w<«+1>(F)^w<«>(^)^ £^a)(1 (F)^LP(F).

La question se pose maintenant de savoir si la relation (11) qui a lieu

partout où elle a un sens, c'est-à-dire quand F est sur V peut devenir
une égalité, une égalité permettant de concourir à la détermination de

P (F) partout où P (F) est défini, c'est-à-dire une égalité ayant lieu

partout sur Vf.
Observons d'abord que, si l'on a pour une valeur particulière de ni

et quel que soit F sur V' :

J
v>
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alors, en multipliant par
sur F'

v

[F, H) dF et intégrant, on aura si H est

P (G) P^ "" [G, H)dG P {H)

et de même, en général

P {G) Pi"") {G, H) dG P [H)j
quel que soit l'entier r. On a alors (i)(w) (H) P{H) sur F' pour une
infinité de valeurs rm de n et par suite à la limite <o (77) P [H) sur
F'. En raison des relations (13), on voit donc que t^n) {F) P (H) sur
Vr quel que soit //. Ainsi, lorsque l'égalité (c^Tîn) a ^ieu pour une valeur
de m, elle a lieu pour toute valeur entière de m. Or, si l'on a l'égalité
(c^Tm) en un état /^ de F', comme d'après le raisonnement fait plus
haut, on a

(14)

on aura

o lim [
«->oo

lim (V«> (G) PM (G, F) dG f/» (G) /><*> (G,

«) (£, ^) —/ (i7)] lim f[7^W (if, G)
« >oo J (G,F) dG.

La dernière intégrale est

1 —^pM (G) dG\.
V

On a donc, à la limite

(F)[i p {G) dG]^o.

Dès lors si l'on est dans le cas quasi-régulier proprement dit, celui où

/ P(G) dG < 1, on devra avoir /<"*> (F) o.
v

Or, si l'équation [0^ a lieu presque partout sur F, il en est de même
de (c^m) quel que soit l'entier r, donc /<™> (F) o et par suite, à la
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limite, P (F) O presque partout sur V. En résumé, dans le cas quasi-
régulier proprement dit, P [F) vérifie la relation (il) quel que soit m
sur V, mais P (F) n'est, pour aucune valeur de m, une solution non
identiquement nulle de l'équation intégrale homogène de Fredholm (3~m)-

Ainsi, le passage à la limite qui fournit {ffm) n'est jamais à la fois

légitime et utile que dans le cas régulier.
Cas régulier. D'après la formule (14), on a

P (F) — Çp {G) /><*¦> {G, F) dG lim An (F)

(9)

^An{F) =J [P<"HE, G)—pW{G)]PM {G, F) dG

avec, d'après (9)

^ PW (F) [1 —JpM {G) dG]
v

si /><»*) [F) est fini. Si donc, on est dans le cas régulier, on aura

P {F) Çp {G) PM (G, F) dG

v

pour tout état F où /><"¦> (F) est fini.
Or, pour tout état F de F', il y a un entier N tel que P^ (F) soit

fini pour m^> N. On a donc a)(w) (F) — P(F) pour m ]> N et par suite

o (F) P(F). Ainsi, pour F sur Vr

P(F) îù (F) ^ a)<«> (F) -^ cû<!) (i^) ^ P (i7).

On a donc co(w) (i^) P (F) sur F' quel que soit n.
En résumé, dans le cas régulier, la densité-limite P (F) est une

solution, vérifiant les conditions

(15)

de Véquation intégrale homogène de Fredholm

et de ses équations ^itérées"

(<&) P(F)= I P(G)P^{G,F)<
v>
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Les conditions (15) montrent d'ailleurs que c'est tine solution ^effective"
de (^7), c'est-à-dire une solution non identiquement nulle sur Vf.

Cas de la densité-limite constante. On a vu que, dans le cas quasi-
régulier, PW (E, F) converge presque partout sur V vers une limite
indépendante de E. On peut se demander dans quel cas cette limite
sera aussi, quand E varie presque partout sur V, indépendante de F.
Alors, la limite étant indépendante de E et de F aura une valeur constante

P. On a d'ailleurs vu qu'on a toujours dans le cas quasi-régulier

(16) °— i
Ceci montre aussitôt que dans ce cas si la mesure de V est infinie, P(F)
ne peut être constant que s'il est nul.

Si, au contraire, V est borné ou de mesure finie, on aura

mes. V

Supposons P ^> o et, par suite, V de mesure finie. On a vu (p. 217,

pour m 1) que dans le cas quasi-singulier, si F est sur V'} P{G)p {G, F)
est une fonction de G sommable sur V. Donc, ici, l'intégrale

f p [G, F) dG doit avoir une valeur finie. D'autre part, on a sur V'
v

(12) P(F)^jj P(G)p{G,F)dG.
V

Donc ici

(17) i

En multipliant par dF et intégrant

s. V^J \fp{G,F)dG \dF
y v

mes. ^
y v

f \ f
v vV V

L'avant-dernière ligne est donc une égalité et l'on a

dF=o.
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L'accolade étant ^o, en vertu de (17), doit donc être nulle presque
partout. Ainsi, on a la condition

(T/) I p (G, F) dG ~ 1, presque partout sur V.

Observons d'ailleurs que, s'il en est ainsi, la relation (17) devient une

égalité sur V. Or nous savons (p. 220) que pour P ^> o, il ne peut en
être ainsi dans le cas quasi-régulier proprement dit. Ainsi, pour que
P (F) soit presque partout égal à une constante positive, il faut •

i° qu'on soit dans le cas régulier,
2° que la condition (Tî) sozt réalisée,
3° que V soit de mesure finie.

