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Sur I'axiomatique de la théorie des
ensembles et sur la logique des relations

par F. GONSETH, Zurich

1. Remarques sur la méthode axiomatique

Nous allons commencer par soumettre & quelques critiques la méthode
dite « axiomatique » par laquelle, suivant l'exemple de M. Zermelo, on
a cherché a mettre la théorie des ensembles a 'abri des antinomies bien
connues.

Depuis le mémoire de M. Zermelo et les objections présentées par Poin-
caré, la situation est loin de s’étre définitivement déclaircie et 'unanimité
ne s’est point faite sur le sens et la portée de la méthode elle-méme. Nous
allons en reprendre les traits essentiels. La premiére chose a faire est de
renoncer a la définition de Cantor :

Un ensemble est la réunion en un tout de certains objets percus ou
pensés, les éléments de Uensemble. Cette définition s’est révélée trop large
et ouvre la voie aux paradoxes que l'on connait. [l faut renoncer égale-
ment a toute autre définition explicite de ce qu'il faut entendre par en-
semble, par élément, par la relation d'inclusion d’un élément » dans un
ensemble y (la relation x¢y), etc. Ces notions et relations ne doivent
prendre — dit-on — que le sens que comportent les axiomes et les
définitions qui s’y rapportent, axiomes et définitions qui sont a énoncer

explicitement.
On va donc commencer par imaginer certaines choses que 'on appellera
ensembles et qu'on désignera par les lettres a, b, ¢...; on imaginera

ensuite entre ces choses trois relations

I. la relation @ ¢ b (a est élément de D)
2. la relation a<{ b (a est sous-ensemble de b)
et 3. la relation e=b (e est identique a b).

Ces relations n’ont aucun sens par elles-mémes. Toute leur signification

doit étre contenue dans les définitions et axiomes que voici :

Déf. 1. Si tout x qui est a @ dans la relation 1 est aussi a b dans la méme
relation, @ et b sont alors dans la relation 2.

Déf. 2. Si a et b sont aussi bien dans la relation ¢ < b que dans la relation
b < a, alors a et b sont dans la relation 3.

Axiome 1. St a =00 et s1 a est élément de A, b est auss: élément de A.
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Axiome 2. Les éléments de deux ensembles A et B (difl érents) forment
a eux seuls les éléments d'un nouvel ensemble C.
Axiome 3. Si A est un ensemble, les éléments de ses éléments forment
un ensemble.
Axiome 4. Tous les sous-ensembles d'un ensemble forment d eux seuls
les ¢eléments d’'um nouvel ensemble.
Axiome 5. Les éléments d'un ensemble qui possédent un attribut bien
déterminé (definit) forment un sous-ensemble du premier.
Azxiome 6. On peut former un ensemble en choisissant un unique élément
dans chaque élément de toul ensemble.
Le systétme de M. Zermelo comprend enfin un septiéme
axiome qui permet d’affirmer l'existence d’'un ensemble infini.
Axiome 7. Il existe un ensemble N tel que
1. st Vensemble nul (c.-a-d. qui w'a aucun élément) existe,
c’est un élément de N ;
2. St m est un élément de N, celui-ci contient ausst gml (c.~a-d.
Pensemble dont m est Uunique élément ).

La premiere question que souléve ce systéme d'axiomes, c'est naturelle-
ment de savoir s'il détermine véritablement les objets de pensée (les en-
sembles) qu’il vise. On se souvient de l'objection de Poincaré?):

. « Quelqu’un qui ne sait pas ce que c’est qu'une Menge ne le saura pas
davantage lorsqu’il aura appris qu’elle est représentée par le symbole ¢,
puisqu’il ne sait pas ce que c’est que £»... Les axiomes peuvent-ils a
eux-seuls remplacer la connaissance intuitive et préalable des étres mathé-
matiques dont ils fixent les lois d’existence ? C'est 1a le point sur lequel
il nous parait nécessaire de nous arréter un instant.

Pour justifier la méthode de M. Zermelo, on la met parfois en paralléle
avec la méthode axiomatique usuelle en géomeétrie. Or il y a tout d’abord
une différence essentielle entre le systéme d’axiomes que nous discutons
et celui qui est a la base de la géométrie dite élémentaire. Cette difté-
rence est justement mise en lumiére par la remarque de Poincaré que
nous venons de rappeler. Dans la construction de la géométrie élémen-
taire, les étres mathématiques soumis aux axiomes sont des abstractions
suggérées par le monde physique. I axiomatique fixe simplement les
modalités de cette abstraction, fixe dans la sphére du rationnel les regles
d’existence de ces objets abstraits. Dire — avec M. Weyl2) — « que la
méthode axiomatique consiste simplement a rassembler fous les concepts
et les faits fondamentaux, a partir desquels tous les autres concepts et

1y H. Poincaré. Derniéres pensées, p. 124.
%) H. Weyl: Philosophie der Mathematik,
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tous les autres faits d’'une science peuvent étre ou définis ou déduits, »
c’est supposer que les concepts fondamentaux ont déja pris naissance et
qu'on sait déja quelles sortes de relations on peut établir entre cux :
c’est supposer que le travail de la constitution des abstraits est déja ter-
miné. Or sur ce point, 'axiomatique de M. Zermelo prend soin de spé-
cifier qu’elle a coupé les ponts qui pourraient la relier avec la notion,
intuitivement fondée, de collection. Le concept d’ensemble qu’elle vise
n’y doit point étre envisagé comme un abstrait suggéré par tel ou tel
autre concept de la sphére intuitive : au contraire ce sont les axiomes
a eux-seuls qui doivent lui créer, de toutes piéces, une signification et
I'appeler a 'existence mathématique. Sans vouloir encore en tirer de con-
clusion quant a la 1égitimité de la méthode de M. Zermelo, il nous faut
constater la présence d’'un hiatus essentiel qui ne permet pas de la justi-
fier par comparaison ou identification avec l'axiomatique dite élémentaire.

En revanche, il peut sembler a premiere vue le parallélisme s’établit
de lui-méme et de facon parfaite avec 'axiomatique au second degré, ou
toutes les notions sont repoussées dans le domaine de la logique des rela-
tions. L’essentiel de cette méthode est déja dans les toutes premiéres
lignes des « Grundlagen der Geometrie » de Hilbert.

« Nous imaginons trois catégories d’objets : nous nommons points les
objets de la premiére catégorie, etc... »

« Nous imaginons qu’entre les points, les droites et lcs plans, il existe
certaines relations que nous deésignerons par les termes: « étre sur »,
« entre », « paralléle », « congruent », « continu ». La description de ces
relations, description exacte et suffisante pour les buts de la géométrie
se fait par le moyen des « axiomes de la géométrie ».

Les objets géométriques doivent ainsi étre vidés de leur contenu in-
tuitif — pour employer une expression consacrée — ct n'avoir d'autres
propriétés que celles que les relations, purement abstraites, a €tablir entre
eux vont leur conférer.

Les axiomes %) qui fixeront le sens de la locution « étre sur » ou si 'on
préfére de la « relation d’incidence » seront alors, par exemple, les sui-
vants :

Azxiome 1. On peut toujours imaginer pour deux objets de catégories
différentes, une relation J (*,*) (la relation d’incidence).

Axiome 2. Pour ces deux objets, ou bien cette relation est, ou bien
elle n’est pas.

Axiome 3. Cette relation est symétrique, ectc, etc. ..

8) M. Geiger. Systematische Axiomatik der euklidischen Geometrie.
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En face de cette axiomatisation sur le plan du logique pur, on peut prendre
deux attitudes. La premierc est toute naturelle : elle consiste a regarder les
« objets » et les « relations » soumis a l'axiomatisation comme de nou-
veaux abstraits suggérés par les notions et les relations géométriques
du degré élémentaire : comme des absiraits au second degré. Au moment
ou nous établissons les axiomes, nous pouvons alors regarder a nouveau
le processus de la constitution des notions abstraites comme terminé. De
ce point de vue, cette axiomatisation est parfaitement semblable a l'axio-
matisation ¢élémentaire, elle répond completement a la deéfinition de
M. Weyl : nous la regardons comme légitime. Il va sans dire que cette
premiére attitude ne peut pas étre adoptée dans la méthode de M. Zer-
melo, le lien avec lintuitif étant expressément rompu.

LLa seconde attitude est moins clairement définie. Elle consiste essen-
tiellement & admettre que le systéme des axiomes fournit en quelque sorte
une détermunation implicite des notions qui y figurent. Nous ne voulons
pas discuter a cet endroit si, une fois qu'on a supposé les liens avec
Uintuitif compléetement dénoués, une détermination de ce genre reste
possible. Nous voulons nous borner a remarquer que, dans le cas qui
nous occupe, il faut en tous cas admettre que la notion de relation logique
soit préalablement en notre possession. Il ne peut étre question que cette
notion soit elle aussi « définie implicitement », les axiomes caractérisant
tout au plus les trois relations fondamentales et non la notion méme de
relation.

