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Sur l'axiomatique de la théorie des
ensembles et sur la logique des relations

par F. Gonseth, Zurich

1, Remarques sur la méthode axiomatique
Nous allons commencer par soumettre à quelques critiques la méthode

dite « axiomatique » par laquelle, suivant l'exemple de M. Zermelo, on
a cherché à mettre la théorie des ensembles à l'abri des antinomies bien
connues.

Depuis le mémoire de M. Zermelo et les objections présentées par Poin-
caré, la situation est loin de s'être définitivement éclaircie et l'unanimité
ne s'est point faite sur le sens et la portée de la méthode elle-même. Nous
allons en reprendre les traits essentiels. La première chose à faire est de

renoncer à la définition de Cantor :

Un ensemble est la réunion en un tout de certains objets perçus ou
pensés, les éléments de l'ensemble. Cette définition s'est révélée trop large
et ouvre la voie aux paradoxes que l'on connaît. Il faut renoncer également

à toute autre définition explicite de ce qu'il faut entendre par
ensemble, par élément, par la relation d'inclusion d'un élément x dans un
ensemble y (la relation xey), etc. Ces notions et relations ne doivent
prendre — dit-on — que le sens que comportent les axiomes et les

définitions qui s'y rapportent, axiomes et définitions qui sont à énoncer

explicitement.
On va donc commencer par imaginer certaines choses que l'on appellera

ensembles et qu'on désignera par les lettres a, b, c ; on imaginera
ensuite entre ces choses trois relations

i. la relation a € b (a est élément de b)
2. la relation a<^b (a est sous-ensemble de b)

et 3. la relation a b (a est identique à b).

Ces relations n'ont aucun sens par elles-mêmes. Toute leur signification
doit être contenue dans les définitions et axiomes que voici :

Déf. 1. Si tout x qui est à a dans la relation 1 est aussi à b dans la même

relation, a et b sont alors dans la relation 2.

Déf. 2. Si a et b sont aussi bien dans la relation a < b que dans la relation
b<C a, alors a et b sont dans la relation 3.

Axiome 1. Si a b et si a est élément de A, b est aussi élément de A.
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Axiome 2. Les éléments de deux ensembles A et B (différents) forment
à eux seuls les éléments d'un nouvel ensemble C.

Axiome 3. Si A est un ensemble, les éléments de ses éléments forment
un ensemble.

Axiome 4. Tous les sous-ensembles d'un ensemble forment à eux seuls
les éléments d'un nouvel ensemble.

Axiome 5. Les éléments d'un ensemble qui possèdent un attribut bien

déterminé (définit) forment un sous-ensemble du premier.
Axiome 6. On peut former un ensemble en choisissant un unique élément

dans chaque élément de tout ensemble.

Le système de M. Zermelo comprend enfin un septième
axiome qui permet d'affirmer l'existence d'un ensemble infini.

Axiome 7. // existe un ensemble N tel que
1. si l'ensemble nul (c.-à-d. qui n'a aucun élément) existe,

c'est un élément de N ;
2. si m est un élément de N, celui-ci contient aussi m\ (c.-à-d.

l'ensemble dont m est l'unique élément).
La première question que soulève ce système d'axiomes, c'est naturellement

de savoir s'il détermine véritablement les objets de pensée (les
ensembles) qu'il vise. On se souvient de l'objection de Poincaréx) :

« Quelqu'un qui ne sait pas ce que c'est qu'une Menge ne le saura pas
davantage lorsqu'il aura appris qu'elle est représentée par le symbole e,

puisqu'il ne sait pas ce que c'est que £ »... Les axiomes peuvent-ils à

eux-seuls remplacer la connaissance intuitive et préalable des êtres
mathématiques dont ils fixent les lois d'existence C'est là le point sur lequel
il nous paraît nécessaire de nous arrêter un instant.

Pour justifier la méthode de M. Zermelo, on la met parfois en parallèle
avec la méthode axiomatique usuelle en géométrie. Or il y a tout d'abord
une différence essentielle entre le système d'axiomes que nous discutons
et celui qui est à la base de la géométrie dite élémentaire. Cette différence

est justement mise en lumière par la remarque de Poincaré que
nous venons de rappeler. Dans la construction de la géométrie élémentaire,

les êtres mathématiques soumis aux axiomes sont des abstractions
suggérées par le monde physique. L'axiomatique fixe simplement les

modalités de cette abstraction, fixe dans la sphère du rationnel les règles
d'existence de ces objets abstraits. Dire — avec M. Weyl 2) — « que la
méthode axiomatique consiste simplement à rassembler tous les concepts
et les faits fondamentaux, à partir desquels tous les autres concepts et

1) H. Poincaré. Dernières pensées, p. 124.
2) H. W?yl: Philosophie der Mathematik.
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tous les autres faits d'une science peuvent être ou définis ou déduits, »

c'est supposer que les concepts fondamentaux ont déjà pris naissance et

qu'on sait déjà quelles sortes de relations on peut établir entre eux :

c'est supposer que le travail de la constitution des abstraits est déjà
terminé. Or sur ce point, l'axiomatique de M. Zermelo prend soin de
spécifier qu'elle a coupé les ponts qui pourraient la relier avec la notion,
intuitivement fondée, de collection. Le concept d'ensemble qu'elle vise
n'y doit point être envisagé comme un abstrait suggéré par tel ou tel
autre concept de la sphère intuitive : au contraire ce sont les axiomes
à eux-seuls qui doivent lui créer, de toutes pièces, une signification et
l'appeler à l'existence mathématique. Sans vouloir encore en tirer de
conclusion quant à la légitimité de la méthode de M. Zermelo, il nous faut
constater la présence d'un hiatus essentiel qui ne permet pas de la justifier

par comparaison ou identification avec Vaxiomatique dite élémentaire.
En revanche, il peut sembler à première vue le parallélisme s'établit

de lui-même et de façon parfaite avec l'axiomatique au second degré, où

toutes les notions sont repoussées dans le domaine de la logique des

relations. L'essentiel de cette méthode est déjà dans les toutes premières
lignes des « Grundlagen der Géométrie » de Hilbert.

« Nous imaginons trois catégories d'objets : nous nommons points les

objets de la première catégorie, etc ...»
« Nous imaginons qu'entre les points, les droites et les plans, il existe

certaines relations que nous désignerons par les termes : « être sur »,

« entre », « parallèle », « congruent », « continu ». La description de ces

relations, description exacte et suffisante pour les buts de la géométrie
se fait par le moyen des « axiomes de la géométrie».

Les objets géométriques doivent ainsi être vidés de leur contenu
intuitif — pour employer une expression consacrée — et n'avoir d'autres

propriétés que celles que les relations, purement abstraites, à établir entre
eux vont leur conférer.

Les axiomes 3) qui fixeront le sens de la locution « être sur » ou si l'on
préfère de la « relation d'incidence » seront alors, par exemple, les

suivants :

Axiome i. On peut toujours imaginer pour deux objets de catégories
différentes, une relation J (*,*) (la relation d'incidence).

Axiome 2. Pour ces deux objets, ou bien cette relation est, ou bien
elle n'est pas.

Axiome 3. Cette relation est symétrique, etc, etc

3) M. Geiger. Systematische Axiomatik der euklidischen Géométrie.
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En face de cette axiomatisation sur le plan du logique pur, on peut prendre
deux attitudes. La piemièrc est toute naturelle : elle consiste à regarder les

« objets » et les « relations » soumis à l'axiomatisation comme de

nouveaux abstraits suggérés par les notions et les relations géométriques
du degré élémentaire : comme des abstraits au second degré. Au moment
où nous établissons les axiomes, nous pouvons alors regarder à nouveau
le processus de la constitution des notions abstraites comme terminé. De

ce point de vue, cette axiomatisation est parfaitement semblable à

l'axiomatisation élémentaire, elle répond complètement à la définition de

M. Weyl : nous la regardons comme légitime. Il va sans dire que cette

première attitude ne peut pas être adoptée dans la méthode de M. Zer-
melo, le lien avec l'intuitif étant expressément rompu.

La seconde attitude est moins clairement définie. Elle consiste
essentiellement à admettre que le système des axiomes fournit en quelque sorte
une détermination implicite des notions qui y figurent. Nous ne voulons

pas discuter à cet endroit si, une fois qu'on a supposé les liens avec

l'intuitif complètement dénoués, une détermination de ce genre reste

possible. Nous voulons nous borner à remarquer que, dans le cas qui
nous occupe, il faut en tous cas admettre que la notion de relation logique
soit préalablement en notre possession. Il ne peut être question que cette
notion soit elle aussi « définie implicitement », les axiomes caractérisant
tout au plus les trois relations fondamentales et non la notion même de

relation.