Et alors la limite constante est égale à ~— Car on a /P (F) dF 1

d'après i° v

Réciproquement, supposons d'abord simplement vérifiée la condition
(T/) et posons

n (F) J PW {G, F) dG, d'où

et Lt (F) ™ 1 presque partout. Si Lm (F) 1 presque partout pour m^-n,
on aura, d'après (18)

LH+i(F)= I p {H, F) dH= 1 presque partout.
v

Ainsi, si (T/) a heu, on a nécessairement aussi

(T) J /><*> {G, F) dG 1 presque partout sur V,

v

quel que soit l'entier n.
Supposons, en outre, maintenant qu'on soit au moins dans le cas

quasi-singulier, de sorte qu'il y ait d'abord presque partout une limite
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P (F) de PM (E, F) indépendante de E. En vertu de (T'), on a, presque
partout sur V

^ jV«> (//) dG ~pht) {F) mes. V.i ___

v

Dès lors, si la mesure de V était infinie, on déduirait de 2° que/^ (/^) =o
presque partout sur V et par suite que p (F) est nul presque partout
sur V.

Si donc la condition 2° est réalisée : ou bien la densité limite P (F)
est nulle presque partout sur F, ou bien V ne peut être de mesure
infinie et la condition 30 est réalisée. Si P (F) était nul presque partout
sur V, on ne serait pas dans le cas régulier. Donc, si i° et 2° sont
réalisées, il en est de même de 30

Or, dans cette hypothèse, on déduit de la dernière formule que

v ; — mes. V

et en multipliant par dF et intégrant

o^ ff l —P(F)\dp= ï __ f P(F)dF=o.— J Lmes. V v J J

Le crochet est \o et son intégrale sur V est nulle. Donc, il est nul

presque partout, c'est-à-dire que P (F) est presque partout égal à la

constante -—
v

En particulier, s'il existe une fonction W (F) sommable sur V et qtd
majore, quels que soient E et F sur V, l'une des densités itérées PW (E, F),
alors la condition nécessaire et suffisante pottr que la suite des P(n) (E, F)
converge vers une constante non nulle quand F varie presque partout sur
V (et cela uniformément quand E varie sur V) est: i° que la condition
(Ti soit vérifiée, 20 que pour une assez grande valeur de v, /(v) (F) ne

soit pas nul presque partout sur V.

Plus particulièrement, si le domaine V est borné et si les densités itérées
PW (E, F) sont continues sur V à partir dun certain rang n, alors la
condition nécessaire et suffisante pour que la suite des P^ (E, F) converge
vers une constante non nulle et cela uniformément quand E, F varient
arbitrairement sur y, est que
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i° Jp {E, F) dE I quand F est arbitraire sur V*
v

2° II existe au moins un état L de V tel que pour v assez grand,
(E, L) ne s'annule jamais quand E parcourt V ou que P^ {L,E)

ne s'annule jamais quand E parcourt V.
Cas du domaine infini. Nous avons vu que si le domaine est de

mesure infinie, on ne peut, dans le cas régulier, avoir pour densité limite
une constante. Si le domaine étant infini, la condition (Tf) est cependant
réalisée, on aura, presque partout sur V,

i f /><«> {E, F) dE^ j pW (F) dE^ o.

v v
Si p^ (F) n'était pas nul, la dernière intégrale serait infinie. Donc
p(*)(F) est nul, presque partout sur V, quel que soit l'entier n et par
suite / (F) o, presque partout sur V, qu'on soit ou non dans le cas

quasi-régulier. Dès lors:
Quand, le domaine V étant de mestire infinie, la condition (T1 est

réalisée, p (F) est nul presque partout sur V et l'on ne peut être dans le cas

quasi-régulier que si la densité limite P (F) ==/ (F) est nulle presque
partout sur V.

Exemples de réalisation de Tf. On peut signaler deux catégories simples
de fonctions / [E, F) pour lesquelles la condition (T') est réalisée
nécessairement quand la condition (T) Test déjà.

La première catégorie est formée des fonctions symétriques, c'est-à-
dire telles que / (E, F) =p (F, E).

Une autre catégorie (qui n'a pas son analogue dans le cas d'un nombre
fini d'états possibles) est celle où — le système aléatoire, ne dépendant que
d'un paramètre numérique pouvant prendre toutes les valeurs possibles,
et où par suite p {E, F) se réduisant à une fonction p (x, y) de deux
variables numériques —, on suppose que p(x, y) est une fonction de y — x,
soit f (y — x).

La condition
-f 00

(T)

étant supposée vérifiée, il suffit d'observer, en posant y — x u que
l'on a toujours

+ 00 +00 +00j f(y -x)dy J f(u) du ff(y — x) dx
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d'où la condition
+ 00

(T) j f{y-x)dx=i.
00

Dans le cas où les états du système sont définis par k paramètres:

p(E,F) 0(q19 qk\ ul9 uk\

la condition (T) entraînera encore d'elle-même la condition (T') si 0
ne dépend de qly uk que par l'intermédiaire des différences
correspondantes (Çi — Ui), {Çk — Uk).

Mais, comme nous Pavons vu plus haut, ce second cas ne peut
conduire au cas régulier puisque V est ici illimité. Plus précisément, on
aura p (F) o et : ou bien on n'aura même pas le cas quasi-régulier
c'est-à-dire que p (F) <CP(F) sur un ensemble de mesure positive, ou
bien — comme dans l'exemple de la p. 189 — la limite P {F) — / (F)
de P\*) (E, F) sera nulle sur F'.