C’est 1a une grave objection, car la notion de relation, dans sa pléni-
tude intuitive, donne lieu aux mémes antinomies (mutatis mulandis) que
la notion d’ensemble selon Cantor. Il faudrait donc que, par une axio-
matisation adéquate, cette notion elle-méme eflit recu sa justification. Or
on sait bien que la Logique théorique n'y parvient que de facon insuf-
fisante.

En résumé, ces critiques cherchent a mettre en lumiére les deux faits
suivants :

1. La méthode axiomatique de M. Zermelo diftére sur un point essen-
tiel de la méthode axiomatique qui s’est constituée a partir de 'axioma-
tique élémentaire de la géométrie ; celui de la constitution préalable et
par abstraction, des notions fondamentales.

2. Dans la mesure ou elle prétend se rendre indépendante des notions
intuitives, la théorie de M. Zermelo fait appel a la notion de relation. Or
celle-ci, dans la plénitude de son sens, est antinomique, et les axiomes
ne fournissent pas le moyen de la circonscrire.



Les points sur lesquels nous venons d’insister ne sont pas les seuls ou
les axiomes précédents prétent a la critique. On a déja souvent fait
observer que le 5e fait intervenir la notion d'attribut bien déterminé
(definit) qui aurait elle-méme besoin d’étre axiomatiquement fondée.
Nous ne voulons pas revenir non plus sur la discussion que l'axiome 0
(du choix) a soulevé. En revanche, nous appuyons spécialement sur les
critiques que nous venons de formuler, parce qu’elles s’appliquent égale-
ment aux systémes axiomatiques dérivés de celui de M. Zermelo (ou par
exemple on cherche & parer au point faible signalé a l'axiome 5 e).

La position axiomatique de ces systémes est d’ailleurs telle, qu’elle
ne permet pas de porter une clarté suffisante sur la question-méme en
vue de laquelle ils ont été inventés : celle des antinomies. Il est vrai que
les antinomies connues peuvent étre évitées, mais la méthode ne permet
pas d’apercevoir ce qu’'on pourrait appeler la cause ou la racine des para-
doxes, et, a cause du « nuage axiomatique » dans lequel la notion d’en-
semble reste enveloppée, la possibilité d’autres paradoxes reste ouverte,
sans qu’on puisse prévoir si la méthode restera efficace.

Le but de ce travail est d’esquisser une autre axiomatisation des no-
tions de la théorie des ensembles. Cette nouvelle méthode permet — nous
semble-t-il — d’éviter les différents écueils que nous venons de signaler.
En particulier elle fera voir que la racine commune des antinomies doit
étre apercue dans le fait trés simple que voici :

Les éléments des ensembles selon Cantor sont susceptibles de posséder
par eux-mémes des attributs intrinseques, avant méme d’étre envisagés
comme éléments d’un cnsemble — attributs qui ne se limitent pas a carac-
tériser Uexistence individuelle d'un élément dans I'ensemble.

Des attributs de ce genre sont par exemple « d’étre une paire de bas »
ou « d’étre un ensemble qui ne se contient pas lui-méme comme ¢élément »
ou méme plus simplement « d’étre un ensemble ».

2. Les objets et les relations de la logique pure

« L’attitude axiomatique » dans laquelle nous allons nous placer est
celle que nous avons décrite tout a '’heure en 'opposant a la méthode de
M. Zermelo ; 'axiomatisation y comprend les deux phases suivantes :

a) Constitution des notions fondamentales, celles-ci étant A abstraire
de certaines autres notions (telles que celles d’objet, de collection, de

nombre, etc) qui doivent étre considérées comme étant préalablement en
notre possession.

b) Enumération des axiomes.
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Il faut une analyse assez attentive pour distinguer la premiére phase
dans l'axiomatisation « élémentaire » de la géométrie. Il n’en reste pas
moins vrai que c’est elle qui donne sa signification véritable a toute cons-
truction axiomatique. Ceci se manifeste spécialement dans le fait que
le processus de I'abstraction ne peut étre que suggéré, mais jamais « ver-
balement défini ». C’est ainsi que les droites imparfaitement réalisées
dans le monde physique ont suggéré aux premiers géométres la notion
géométrique de droite, la notion de lieu précis, celle de point mathéma-
tique. Le passage de la notion intuitive a la notion géométrique est le
phénoméne mathématique par excellence, mais il reste plus ou moins
sous-entendu.

De la méme facon nous allons nous efforcer de faire entendre ce que
doivent étre les objets et les relations de la logique pure.

Toute construction mathématique peut étre mise sous la forme d'un
réseau de relations entre certains étres géométriques ou arithmétiques.
Si 'on abstrait de ces relations et des objets mathématiques qu'elles re-
lient tout ce qui a trait a la grandeur, a la forme, etc, il en reste ce qu'on
pourrait appeler le contenu de pure logique. Les objets de la logique
pure (éléments logiques) ne sont alors susceptibles que des propriétés
suivantes :

Ils sont ou identiques ou différents (sans qu’il y ait lieu de préciser
en quoi ils différent).

Ils n’ont, par ailleurs, pas d’autre role que de figurer dans les relations
logiques, ou mieux encore que de servir de point d’attache aux liaisons
logiques. (La différence entre les deux expressions précédentes sera pré-
cisée tout a I’heure.)

Il est bien entendu que, de tout objet dont on parle, on suppose qu'il
est individuellement reconnaissable, et qu’il peut étre représenté par un
symbole qui lui soit particulier.

Les liaisons logiques n’ont a leur tour que les propriétés suivantes :

Deux liaisons logiques sont ou identiques ou différentes (sans qu’il y
ait lieu de préciser en quoi elles différent).

Par ailleurs, elles n'ont d’autre rdole que de relier les objets logiques
dont nous avons parlé.

Une liaison logique s’établit entre deux ou plus de deux éléments.
Supposons par exemple qu’elle soit établie entre les deux éléments logi-
ques a et b et désignons-la par le symbole (@, b). Dans ce symbole, les
lettres a et b ne désignent pas deux éléments plus ou moins quelconques
(comme ce serait le cas dans la relation arithmétique @ < b par exemple).
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Il faut au contraire les envisager comme les signes reconnaissables de
deux éléments individualisés. La liaison logique (@, b) ne s’établit alors
qu’entre ces deux éléments. Si, au contraire, il peut y avoir un sens a
dire qu’il existe entre un @ et un b, variables au sein de certaines collec-
tions, toujours une méme liaison logique, nous dirons que le symbole
(a, b) représente une relation logique. Mais le procédé qui permettra de
reconnaitre quand deux liaisons logiques peuvent étre dites identiques
ou équivalentes doit encore étre expliqué.

Ainsi par exemple, la relation

F (a, b) d’'un fils a quelconque a son pere b, n’est naturellement pas
une relation logique, mais une relation de parenté. De méme, ni la rela-
tion G (x, y) = x < y entre un nombre x quelconque et tout nombre
plus grand v, ni la relation d’incidence J (@, b) d'une droite a quelconque
a tout point b de cette droite, ne sont des relations logiques. De méme
encore ni la liaison « entre Zébédée et son fils », ou bien « entre les nom-
bres 3 et 4 », ou bien « entre 'axe des X et l'origine » ne sont des liai-
sons logiques. Mais on parvient aux notions de la logique pure a partir
des précédentes en faisant abstraction de tout ce qui est parenté, gran-
deur ou position. Il sera commode de dire que les notions plus ou moins
intuitives a partir desquelles une relation logique peut Atre atteinte par
abstraction sont des réalisations de la relation logique. Ainsi par exem-
ple, les nombres entiers réalisent certains éléments logiques, et la relation
d’'un nombre quelconque # a celui qui le suit -+ 1 réalise une certaine
relation logique. De méme, on peut imaginer que la succession de 4 a 3
réalise une liaison logique, dont les éléments sont réalisés par les nom-
bres 3 et 4. Nous avons insisté sur ces exemples trés simples pour bien
opposer le domaine des notions abstraites et les domaines ot celles-ci
se réalisent. S'il est parfaitement possible de concevoir les objets abs-
traits et les notions que nous avons en vue, qu’il soit bien clair aussi qu'il
est impossible de les réaliser dans leur perfection : toute réalisation in
concreto est du genre que nous venons de dire. Ceci n'est en aucune
facon une faiblesse de notre théorie. C’est au contraire un caractére qui
se retrouve dans toute constitution d’abstrait ; un caractére qui est bien
visible aussi dans l'axiomatique élémentaire. Le fait qu’il est impossible
de réaliser in concreto un cercle parfait, ou une droite « absolument recti-
ligne» n’a jamais été un obstacle a 'érection de la géométrie en science
rationnelle. De la maniére méme dont les notions de la logique pure
trouveront une réalisation dans celles de la géométrie ou de 'arithmétique
(et d’ailleurs aussi dans les notions intuitives), la notion de droite trouve
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une réalisation dans la « trajectoire d'un rayon lumineux » ou dans le
« trait tracé a la régle ».