C'est là une grave objection, car la notion de relation, dans sa plénitude

intuitive, donne lieu aux mêmes antinomies (niutatis mutandis) que
la notion d'ensemble selon Cantor. Il faudrait donc que, par une
axiomatisation adéquate, cette notion elle-même eût reçu sa justification. Or
on sait bien que la Logique théorique n'y parvient que de façon
insuffisante.

En résumé, ces critiques cherchent à mettre en lumière les deux faits
suivants :

i. La méthode axiomatique de M. Zermelo diffère sur un point essentiel

de la méthode axiomatique qui s'est constituée à partir de l'axioma-
tique élémentaire de la géométrie ; celui de la constitution préalable et

par abstraction, des notions fondamentales.

2. Dans la mesure où elle prétend se rendre indépendante des notions

intuitives, la théorie de M. Zermelo fait appel à la notion de relation. Or
celle-ci, dans la plénitude de son sens, est antinomique, et les axiomes
ne fournissent pas le moyen de la circonscrire.
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Les points sur lesquels nous venons d'insister ne sont pas les seuls où
les axiomes piécédents prêtent a la critique On a déjà souvent fait
observer que le 5 e fait intervenir la notion d'attribut bien déterminé

(deûmt) qui aurait elle-même besoin d'être axiomatiquement fondée
Nous ne voulons pas revenir non plus sur la discussion que 1 axiome 6

(du choix) a soulevé En revanche, nous appuyons spécialement sur les

critiques que nous venons de formuler, parce qu'elles s'appliquent également

aux systèmes axiomatiques dérives de celui de M Zermelo (ou par
exemple on cherche à parer au point faible signalé a l'axiome 5 e)

La position axiomatique de ces systèmes est d'ailleurs telle, qu'elle
ne permet pas de porter une clarté suffisante sur la question-même en

vue de laquelle ils ont été inventés celle des antinomies II est vrai que
les antinomies connues peuvent être évitées, mais la méthode ne permet
pas d'apercevoir ce qu'on pourrait appeler la cause ou la racine des

paradoxes, et, a cause du « nuage axiomatique » dans lequel la notion
d'ensemble reste enveloppée, la possibilité d'autres paradoxes reste ouverte,
sans qu'on puisse prévoir si la méthode restera efficace

Le but de ce travail est d'esquisser une autre axiomatisation des

notions de la théorie des ensembles Cette nouvelle méthode permet — nous
semble-t-il — d'e\iter les différents ecueils que nous venons de signaler
En particulier elle fera voir que la racine commune des antinomies doit
être aperçue dans le fait très simple que voici

Les éléments des ensembles selon Cantot sont susceptibles de posséder

par eux-mêmes des attributs intrinsèques, avant même d'être envisages
comme éléments d'un ensemble — attributs qui ne se limitent pas a
caractériser l'existence individuelle d'un élément dans l'ensemble

Des attributs de ce genre sont par exemple « d'être une paire de bas »

ou « d'être un ensemble qui ne se contient pas lui-même comme élément »

ou même plus simplement « d'être un ensemble »

2. Les objets et les relations de la logique pure
« \Jattitude axiomatique » dans laquelle nous allons nous placer est

celle que nous avons décrite tout a l'heure en 1 opposant a la méthode de

M Zermelo 1 axiomatisation y comprend les deux phases suivantes

a) Constitution des notions fondamentales, celles-ci étant a abstraire
de certaines autres notions (telles que celles d'objet, de collection, de

nombre, etc) qui doivent être considérées comme étant préalablement en

notre possession
b) Enumération des axiomes
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Il faut une analyse assez attentive pour distinguer la première phase
dans l'axiomatisation « élémentaire » de la géométrie. Il n'en reste pas
moins vrai que c'est elle qui donne sa signification véritable à toute
construction axiomatique. Ceci se manifeste spécialement dans le fait que
le processus de l'abstraction ne peut être que suggéré, mais jamais «

verbalement défini ». C'est ainsi que les droites imparfaitement réalisées

dans le monde physique ont suggéré aux premiers géomètres la notion
géométrique de droite, la notion de lieu précis, celle de point mathématique.

Le passage de la notion intuitive à la notion géométrique est le

phénomène mathématique par excellence, mais il reste plus ou moins
sous-entendu.

De la même façon nous allons nous efforcer de faire entendre ce que
doivent être les objets et les relations de la logique pure.

Toute construction mathématique peut être mise sous la forme d'un
iéseau de relations entre certains êtres géométriques ou arithmétiques.
Si l'on abstrait de ces relations et des objets mathématiques qu'elles
relient tout ce qui a trait à la grandeur, à la forme, etc, il en reste ce qu'on
pourrait appeler le contenu de pure logique. Les objets de la logique
pure (éléments logiques) ne sont alors susceptibles que des propriétés
suivantes :

Ils sont ou identiques ou différents (sans qu'il y ait lieu de préciser
en quoi ils diffèrent).

Ils n'ont, par ailleurs, pas d'autre rôle que de figurer dans les relations
logiques, ou mieux encore que de servir de point d'attache aux liaisons
logiques. (La différence entre les deux expressions précédentes sera
précisée tout à l'heure.)

Il est bien entendu que, de tout objet dont on parle, on suppose qu'il
est individuellement reconnaissable, et qu'il peut être représenté par un
symbole qui lui soit particulier.

Les liaisons logiques n'ont à leur tour que les propriétés suivantes :

Deux liaisons logiques sont ou identiques ou différentes (sans qu'il y
ait lieu de préciser en quoi elles diffèrent).

Par ailleurs, elles n'ont d'autre rôle que de relier les objets logiques
dont nous avons parlé.

Une liaison logique s'établit entre deux ou plus de deux éléments.

Supposons par exemple qu'elle soit établie entre les deux éléments logiques

a et & et désignons-la par le symbole (a, b). Dans ce symbole, les

lettres a et b ne désignent pas deux éléments plus ou moins quelconques
(comme ce serait le cas dans la relation arithmétique a <^ b par exemple).

8 Commentant Mathematici Helvetici. 1^3



Il faut au contraire les envisager comme les signes reconnaissables de

deux éléments individualisés. La liaison logique (a, b) ne s'établit alors

qu'entre ces deux éléments. Si, au contraire, il peut y avoir un sens à

dire qu'il existe entre un a et un b, variables au sein de certaines collections,

toujours une même liaison logique, nous dirons que le symbole

(a, b) représente une relation logique. Mais le procédé qui permettra de

reconnaître quand deux liaisons logiques peuvent être dites identiques
ou équivalentes doit encore être expliqué.

Ainsi par exemple, la relation

F (a, b) d'un fils a quelconque à son père b, n'est naturellement pas
une relation logique, mais une relation de parenté. De même, ni la relation

G (x, y) x <^ y entre un nombre x quelconque et tout nombre

plus grand y, ni la relation d'incidence / (a, b) d'une droite a quelconque
à tout point b de cette droite, ne sont des relations logiques. De même

encore ni la liaison « entre Zébédée et son fils », ou bien « entre les nombres

3 et 4 », ou bien « entre l'axe des X et l'origine » ne sont des

liaisons logiques. Mais on parvient aux notions de la logique pure à partir
des précédentes en faisant abstraction de tout ce qui est parenté, grandeur

ou position. Il sera commode de dire que les notions plus ou moins
intuitives à partir desquelles une relation logique peut ^tre atteinte par
abstraction sont des réalisations de la relation logique. Ainsi par exemple,

les nombres entiers réalisent certains éléments logiques, et la relation
d'un nombre quelconque x à celui qui le suit x+ i réalise une certaine
relation logique. De même, on peut imaginer que la succession de 4 à 3

réalise une liaison logique, dont les éléments sont réalisés par les nombres

3 et 4. Nous avons insisté sur ces exemples très simples pour bien

opposer le domaine des notions abstraites et les domaines où celles-ci
se réalisent. S'il est parfaitement possible de concevoir les objets
abstraits et les notions que nous avons en vue, qu'il soit bien clair aussi qu'il
est impossible de les réaliser dans leur perfection : toute réalisation in
concreto est du genre que nous venons de dire. Ceci n'est en aucune
façon une faiblesse de notre théorie. C'est au contraire un caractère qui
se retrouve dans toute constitution d'abstrait ; un caractère qui est bien
visible aussi dans l'axiomatique élémentaire. Le fait qu'il est impossible
de réaliser in concreto un cercle parfait, ou une droite « absolument recti-
ligne » n'a jamais été un obstacle à l'érection de la géométrie en science

rationnelle. De la manière même dont les notions de la logique pure
trouveront une réalisation dans celles de la géométrie ou de l'arithmétique
(et d'ailleurs aussi dans les notions intuitives), la notion de droite trouve
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une réalisation dans la « trajectoire d'un rayon lumineux » ou dans le