Expression de la denszté-ltmite P (F). Laissons maintenant de côté la
condition (T'). On a vu que, dans le cas régulier, la limite P (F) de
p(n) ^ /r) vérifie sur V* les conditions :

P(F) jp{G)p{G,F)dG

(15) Jp[Q)dG=i.
yf

Ainsi, dans le cas régulier, l'équation intégrale

(H) X (F) fx(G) p (G, F) dG

a, au moins, une solution non identiquement nulle et même partout ^ o :

X(F)-=P(F) et l'une au moins des solutions vérifie la condition

v

Nous allons même démontrer que l'équation intégrale homogène de

Fredholm (H) ne peut avoir, dans le cas régulier, qu'une solution
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sommable, non identiquement nulle Xo (F) à un facteur constant près.
S'il en est ainsi, on aura nécessairement sur Vf P (F) a XQ (F) et on
déterminera la constante a par la relation i olj X0{F)dF. Cette relation

v
montre que / XQ(F) dFy^o et par suite la résolution classique de l'équa-

v
tion de Fredholm permet de déterminer entièrement F (F) par la formule

{ }^ /X0(F)dF'
v

Pour démontrer le point admis, observons que l'équation (H) ayant au
moins une solution non identiquement nulle Xo (F), alors en itérant (H),
on voit que Xo (F*) vérifie aussi, quel que soit n, Péquation

(Hn) X, (F) =JPM (G, F) X, (G) dG.

Quand n croît indéfiniment, on peut passer à la limite sous le signe J.
Car

m (G, F) Xo (G) dG — fp(F) Xo (G) dG \

yi

On a donc Xo (F) ~ P (F) /Xo {G) dG et il n'y a pas d'autre solution
y

de (H) que les fonctions proportionnelles à P(F).
Ainsi, dans le cas régulier, i° l'équation de Fredholm (H) a une solution

non identiquement nulle et une seule, Xo (F) à un facteur constant
près; 2° la recherche de la densité limite est ramenée à la résolution

classique de cette équation de Fredholm et on a P (F)
\r

fX0(F)dF
Calcul de s (E, F). Supposons, pour simplifier que p {E, F) ait une

borne supérieure finie quand £ et F varient sur V. Alors la série

s {E, F) 2J [PM (E, F) — P{F)]
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est majorée par une série convergente indépendante de E et de F
variant sur tout V.

Or, dans le cas régulier:

/>«> (E, F) — P(F)= j [Pi*-*) (E, G) - P (6?)] / (G, F) dG

v
d'Où :

[P<2> [E, F)-P (F)] + | [/'<-> (E, F) ~~ P (F)]

J j [/><*> (E, G) - P (G)] + + [F<* -» (/f, G) - P (G)] | / (G, F) dG.

v

et à la limite

s (E, F) — P{E, F) + />(*•) =Js [E, G)p [G, F) dG.

Ainsi le calcul de ^ (E, F) est ramené à la résolution d'une équation
intégrale de Fredholm.

Y(E, F) P{E, F) - P(F) + f Y(E, G) p (G, F) dG
F

dont on vient de prouver qu'elle admet au moins une solution. D'ailleurs,
une solution quelconque Yo (E, F) n'est pas nécessairement égale à s(E,F);
mais la différence de ces deux solutions vérifie évidemment l'équation (H),
de sorte qu'elle est de la forme Fo (E, F) —s {E, F) /? (E) XQ (F).

Or, on a, avec convergence uniforme

D'où

F=2J \ Ç

JY,[E,F)dF

o.

/X0(F)dF '

r /Y0(E,F)dF
et finalement s(E,F)= Y0(E,F)~ JXo{F]dF~ Xo(F).

V

Ceci fait, on calculera la partie principale — ov (E) de fvU)(E) —JE (F) dF
n v

(p. 215) par la formule ov (E) =J s (E, F) dF.
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Remarque I. Le raisonnement qui précède nous fournit, chemin
faisant, une condition nécessaire pour qu'on soit dans le cas régulier sous

une forme qui peut être commode •

Pour qu'on soit dans le cab régulier, il faut que Péquation intégrale
homogène de Fredholm (H) admette une solution partout ^ o, non
identiquement nulle et qu'elle n'admette qu'une telle solution à un
facteur constant près

Remarqtie IL On a vu que dans le cas régulier l'équation intégrale
homogène

(HÀ) X{F)=X Ja (G) p (G, F) dG

v

a au moins une solution effective P(F) pour X=i. C'est ce qu'on
exprime en dibant que l'unité est constante caractéristique pour l'équation
(H) II n'est pas nécessaire pour obtenir ce résultat d'avoir établi que
la limite P(F) vérifie l'équation (H). En effet, la condition (7\) montre
immédiatement que Péquation intégrale homogène associée a (HjJ, soit

(H/) Y(F)

admet pour X= i, la solution effective F(6r) i. L'unité est donc
constante caractéristique de (H\) et ceci qu'on soit dans le cas régulier
ou non On sait qu'alors, si les théorèmes de Fredholm s'appliquent
à (H^), l'unité sera aussi constante caractéristique de (HjJ

Autrement dit, la théorie de Fredholm nous aurait permis d'établir
directement Pexistence d'au moins une solution effective de (H), aussi
bien dans le cas singulier que dans le cas régulier. Mais elle ne suffisait

pas pour établir que dans le cas régulier P {F) est déterminé par les

conditions (15) et (^T) Et de plus, on n'a pas le droit d'appliquer cette
théorie à tout noyau et tout domaine. On sait en particulier que son
extension au cas des domaines illimités et aux noyaux discontinus ne

peut se faire sans de sérieuses restrictions.