Le but véritable de la méthode axiomatique, c’est de dégager les notions
abstraites de la « matiére » de leurs réalisations ; le but de tout systéme
d’axiomes de fixer les regles selon lesquelles abstrait doit étre traité.

Le but des lignes qui vont suivre est donc de dégager de leurs réali-
sations les notions de la logique pure, ou wmieux encore de construire
axiomatiquement la notion méme de « Logique pure». Il se présentera
que celte facon de faire écarterva tout naturellement les difficultés relatives
aux antinomies.

L’esprit dans lequel notre tentative axiomatique va étre entreprise
étant ainsi fixé, il nous a paru inutile de spécifier chaque fois par la suite
ce qui est axiome et ce qui est définition.

3. Notions fondamentales. Principes et axiomes

Passons a la construction du systéme axiomatique ou les notions fon-
damentales telles que

élément ou objet logique, liaison logique, compatibilité et incompatibilité

de deux ou de plusieurs liaisons, relation logique, structure lo-
gique, etc.
sont mises en relation les unes avec les autres.

Nous dirons d'une liaison établie entre deux ou plusieurs éléments
qu’elle touche ceux-ci, ou qu'elle les recouvre, ou qu'elle les relie, etc.

Entre deux (ou plusieurs) éléments logiques on peut imaginer un
nombre quelconque de liaisons logiques, toutes différentes entre elles.
(Deux liaisons sont ou identiques ou différentes, sans qu’il y ait jamais
lieu de préciser par quoi elles peuvent ne pas étre identiques.)

Il est naturellement trés facile d'indiquer des réalisations intuitives ou
mathématiques qui justifient cet axiome. Par exemple : On peut former
autant de groupes différents de trois objets que 'on veut, ot entrent deux
objets donnés. La présence simultanée de ces deux objets dans un méme
groupe est une liaison. (Naturellement pas une liaison logique.) Ou bien
aussi : On peut tracer entre deux points d'un plan autant de chemins
différents que l'on veut ; etc., etc.

Deux liaisons sont ou compatibles ou incompatibles (qu’elles soient ou
non établies entre les mémes éléments).

Trois liaisons somt également soit compatibles, soit incompatibles.
Elles sont en particulicr 1ncompatibles si deux d’entve elles le sont.
Eiles pourront I’étre aussi, bien que compatibles deux a deux.
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En général : Des liaisons en nombre quelconque sont incompatibles si
c’'est le cas pour une partie d’entre elles.

Décréter l'incompatibilité de deux liaisons, c’est donc décréter l'in-
compatibilité pour toutes les combinaisons ou ces deux liaisons seraient
présentes. C’est la-dessus que se basera tout 4 'heure le principe du libre
choix des incomptatibilités.

A propos de la compatibilité ou de I'incompatibilité de deux liaisons, il
y a une remarque essentielle a faire.

A priori, il n'y a aucune incompatibilité entre deux liaisons différentes,
tant qu'on n’a encore rien décrété, si ce n’est qu’elles ne sont pas iden-
tiques. IL’incompatibilité ne peut provenir que d’'une mise en rapport de
ces liaisons. Tant qu’elles n’existent que de fagon purement individuelle
et chacune pour soi, toute possibilité de contradiction est exclue. C’est de
la méme fagon que deux idées ne peuvent jamais entrer en opposition, tant
qu’elles restent étrangéres 'une a l'autre et ne sont pas associ€es.

Dans la pratique du raisonnement, certaines affirmations d’incom-
patibilité prendront une forme positive. Si, par exemple, on sait que #
liaisons sont incompatibles, et que n—1 d’entre elles existent, on en
déduira que la n¢ n’existe pas.

Passons a la notion d’ensemble. Elle se présentera pour nous sous la
forme de U'ensemble lié : c’est une collection d’éléments logiques entre
lesquels on a établi un certain nombre de liaisons. Pour bien marquer la
différence avec la notion habituelle d’ensemble, un ensemble lié sera appele
aussi une structure logique.

La construction de ces structures se fera selon les prescriptions de
certains principes trés simples, qu’il faut considérer comme venant com-
pléter les régles de la logique ordinaire et du nombre, valables dans le fini.

A. Principe de libre extension. Une structure étant dommée, on peut
toujours imaginer un nouvel élément différent de tous les éléments déja
existants.

Ce principe ne fait que formuler ce qu'on appelle aussi la liberté des
constructions mentales.

B. Principe de libre liaison. Entre deux ou plusieurs éléments, on peut
toujours imaginer wumne nouvelle liaison différente des liatsons déja
existantes.

La justification de ce principe est dans la remarque que nous avons faite
plus haut sur la compatibilité des liaisons qui restent sans rapports entre
elles. Tant que nous n’aurons pas introduit la possibilité d’identifier deux
liaisons dans une structure, toute tentative d’établir une contradiction
dérivée de 'existence de certaines liaisons est évidemment sans objet.
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Nous appellerons structures libres, celles pour lesquelles on n'invoque
que les deux principes précédents. Remarquons que les éléments (et les
liaisons) d’une structure libre ne sont pas nécessairement en « quantité
dénombrable » : les structures dénombrables, continues, etc, s'obtiendront
par spécialisation (c’est-a-dire par adjonction d’axiomes) a partir des
structures libres.

On pourrait appeler homogeéne une structure ot aucun élément ne jouit
d’une position ou d’une propriété privilégiée : Une structure de ce genre
est par exemple celle o il y a, entre deux éléments quelconques, exacte-
ment deux liaisons.

Il y a une certaine dualité entre les deux notions d’¢lément logique et
de liaison logique : On pourrait considérer les liaisons comme des élé-
ments ; la propriété de deux ou de plusieurs liaisons de toucher un élé-
ment commun serait alors considérée comme établissant une liaison entre
ces liaisons-éléments. En tenant compte de cette dualité, on pourrait con-
sidérer le principe A comme réciproque de B sous la forme plus précise,
mais moins simple que voici :

On peut toujours imaginer que deux ou plusieurs liaisons viennent se
nouer sur un nouvel élément différent de tous les éléments déja existants.

C. Principe du libre choix des incompatibilités. On peut librement
exiger Vincompatibilité de deux ou de plusieurs liaisons choisies & volonté
dans une structure.

La justification de ce principe est dans la remarque que nous avons faite
concernant les « conséquences » d’une incompatibilite.

Un cas spécial de ce principe est le suivant :

On peut lLibrement supprimer d'ume structure toutes les liaisons que
Uon veut

qui suggére un principe analogue par dualité :

On peut librement supprimer d'ume structure tous les éléments que

{'on veut (et les liaisons qui les touchent).

Nous sommes ainsi conduit a la notion de structure partielle. On obtient
une structure partielle par suppression de liaisons et d’éléments.

Il faut naturellement se garder de croire qu'une structure partielle est
moins « ample » que la structure originelle. Mais il y a une remarque
plus subtile a faire. Il ne faut pas croire que, si l'on a supprimé un’
¢lément, cet élément ne se retrouve pas dans la structure partielle. Ceci
n'est pas un paradoxe : Un élément logique n’a a priors aucune signi-
fication et n’en recoit une que par sa position, son insertion dans une
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structure. Si, par conséquent, nous supprimons un élément et que la
structure restante soit identique & la structure originelle, I'élément sup-
primé renait a l'intérieur de la structure partielle. Ainsi, dans une suite
semblable a celle des nombres entiers, si nous en supprimons le premier,
celui-ci renait 1a ot était le second. Quant a savoir quand deux structures
peuvent étre considérées comme identiques, c’est une question que nous
reprendrons aprés 'introduction des axiomes proprement dits.

D. Principe de contraction. On peut remplacer une Structure partielle
par un seul élément, sur lequel viendront se nouer toutes les liaisons qui
ont été supprimées dans la construction de la structure partielle, et qui
aboutissaient a un élément de celle-ci.

Plus important que ce principe sera sa réciproque qui permettra 'opé-
ration inverse :

D’. Principe d'insertion. On peut, a la place d’un élément, insérer une
structure, par l'opération inverse de celle que nous venons de décrire.

Ce principe permet de construire une structure de structures, pourvu
que celles-ci puissent tout d’abord étre mises en état de liaison « comme »
les éléments d’une structure.