« trait trace a la règle »

Le but \entable de la méthode automatique, c'est de dégager les notions
abstraites de la « matière » de leurs réalisations le but de tout système
d'axiomes de fixer les règles selon lesquelles l'abstrait doit être traite

Le but des lignes qui vont suivre est donc de dégager de leurs
réalisations les notions de la logique pure, ou mieux encore de construire
axiomatiquement la notion même de «Logique pure» II se présentef a

que cette façon de faire écarte?a tout naturellement les difficultés relatives
aux antinomies

L'esprit dans lequel notre tentative axiomatique \a être entreprise
étant ainsi fixe, il nous a paru inutile de spécifier chaque fois par la suite
ce qui est axiome et ce qui est définition

3. Notions fondamentales. Principes et axiomes

Passons a la construction du système axiomatique ou les notions fon
damentales telles que

élément ou objet logique, liaison logique, compatibilité et incompatibilité
de deux ou de plusieurs liaisons, relation logique, structure
logique, etc

sont mises en relation les unes avec les autres
Nous dirons d'une liaison établie entre deux ou plusieurs éléments

qu'elle touche ceux-ci, ou qu'elle les recouvre, ou qu'elle les relie, etc

Entre deux (ou plusieurs) éléments logiques on peut imaginer un
nombre quelconque de liaisons logiques, toutes différentes entre elles

(Deux liaisons sont ou identiques ou différentes, sans qu'il y ait jamais
heu de préciser par quoi elles peuvent ne pas être identiques

II est naturellement très facile d'indiquei des réalisations intuitives ou

mathématiques qui justifient cet axiome Par exemple On peut former
autant de groupes différents de trois objets que l'on veut, ou entrent deux
objets donnes La présence simultanée de ces deux objets dans un même

groupe est une liaison (Naturellement pas une liaison logique Ou bien

aussi On peut tracer entre deux points d'un plan autant de chemins
différents que l'on veut etc etc

Deux liaisons sont ou compatibles ou incompatibles (qu'elles soient ou

non établies entre les mêmes éléments)
Trois liaisons sont également soit compatibles, soit incompatibles

Elles sont en particulier incompatibles si deux d'entre elles le sont
Eiles pourront l'être aussi, bien que compatibles deux a deux



En général : Des liaisons en nombre quelconque sont incompatibles si
c'est le cas pour une partie d'entre elles.

Décréter l'incompatibilité de deux liaisons, c'est donc décréter Tin-
compatibilité pour toutes les combinaisons où ces deux liaisons seraient

présentes. C'est là-dessus que se basera tout à l'heure le principe du libre
choix des incomptatibilités.

A propos de la compatibilité ou de l'incompatibilité de deux liaisons, il
y a une remarque essentielle à faire.

A priori, il n'y a aucune incompatibilité entre deux liaisons différentes,
tant qu'on n'a encore rien décrété, si ce n'est qu'elles ne sont pas
identiques. L'incompatibilité ne peut provenir que d'une mise en rapport de

ces liaisons. Tant qu'elles n'existent que de façon purement individuelle
et chacune pour soi, toute possibilité de contradiction est exclue. C'est de

la même façon que deux idées ne peuvent jamais entrer en opposition, tant
qu'elles restent étrangères l'une à l'autre et ne sont pas associées.

Dans la pratique du raisonnement, certaines affirmations
d'incompatibilité prendront une forme positive. Si, par exemple, on sait que n
liaisons sont incompatibles, et que n—i d'entre elles existent, on en
déduira que la ne n'existe pas.

Passons à la notion d'ensemble. Elle se présentera pour nous sous la

forme de Yensemble lié : c'est une collection d'éléments logiques entre
lesquels on a établi un certain nombre de liaisons. Pour bien marquer la
différence avec la notion habituelle d'ensemble, un ensemble lié sera appelé
aussi une structure logique.

La construction de ces structures se fera selon les prescriptions de

certains principes très simples, qu'il faut considérer comme venant
compléter les règles de la logique ordinaire et du nombre, valables dans le fini.

A. Principe de libre extension. Une structure étant donnée, on peut
toujours imaginer un nouvel élément différent de tous les éléments déjà
existants.

Ce principe ne fait que formuler ce qu'on appelle aussi la liberté des

constructions mentales.
B. Principe de libre liaison. Entre deux ou plusieurs éléments, on peut

toujours imaginer une nouvelle liaison différente des liaisons déjà
existantes.

La justification de ce principe est dans la remarque que nous avons faite
plus haut sur la compatibilité des liaisons qui restent sans rapports entre
elles. Tant que nous n'aurons pas introduit la possibilité d'identifier deux
liaisons dans une structure, toute tentative d'établir une contradiction
dérivée de l'existence de certaines liaisons est évidemment sans objet.
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Nous appellerons structures libies, celles pour lesquelles on n'invoque
que les deux principes précédents. Remarquons que les éléments (et les

liaisons) d'une structure libre ne sont pas nécessairement en « quantité
dénombrable » : les structures dénombrables, continues, etc, s'obtiendront

par spécialisation (c'est-à-dire par adjonction d'axiomes) à partir des

structures libres.

On pourrait appeler homogène une structure où aucun élément ne jouit
d'une position ou d'une propriété privilégiée : Une structure de ce genre
est par exemple celle où il y a, entre deux éléments quelconques, exactement

deux liaisons.

Il y a une certaine dualité entre les deux notions d'élément logique et
de liaison logique : On pourrait considérer les liaisons comme des

éléments ; la propiiété de deux ou de plusieurs liaisons de toucher un
élément commun serait alors considérée comme établissant une liaison entre
ces liaisons-éléments. En tenant compte de cette dualité, on pourrait
considérer le principe A comme réciproque de B sous la forme plus précise,
mais moins simple que voici :

On peut toujours imaginer que deux ou plusieurs liaisons viennent se

nouer sur un nouvel élément différent de tous les éléments déjà existants.
C. Principe du libre choix des incompatibilités. On peut librement

exiger Vincompatibilité de deux ou de plusieurs liaisons choisies à volonté
dans une structure.

La justification de ce principe est dans la remarque que nous avons faite
concernant les « conséquences » d'une incompatibilité.

Un cas spécial de ce principe est le suivant :

On peut librement supprimer d'une structure toutes les liaisons que
Von veut

qui suggère un principe analogue par dualité :

On peut librement supprimer d'une structure tous les éléments que
l'on veut (et les liaisons qui les touchent).

Nous sommes ainsi conduit à la notion de structure partielle. On obtient
une structure partielle par suppression de liaisons et d'éléments.

Il faut naturellement se garder de croire qu'une structure partielle est
moins « ample » que la structure originelle. Mais il y a une remarque
plus subtile à faire. Il ne faut pas croire que, si Ton a supprimé un'
élément, cet élément ne se retrouve pas dans la structure partielle. Ceci

n'est pas un paradoxe : Un élément logique n'a a priori aucune
signification et n'en reçoit une que par sa position, son insertion dans une
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structure. Si, par conséquent, nous supprimons un élément et que la

structure restante soit identique à la structure originelle, l'élément
supprimé renaît à l'intérieur de la structure partielle. Ainsi, dans une suite
semblable à celle des nombres entiers, si nous en supprimons le premier,
celui-ci renaît là où était le second. Quant à savoir quand deux structures
peuvent être considérées comme identiques, c'est une question que nous
reprendrons après l'introduction des axiomes proprement dits.

D. Principe de contraction. On peut remplacer une structure partielle
par un seul élément, sur lequel viendront se nouer toutes les liaisons qui
ont été supprimées dans la construction de la structure partielle, et qui
aboutissaient à un élément de celle-ci.

Plus important que ce principe sera sa réciproque qui permettra
l'opération inverse :

D'. Principe d'insertion. On peut, à la place d'un élément, insérer une

structure, par l'opération inverse de celle que nous venons de décrire.
Ce principe permet de construire une structure de structures, pourvu

que celles-ci puissent tout d'abord être mises en état de liaison « comme »

les éléments d'une structure.
La liste des principes nécessaires n'est pas encore complète. En particulier

nous n'avons encore aucune règle concernant l'identification de

deux liaisons.
Mais il nous paraît utile d'examiner tout d'abord sur des exemples

simples quelle est la portée des principes que nous avons déjà introduits.
D'ailleurs, les principes D et D1 pourraient être envisagés comme
conséquences des principes qui les précèdent.