Valeurs moyennes de variables et de fréquences aléatoires dépendant
d'événements ,,en chaîne". Estimation de leurs dispersions

Valeur moyenne d'une variable aléatoire. Supposons qu'a chaque état

possible F corresponde une valeur déterminée Y (F) d'une certaine
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variable C'est une variable aléatoire dont la valeur dépend de la
réalisation de l'épreuve qui doit fournir un des états possibles

Appelons X^ {E) la valeur aléatoire prise par cette variable quand
n épreuves ont eu heu à partir de l'état E, Si, par exemple, ces n
épreuves ont abouti a l'état F, on aura X^ (E) Y(F). Mais quand E,
n sont donnés, F n'est pas détermine et les deux membres de cette
égalité ont une valeur aléatoire dont nous désignerons la valeur moyenne
par

m XM (E) Y {F)

Avec les notations précédemment employées, cette valeur est égale a

Y {F) PM {E, F) dF

et le problème à résoudre est d'aboi d de trouver comment se comporte
cette quantité quand n croît.

Si nous nous plaçons dans le cas quasi-régulier alors P^ {E, F)
converge vers P (F) sauf peut-être sur un ensemble w de mesure nulle
Or on a en posant V' V—w

(19) m XW {E) Ç Y(F) P^ {Ey F) dF
v

et le problème est de savoir s'il est légitime de passer à la limite dans

le second membre sous le signe d'intégration.
Mais, déjà dans le cas simple ou Y (F) est une constante non nulle,

nous savons que si l'on n'est pas dans le cas régulier

jY(F)[hm P<")(E,F]]dF-=zjY{F)P(F)dF= Y{F)Jp{F)dF
l yiyi yl yi

Y {F) lim f Y (F) PW {E, F) dF.
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Il en est encore de même dans le cas plus général où Y (F) garde un
signe constant et reste en valeur absolue supérieur à une borne positive.
Car si Y (F) reste positif et supérieur à s

(2O) y, y,

fY (F) Pl*) (E, F) dF — JY(F) P (F) dF
vi vi

J Y (F) [/><*> (E, F) —pl») {F)] dF —Jy(F) [P (F) —/<*> (F)} dF.
vi v

La question du passage à la limite sous l'intégrale ne peut se poser
que si les intégrales du premier membre sont finies. Dans ce cas Y (F)
pi») (F) serait aussi sommable sur V* et au plus égale à une fonction Y (F)
P(F) sommable sur V1', vers laquelle elle tend sur V' sans décroître.
Donc la dernière intégrale du second membre tend vers zéro. Or

JY{F) [Pi*) {E, F) —pi») (F)] dF^e[i — Ç /") (F) dF] ^o.
v v

Le premier membre de (20) ne peut donc tendre vers zéro que si la
limite fp{F)dF de f pl») (F) dF est égale à 1, c'est-à-dire dans le cas

vi vi
régulier.

Si Y (F) peut changer de signe, il pourrait se produire des compensations

de signe permettant le passage à la limite de (19) dans le cas

non régulier, pour des fonctions Y (F) particulières. Mais nous savons
maintenant que cela n'aura pas lieu pour des fonctions choisies parmi
les plus simples. Dans la suite, nous allons donc nous borner au cas

régulier.
Si l'on suppose que Y (F) est borné sur V ou au moins sur V\ si,

par exemple, on a | Y(F)\^.A sur V\ alors en vertu de (20)

(21) lÇY(F)P^(E9F)dF— jY{F)P{F)dF\

^_2A\\— CpM
tyt

Et par suite le premier membre tend vers zéro.
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Donc: si la fonction Y (F) est bornée sur F, alors dans le cas régulier
ÏÏÏ X<*> (E) tend vers une limite quand n croît indéfiniment et cette
limite est la quantité indépendante de E

M= Çv(F)P{F)dF.

Cette quantité limite de valeurs moyennes est, elle-même, une valeur
moyenne de Y{E) puisque P{F)^O et/P(F)dFz=z i et c'est même
la valeur moyenne de Y (F) qui correspond à la densité-limite F (F).

Enfin, dans ce même cas, la convergence de VU XM (E)— M vers
zéro est, d'après (21) jointe à la formule (19) de la p. 229, uniforme quand
E varie.

Observons d'ailleurs que

j P™ (E, G) [2X1 X^(G)] dG.

Si donc Y(E) n'étant pas borné sur V, 7X1 XM (E) est borné sur F pour
une valeur convenable m de n, les résultats précédents subsistent puis-
qu'en remplaçant Y{E) par ÏXÏ X{m) (G) on retrouve à un décalage près
la même suite de valeurs moyennes.

Or, si le passage à la limite est légitime c'est que M~j Y (F) P(F) dF
v

est finie et si la convergence de ZÏÏ X{n) (E) vers M est uniforme quand
is varie, alors, pour n assez grand VU XM (E) est nécessairement bornée

quand E varie. Donc :

Dans le cas régulier, la condition nécessaire et suffisante pour que la
valeur moyenne ZTÏ X(w) (E) converge, uniformément quand E varie sur
V, vers une limite finie indépendante de E est que Y (E) (ou plus
généralement V(i X("> (E) pour au moins une valeur de n) soit bornée quand
E varie sur V.

Si Y{E) n'est pas borné, un cas simple où la condition de convergence

est remplie est celui où Y(E) est sommable sur V et où, de

surcroît, P^ (E, F) est, pour n assez grand, borné quand E, F varient
arbitrairement sur V. (C'est par exemple ce qui a lieu quand Y(E)
étant sommable sur un domaine V borné, l'un au moins des P^ (E, F)
est continu pour E, F arbitraires sur V).

En effet

m _M (E) — Çy(F)P (F) dF | ^ [P<«> (F) — P {F)] \ Y (F) \ dF.
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Or si P<w> (E, F) a une borne supérieure finie f/ quand E, F varient sur
F, on a vu (p. 207) que P^n) (F) — F (F) est majoré pour n assez grand,
par le terme correspondant un d'une progression géométrique indépendante

de F. Le second membre sera donc ^un J \ Y{F)\dF et par
v*

suite tendra vers zéro avec —. On a donc encore
n

W (E) f Y {F) P{F) dT
J

(22) lim

et la convergence est non seulement uniforme quand E varie, mais au
moins aussi rapide que celle des termes d'une progression géométrique
indépendante de E. Il est vrai que dans ce cas IXi X^l) {E) étant alors
borné pour n assez grand quand E varie, on rentre dans un cas déjà
examiné ; mais il peut être parfois plus commode de s'assurer que
Fim) (E, F) est borné que de le vérifier pour ïïï X^n) (E).