La liste des principes nécessaires n'est pas encore compléete. En parti-
culier nous n’avons encore aucune régle concernant lidentification de
deux liaisons.

Mais il nous parait utile d’examiner tout d’abord sur des exemples
simples quelle est la portée des principes que nous avons déja introduits.
D’ailleurs, les principes D et D’ pourraient étre envisagés comme con-
séquences des principes qui les précédent.

4. Les axiomes de l'ordre*) et les structures ordonnées

Nous allons examiner par quels axiomes purement restrictifs, les
structures ordonnées « dans un sens » peuvent étre obtenues a partir d’une
structure libre. Conformément aux principes A et B, nous partirons de
la structure libre que nous avons une fois déja donnée en exempie.

Entre deux éléments quelconques a et b, nous imagimons donc deux
liaisons différentes (a, b) et (a, b)*.

On représente ces liaisons de facon plus commode si l'on se sert du
fait que a et b peuvent étre nommés dans 'ordre inverse et si l'on pose

(a, b) = (b, a)* et (b, a) = (a, b)*.

4) Cf. B. Russel. Introduction to mathematical philosophy. Chap, IIL. The
définition of order,
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Nous appliquons ensuite le principe C du libre choix des incompatibilités.
Axiome O,. Les deux liaisons

(a, b) et (b, a)

sont incompatibles.

Considérons ensuite deux paires d’éléments aet b, et c et d. Si 'on tient
compte de l'axiome 2, les combinaisons suivantes sont encore formées de
deux liaisons compatibles :

(a, b) et (c, d)
(b, @) et (¢, d)
(a, b) et (d, ¢)
(b, a) et (d, o).

Nous allons décréter que deux de ces combinaisons sont incompatibles.
Donc :

Axiome O,. A supposer que les liaisons de la combinaison (a, b) et
(¢, d) soient compatibles, les liaisons (b, @) et (¢, d) de méme que (a, b)
et (d, c) somt & temir pour incompaiibles (tandis que (b, a) et (d, ¢) res-
tent compatibles).

Considérons ensuite les trois éléments a, b, ¢ et les trois paires a et b,
b et ¢, et ¢ et a. Supposons que les liaisons (@, b) et (b, ¢) soient com-
patibles. Les axiomes I et 2 ne permettent encore de rien affirmer au
sujet des deux combinaisons a trois termes

(a, b) et (b, c) et (a, c)
(a, b) et (b, c) et (c a).

On s’en rend compte immédiatement par exemple sur la réalisation (re-
présentation) suivante. Faisons correspondre aux quatre €léments logi-
ques @, b, ¢, d les sommets d’'un tétraédre (fig. 1) et supposons que les
liaisons soient réalisées par les vecteurs qu'on peut tracer entre ces points.
On peut alors donner a nos deux axiomes une forme positive. L’axiome 1.
dit tout d’abord que l'on aura toujours soit (a, b) soit (b, a). En d’au-
tres termes, une aréte du tétraédre ne portera jamais qu'un vecteur.

L’axiome 2 exige simplement que, lorsque la liaison a porter sur une
aréte a été choisie, celle qu'il faut porter sur toute autre aréte posée ne
puisse étre choisie que d’'une seule fagon.
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Ainsi par exemple, si 'on a choisi les liaisons (a, b) et (b, ¢), la liai-
son a porter sur l'aréte ac ne peut étre que soit (a, ¢), soit (¢, a), mais
pas les deux concurremment. Nous allons exclure I'une de ces deux pos-
sibilités.

Aizxome Oz A supposer que les liaisons (a, b) et (b, c) sotent compatr-
bles, les trois liaisons (a, b) et (b, ¢) et (c, a) sont incompatibles.

d

Fig. 1.

Dans la représentation, cela signifie que, s’il existe deux liaisons re-
présentées par deux vecteurs dont le second est attaché a I'extrémité du
premier, il existe aussi une liaison représentée par leur somme géo-
métrique.

Les trois axiomes précédents peuvent étre appelés les axiomes abs-
traits de Uordre. 1ls permettent de ranger n objets logiques, liés confor-
mément aux axiomes, dans un ordre déterminé par les liaisons seulement.
La chose est a peu prés évidente sur la réalisation : elle est certainement
vérifiée pour les trois éléments a, b, ¢, ces points se suivent dans l'ordre
déterminé par le nombre de liaisons qui en « partent» : de @ il en part
deux, de b une seule et de ¢ aucune. Introduisons le quatriéme point d.
Il y aura maintenant un point d’ou partiront exactement trois liaisons.
Si nous portons sur l'aréte ad la liaison (a d), ce sera encore une fois le
point a, et si nous avions porté la liaison (d, a), ce serait le point d. On
parvient au cas général par induction : En mettant a part le point dont
partent n-1 liaisons et en raisonnant ensuite sur les #-1 éléments restants,
tous les éléments sont choisis I'un aprés l'autre dans un ordre déterminé.

Nous dirons d’une structure qui satisfait aux trois axiomes de l'ordre
qu’elle est ordomnée. Remarquons expressément qu'une structure qui ne
satisfait encore qu’a ces axiomes w'est pas encore soumise & la catégorie
du nombre, (spécialement si celui-ci doit étre transfini). Une structure libre
comme celle dont nous sommes partis n’est encore ni dénombrable, ni
« de la puissance du continu » etc. et il en est de méme des structures qui
ne sont qu'ordonnées. La distinction en structures dénombrables ou non-
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dénombrables, par exemple, exige lintervention d’axiomes d'un autre
genre. Cette remarque a son importance, car elle exclut l'affirmation que
« tout ensemble » posséde un nombre cardinal, fini ou transfini». Ce
nombre est, au contraire, une propriété qu’il faut encore porter dans les
ensembles ordonnés, par de nouveaux axiomes restrictifs. Nous aurons
encore 'occasion d’y revenir. Pour l'instant, nous allons exposer en détail
au paragraphe suivant, comment les choses se présentent pour ’ensemble
realisé dans la suite des nombres entiers.

Remarquons pour finir qu’il y a deux facons opposées d’ordonner une
structure en choisissant arbitrairement, entre deux éléments quelconques,
'une des deux liaisons présentes dans la structure libre dont nous som-
mes partis.

5. L'’ensemble des nombres entiers. Les axiomes du nombre

Le titre de ce paragraplie exige une mise au point immeédiate. Les
nombres entiers ne sont en effet pas des éléments logiques purs. La suite
de ces nombres ne fournira donc pas une réalisation absolument adéquate
d’un ensemble lié. Mais on peut apercevoir dans les relations entre nom-
bres le dessin d’'un réseau de liaisons logiques. Lorsque nous parlerons
de l'ensemble des nombres entiers, cela voudra donc dire que nous allons
regarder cette collection comme la réalisation d’'une certaine structure
purement logique, le mot de réalisation ayant le sens expliqué au § 2.
Cette maniére de faire n’est en aucune mesure nouvelle en mathémati-
ques ; elle s’éclaircit parfaitement si l'on cherche ce qui lui correspond
dans l'axiomatique élémentaire. Le parallélisme est aussi étroit que pos-
sible : nous allons faire de la logique pure sur I'ensemble des nombres
entiers comme on fait de la géométrie sur une figure.

C’est dans le méme esprit que nous parlerons des axiomes de l'entier.
Dans le cadre que nous tracons, la signification de ces axiomes s’éclaire
trés vivement. Ce sont les restrictions a apporter aux suites simplement
ordonnées pour que celles-ci deviennent «numérotables». La voie a
suivre est ainsi toute tracée. La premieére chose a faire est d’exiger 'exis-
tence d’'un premier élément. C’est d’ailleurs également 'objet du premier
axiome du systéme de Peano que nous allons prendre comme terme de
comparaison. En voici les 5§ axiomes :

Axiome 1. Zéro est un numéro.

Axiome 2. Si a est un numéro, a + , c'est-a-dire «le suivant », «le
successif », est aussi un numéro.
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Axiome 3. Le principe d’induction sous la forme suivante : Si s est une
classe comprenant le zéro et si le successif d'un numéro quel-
conque x qui fait partie de s, en fait également partie, s con-
tient tous les numéros.

Axiome 4. Si les successifs de deux numéros sont égaux, ces numeéros
le sont aussi.

Axiome 5. Le successif d'un numéro ne peut étre zéro.