4. Les axiomes de l'ordre4) et les structures ordonnées

Nous allons examiner par quels axiomes purement restrictifs, les

structures ordonnées « dans un sens » peuvent être obtenues à partir d'une

structure libre. Conformément aux principes A et B, nous partirons de

la structure libre que nous avons une fois déjà donnée en exemple.
Entre deux éléments quelconques a et b, nous imaginons donc deux

liaisons différentes {a, b) et (a, &)*.
On représente ces liaisons de façon plus commode si Ton se sert du

fait que a et b peuvent être nommés dans l'ordre inverse et si l'on pose

(a, b) (b, a)* et (b, a) (a, 6)*.

4) Cf. B. Russel. Introduction to mathematical philosophy. Chap. III. The
définition of order.
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Nous appliquons ensuite le principe C du libre choix des incompatibilités.
Axiome 0v Les deux liaisons

{a, b) et (b, a)

sont incompatibles.
Considérons ensuite deux paires d'éléments a et b, et c et d. Si Ton tient

compte de l'axiome 2, les combinaisons suivantes sont encore formées de

deux liaisons compatibles :

(a, b) et (c, d)
(&, a) et (r, d)
(a, b) et (d, c)

(b, a) et (d, c).

Nous allons décréter que deux de ces combinaisons sont incompatibles.
Donc :

Axiome O2. ^ supposer que les liaisons de la combinaison {a, b) et

(c, d) soient compatibles, les liaisons {b} a) et (c, d) de même que (a, b)
et (d, c) sont à tenir pour incompatibles (tandis que (b, a) et (d, c)
restent compatibles).

Considérons ensuite les trois éléments a, b, c et les trois paires a et b,
b et c} et c et a. Supposons que les liaisons (a, b) et {b, c) soient
compatibles. Les axiomes 1 et 2 ne permettent encore de rien affirmer au

sujet des deux combinaisons à trois termes

(a} b) et {b, c) et (a, c)

(a, b) et (b, c) et (c, a).

On s'en rend compte immédiatement par exemple sur la réalisation
(représentation) suivante. Faisons correspondre aux quatre éléments logiques

a, b, c, d les sommets d'un tétraèdre (fig. 1) et supposons que les

liaisons soient réalisées par les vecteurs qu'on peut tracer entre ces points.
On peut alors donner à nos deux axiomes une forme positive. L'axiome 1.

dit tout d'abord que l'on aura toujours soit (a, b) soit (b, a). En d'autres

termes, une arête du tétraèdre ne portera jamais qu'un vecteur.

L'axiome 2 exige simplement que, lorsque la liaison à porter sur une
arête a été choisie, celle qu'il faut porter sur toute autre arête posée ne

puisse être choisie que d'une seule façon.
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Ainsi par exemple, si Ton a choisi les liaisons (a, b) et (b, c), la liaison

à porter sur l'arête ac ne peut être que soit (a, c), soit (c, a), mais

pas les deux concurremment. Nous allons exclure l'une de ces deux
possibilités.

Aixome O3. A supposer que les liaisons (a, b) et (b, c) soient compatibles,

les trois liaisons (a, b) et (b, c) et (c, a) sont incompatibles.

Fig. i.

Dans la représentation, cela signifie que, s'il existe deux liaisons
représentées par deux vecteurs dont le second est attaché à l'extrémité du

premier, il existe aussi une liaison représentée par leur somme
géométrique.

Les' trois axiomes précédents peuvent être appelés les axiomes
abstraits de Vordre. Ils permettent de ranger n objets logiques, liés
conformément aux axiomes, dans un ordre déterminé par les liaisons seulement.

La chose est à peu près évidente sur la réalisation : elle est certainement
vérifiée pour les trois éléments a, b, c, ces points se suivent dans l'ordre
déterminé par le nombre de liaisons qui en « partent » : de a il en part
deux, de b une seule et de c aucune. Introduisons le quatrième point d.

Il y aura maintenant un point d'où partiront exactement trois liaisons.
Si nous portons sur l'arête ad la liaison (a d), ce sera encore une fois le

point a, et si nous avions porté la liaison (d, a), ce serait le point d. On

parvient au cas général par induction : En mettant à part le point dont
partent n-i liaisons et en raisonnant ensuite sur les n-i éléments restants,
tous les éléments sont choisis l'un après l'autre dans un ordre déterminé.

Nous dirons d'une structure qui satisfait aux trois axiomes de l'ordre
qu'elle est ordonnée. Remarquons expressément <\\i'une structure qui ne

satisfait encore qu'à ces axiomes n'est pas encore soumise à la catégorie
du nombre, (spécialement si celui-ci doit être transfini). Une structure libre
comme celle dont nous sommes partis n'est encore ni dénombrable, ni
« de la puissance du continu » etc. et il en est de même des structures qui
ne sont qu'ordonnées. La distinction en structures dénombrables ou non-
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dénombrables, par exemple, exige l'intervention d'axiomes d'un autre

genre. Cette remarque a son importance, car elle exclut l'affirmation que
« tout ensemble » possède un nombre cardinal, fini ou transfini ». Ce

nombre est, au contraire, une propriété qu'il faut encore porter dans les

ensembles ordonnés, par de nouveaux axiomes restrictifs. Nous aurons
encore l'occasion d'y revenir. Pour l'instant, nous allons exposer en détail
au paragraphe suivant, comment les choses se présentent pour l'ensemble
réalisé dans la suite des nombres entiers.

Remarquons pour finir qu'il y a deux façons opposées d'ordonner une
structure en choisissant arbitrairement, entre deux éléments quelconques,
l'une des deux liaisons présentes dans la structure libre dont nous sommes

partis.

5. L'ensemble des nombres entiers. Les axiomes du nombre

Le titre de ce paragraphe exige une mise au point immédiate. Les
nombres entiers ne sont en effet pas des éléments logiques purs. La suite
de ces nombres ne fournira donc pas une réalisation absolument adéquate
d'un ensemble lié. Mais on peut apercevoir dans les relations entre nombres

le dessin d'un réseau de liaisons logiques. Lorsque nous parlerons
de l'ensemble des nombres entiers, cela voudra donc dire que nous allons

regarder cette collection comme la réalisation d'une certaine structure
purement logique, le mot de réalisation ayant le sens expliqué au § 2.
Cette manière de faire n'est en aucune mesure nouvelle en mathématiques

; elle s'éclaircit parfaitement si l'on cherche ce qui lui correspond
dans l'axiomatique élémentaire. Le parallélisme est aussi étroit que
possible : nous allons faire de la logique pure sur l'ensemble des nombres
entiers comme on fait de la géométrie sur une figure.

C'est dans le même esprit que nous parlerons des axiomes de l'entier.
Dans le cadre que nous traçons, la signification de ces axiomes s'éclaire
très vivement. Ce sont les restrictions à apporter aux suites simplement
ordonnées pour que celles-ci deviennent « numérotables ». La voie à

suivre est ainsi toute tracée. La première chose à faire est d'exiger l'existence

d'un premier élément. C'est d'ailleurs également l'objet du premier
axiome du système de Peano que nous allons prendre comme terme de

comparaison. En voici les 5 axiomes :

Axiome 1. Zéro est un numéro.

Axiome 2. Si a est un numéro, a+ c'est-à-dire «le suivant», «le
successif », est aussi un numéro.
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Axiome j. Le principe d'induction sous la forme suivante : Si s est une
classe comprenant le zéro et si le successif d'un numéro

quelconque x qui fait partie de s, en fait également partie, s

contient tous les numéros.

Axiome 4. Si les successifs de deux numéros sont égaux, ces numéros
le sont aussi.

Axiome 5. Le successif d'un numéro ne peut être zéro.