Même dans certains cas où la démonstration précédente ne s'applique
pas, il peut arriver qu'on ait encore l'égalité (22). Par exemple, dans le

cas envisagé p. 189 et avec les mêmes notations, on posera

2X1

+ 00

Jv(y) PM (x,y) dy

avec
Insi

D'où
T +C

\^_ l r
i — 1/ I X(y)\dy.

Si donc Y (y) est sommable sur le domaine V actuel, c'est-à-dire sur
l'intervalle (—00, -(-00), XRX^(x) tend vers une limite qui est zéro.

Pourtant, on n'est pas dans le cas régulier, puisque PW(x,y) tend vers
zéro. Et cependant, on a encore

+00

lim m X<"> {x) Ç Y{y)P{y) dy.
— 00

Remarque. Dans ce qui précède nous avons cherché à déterminer
des cas assez généraux — au reste tous réguliers — où l'on peut passer à la

limite sous le signe / dans / Y (F) P<»> (E, F) dF.
v
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Il peut cependant se produire des cas où cette intégrale ait une limite
déterminée, sans que cette limite soit égale à / Y (F) P (F) dF. C'est

v
ce que nous allons constater dans l'exemple suivant (qui relève du cas

quasi-singulier proprement dit).

Exemple. Généralisons un exemple dû à Lord Rayleigh. Considérons une
molécule qui effectue une suite de déplacements sur une droite et supposons
que la longueur de chaque déplacement ait pour un sens donné une probabilité

donnée. Ou, plus précisément que la probabilité pour que la molécule partant
de x arrive au bout d'un seul déplacement à une position comprise entre y et

y -\~ dy soit le produit de dy par une fonction de la grandeur y — x\ du
déplacement et de son sens, c'est-à-dire une fonction de y — x, p {y — x).
Dans le cas examiné par Lord Rayleigh, des déplacements égaux en valeur
absolue et de sens contraire avaient la même probabilité, la généralisation la
plus immédiate consisterait donc à supposer que p (p) est une fonction paire
de £. Mais nous allons considérer aussi le cas général.

Si nous prenons pour Y (y) la fonction y on aura VU X^ (x)
+ 00

f yPW (y —x)dy.
— 00

Mais, sans rien changer à la question de Vexistence d'une limite du premier
membre, on a profit à en retrancher une certaine quantité indépendante de n,
qui lui donnera une signification concrète plus simple et d'un plus grand
intérêt physique. Posons en effet

+ 00 +oo

(23) V{n) f(y~-x) P{n) (y — x) dy m X{n) (x) — x fP{n) {y - x) dy
00 OO

[m x{H) (x)] — x

est la valeur moyenne du déplacement résultant y — x après la nhmc

ation à partir de l'abscisse x. On aopération à partir de l'abscisse x.

+ 00

V — V{i) I (y — x) p (y — x) dy j up(u) du\ valeur indépendante de la
+ 00

position initiale x mais qui n'a pas nécessairement une valeur déterminée et
finie. Supposons p {u) tel que cette intégrale soit finie ainsi que celles qui
interviennent par la suite. V est « le premier moment » de p (u). De même

+ 00

Vin) f{y—x) PM {x, y) dy.
OO

+ 00

pw(x,y) =Çp(z-x)p(y-z) dz=Çp(u)p(y-x-u) du.

Or:
+ 00
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En posant

on aura

PW(x,y) pW(y — x)

De même, en posant
+ oo

/><*> (t) -= fp{n~l) (u) p(t—u) du,

— oo

si l'on a pour m < n, Plm) {x, y) p^ {y — X), alors

+ 00 +00
P&> (x.y) =fpl*-t> (z — x)p (y — z) dz fp{n~x) (u) p(y — x — iï)du

00 — 00

et l'on a

Pin)(x.y)=p{M)(y—x)
Donc

+ 00

!/<»> f(y- X)p{n) (y— x)dy =- f up{n) (u) du
— 00 — 00

— fu [fp{n~l) (0 p(u—t) dtj du fp{n~l)(t) [fup(u — t)du^ dt

(0 \_f(*+ v) p {v) dvj dt fp^~1> (t) [t + Vil)] dt K(*-1} + V{1)

Ainsi \/(1) V{n) — V{n~X) V{n 1} — Vin~2) V{2) — V{1)

D*ou en ajoutant

(24) //-<«)=_ ^K
+ 00

S\ p [îi) est une fonction paire, V fup(u)du sera nul Dans le cas
— 00

contraire, V sera en général ^z£ o Les deux cas seront très différents

I Si V=o, F(w) sera nul quel que soit n et, naturellement, tendra
1

vers zéro avec
n

II Si Ft^o, V^n) croîtra indéfiniment en valeur absolue et gardera
le même signe.