I1 est clair que ces axiomes doivent étre remaniés pour prendre place
dans notre théorie. Commencons par choisir un élément que nous nom-
merons I, et demandons-nous a quelles conditions il doit satisfaire pour
étre le premier dans une structure. Choisissons un autre élément, 1'élé-
ment 2, et choisissons encore l'ordre dans lequel la liaison (1, 2) est a
conserver. Considérons ensuite deux ¢éléments x et y, et supposons que
I'on ait 'ordre x, 1, y. Nous supprimons les liaisons (x, 1) et (x, y),
par exemple en décrétant leur incompatibilité avec (1, 2). La structure
est maintenant partagée en deux structures partielles indépendantes :
celle des éléments qui précédent 1, et celle qui contient 1 et les éléments
suivants. Cette construction restrictive donne lieu a 'axiome suivant
qui vient prendre la place du premier axiome de Peano. (Nous nommons
d'ailleurs structure ou suite dénombrée la suite réalisée par les nombres
entiers.)

Axiome N,. La suite dénombrée possede un premier élément.

Le deuxiéme axiome aura pour objet de faire passer de la structure
simplement ordonnée a la suste ordonnée, c'est-a-dire a la structure dans
laquelle chaque élément posséde un élément déterminé qui le suive im-
médiatement.

Jusqu'ici nous avons souvent raisonné comme si tous les éléments de
la structure et toutes les liaisons étaient donnés d’avance. Il n'y avait
pas d’inconvénient a le faire, mais qu’il soit bien entendu qu'une struc-
ture ne peut étre décrite dans son devenir que par la facon dont elle
s'engendre. Et une description de ce genre ne peut qu’'indiquer les pro-
cédés selon lesquels « aux éléments déja existants viendront s’adjoindre
encore de nouveaux éléments » . C'est naturellement ici que doit inter-
venir la notion de la définition prédicative de Poincaré : Le processus de
la construction doit étre prédicatif en ce sens que l'adjonction de nou-
veaux €léments ne doit remettre en question aucune des liaisons sup-
posées déja établies entre les éléments supposés déja existants.

Voyons maintenant sous cet angle le second axiome de notre suite a
définir :
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Axiome N,. Les éléments qui suivent un élément a quelconque, forment
une structure qui possede elle-méme un premier élément a+t, diff érent de a.

Supposons donc que tous les €léments existants déja possc¢dent la pro-
priété requise, c’est-a-dire que les liaisons entre eux satisfassent aux in-
compatibilités axiomatiques. Soit maintenant b un nouvel élément. En
exigeant certaines incompatibilités, nous pourrons lintroduire entre a
et a+, par exemple. Par d’autres incompatibilités nous pourrons exiger
que b soit le premier des éléments qui viennent aprés a, et ainsi de suite.

Le troisiéme axiome de Peano contient la notion de classe empruntée
a la logique. Nous pourrions introduire cette notion sous la forme d’une
structure partielle par la définition suivante :

Une structure partielle qui ne se décompose pas en deux structures
partielles indépendantes est une classe dans la structure originelle. On
pourra dire aussi que les éléments d'une classe possédent un attribut
déterminé.

Avec cette définition on pourrait conserver le troisiéme axiome en
question. Mais il nous parait préférable de faire appel a des axiomes de
la méme nature que le précédent. Le plus simple sera d’'introduire aussi
la notion de dernier élément.

Axiome N, La classe des éléments qui précédent a posséde un dernier
élément a- .

La structure est maintenant ordonnée dans les deux sens. Il suffit
d’exiger finalement que la classe des €léments qui viennent avant un a
quelconque soit finie. Ceci peut faire 'objet du dernier axiome que voici :
Azxiome N, Toute structure partielle contenue dans la classe des élé-
ments qui précédent a posséde aussi un dernier terme ®).

En résumé, nous définissons donc la suite dénombrée comme étant la
structure libre qui satisfait aux axiomes (O,, O,, O,) de l'ordre et (N,
N,, N,, N,) du nombre.

Sur la base de ces axiomes et des notions fondamentales explicitement
introduites, en particulier des notions du premier et du dernier, le prin-
cipe d’induction est maintenant démontrable.

On peut tout d’abord I'énoncer sous la forme suivante :

Toute structure partielle de la suite dénombrée qui commence par 1 et
qui comtient, en méme temps qu'un élément a toujours le suivant a-,
est identique & la suite dénombrée.

L’identité de deux structures infinies est une chose a définir : Deux

%) Si P'on étendait la notion de structure partielle (impropre) a la structure originelle
elle-méme, l'axiome /N, condiendrait naturellement N,
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structures infinies sont identiques si elles ont été construites par une
application identique des mémes principes et si elles satisfont aux mémes
azxiomes restrictifs.

Il va de soi que dans ce cas tout élément qu’on pourra attribuer a 'une
pourra I’étre aussi a lautre.

Dans notre cas, la suite partielle satisfait d’elle-méme aux axiomes N,
et N,, et naturellement aussi a I'axiome N, puisqu’une structure partielle
d’'une structure partielle est encore une structure partielle. Quant aux
éléments qui précédent un élément @ dans la structure partielle, ils le pré-
cédent aussi dans la suite primitive et possédent un dernier terme d’apreés
N,ou N,.

Enfin, il est clair que s’il ne s’¢tait agi, dans ce qui précede, que de par-
venir le plus rapidement et le plus simplement possible a la structure
dénombrée, il aurait suffi de faire appel aux principes d’extension et de
libre liaison.

6. La relation logique

Jusqu’ici les liaisons ne sont entrées en rapport les unes avec les autres
que par leur incompatibilité éventuelle. ILes seules propriétés qu’elles
peuvent posséder, c'est donc d’exister ou de ne pas exister simultané-
ment (ou aussi de toucher des éléments communs). Mais nous n’avons
encore introduit aucun principe qui permette de décider quand deux liai-
sons, posées tout d’abord comme différentes, peuvent étre regardées comme
identiques ou équivalentes. Pour y parvenir, nous allons commencer par
définir la projection d’une structure sur elle-méme.

Considérons tout d’abord, par exemple, la structure dénombrée qui ne
conserve que les liaisons distinguées qui joignent un élément @ au sui-
vant ¢ +. On obtient une projection de la suite sur elle-méme en faisant
correspondre ['élément 1 a un élément quelconque x, puis élément
I+==2 a I"élément x +, et ainsi de suite. En général :

Définition : Une projection d'une structure sur elle-méme est une cor-
respondance univoque et réciproque de la structure avec tout ou partie
d’elle-méme, la correspondance embrassant a la fois les éléments et les
liaisons.

Les projections qu’une structure admet forment naturellement un quasi-
groupe ).

Cette définition devra étre encore un peu étendue dans un instant. Dans
le cas qui nous occupe, ce quasi-groupe est tel que la liaison (1, 2).peut

6) Le quasi-groupe satisfait aux axiomes de groupe excepté 2 celui des éléments inverses,
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étre amenée sur toute liaison (e, a+). Si maintenant nous regardons cette
applicabilité comme la caractéristique de I’équivalence, toutes les liaisons
de la suite deviennent équivalentes a (1, 2) et équivalentes entre elles.

C’est ce systéme de liaisons toutes équivalentes que nous définissons
comme formant une relation logique ; celle de I'élément quelconque a a
a+. Dés ici, le symbole (@, a+) peut étre considéré comme celui de la
relation elle-méme.

Ce premier exemple est un peu particulier, du fait que a détermine a+-.
Examinons encore la structure dénombrée ot I'on a réintroduit les liai-
sons entre les éléments qui ne se suivent pas immédiatement. Pour dé-
crire le quasi-groupe des projections qui interviennent ici, il est commode
d’imaginer que la structure est donnée en deux exemplaires superposés.
L’¢lément a de la liaison (a, b) sera supposé choisi dans le premier exem-
plaire, et b dans le second.

On peut alors « repousser » le second exemplaire «vers la droite »
comme dans le premier exemple, de facon que 2 vienne en y. La liaison
(1, 2) tombe sur (1, y), le premier élément étant resté fixe.

On peut ensuite « repousser » aussi le premier exemplaire « vers la
droite » de facon que I vienne en x, x devant d’ailleurs précéder y. La
liaison (1, 2) est maintenant équivalente a la liaison (#, y). Cette der-
niére est d’ailleurs quelconque dans la structure. Celle-ci est donc unique-
ment formée de liaisons équivalentes entre elles. Elle représente encore
une fois une relation logique, qu'on écrira

Le fait que la structure correspondant a la premiére relation est comprise
dans cette derniére signifie que celle-ci est plus générale.

Examinons encore la relation réalisée arithmétiquement par deux
nombres, a et b, et leur somme ¢. Nous I'écrirons

(a, b, ¢c) =a+4+b=c.