Il est clair que ces axiomes doivent être remaniés pour prendre place
dans notre théorie. Commençons par choisir un élément que nous
nommerons 1, et demandons-nous à quelles conditions il doit satisfaire pour
être le premier dans une structure. Choisissons un autre élément,
l'élément 2, et choisissons encore l'ordre dans lequel la liaison (1, 2) est à

conserver. Considérons ensuite deux éléments x et y, et supposons que
l'on ait l'ordre x, 1, y. Nous supprimons les liaisons {x, 1) et (x, y),
par exemple en décrétant leur incompatibilité avec (i, 2). La structure
est maintenant partagée en deux structures partielles indépendantes :

celle des éléments qui précèdent 1, et celle qui contient 1 et les éléments
suivants. Cette construction restrictive donne lieu à l'axiome suivant
qui vient prendre la place du premier axiome de Peano. (Nous nommons
d'ailleurs structure ou suite dénombrée la suite réalisée par les nombres

entiers.)
Axiome Nx. La suite dénombrée possède un premier élément.

Le deuxième axiome aura pour objet de faire passer de la structure
simplement ordonnée à la suite ordonnée, c'est-à-dire à la structure dans

laquelle chaque élément possède un élément déterminé qui le suive
immédiatement.

Jusqu'ici nous avons souvent raisonné comme si tous les éléments de

la structure et toutes les liaisons étaient donnés d'avance. Il n'y avait
pas d'inconvénient à le faire, mais qu'il soit bien entendu qu'une structure

ne peut être décrite dans son devenir que par la façon dont elle

s'engendre. Et une description de ce genre ne peut qu'indiquer les
procédés selon lesquels « aux éléments déjà existants viendront s'adjoindre
encore de nouveaux éléments » C'est naturellement ici que doit intervenir

la notion de la définition prédicative de Poincaré : Le processus de

la construction doit être prédicatif en ce sens que l'adjonction de

nouveaux éléments ne doit remettre en question aucune des liaisons
supposées déjà établies entre les éléments supposés déjà existants.

Voyons maintenant sous cet angle le second axiome de notre suite à

définir :
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Axiome N2. Les éléments qui suivent un élément a quelconque, forment
une structure qui possède elle-même un premier élément a+, différent de a.

Supposons donc que tous les éléments existants déjà possèdent la
propriété requise, c'est-à-dire que les liaisons entre eux satisfassent aux
incompatibilités axiomatiques. Soit maintenant b un nouvel élément. En
exigeant certaines incompatibilités, nous pourrons l'introduire entre a

et a -f, par exemple. Par d'autres incompatibilités nous pourrons exiger
que b soit le premier des éléments qui viennent après a, et ainsi de suite.

Le troisième axiome de Peano contient la notion de classe empruntée
à la logique. Nous pourrions introduire cette notion sous la forme d'une

structure partielle par la définition suivante :

Une structure partielle qui ne se décompose pas en deux structures
partielles indépendantes est une classe dans la structure originelle. On

pourra dire aussi que les éléments d'une classe possèdent un attribut
déterminé.

Avec cette définition on pourrait conserver le troisième axiome en

question. Mais il nous paraît préférable de faire appel à des axiomes de

la même nature que le précédent. Le plus simple sera d'introduire aussi
la notion de dernier élément.

Axiome Nz. La classe des éléments qui précèdent a possède un dernier
élément a-

La structure est maintenant ordonnée dans les deux sens. Il suffit
d'exiger finalement que la classe des éléments qui viennent avant un a

quelconque soit finie. Ceci peut faire l'objet du dernier axiome que voici :

Axiome 2V4. Toute structure partielle contenue dans la classe des

éléments qui précèdent a possède aussi un dernier terme 5).

En résumé, nous définissons donc la suite dénombrée comme étant la
structure libre qui satisfait aux axiomes (O1} 02, 03) de Yordre et (Nx,
N2, iV3, N4) du nombre.

Sur la base de ces axiomes et des notions fondamentales explicitement
introduites, en particulier des notions du premier et du dernier, le principe

d'induction est maintenant démontrable.
On peut tout d'abord l'énoncer sous la forme suivante :

Toute structure partielle de la suite dénombrée qui commence par i et

qui contient, en même temps qu'un élément a toujours le suivant a+,
est identique à la suite dénombrée.

L'identité de deux structures infinies est une chose à définir : Deux

5) Si l'on étendait la notion de structure partielle (impropre) à la structure originelle
elle-même, l'axiome jV4 condiendrait naturellement N3,
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structures inûnies sont identiques si elles ont été construites par une
application identique des mêmes principes et si elles satisfont aux mêmes
axiomes restrictifs.

Il va de soi que dans ce cas tout élément qu'on pourra attribuer à Tune

pourra l'être aussi à l'autre.
Dans notre cas, la suite partielle satisfait d'elle-même aux axiomes Nx

et N2, et naturellement aussi à l'axiome N4, puisqu'une structure partielle
d'une structure partielle est encore une structure partielle. Quant aux
éléments qui précèdent un élément a dans la structure partielle, ils le
précèdent aussi dans la suite primitive et possèdent un dernier terme d'après
AT8 ou N4.

Enfin, il est clair que s'il ne s'était agi, dans ce qui précède, que de
parvenir le plus rapidement et le plus simplement possible à la structure
dénombrée, il aurait suffi de faire appel aux principes d'extension et de

libre liaison.

6. La relation logique

Jusqu'ici les liaisons ne sont entrées en rapport les unes avec les autres

que par leur incompatibilité éventuelle. Les seules propriétés qu'elles
peuvent posséder, c'est donc d'exister ou de ne pas exister simultanément

(ou aussi de toucher des éléments communs). Mais nous n'avons
encore introduit aucun principe qui permette de décider quand deux
liaisons, posées tout d'abord comme différentes, peuvent être regardées comme
identiques ou équivalentes. Pour y parvenir, nous allons commencer par
définir la projection d'une structure sur elle-même.

Considérons tout d'abord, par exemple, la structure dénombrée qui ne
conserve que les liaisons distinguées qui joignent un élément a au
suivant a +. On obtient une projection de la suite sur elle-même en faisant
correspondre l'élément i à un élément quelconque x, puis l'élément

i + —2 à l'élément x +, et ainsi de suite. En général :

Définition : Une projection d'une structure sur elle-même est une
correspondance univoque et réciproque de la structure avec tout ou partie
d'elle-même, la correspondance embrassant à la fois les éléments et les
liaisons.

Les projections qu'une structure admet forment naturellement un quasi-
groupe 6).

Cette définition devra être encore un peu étendue dans un instant. Dans
le cas qui nous occupe, ce quasi-groupe est tel que la liaison (i, 2) peut

6) Le quasi-groupe satisfait aux axiomes de groupe excepté à celui des éléments inverses.
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être amenée sur toute liaison (a, a+). Si maintenant nous regardons cette
applicabilité comme la caractéristique de l'équivalence, toutes les liaisons
de la suite deviennent équivalentes à (i, 2) et équivalentes entre elles.

C'est ce système de liaisons toutes équivalentes que nous définissons

comme formant une relation logique ; celle de l'élément quelconque a à

a+. Dès ici, le symbole {a, a+) peut être considéré comme celui de la
relation elle-même.

Ce premier exemple est un peu particulier, du fait que a détermine a+.
Examinons encore la structure dénombrée où l'on a réintroduit les
liaisons entre les éléments qui ne se suivent pas immédiatement. Pour
décrire le quasi-groupe des projections qui interviennent ici, il est commode

d'imaginer que la structure est donnée en deux exemplaires superposés.
L'élément a de la liaison (a, b) sera supposé choisi dans le premier
exemplaire, et b dans le second.

On peut alors « repousser » le second exemplaire « vers la droite »

comme dans le premier exemple, de façon que 2 vienne en 3/. La liaison
(1, 2) tombe sur (1, y), le premier élément étant resté fixe.

On peut ensuite « repousser » aussi le premier exemplaire « vers la

droite » de façon que 1 vienne en x, x devant d'ailleurs précéder y. La
liaison (1, 2) est maintenant équivalente à la liaison {x, y). Cette
dernière est d'ailleurs quelconque dans la structure. Celle-ci est donc uniquement

formée de liaisons équivalentes entre elles. Elle représente encore
une fois une relation logique, qu'on écrira

(x, y) x < y.

Le fait que la structure correspondant à la première relation est comprise
dans cette dernière signifie que celle-ci est plus générale.

Examinons encore la relation réalisée arithmétiquement par deux
nombres, a et b, et leur somme c. Nous l'écrirons

(a, b, c) a -f b c.

Pour obtenir cette relation, en d'autres termes pour obtenir les axiomes
de l'addition, nous allons précisément nous servir du quasi-groupe qui sert
à identifier les liaisons. Nous commençons donc par établir (principe de

libre liaison) une liaison entre les éléments 1,1 et 2. Pour plus de clarté,
on pourra supposer avoir 3 exemplaires de la structure dénombrée à sa

disposition. Le quasi-groupe sera ensuite engendré par les opérations
suivantes :

Lorsque l'exemplaire a de la structure est repoussé d'un pas vers la

droite, il en est de même de l'exemplaire c.