On peut dire qu'en moyenne au cours d'une suite infinie d'épreuves
ou bien la molécule oscillera sur place — c'est le cas de Lord Rayleigh
— ou bien elle s'éloignera indéfiniment
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D'ailleurs, on a- d'après (23) et (24)

De sorte que si F=o, VTi X{nï (x) reste égal a ^, quand n croît et si

F=^=o, VTiX^{x) tend vers l'infini
Observons que, dans le cas actuel, la condition (T') étant vérifiée et

le domaine des états possibles étant de mesure infinie, /><«) (x, y) ne peut
tendre vers une limite indépendante de l'état initial que s'il tend vers
zéro (p. 224) De sorte que, sauf le cas particulier ou ]/ o, on n'aura pas

+ r

lim ITT X™ (x) f y (y) P y) dy,
«->oo «/

puisque le premier membre est infini
Notons d'autre part ce résultat intéressant que nous avons pu obtenir

l'expression de V^n) en fonction explicite de n sans avoir besoin de
connaître la densité de probabilité pour une épreuve, c'est-a-dire
indépendamment de la fonction / (u)

Effet de la condition (Tf'). Dans le cas le plus régulier, celui ou P{F)
est une constante sur V1', on a

/\{F)dF
P(F)= La formule (22) devient M= lunZTC A>> (E) =^-7-^7^-v ; mes V }

w->oo IdF
v

Ainsi, dans le cas le plus régulier, M est, comme dans le cas régulier,
indépendant de E, mais, au lieu d'être simplement une valeur moyenne
de Y(F) au sens du Calcul des Probabilités, c'est-a-dire une moyenne
pondérée, c'est une valeur moyenne de Y {F) au sens du Calcul Intégral

Nous savons d'ailleurs que si le cas le plus régulier ne peut se

présenter que sur un domaine fini, la condition (T') peut avoir heu sur un
domaine illimité. Dans ce cas, plusieurs circonstances peuvent se

produire dont nous avons rencontré des exemples plus haut Par exemple,
+ 00

dans le cas de la p 233, si fup {u) du ^6. o, 2TE X{n) (x) tend vers l'infini,
— 00

pour Y (y) =y Si l'on prend/ {u) -= e~u\ alors, dans le cas, ou Y(y)=y,
y 71

VTi X^n) (x) tend vers une limite, mais cette limite n'est pas indépendante
de l'état initial, tandis que si Y (y) est sommable, non seulement ïïï X{n) {x)
tend vers une limite indépendante de l'état initial, mais cette limite étant
nulle est indépendante de la fonction Y (y) et l'on a
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-foo 4.

flim Y(y) PM {x, y)dy= f Y (y) [lim /><«> (x, y)] dy
*->00 «/ t/ «->00

—00 00

ce qui n'avait pas lieu dans les deux cas précédents.
M. Hostinsky a étudié également le résultat de la condition (T') dans

l'effet d'un grand nombre de rotations aléatoires d'une roulette ou d'une

sphère (I, p. S i).
Moyennes arithmétiques. Nous avons vu que, dans le cas régulier, si,

par exemple, Y (F) est bornée sur V, la quantité

m JT<-> [E) f /><*> [E, F) Y (F) dF
v

tend vers la quantité

M— f F (F) Y{F)dF.
v

On peut aussi donner une autre interprétation de M, en appelant M^n) (E)
la valeur moyenne de la moyenne arithmétique

On voit en effet que M^ (E) est la moyenne arithmétique de la somme
des n premiers termes d'une suite de nombres ZÏÏ X^ (E) qui tendçnt
vers M. On a donc:

M =i lim M
«->oo

et on voit que cette limite est indépendante de E.

L'existence de la limite est ici établie dans le cas régulier; il est
vraisemblable qu'elle subsiste dans des cas plus généraux.

Nous allons particulariser ce qui précède, au cas où X^n) (E) ne peut
prendre que les valeurs o ou i.

Fréquences moyennes. Appelons encore répétition d'un événement A
au cours de n épreuves, le nombre R de fois que A se produit et

r>

fréquence f de cet événement le rapport —
n

Appliquons au cas où l'événement A consiste en ce que le système
matériel étudié se trouve dans l'un des états F appartenant à une por-

236



tion v du domaine V des états possibles, et ceci en partant de Pétat
initial E. Alors en employant des notations analogues à celles de la

p. 215, on aura:

HT À>(»> (E) =£«>? (E) Z Ç Pw {E, F) dF.
t=\ t^l J

v

Et on aura pour la valeur moyenne de la fréquence f^n) (E) avec laquelle
on passera au cours des n premières épreuves par un des états de v,
à partir de l'état E

m /W {E) f *M {E> F) dF
V

où «<«> {E, F) —27 jm {E, F). Donc :

m /« (E) —jp (F) dF=^J £ [PU {E, F) —p (F)] dF=H«- Kn,

où:

^ / Ï2 (E, F) -/<> (F)] dF

n ^l' f\p(F) -p* (F)}dF^^2?\fp(F) dF-J
et

K, ^Z J \P(F) -pu (F)] dF^-Z\Jp (F) dF-J pu (F) dF |.
t=\ y y

Dans tous les cas f p® [F) dF tend vers Jp {F) dF quand t croît,

donc Kn tend vers o avec —. Dans le cas régulier, //(/) (F) dF tend
n y

vers i quand / croît, donc Hn tend aussi vers zéro.

Ainsi, dans le cas régulier, la fréquence moyenne IÎT f^n) (E) tend vers
une limite quand n croît indéfiniment et cette limite est : j P (F) dF qui

V

est indépendante de E. (Par analogie avec ce qui se passe dans le cas
d'un nombre fini d'états possibles (IV, p. 18), on est porté à penser que
la première partie de cet énoncé s'étend au cas singulier et que la
seconde partie s'étend à certains cas singuliers — prévision confirmée
dans la note V après rédaction du présent mémoire —.)
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Dispersion

Nous jugerons des dispersions des variables aléatoires qui viennent
d'être étudiées en calculant leurs écarts quadratiques moyens.