Pour obtenir cette relation, en d’autres termes pour obtenir les axtomes
de I’addition, nous allons précisément nous servir du quasi-groupe qui sert
a identifier les liaisons. Nous commencons donc par établir (principe de
libre liaison) une liaison entre les éléments 1,1 et 2. Pour plus de clarté,
on pourra supposer avoir 3 exemplaires de la structure dénombrée a sa
disposition. Le quasi-groupe sera ensuite engendré par les opérations
suivantes :

Lorsque l'exemplaire a de la structure est repoussé d’un pas vers la
droite, il en est de méme de 'exemplaire c.
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Lorsque I'exemplaire b est repoussé d'un pas vers la droite, il en est
encore une fois de méme de 'exemplaire c.

Les deux éléments 1 des exemplaires a et b peuvent venir se placer en
des endroits quelconques, tandis que le troisiéme élément de la relation
est déterminé.

Les axiomes correspondant a cette facon de faire sont maintenant :

Axiome S, I+ 1=14 (=2)
Axiome S, (e4+1)+b=(@+Db) +1
Axiome S, a+ (b+1)=(a+0b) 4+ 1.

On pourrait naturellement retrouver des circonstances analogues dans
les structures denses homogeénes comme celles qui sont réalisées par la
suite des nombres rationnels, par exemple, ou par le continu linéaire.
Mais il n’est pas possible d’opérer de la méme facon si la structure étudiée
n’est pas homogéne (par exemple une suite dénombrée suivie elle-méme
d’un ensemble dense), Mais ce n’est peut-étre pas un défaut de notre point
de vue, car il n'y a en réalité pas grand’chose de commun entre le fait de
se suivre dans une suite dénombrée et dans une suite dense. I.’identi-
fication exigerait «l'enrobement » dans une suite homogéne, ce qui est
d’ailleurs toujours possible.

Comme conclusion, nous voulons formuler le principe d’identification
dont nous nous sommes servi et la définition de la relation logique. Il
nous faut tout d’abord étendre la notion de projection d’une structure
de liaisons a un systéme d’autant de structures superposées qu'il y a de
termes dans les liaisons considérées. On peut ensuite énoncer le :

Principe des liaisons équivalentes. Deux liaisons qui, lors d’'une pro-
jection (généralisée) d’'une structure sur elle-méme, viennent & coincider,
peuvent étre regardées comme équivalentes.

La définition de la relation est maintenant la suivante :

Une relation logique est une structure de liaisons toutes équivalentes.
L’existence d’une relation logique est donc liée a l'existence d’un quasi-
groupe transitif de projections d’'une structure sur elle-méme, la transivité
devant étre réalisée aussi bien pour les liaisons que pour les éléments.

7. Comparaison avec I'axiomatique actuelle

Nous allons maintenant examiner comment se présentent les axiomes
de M. Zermelo dans le cadre que nous avons tracé.

La premiére remarque a faire concerne la notion méme de 1’élément :
dans la théorie de M. Zermelo, I’élément doit étre un ensemble, la relation
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de l'ensemble-¢lément a I'ensemble-totalité restant dans [I'état d’in-
détermination que Poincaré avait déja souligné ; dans notre esquisse, au
contraire, I'élément est une entité sans signification préalable et qui par
exemple ne devient nombre que par sa présence dans la suite dénombrée.
En revanche, la notion d’appartenance de 1'élément a 'ensemble est directe-
ment fondée sur la notion intuitive de collection.

Le principe de contraction permet toutefois d’imaginer qu'une struc-
ture puisse jouer le role d’'un élément. Mais la différence avec I'ensemble-
élément n’en reste pas moins essentielle : si I'on remplace par contraction
une structure par un seul élément, celui-ci ne garde plus trace du fait que
sa place était occupée tout a 'heure par une structure ; sa signification
est a nouveau déterminée par sa seule position dans la structure restante.

Il en résulte que les deux relations aeb et a < b ne sont pas essen-
tiellement différentes.

On voit par 1a que la notion d’élément logique est bien adéquate 3 la
spéculation mathématique : elle permet de faire abstraction des propriétés
« internes » d’une « pluralité » pour n’envisager que ses rapports avec
d’autres « pluralités ».

Quant a la relation a = b elle sera pour nous l'identité des structures
@ et b, dont nous avons parlé au paragraphe précédent. (Nous dirons aussi
qu’elles sont superposables.)

Dans ces conditions, 'axiome 1 de M. Zermelo s’énonce comme suit :

Axiome 1. Si deux structures a et b somt superposables et si a est
structure partielle d'une troisieme structure A, il en est de méme de b
gqui peut prendre la place de a.

Cet axiome est naturellement vérifié.

L’axiome 2 est également immédiat :

Axiome 2. Les éléments de deux struciures diff érentes peuvent étve
réunis en ume seule structure.

I1 suffit en effet d'introduire des liaisons quelconques entre les éléments
de l'une et les eléments de l'autre. Si par exemple, les deux structures
sont ordonnées, on peut a volonté intercaler les éléments de 'une entre
les éléments de l'autre.

L’axiome 3 n’est qu’'une autre forme de la réciproque du principe de
contraction.

Axiome 3. Si A est une structure de structures, c’est encore une struc-
ture formée a l'aide des éléments des structures partielles.

Nous reviendrons dans un instant sur les axiomes 4 et §.

L’axiome 6 peut étre envisagé de deux maniéres : 1l peut étre regardé
tout d’abord comme une autre forme du principe de contraction. Mais
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s’il ne s’agit pas seulement d’affirmer l’existence d’un seul ensemble
« choisi », le role de cet axiome est en tous points semblable a celui de
I'axiome 3. Il décrira comment on peut former un ensemble comprenant
toutes les possibilités de choix,

Considérons le cas le plus simple de deux structures. Imaginons que a
et b soient deux éléments de la premiére entre lesquels il existe # liaisons
(a, b),, (a, b),...., que de méme a’ et b’ soient deux éléments pris dans
la seconde entre lesquels existent les »/ liaisons (@', b"),, (@, b)y.....
Correspondant aux deux paires a et &/, et b et b’, nous imaginons deux
éléments logiques A4 et B entre lesquels il y ait a la fois les liaisons de la
premiére et de la seconde structure (c’est-a-dire, puisque les liaisons n’ont
aucun caractére spécifique, n - n’ liaisons différentes). Nous obtenons
ainsi une nouvelle structure qu'on peut appeler une structure-produit des
deux premiéres.

Cette facon de faire peut s’étendre au cas ou l'on a a « choisir » les
éléments dans une suite S infinie (et liée) de structures. On pourra
établir dans ce cas une infinité de liaisons entre les éléments A4 et B.
Ces liaisons formeront elles-mémes une structure, et on les ordonnera
par exemple par paquets de n, #', n” ..., liés entre eux de la méme fagon
que les structures de la suite S.

Si par exemple, on devait construire par ce procédé le produit de la
suite dénombrée par elle-méme, on pourrait en représenter la structure
comme dans la fig. 2. Les termes qui se suivent sur une verticale ou sur

Fig. 2.

une horizontale sont liés une fois, les diagonales des carrés portent deux
liaisons. On voit aussi quelles liaisons il faudrait supprimer pour que
cette structure redevienne une suite dénombrée.
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Nous n’avons tenu compte que des liaisons 4 deux termes pour « or-
donner » la structure-produit. On peut traiter les liaisons a plus de deux
termes de fagon analogue.

L’axiome 4 est encore du méme genre que le précédent. S’il ne s’agit
que d’indiquer une structure qui le vérifie, la chose ne présente aucune
difficulté. Par exemple on peut considérer deux sous-structures comme
liées s’il existe au moins une liaison entre un élément de I'une et un élé-
ment de lautre, ou un élément de 'une et deux éléments de P'autre, etc.

On pourrait aussi, selon le procédé de Cantor, ramener la construction
d’une structure satisfaisant a cet axiome a celle d’'un produit « répété ».

L’axiome 7 est remplacé par la construction axiomatique de la suite
dénombrée.

Reste enfin 'axiome 5, dans lequel la notion d’attribut défini qui inter-
vient « du dehors » et dont le domaine de signification n’a pas été délimité,
est généralement considérée comme un point faible. Dans l'esquisse que
nous avons tracée, nous avons placé la structure partielle avant 'attribut.
L’axiome 7 est donc vérifié identiquement. Mais le role qu’il joue dans la
construction axiomatique, ce sont les procédés d’aprés lesquels les struc-
tures partielles peuvent étre déterminées qui en tiennent lieu.

Ces procédés peuvent étre déja distingués dans I'exemple de la suite
dénombrée. Ainsi, les nombres pairs y déterminent une structure partielle
parce que la notion de nombre pair peut étre définie a partir des prin-
cipes fondamentaux, et spécialement des axiomes restrictifs de la suite
dénombrée. Il en serait de méme pour toute autre propriété arithmétique.
En d’autres termes et en général :

Si T'on entend par attribut bien défini une propriété de certains élé-
ments d’une structure qui peut étre construite sur la base des principes
généraux et des axiomes relatifs spécialement a cette structure — et dont
la validité ou la non-validité peut étre constatée sans ambiguité —, alors
notre définition de la structure partielle est équivalente a 'axiome 5.