Lorsque l'exemplaire b est repoussé d'un pas vers la droite, il en est

encore une fois de même de l'exemplaire c.

Les deux éléments i des exemplaires a et b peuvent venir se placer en
des endroits quelconques, tandis que le troisième élément de la relation
est déterminé.

Les axiomes correspondant à cette façon de faire sont maintenant :

Axiome St i -f i i -f 2)
Axiome S2 (a -f- 1) -f- b (a -f- b) ~\- 1

Axiome Sz a -f- (b -f 1) — (0 + &) + 1.

On pourrait naturellement retrouver des circonstances analogues dans
les structures denses homogènes comme celles qui sont réalisées par la

suite des nombres rationnels, par exemple, ou par le continu linéaire.
Mais il n'est pas possible d'opérer de la même façon si la structure étudiée
n'est pas homogène (par exemple une suite dénombrée suivie elle-même
d'un ensemble dense). Mais ce n'est peut-être pas un défaut de notre point
de vue, car il n'y a en réalité pas grand'chose de commun entre le fait de

se suivre dans une suite dénombrée et dans une suite dense. L'identification

exigerait « l'enrobement » dans une suite homogène, ce qui est
d'ailleurs toujours possible.

Comme conclusion, nous voulons formuler le principe d'identification
dont nous nous sommes servi et la définition de la relation logique. Il
nous faut tout d'abord étendre la notion de projection d'une structure
de liaisons à un système d'autant de structures superposées qu'il y a de

termes dans les liaisons considérées. On peut ensuite énoncer le :

Principe des liaisons équivalentes. Deux liaisons qui, lors d'une
projection (généralisée) d'une structure sur elle-même, viennent à coïncider,
peuvent être regardées comme équivalentes.

La définition de la relation est maintenant la suivante :

Une relation logique est une structure de liaisons toutes équivalentes.
L'existence d'une relation logique est donc liée à l'existence d'un quasi-
groupe transitif de projections d'une structure sur elle-même, la transivité
devant être réalisée aussi bien pour les liaisons que pour les éléments.

7. Comparaison avec l'axiomatique actuelle
Nous allons maintenant examiner comment se présentent les axiomes

de M. Zermelo dans le cadre que nous avons tracé.
La première remarque à faire concerne la notion même de l'élément :

dans la théorie de M. Zermelo, l'élément doit être un ensemble, la relation
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de rensemble-élément à l'ensemble-totalité restant dans l'état
d'indétermination que Poincaré avait déjà souligné ; dans notre esquisse, au

contraire, l'élément est une entité sans signification préalable et qui par
exemple ne devient nombre que par sa présence dans la suite dénombrée.
En revanche, la notion d'appartenance de l'élément à l'ensemble est directement

fondée sur la notion intuitive de collection.
Le principe de contraction permet toutefois d'imaginer qu'une structure

puisse jouer le rôle d'un élément. Mais la différence avec rensemble-
élément n'en reste pas moins essentielle : si l'on remplace par contraction
une structure par un seul élément, celui-ci ne garde plus trace du fait que
sa place était occupée tout à l'heure par une structure ; sa signification
est à nouveau déterminée par sa seule position dans la structure restante.

Il en résulte que les deux relations a e b et a <^ b ne sont pas
essentiellement différentes.

On voit par là que la notion d'élément logique est bien adéquate à la

spéculation mathématique : elle permet de faire abstraction des propriétés
« internes » d'une « pluralité » pour n'envisager que ses rapports avec
d'autres «pluralités».

Quant à la relation a= b elle sera pour nous l'identité des structures
a et b, dont nous avons parlé au paragraphe précédent. (Nous dirons aussi

qu'elles sont superposables.)
Dans ces conditions, l'axiome i de M. Zermelo s'énonce comme suit :

Axiome i. Si deux structures a et b sont superposables et si a est

structure partielle d'une troisième structure A, il en est de même de b

qui peut prendre la place de a.

Cet axiome est naturellement vérifié.
L'axiome 2 est également immédiat :

Axiome 2. Les éléments de deux structures différentes peuvent être
réunis en une seule structure.

Il suffit en effet d'introduire des liaisons quelconques entre les éléments
de l'une et les éléments de l'autre. Si par exemple, les deux structures
sont ordonnées, on peut à volonté intercaler les éléments de l'une entre
les éléments de l'autre.

L'axiome 3 n'est qu'une autre forme de la réciproque du principe de

contraction.
Axiome 3. Si A est une structure de structures, c'est encore une structure

formée à Vaide des éléments des structures partielles.
Nous reviendrons dans un instant sur les axiomes 4 et 5.

L'axiome 6 peut être envisagé de deux manières : 11 peut être regardé
tout d'abord comme une autre forme du principe de contraction. Mais
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s'il ne s'agit pas seulement d'affirmer l'existence d'un seul ensemble

« choisi », le rôle de cet axiome est en tous points semblable à celui de

l'axiome 3. Il décrira comment on peut former un ensemble comprenant
toutes les possibilités de choix,

Considérons le cas le plus simple de deux structures. Imaginons que a
et b soient deux éléments de la première entre lesquels il existe n liaisons

(a, b) (a, b)2...., que de même a' et b' soient deux éléments pris dans

la seconde entre lesquels existent les n' liaisons {a, b')x, (a, b')2
Correspondant aux deux paires a et a', et b et V, nous imaginons deux
éléments logiques A et B entre lesquels il y ait à la fois les liaisons de la

première et de la seconde structure (c'est-à-dire, puisque les liaisons n'ont
aucun caractère spécifique, n + n' liaisons différentes). Nous obtenons

ainsi une nouvelle structure qu'on peut appeler une structure-produit des

deux premières.
Cette façon de faire peut s'étendre au cas où Ion a à « choisir » les

éléments dans une suite 5 infinie (et liée) de structures. On pourra
établir dans ce cas une infinité de liaisons entre les éléments A et B.
Ces liaisons formeront elles-mêmes une structure, et on les ordonnera

par exemple par paquets de n, n, n"..., liés entre eux de la même façon

que les structures de la suite .S.

Si par exemple, on devait construire par ce procédé le produit de la

suite dénombrée par elle-même, on pourrait en représenter la structure
comme dans la fig. 2. Les termes qui se suivent sur une verticale ou sur
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'ô >
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Fig. 2.

une horizontale sont liés une fois, les diagonales des carrés portent deux
liaisons. On voit aussi quelles liaisons il faudrait supprimer pour que
cette structure redevienne une suite dénombrée.
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Nous n'avons tenu compte que des liaisons à deux termes pour «

ordonner » la structure-produit. On peut traiter les liaisons à plus de deux
termes de façon analogue.

L'axiome 4 est encore du même genre que le précédent. S'il ne s'agit
que d'indiquer une structure qui le vérifie, la chose ne présente aucune
difficulté. Par exemple on peut considérer deux sous-structures comme
liées s'il existe au moins une liaison entre un élément de l'une et un
élément de l'autre, ou un élément de l'une et deux éléments de l'autre, etc.

On pourrait aussi, selon le procédé de Cantor, ramener la construction
d'une structure satisfaisant à cet axiome à celle d'un produit « répété ».

L'axiome 7 est remplacé par la construction axiomatique de la suite
dénombrée.

Reste enfin l'axiome 5, dans lequel la notion d'attribut défini qui intervient

« du dehors » et dont le domaine de signification n'a pas été délimité,
est généralement considérée comme un point faible. Dans l'esquisse que
nous avons tracée, nous avons placé la structure partielle avant l'attribut.
L'axiome 7 est donc vérifié identiquement. Mais le rôle qu'il joue dans la
construction axiomatique, ce sont les procédés d'après lesquels les structures

partielles peuvent être déterminées qui en tiennent lieu.

Ces procédés peuvent être déjà distingués dans l'exemple de la suite
dénombrée. Ainsi, les nombres pairs y déterminent une structure partielle
parce que la notion de nombre pair peut être définie à partir des principes

fondamentaux, et spécialement des axiomes restrictifs de la suite
dénombrée. Il en serait de même pour toute autre propriété arithmétique.
En d'autres termes et en général :

Si l'on entend par attribut bien défini une propriété de certains
éléments d'une structure qui peut être construite sur la base des principes
généraux et des axiomes relatifs spécialement à cette structure — et dont
la validité ou la non-validité peut être constatée sans ambiguïté —, alors

notre définition de la structure partielle est équivalente à l'axiome 5.