1° Dispersion d'une variable aléatoire. Pour mesurer la dispersion de

^ calculons d'abord son écart quadratique moyen t*/w) (E), On a

(25) [><*> (£)Y f p{n) (E> F) [Y (F) — m Xin) (£W dF
v

f Y2 {F) /><«> {E, F) dF— \f Y {F) /><*> (E, F)

yy? r v(n) Z7\H2 r\Yï

V

De la relation

et du résultat établi plus haut p. 231, et appliqué à Y (F) et Y2 (F)} on
déduit, que : dans le cas régulier, la condition nécessaire et suffisante

pour que Zlî X(n) (E) et (ain) (E) convergent uniformément, quand E varie
sur V, vers des limites indépendantes de Pétat initial E, est que Y (F)
soit borné sur E, ou que, pour une valeur asse# grande de n, Zïï X^ (E)
et îîî [X(w) (^)]2 soient bornés quand E varie sur V.

Un cas où Y (E) n'est pas borné et où Ton peut cependant, s'assurer,
sans itération, que cette double condition est satisfaite est celui où pour
au moins une valeur de n, P(n) (E, F) a une borne supérieure finie quand
E, F varient sur V et où F2 (E) est sommable sur V. (On sait qu'alors
Y (F) est aussi sommable sur V).

Il est clair que dans ces deux cas, la limite fi de l'écart quadratique
moyen ^<*> (E) est elle-même un écart quadratique moyen, à savoir
celui qu'aurait Y (E) si /><«> (E, F) était remplacé par P (F). Car on a

Y2{F)dF—\ \ P[F) Y {F) dFÏ-

Pour simplifier, nous allons pour la suite nous contenter de conditions
suffisantes; nous supposerons, qu'on est dans le cas régulier et que
Y (F) est borné sur V (ou bien que F2 (F) est sommable sur V et que
PW (E, F) est pour n assez grand, borné supérieurement quand E, F
varient sur F).
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On déduit de fiM (E) la valeur de l'écart quadratique moyen \M (E)
de XW>[E) avec M. Car

[À<*> {E)f [><«> {E)]2 + \mXM {E) — M]2.

Par suite, quand n croît indéfiniment, X(w) (E) qui reste ^f/M (E), tend
vers la même limite ^ indépendante de is.

Dispersion de la moyenne arithmétique. De même, appelons çl** (E) et
d^n) (E), les écarts quadratiques moyens de AM (E) avec sa moyenne
Min)(E) et avec la limite M de cette moyenne. On a6)

Le premier terme du second membre tend vers fi2 quand n croît
indéfiniment. Reste à étudier

Z» zz — 2J 2Tt [ZW (^) — ^f] [X^> (E) — M]
% u<v<n

2 J" [Ar (/?) — iJf] r I* [X (G) — M]R w (i?, G, £•) rf

M (F, G, E) — 2J P{u) {E, F) P{v~u) {F,avec 2J
^ u<v<n

+ /x»

où vS(w) et T{n) s'obtiennent en remplaçant dans RM les /»<*> (F, &)
respectivement par PW(F, G) — P{G) et par P (G). On pourra dans Z>>

remplacer i?(w) par vS(w), car le terme négligé dans LM sera

JP A f[X(^) — M] f
u<v<n M J J

V V

27 —
u<v<n M

V

où la dernière intégrale est nulle.

6) Pour un calcul et des raisonnements analogues à ceux qui suivent, mais un peu plus
détaillés, voir IV, p. 23.
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Or £(*> est le produit par de la moyenne arithmétique des n — i

premiers termes de la série ax + a2 -{-... -\- an-\- où

an P<1} (E, F) <»<«> (F, G) + + P^"1) (£, i?) c^1* (F, G)

avec ù)W(F,G) P{u)(F,G)—P(G). Si on démontre que an tend vers

a, il sera prouvé que S^ tend vers a.
Supposons encore, pour simplifier, que non seulement l'un des

P(w) (E, F) mais p {E, F) ait une borne supérieure finie quand E, F
varient indépendamment sur F. Alors, dans le cas régulier, /><*> (E, F)
tend uniformément vers P (F) et la série 2" | o)^n) (F, G) | est bornée et

n

uniformément convergente. Dès lors <xn tend uniformément vers

5 (F, G) P{F)~2 «<-) (F, Q)=.P (F) s (F, G).

Par suite

(26) lim » [J<
«-> 00

avec

où

S J [^(^) — M] F (F) J [X(6?) — Jf] [/»<->(/? G) — /•((?)] rfG

On peut aussi écrire

(27) /2
F

2 — M] \J[X(G) — M] S{F, G) dG J dF.

D'autre part, on a évidemment

(28) n [<?W (£)]2 n [p<-
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Et

]/n I MM (E) 2J ~~ f [PM {E, F) — P (F)] X{F) dF

^^ZJAq» Ç\X{F)\dF

puisque, dans le cas actuel, les | P^ (E, F) — P{F)\ sont inférieurs aux
termes d'une série convergente S A qu

u
Finalement on a:

(29) lim n [#

Ainsi, lorsque n croît indéfiniment, non seulement S^n) {E) tend vers zéro,

mais nous connaissons maintenant sa partie principale —=-.

Retour à l'exemple. Il n'est pas impossible d'étudier le comportement
de la dispersion en dehors du cas régulier. Reprenons l'exemple de
Lord Rayleigh et les notations de la p. 233, pour calculer la dispersion
du déplacement y — x. Soit 0W l'écart quadratique moyen du déplacement

à partir de l'abscisse x après n chocs. On aura

+00

\tyff f(y — x—- F<">)2 P<"> (x.y) dy~ f [u — F<*>]2/<*> {u) du.
— 00

C'est une quantité, [6(w)]2, indépendante de la position initiale x.

On a: +00

[9<«>]2 Ju2pM {u) du — [ F<*>]2 an — n2 V2.