La différence est que maintenant le domaine de signification du mot
attribut est délimiteé.

En résumé, on voit qu’il suffit de quelques modifications, dont les unes
sont assez légéres, mais dont la derniére est essentielle, pour que les
axiomes de M. Zermelo viennent prendre place dans notre théorie. Il est

vrai qu'ils s’y trouvent maintenant plutot comme conséquences que comme
axiomes.
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8. Les antinomies

Nous allons maintenant faire voir que les antinomies bien connues
sont écartées tout naturellement.

Commencons par le paradoxe de l'ensemble de tous les ensembles qui
ne se contiennent pas eux-mémes comme éléments.

La premiére remarque a faire — remarque de principe — c’est que
les ensembles qui ne se contiennent pas eux-mémes comme €lément ne
sont pas des éléments logiques. Ce sont des objets de la pensée carac-
térisés par une propriété a priori, et non par leur position dans une
structure logique. Leur ensemble, dans notre théorie, n’existe pas.

Tout au plus pourrait-on former une structure qui soit ensuite réalisée
par «tous» les ensembles dont nous parlons. Il faudrait trouver un
principe ordinateur, selon lequel ils pourraient étre mis en liaison. Il n'y
a aucune raison de croire qu’un principe de ce genre soit contenu dans la
notion seule « d’ensemble qui ne se contient pas lui-méme comme élément ».

Ainsi, nous ne sommes pas en mesure de construire une structure
correspondant a l'ensemble antinomique. Et méme si nous le pouvions,
le paradoxe pourrait encore étre évité.

Supposons, en effet, que 3 soit une structure de ce genre. C'est dire
qu’elle a été formée d’aprés 'axiome 3 du paragraphe précédent, ou d’aprés
la réciproque du principe de contraction, a l'aide des structures qui ne sont
pas applicables sur une partie d’elles-mémes. Posons la question qui
devrait amener le paradoxe : X se contient-elle elle-méme comme struc-
ture partielle ?

Supposons que non : Alors, d’aprés la facon dont elle a été construite,
elle devrait se contenir elle-méme, ce qui est la contradiction bien connue.

Supposons le contraire : elle contiendrait alors une structure partielle
qui se contiendrait elle-méme.

Si nous devions admetire, comme dans la théorie habituelle, que
cette structure ne peut étre qu'un élément de X, nous ne pourrions éviter
la seconde contradiction, et le paradoxe serait 1a, encore une fois. Mais
la chose n’est aucunement nécessaire : il peut fort bien exister une struc-
ture partielle qui soit différente de celles qui ont servi a construire 'en-
semble 3. L’antinomie a donc disparu.

Passons a l'antinomie du plus grand cardinal, que nous considérons
comme plus profonde.

Le mécanisme qui 'engendre est le suivant :

Tout ensemble E posséde un nombre cardinal déterminé. Le cardinal
de 'ensemble ((E)) des sous-ensembles de E est plus grand que celui de
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ce dernier. L’ensemble T de tous les ensembles ne peut avoir que le plus
grand cardinal, et pourtant I'ensemble ((7°)) en a un plus grand encore.

Que pouvons nous objecter a cette fagon de faire ? Il y a tout d’abord
la remarque de principe qui peut étre invoquée dans tous les cas sem-
blables. C’est que les objets «ensembles» ne sont pas des éléments
logiques, mais des objets doués a priori de certaines propriétés. L’en-
semble de tous les ensembles est donc une construction mentale tout a fait
étrangére A la théorie que nous avons développée. Tout au plus pourrait-
on parler :

soit d’'une structure dont les éléments puissent étre réalisés par les
objets « ensembles », et les liaisons par certaines fagons de ces der-
niers d’entrer en rapport les uns avec les autres,

soit d’une structure dont elle-méme et toutes les autres structures
soient des structures partielles,

Dans le premier cas, il pourrait arriver que la structure ainsi abstraite
fit antinomique. Mais ce fait ne toucherait en rien notre théorie, car
nous ne reconnaissons pas comme légitimes toutes les structures abstraites
de tels ou tels ensembles d’objets aux propriétés les plus imprévues,

mais seulement celles qui peuvent étre construites sur la base de nos
principes fondamentaux.

Pour reprendre la comparaison avec la géométrie élémentaire, nous
sommes aussi peu dans I'obligation de reconnaitre les structures abstraites
de collections d’objets, que la géométrie euclidienne du plan lest d’ac-
cepter les résultats de mesures faites sur une sphére ou sur toute autre
surface. La géométrie et notre théorie échappent aux dangers que re-
présentent pour l'une la formation de collections aux caractéres anti-
nomiques (comme le catalogue des catalogues qui ne se mentionnent pas
eux-mémes, ou comme la classe des adjectifs imprédicables de Russel),
et pour l'autre les mesures sur les objets physiques, parce que l'une et

l'autre ont été placées par l'axiomatisation en dehors de la « sphére de
leurs réalisations respectives ».

Ceci dit « pour le principe », il nous faut reconnaitre que, dans le cas
qui nous occupe, nous ne sommes pas encore hors de peine, parce que
le paradoxe semble renaitre & propos de la seconde éventualité, & propos
de la «structure de toutes les structures ». Nous pourrons d’ailleurs
nous borner a considérer des structures libres, par exemple des structures
ol il y a exactement une liaison entre deux éléments quelconques. Sup-
posons que l'on puisse former la somme de toutes les structures de ce
genre. Il faudrait premiérement que celles-ci correspondissent aux élé-
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ments d'une structure. On pourrait déja s’arréter ici, en remarquant que
nos structures libres ne sont pas liées a priori par leur définition. Mais
a défaut des liaisons imposées par les définitions, on peut en imaginer
plus ou moins librement. Par exemple on pourrait dire que le fait d’en-
visager deux structures simultanément constitue déja, dans la sphére des
réalisations, I'’équivalent d’une liaison. On est donc conduit & envisager
les structures en question comme correspondant aux éléments d'une
structure libre du méme genre que celles dont nous nous occupons.
Acceptons cette fagon de faire.

Une fois toutes ces hypothéses admises, on pourrait former la struc-
ture-somme S en établissant entre les éléments de deux structures a
additionner exactement une liaison allant de chaque élément a chaque
élément. ILa structure-somme est alors encore une structure libre du
méme genre que les précédentes, et il n'en peut exister d’autres qui n'y
soient pas contenues comme structure partielle.

Et maintenant nous pouvons former selon l'axiome 4 une structure
dont les €léments correspondent aux structures partielles de S. En éta-
blissant une seule liaison entre les éléments représentants de deux en-
sembles dont au moins deux éléments sont liés, nous engendrerons en-
core une fois un ensemble libre ((5)) du méme genre. Tous les termes
du paradoxe sont a nouveau la.

Dés lors il est clair que le nceud de la question doit se trouver dans la
démonstration qui, dans la théorie de Cantor, assigne a l'’ensemble de
tous les sous-ensembles d'un ensemble quelconque un nombre cardinal
supérieur au nombre cardinal de ce dernier. Pour le dénouer, il nous
faut commencer par quelques remarques sur 'emploi du mot fous.

Examinons pour commencer le cas d’'une collection finie. Pour une
collection assez peu nombreuse, le mot tous a une signification intuitive
immédiate. Dire que, dans ce cas, tous les objets sont donnés, cela veut
dire qu'on peut «entrer effectivement » en possession de chacun d’eux.
Mais la chose change totalement d’aspect si la collection devient suffisam-
ment nombreuse pour qu’il ne soit plus possible d’en examiner tous les
objets 'un aprés l'autre jusqu’au dernier. Tout comme le mot infini, le
mot fini a dans ce cas une signification en partie conventionnelle. En
disant que tous les objets sont donnés, on demande qu’on admette la pos-
sibilité de les énumérer un 4 un jusqu’a épuisement. Pour reprendre une
expression fréquemment employée ces derniers temps dans la discussion
des fondements des mathématiques, c’est un chéque en blanc sur tout
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objet compris entre le premier et le dernier, mais dont on ne peut assurer
d’avance si on pourra le remplir effectivement. Le sens du mot tous est
alors relatif a la convention qui veut que ce chéque ne perde jamais sa
valeur, c'est-a-dire aux regles axiomatiquement acceptées qui régissent
I'emploi des nombres.