La différence est que maintenant le domaine de signification du mot
attribut est délimité.

En résumé, on voit qu'il suffit de quelques modifications, dont les unes
sont assez légères, mais dont la dernière est essentielle, pour que les

axiomes de M. Zermelo viennent prendre place dans notre théorie. Il est
vrai qu'ils s'y trouvent maintenant plutôt comme conséquences que comme
axiomes.

9 Commentarii Mathematici Helvetici 12Q,



8. Les antinomies

Nous allons maintenant faire voir que les antinomies bien connues
sont écartées tout naturellement.

Commençons par le paradoxe de l'ensemble de tous les ensembles qui
ne se contiennent pas eux-mêmes comme éléments.

La première remarque à faire — remarque de principe — c'est que
les ensembles qui ne se contiennent pas eux-mêmes comme élément ne
sont pas des éléments logiques. Ce sont des objets de la pensée
caractérisés par une propriété à priori, et non par leur position dans une
structure logique. Leur ensemble, dans notre théorie, n'existe pas.

Tout au plus pourrait-on former une structure qui soit ensuite réalisée

par « tous » les ensembles dont nous parlons. Il faudrait trouver un
principe ordinateur, selon lequel ils pourraient être mis en liaison. Il n'y
a aucune raison de croire qu'un principe de ce genre soit contenu dans la

notion seule « d'ensemble qui ne se contient pas lui-même comme élément ».

Ainsi, nous ne sommes pas en mesure de construire une structure
correspondant à l'ensemble antinomique. Et même si nous le pouvions,
le paradoxe pourrait encore être évité.

Supposons, en effet, que 2 soit une structure de ce genre. C'est dire
qu'elle a été formée d'après l'axiome 3 du paragraphe précédent, ou d'après
la réciproque du principe de contraction, à l'aide des structures qui ne sont

pas applicables sur une partie d'elles-mêmes. Posons la question qui
devrait amener le paradoxe : 2 se contient-elle elle-même comme structure

partielle
Supposons que non : Alors, d'après la façon dont elle a été construite,

elle devrait se contenir elle-même, ce qui est la contradiction bien connue.

Supposons le contraire : elle contiendrait alors une structure partielle
qui se contiendrait elle-même.

Si nous devions admettre, comme dans la théorie habituelle, que
cette structure ne peut être qu'un élément de 2, nous ne pourrions éviter
la seconde contradiction, et le paradoxe serait là, encore une fois. Mais
la chose n'est aucunement nécessaire : il peut fort bien exister une structure

partielle qui soit différente de celles qui ont servi à construire
l'ensemble 2. L'antinomie a donc disparu.

Passons à l'antinomie du plus grand cardinal, que nous considérons

comme plus profonde.
Le mécanisme qui l'engendre est le suivant :

Tout ensemble E possède un nombre cardinal déterminé. Le cardinal
de l'ensemble ((£)) des sous-ensembles de E est plus grand que celui de
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ce dernier. L'ensemble T de tous les ensembles ne peut avoir que le plus

grand cardinal, et pourtant l'ensemble ((T)) en a un plus grand encore.

Que pouvons nous objecter à cette façon de faire Il y a tout d'abord
la remarque de principe qui peut être invoquée dans tous les cas
semblables. C'est que les objets « ensembles » ne sont pas des éléments

logiques, mais des objets doués à priori de certaines propriétés.
L'ensemble de tous les ensembles est donc une construction mentale tout à fait
étrangère à la théorie que nous avons développée. Tout au plus pourrait-
on parler :

soit d'une structure dont les éléments puissent être réalisés par les

objets « ensembles », et les liaisons par certaines façons de ces

derniers d'entrer en rapport les uns avec les autres,
soit d'une structure dont elle-même et toutes les autres structures

soient des structures partielles.
Dans le premier cas, il pourrait arriver que la structure ainsi abstraite

fût antinomique. Mais ce fait ne toucherait en rien notre théorie, car
nous ne reconnaissons pas comme légitimes toutes les structures abstraites
de tels ou tels ensembles d'objets aux propriétés les plus imprévues,
mais seulement celles qui peuvent être construites sur la base de nos

principes fondamentaux.

Pour reprendre la comparaison avec la géométrie élémentaire, nous
sommes aussi peu dans l'obligation de reconnaître les structures abstraites
de collections d'objets, que la géométrie euclidienne du plan l'est
d'accepter les résultats de mesures faites sur une sphère ou sur toute autre
surface. La géométrie et notre théorie échappent aux dangers que
représentent pour l'une la formation de collections aux caractères
antinomiques (comme le catalogue des catalogues qui ne se mentionnent pas
eux-mêmes, ou comme la classe des adjectifs imprédicables de Russel),
et pour l'autre les mesures sur les objets physiques, parce que Tune et
l'autre ont été placées par l'axiomatisation en dehors de la « sphère de

leurs réalisations respectives ».

Ceci dit «pour le principe», il nous faut reconnaître que, dans le cas

qui nous occupe, nous ne sommes pas encore hors de peine, parce que
le paradoxe semble renaître à propos de la seconde éventualité, à propos
de la « structure de toutes les structures ». Nous pourrons d'ailleurs
nous borner à considérer des structures libres, par exemple des structures
où il y a exactement une liaison entre deux éléments quelconques.
Supposons que l'on puisse former la somme de toutes les structures de ce

genre. Il faudrait premièrement que celles-ci correspondissent aux élé-



ments d'une structure. On pourrait déjà s'arrêter ici, en remarquant que
nos structures libres ne sont pas liées à priori par leur définition. Mais
à défaut des liaisons imposées par les définitions, on peut en imaginer
plus ou moins librement. Par exemple on pourrait dire que le fait
d'envisager deux structures simultanément constitue déjà, dans la sphère des

réalisations, l'équivalent d'une liaison. On est donc conduit à envisager
les structures en question comme correspondant aux éléments d'une

structure libre du même genre que celles dont nous nous occupons.
Acceptons cette façon de faire.

Une fois toutes ces hypothèses admises, on pourrait former la
structure-somme S en établissant entre les éléments de deux structures à

additionner exactement une liaison allant de chaque élément à chaque
élément. La structure-somme est alors encore une structure libre du
même genre que les précédentes, et il n'en peut exister d'autres qui n'y
soient pas contenues comme structure partielle.

Et maintenant nous pouvons former selon l'axiome 4 une structure
dont les éléments correspondent aux structures partielles de S. En
établissant une seule liaison entre les éléments représentants de deux
ensembles dont au moins deux éléments sont liés, nous engendrerons
encore une fois un ensemble libre ((S)) du même genre. Tous les termes
du paradoxe sont à nouveau là.

Dès lors il est clair que le nœud de la question doit se trouver dans la
démonstration qui, dans la théorie de Cantor, assigne à l'ensemble de

tous les sous-ensembles d'un ensemble quelconque un nombre cardinal
supérieur au nombre cardinal de ce dernier. Pour le dénouer, il nous
faut commencer par quelques remarques sur l'emploi du mot tous.

Examinons pour commencer le cas d'une collection finie. Pour une
collection assez peu nombreuse, le mot tous a une signification intuitive
immédiate. Dire que, dans ce cas, tous les objets sont donnés, cela veut
dire qu'on peut « entrer effectivement » en possession de chacun d'eux.
Mais la chose change totalement d'aspect si la collection devient suffisamment

nombreuse pour qu'il ne soit plus possible d'en examiner tous les

objets l'un après l'autre jusqu'au dernier. Tout comme le mot infini, le

mot fini a dans ce cas une signification en partie conventionnelle. En
disant que tous les objets sont donnés, on demande qu'on admette la
possibilité de les énumérer un à un jusqu'à épuisement. Pour reprendre une
expression fréquemment employée ces derniers temps dans la discussion
des fondements des mathématiques, c'est un chèque en blanc sur tout
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objet compris entre le premier et le dernier, mais dont on ne peut assurer
d'avance si on pourra le remplir effectivement. Le sens du mot tous est
alors relatif à la convention qui veut que ce chèque ne perde jamais sa

valeur, c'est-à-dire aux règles axiomatiquement acceptées qui régissent
l'emploi des nombres.