— 00

Or

I u2pM (u) du= l u2\ I /0»-1) (t) p (u — t) dt\du —

\ P{n~l) {t) \ ïu2p{u — t) du 1 dt

et

\u2p(u — t)du= \{t-\-vfp{v)dv — t2-\-2t\vp(v)dv-{- \v2p(v)dv

t2 -j- 2 t V-\- W avec W= I v2 p (v) dv.
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+ 00 +00
9(w) sera fini si J vp [v)dv et / v1 p (v) dv sont finis ce que nous allons

— 00 — 00

supposer.

Alors

an=Jp(*-V(t)[t*-\-2tV+ W] dt *„-! +2 (n—i) V2 + W

d'où

[9(«)]« __ [0(—D]« («„ — a«_i) — 02 — (* — i)2] F2 W— F2, avec
[6<1)]2= J>F— F2. Donc

[e^>]2 ^[e^]2,
0(«) QW Yn et 0<*> ]/W— V\

Sous la condition que le premier et le deuxième moments, F et W,
de p (u) soient finis, on a généralisé le résultat établi par Lord Rayleigh
dans le cas de déplacement finis, constants et égaux, à savoir que 9(w)

est proportionnel à \n.
Observons qui si Ton prend pour Y [y), la fonction y, on a

y — VU X^n) [x] y — x — F(w) et par suite l'écart quadratique moyen
{4 W de X^ (x) est aussi égal à 0(n). On a donc ici un exemple d'un
cas quasi-régulier mais non régulier. Et ici ^n>> au lieu de tendre vers
une limite, croît indéfiniment.

II0 Dispersion des fréquences. Il y a plusieurs fréquences à distinguer.
La fréquence F^n>N){E) avec laquelle dans iV'groupes de n épreuves,
on aboutit à la nhm* épreuve à un état appartenant au domaine v après
être parti initialement de l'état E, a pour valeur moyenne la probabilité
o)^ (E) /P{n) (E, F) dF de cet événement. Et son écart quadratique

moyen est, comme on sait, la quantité ^n>N) (E)

On voit qu'on aura dans le cas régulier

lim in F{vn'N) {E) Çp{F)dF
—>-oo J

n->-cx>

P{F)dF]
lim ^KiN) (E) =z N

La première limite ne dépend ni de n, ni de N, ni de l'état initial E;
la seconde ne dépend ni de n, ni de E.
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Passons maintenant à l'écart quadratique moyen <Sjw) (E) de la fréquence

fv{n)(E). Les limites des valeurs moyennes de F*"'*0 (E) et de f^(E)
(p. 237) sont les mêmes, quel que soit N, lorsque n croît indéfiniment;
il n'en est pas de même de leur dispersion.

On aura avantage à calculer d'abord l'écart quadratique moyen Q^ (E)
de fv (E) avec la limite pv—JP [F) dF de la valeur moyenne de

V

fvn) (E). On aura évidemment

(30) [£<«> (E)j [<s*"> (E)Y + pn /f>

(E) -aY-
On connaît déjà le dernier terme

tS fF(f> & Fï dF-p\=i\Sf ipit) ^ F)—p (F» dF\

et on sait que si, pour simplifier, on suppose que p (E, F) a une borne
supérieure finie quand E, F varient sur V, l'accolade tend, quand n
croît, vers une limite finie /s (E, F) dF.

V

En ce qui concerne (§jw> on pourrait le calculer directement. Mais,
il est clair que si X{F) 1 ou o suivant que F se trouve ou non sur

v, A%\ M{n) {E), M, S^ {E) se réduiront à /f> (E), 2ÏÏ f™ (E), pv Q^.
Alors d'après les formules (26), (27), on a

lim n
n—>oo

avec :

f()[f()j, ou K*=fiv(i—fiv)
V V

et

H 2J(i-fv)j (i-pv) S{F, G)dGdF+ 2J(—p,)J(i-pv) S (F, G) dG dF
v v V—v v

+ 2 J(i—pv)J(-p,)S(F, G)dGdF-\- 2 J(—/„)/(-/») S (F, G) dG dF
v V—v V—v V—v

- 2 (i-pvyJJs(F, G)dGdF+ 2 (A)2J Js(F, G) dG dF
v v V- v V-v

— 2/,, (1—pv) [JJs (F, G) dG dF +J Js[F, G) dG dF^VVv V-v V-v v
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D'ailleurs, on a, avec convergence uniforme

fs{F, G)dG=~2J Jp (F) [/><« (F, G) — P{G)] dG
v

~ V V ~

et d'après {gm)

J S (F, G)dF 2J [J P{F)P® (F, G) dF — P(G)j P(F)dF
r

Dès lors Cs{F, G)dG ~fs{Fy G)dGy Js (F, dF —Js{F, G) dF
V-v v V—v v

et H se réduit à :

2 (i—PvYf [ fs{F, G) dG^ dF— 2 (pv)*C ^ Çs(F, G) dG^ dF
v v V—v v

— 2pv {i—pv) j —J* [fs{F, G) dG^ dF + f [ Cs{F, dG^ dF^
v v V—v v

— 2 (i—pv) C \ Cs(F,G)dG\ dF—pv f \ is{F, G)dG\ dp\

v v V—v v

2 j ffs(F, G)dGJF—pvf[f's(F,G)dF+fs(F,G)dF]aG\
V V V V V—V

2 J [fs(F, G)dF-pv) Js(F, G) dF\ dG
v v V

— 2 J Çs{F,G)dGdF.
V V

Car f [ fs(F, G) dF^ dG — f [ Js{F, i

v y y v

Ainsi H — 2 ÇÇs {F, G) dG dF.

dF o.
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Il résulte alors de la formule (26), qu'on aura, non seulement

Qln) (•£) ^ &vH) (E), mais encore

lim ]/h gia) (E) lim fn^ (E) ]/K* + H

JPv (i—A) + 2ffP{F) ^ (^, G) dG dF
V 2/ V

(Reçu le 23 avril 1932)
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