Quelle est la différence avec le cas de la suite dénombrée ? Le sens
des mots : « Tous les €léments de la suite ont telle ou telle propriété » est
ici tout engagé dans le principe d’induction, (qui est soit un axiome,
comme dans le systéme de Peano, soit une conséquence des axiomes de
la suite dénombrée) et ne porte pas plus loin que celui-ci. Dire que tous
les éléments sont donnés, c’est dire simplement que l'on peut toujours
passer au suivant, et cest accepter que cela soit suffisant bien qu’il n’y
ait pas de dernier. Par définition, la suite dénombrée est précisément celle
pour laquelle cette convention (axiomatique) est valable.

Il ne sert de rien d’objecter : « Il est absurde de dire que tous les élé-
ments d’une suite infinie, méme dénombrée, ont été examinés, puisqu’il
est dans la nature de l'infini de ne pas étre épuisé. » En parlant ainsi, on
oppose simplement l'un a l'autre le sens de tous dans une suite finie et
l'autre sens de ce mot dans une suite dénombrée, ces deux significations
étant en effet irréductibles 'une a l'autre.

Il n’y a pas de difficulté a raisonner de la méme fagon sur l'ensemble
réalisé par les nombres rationnels ou par le continu des nombres réels.
On postule tout d’abord les axiomes de l'ordre, puis certains axiomes
restrictifs plus ou moins analogues aux axiomes du nombre qui fixent
les conventions suivant lesquelles le mot tous peut étre employeé.

En résumé, la signification du mot tous a l'intérieur d’une structure, est
relative aux axiomes que cette derniére doit (par définition) vérifier :
c’est un caractére intrinséque qui ne peut étre sans plus reporté d’une
structure sur une autre.

Ces constatations s’appliquent immédiatement 3 la notion de I'équi-
valence. Si deux structures doivent étre telles que tout élément de l'une
corresponde 3 un élément de l'autre et réciproquement, les mots : « tout
élément » ont un sens fixé la premiére fois par les axiomes de la premiére
structure, la seconde fois par ceux de la seconde.

Il est un cas ot cette équivalence doit étre admise : c’est celui ot les
deux structures satisfont aux mémes axiomes. Rien ne peut dans ce
cas les distinguer I'une de l'autre.

Ce sera Véquivalence au sens restreint. On pourra 'élargir ensuite par
les définitions suivantes :
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Deux structures sont équivalentes si 'une s’obtient a partir de Pautre
par suppression de certaines liaisons seulement.

Deux structures sont équivalentes si ce sont deux sommes ou deux
produits formés de « fagon équivalente » a 'aide de structures équivalentes.

Ceci posé, envisageons deux structures libres quelconques du méme
genre que précédemment et supposons qu’'on n'ait accepté aucun axiome
restrictif (si ce n’est peut-étre, pour toutes deux, les axiomes de l'ordre).
D’aprés ce que nous venons de dire, nous n’avons aucun moyen de cons-
tater en quoi elles pourraient différer. Au contraire, d’aprés la définition
de la structure libre, I'une quelconque peut toujours étre envisagée
comme faisant partie de l'autre : il faut donc les considérer comme équi-
valentes. Ainsi: Deux structures libres quelconques (du méme type)
sont a considérer comme équivalentes.

Ceci nous raméne aux deux structures S et ((S5)). Comme leur équi-
valence se confirme, c’est bien dans la démonstration indiquée qu’il nous
faut rechercher la cause du paradoxe. Rappelons-en les points essentiels.

Les éléments de ((S)) représentent les structures partielles de S.
Parmi celles-ci se trouvent aussi celles qui ne comprennent qu’un élément :
S est donc structure partielle de ((5)). Nous allons partager les ¢léments
de ((S)) en deux classes :

la premiére comprendra les éléments qui sont compris dans la struc-
ture partielle a laquelle ils correspondent,

la seconde comprendra les éléments qui n'y sont pas compris.

On montre ensuite que cette seconde classe ne peut correspondre a

aucun élément de ((S§)) et que, par conséquent, elle ne peut étre une
sous-structure de S.

Le point essentiel du raisonnement est donc celui ot l'on applique le
principe suivant : De tout élément on peut décider sans ambiguité s'il
appartient ou non & un ensemble déterminé. Ce principe forme en quelque
sorte le fondement de la définition de I'ensemble dans la théorie habituelle,
ou les éléments d’'un ensemble sont contenus dans celui-ci en tant qu’in-
dividualités possédant une propriété distinctive, sur la foi de laquelle
I'élement est attribué ou non a I'ensemble.

Dans notre théorie, ce principe est faux. Un élément logique n'ayant
aucune propriété a priori, il n'y a aucun sens a demander s’il fait ou non
partie d’une structure. La chose est bien visible sur I'exemple des struc-
tures libres. Les principes de libre extension et de libre liaison permet-
tent d’attribuer un élément logique quelconque & une structure libre quel-
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conque. (C'est la justement la raison de la dénomination : structure
libre.)

Dans notre théorie, la notion de nombre cardinal ne pourra étre étendue
aux structures libres : c’est ce que nous voulions déja dire au § 4 par
les mots : Les structures libres (ou seulement ordonnées) ne tombent
pas encore sous la catégorie du nombre.

L’antinomie a maintenant complétement disparu.

Il est inutile d’insister encore sur la structure somme de toutes les
structures, sur laquelle on ne raisonnerait pas différemment.

9. Conclusion

L’analyse du paradoxe du plus grand cardinal a montré que la source
des difficultés, dans la théorie de Cantor, est en premier lieu la notion de
I'objet susceptible de posséder, a priori et de par lui-méme, telle ou telle
propriété ; en second lieu la définition de ’ensemble comme collection
d’objets ayant une propriété distinctive. C’est la ce qu’on pourrait appeler
une définition statique de I'ensemble : les objets-éléments sont tous déter-
minés par avance et il faut admettre que, d’'un objet quelconque, on saura
décider s’il appartient ou non a un ensemble déterminé, mais quelconque.

Bien qu’elles réduisent d’emblée l'objet-élément a n’étre plus qu'un
ensemble, la théorie de M. Zermelo et les théories plus récentes qui en
découlent restent complétement sur le méme terrain.

A cette fagon statique d’envisager un ensemble, on peut opposer la
notion de la « totalité en devenir ». Toujours & propos des axiomes de
M. Zermelo, Poincaré écrivait déja : « Quand je parle de tous les points
de l'espace, je veux dire tous les points dont les coordonnées sont expri-
mées par des nombres rationnels, ou par des nombres algébriques.... ou de
toute autre maniére que 'on pourra inventer. Et c’est ce 'on pourra qui
est Uinfini. »

C’est a cet ordre d’idées qu’appartient la notion de limite, et spéciale-
ment celle de suite en devenir (werdende Folge) de M. Weyl.

On peut dire que la plupart des difficultés de la théorie des ensembles
provenaient de la contradiction « latente » entre la définition statique, et
la nécessité de considérer l'infini comme étant en état de perpétuelle
extension.

Pour y échapper nous avons dégagé de la notion tntuitive d’objet la
notion d’objet purement logique, dont les propriétés a priori se réduisent
a étre soit identiques, soit différents entre eux, et dont les autres pro-
priétés lui seront conférées par une structure en devenir.
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Un autre exemple typique d'objet en devenir est celui de la structure
libre.

Nous croyons utile d’ajouter un mot encore sur la différence que nous
avons faite entre les principes et les axiomes.

Les principes formulent les régles selon lesquelles une structure quel-
conque peut étre traitée. Elles viennent compléter les régles simples,
valables pour une collection finie, quant au partage de celle-ci en deux
ou plusieurs collections, quant a la réunion de deux collections en une
seule, quant aux possibilités de choix ou de permutations, etc., regles
qu'on peut considérer comme formant la partie essentielle de la logique
ordinaire. On pourrait donc dire que les principes ont pour objet de for-
muler les régles de la logique de I'infini (en deliors de la question de savoir
si nous les avons déja formulées toutes). )

Les axiomes, au contraire, sont des décrets restrictifs portés sur des
structures en devenir, et dont l'extension indéfinie est ainsi soumise a
certaines prescriptions caractéristiques.

Ceci dit, nous pouvons énoncer de la facon suivante le but que nous
nous sommes proposé d’atteindre dans ce travail : Il s’agissait de montrer

a) qu’en acceptant les régles de la logique ordinaire pour autant qu’il
s’agit de structures finies,

b) qu’en les complétant par certains principes relatifs aux structures
infinies,

c) et en n'opérant systématiquement que sur les « objets logiques »
dont le sens et le role doivent étre précisés par une axiomatisation sus
generis (et d’ailleurs étroitement analogue en son principe a celle qui
permet de constituer la géométrie élémentaire en science rationnelle),

on ¢élimine de fagon toute naturelle les antinomies qui se présentaient
jusqu’ici, spécialement dans la théorie des ensembles et dans la logique de
I'infini.

(Regu le 6 avril 1932)
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