Quelle est la différence avec le cas de la suite dénombrée Le sens
des mots : « Tous les éléments de la suite ont telle ou telle propriété » est
ici tout engagé dans le principe d'induction, (qui est soit un axiome,
comme dans le système de Peano, soit une conséquence des axiomes de

la suite dénombrée) et ne porte pas plus loin que celui-ci. Dire que tous
les éléments sont donnés, c'est dire simplement que l'on peut toujours
passer au suivant, et c'est accepter que cela soit suffisant bien qu'il n'y
ait pas de dernier. Par définition, la suite dénombrée est précisément celle

pour laquelle cette convention (axiomatique) est valable.

Il ne sert de rien d'objecter : « II est absurde de dire que tous les

éléments d'une suite infinie, même dénombrée, ont été examinés, puisqu'il
est dans la nature de l'infini de ne pas être épuisé. » En parlant ainsi, on

oppose simplement l'un à l'autre le sens de tous dans une suite finie et
l'autre sens de ce mot dans une suite dénombrée, ces deux significations
étant en effet irréductibles l'une à l'autre.

Il n'y a pas de difficulté à raisonner de la même façon sur l'ensemble
réalisé par les nombres rationnels ou par le continu des nombres réels.
On postule tout d'abord les axiomes de l'ordre, puis certains axiomes
restrictifs plus ou moins analogues aux axiomes du nombre qui fixent
les conventions suivant lesquelles le mot tous peut être employé.

En résumé, la signification du mot tous à l'intérieur d'une structure, est

relative aux axiomes que cette dernière doit (par définition) vérifier :

c'est un caractère intrinsèque qui ne peut être sans plus reporté d'une

structure sur une autre.

Ces constatations s'appliquent immédiatement à la notion de

l'équivalence. Si deux structures doivent être telles que tout élément de l'une

corresponde à un élément de l'autre et réciproquement, les mots : « tout
élément » ont un sens fixé la première fois par les axiomes de la première

structure, la seconde fois par ceux de la seconde.

Il est un cas où cette équivalence doit être admise : c'est celui où les

deux structures satisfont aux mêmes axiomes. Rien ne peut dans ce

cas les distinguer Tune de l'autre.
Ce sera l'équivalence au sens restreint. On pourra l'élargir ensuite par

les définitions suivantes :
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Deux structures sont équivalentes si l'une s'obtient à partir de l'autre

par suppression de certaines liaisons seulement.

Deux structures sont équivalentes si ce sont deux sommes ou deux

produits formés de « façon équivalente » à l'aide de structures équivalentes.

Ceci posé, envisageons deux structures libres quelconques du même

genre que précédemment et supposons qu'on n'ait accepté aucun axiome
restrictif (si ce n'est peut-être, pour toutes deux, les axiomes de l'ordre).
D'après ce que nous venons de dire, nous n'avons aucun moyen de constater

en quoi elles pourraient différer. Au contraire, d'après la définition
de la structure libre, l'une quelconque peut toujours être envisagée

comme faisant partie de l'autre : il faut donc les considérer comme
équivalentes. Ainsi : Deux structures libres quelconques (du même type)
sont à considérer comme équivalentes.

Ceci nous ramène aux deux structures vS et ((S)). Comme leur
équivalence se confirme, c'est bien dans la démonstration indiquée qu'il nous
faut rechercher la cause du paradoxe. Rappelons-en les points essentiels.

Les éléments de ((S)) représentent les structures partielles de S.

Parmi celles-ci se trouvent aussi celles qui ne comprennent qu'un élément :

61 est donc structure partielle de ((S)). Nous allons partager les éléments

de ({S)) en deux classes :

la première comprendra les éléments qui sont compris dans la structure

partielle à laquelle ils correspondent,

la seconde comprendra les éléments qui n'y sont pas compris.

On montre ensuite que cette seconde classe ne peut correspondre à

aucun élément de ((S)) et que, par conséquent, elle ne peut être une
sous-structure de S.

Le point essentiel du raisonnement est donc celui où l'on applique le

principe suivant : De tout élément on peut décider sans ambiguïté s'il
appartient ou non à un ensemble déterminé. Ce principe forme en quelque
sorte le fondement de la définition de l'ensemble dans la théorie habituelle,
où les éléments d'un ensemble sont contenus dans celui-ci en tant
qu'individualités possédant une propriété distinctive, sur la foi de laquelle
l'élément est attribué ou non à l'ensemble.

Dans notre théorie, ce principe est faux. Un élément logique n'ayant
aucune propriété à priori, il n'y a aucun sens à demander s'il fait ou non
partie d'une structure. La chose est bien visible sur l'exemple des structures

libres. Les principes de libre extension et de libre liaison permettent

d'attribuer un élément logique quelconque à une structure libre qucl-
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conque. (C'est là justement la raison de la dénomination : structure
libre.)

Dans notre théorie, la notion de nombre cardinal ne pourra être étendue

aux structures libres : c'est ce que nous voulions déjà dire au § 4 par
les mots : Les structures libres (ou seulement ordonnées) ne tombent

pas encore sous la catégorie du nombre.
L'antinomie a maintenant complètement disparu.
Il est inutile d'insister encore sur la structure somme de toutes les

structures, sur laquelle on ne raisonnerait pas différemment.

9. Conclusion

L'analyse du paradoxe du plus grand cardinal a montré que la source
des difficultés, dans la théorie de Cantor, est en premier lieu la notion de

l'objet susceptible de posséder, a priori et de par lui-même, telle ou telle

propriété ; en second lieu la définition de l'ensemble comme collection
d'objets ayant une propriété distinctive. C'est là ce qu'on pourrait appeler
une définition statique de l'ensemble : les objets-éléments sont tous
déterminés par avance et il faut admettre que, d'un objet quelconque, on saura
décider s'il appartient ou non à un ensemble déterminé, mais quelconque.

Bien qu'elles réduisent d'emblée l'objet-élément à n'être plus qu'un
ensemble, la théorie de M. Zermelo et les théories plus récentes qui en

découlent restent complètement sur le même terrain.
A cette façon statique d'envisager un ensemble, on peut opposer la

notion de la « totalité en devenir ». Toujours à propos des axiomes de

M. Zermelo, Poincaré écrivait déjà : « Quand je parle de tous les points
de l'espace, je veux dire tous les points dont les coordonnées sont exprimées

par des nombres rationnels, ou par des nombres algébriques ou de

toute autre manière que l'on pourra inventer. Et c'est ce l'on pourra qui
est l'infini. »

C'est à cet ordre d'idées qu'appartient la notion de limite, et spécialement

celle de suite en devenir (werdende Folge) de M. Weyl.
On peut dire que la plupart des difficultés de la théorie des ensembles

provenaient de la contradiction « latente » entre la définition statique, et
la nécessité de considérer l'infini comme étant en état de perpétuelle
extension.

Pour y échapper nous avons dégagé de la notion intuitive d'objet la

notion d'objet purement logique, dont les propriétés a priori se réduisent
à être soit identiques, soit différents entre eux, et dont les autres
propriétés lui seront conférées par une structure en devenir.
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Un autre exemple typique d'objet en devenir est celui de la structure
libre.

Nous croyons utile d'ajouter un mot encore sur la différence que nous

avons faite entre les principes et les axiomes.
Les principes formulent les règles selon lesquelles une structure

quelconque peut être traitée. Elles viennent compléter les règles simples,
valables pour une collection finie, quant au partage de celle-ci en deux
ou plusieurs collections, quant à la réunion de deux collections en une
seule, quant aux possibilités de choix ou de permutations, etc., règles

qu'on peut considérer comme formant la partie essentielle de la logique
ordinaire. On pourrait donc dire que les principes ont pour objet de
formuler les règles de la logique de l'infini (en dehors de la question de savoir
si nous les avons déjà formulées toutes).

Les axiomes, au contraire, sont des décrets restrictifs portés sur des

structures en devenir, et dont l'extension indéfinie est ainsi soumise à

certaines prescriptions caractéristiques.
Ceci dit, nous pouvons énoncer de la façon suivante le but que nous

nous sommes proposé d'atteindre dans ce travail : II s'agissait de montrer
a) qu'en acceptant les règles de la logique ordinaire pour autant qu'il

s'agit de structures finies,
b) qu'en les complétant par certains principes relatifs aux structures

infinies,
c) et en n'opérant systématiquement que sur les « objets logiques »

dont le sens et le rôle doivent être précisés par une axiomatisation sut
generis (et d'ailleurs étroitement analogue en son principe à celle qui
permet de constituer la géométrie élémentaire en science^ rationnelle),

on élimine de façon toute naturelle les antinomies qui se présentaient
jusqu'ici, spécialement dans la théorie des ensembles et dans la logique de

l'infini.

(Reçu le 6 avril 1932)
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