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Die Existenz der Zahlenreihe und
des Kontinuums

Von P. FINSLER, Ziirich

1. Vorbemerkungen

Es soll die widerspruchsfreie Existenz der natiirlichen Zahlenreihe und
des Kontinuums in absolutem Sinne dargetan werden.

Der Beweis stiitzt sich auf eine frithere Arbeit), in der ein wider-
spruchsfreies Axiomensystem fiir die Mengenlehre aufgestellt wird und
einige Sitze daraus abgeleitet werden. Diese Arbeit hat gelegentlich
Ablehnung erfahren?), jedoch sind mir stichhaltige Einwendungen we-
sentlicher Art nicht bekannt geworden, und ich halte solche auch fir
ausgeschlossen. Um meinen Standpunkt klarzulegen, mogen hier folgende
kurze Bemerkungen geniigen:

1. Wer die Paradoxien und Antinomien der Logik und Mengenlehre
nicht 16sen kann (oder sie gar fiir unlosbar halt), der kann auch keine
Kritik tiben, denn mit einer Antinomie kann man alles beweisen, also auch
alles widerlegen.

2. Wer die Antinomien in richtiger Weise 16sen kann, der weif}, daB
die reine (absolute) Logik einen sicheren Grund darstellt, auf dem man
aufbauen kann. Ein System von Formeln als ,,scharfer zu betrachten,
ist ein Irrtum; Formeln allein geniigen nicht, um die Antinomien auszu-
schlieBen 3), dies kann nur der Gedanke tun, der dariiber steht und der
sich auf die Logik stiitzt.

3. Die endliche, aber nicht beschrinkte Induktion als gegeben anzu-
nehmen, wéire eine petitio principii; nur Finites zuzulassen, eine Ein-
schrinkung. Die Mathematik ist mehr als ein Handwerk oder ein Schach-
spiel. Auch transfinite Widerspriiche miissen ausgeschlossen werden.

1) P. Finsler. Ueber die Grundlegung der Mengenlehre. Erster Teil. Die
Mengen und ihre Axiome. Math. Zeitschrift, Bd. 25, 1926, S. 683 (,Grundlegung*).

2) So z. B. bei R. Baer, Ueber ein Vollstindigkeitsaxiom in der Mengen-
lehre. Math, Zeitschrift, Bd. 27, 1928, S. 536.

3) Vgl. z. B. (. Frege, Grundgesetze der Arithmetik. I und II, Jena 1893 und
1903, insbes, Nachwort.
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2. Die Notwendigkeit eines Beweises

Die natiirlichen Zahlen werden gerne als etwas unmittelbar Gegebenes
betrachtet. Wenn es sich dabei nur um einen vorliufigen Standpunkt
handelt, ist dies sicher berechtigt. Wenn man aber in kritischer Weise
nichts Unbewiesenes zulassen will, so gilt es vielleicht doch noch fiir sehr
kleine Zahlen, soweit sie sich vollstindig im einzelnen tiberblicken lassen.
Es gilt jedoch nicht mehr fiir beliebig groBe Zahlen und insbesondere
nicht fur die Zahlenreihe als Ganzes.

Dies konnte man schon aus der Tatsache entnehmen, daB es viele Mathe-
matiker gab (oder noch gibt), welche die Existenz der Zahlenreihe als
eines fertigen Systems mit unendlich vielen Elementen durchaus ab-
lehnen. Man wird aber noch die Griinde dafiir untersuchen miissen, denn
man wird auch nichts ohne Beweis ablehnen wollen. Auch wird man sich,
wenn man einen Beweis fithren will, dartiber klar sein miissen, was eigent-
lich bewiesen werden muf}, wo also die Schwierigkeiten liegen.

Die Worte ,,natiirliche Zahl* oder ,,Zahlenreihe‘ sind ohne Inhalt, wenn
nicht gesagt wird, was darunter zu verstehen ist. Wenn wir iiber irgend-
welche Dinge eine Aussage machen oder etwas beweisen wollen, so miissen
wir genau sagen oder definieren, welche Dinge gemeint sind, und alle
Eigenschaften, die wir ableiten, missen sich aus der Definition ergeben.
Fur die natiirlichen Zahlen kommen hier insbesondere zwei Definitionen

in Betracht, die genetische und die axiomatische, die wir beide betrachten
wollen.

a) Bei der genetischen Definition geht man von einer bestimmt ge-
gebenen Anfangszahl aus, etwa von der Zahl 1. (Ob mit o oder 1 be-
gonnen wird, ist an sich gleichgtiltig.) Dann nimmt man noch eine Ope-
ration - 1 hinzu, die zu jeder schon gefundenen Zahl eine neue, von
allen bisherigen verschiedene Zahl liefert. So erhilt man die Zahlen
141, 14141, 1414141 usw, die auch mit 2, 3, 4 usw. be-
zeichnet werden.

Kann man nun von der Gesamtheit aller dieser Zahlen reden?

Wenn man annimmt, es liege schon ein fest gegebenes System von
Dingen vor, aus dem die einzelnen Zahlen der Reihe nach entnommen
werden konnen, dann konnte man allerdings die Gesamtheit aller dieser
Zahlen definieren: es sind alle die und nur die Dinge des gegebenen Sy-
stems, die, von der Zahl (dem Ding) 1 ausgehend, durch beliebige, aber
alleinige Anwendung der Operation - 1 erreicht werden kdnnen.
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Wenn man aber ein solches System von Dingen nicht als gegeben vor-
aussetzen kann, dann ist dieser SchluB nicht zuldssig. Die Reihe der Zahlen
ist dann eine ,,werdende®, denn jede Zahl wird erst auf Grund aller
vorhergehenden Zahlen sozusagen neu geschaffen, und man sieht zunichst
nicht ein, ob dieser ProzeB schlieBlich zu einem Ende fihrt oder nicht.

Man konnte vielleicht denken: man sieht ein, daB dieser ProzeB zu
keinem Ende fiithrt. Dann iibersieht man aber einen wichtigen Punkt:
es ist namlich noch gar nicht gesagt, daBl sich der ProzeB in jedem ein-
zelnen Fall wirklich durchfiihren, die Reihe also immer weiterfithren 1a8t.
Es ist noch gar nicht bewiesen, daBl wirklich zu jeder Zahl eine folgende
existiert.

Die Existenz einer nachstfolgenden Zahl scheint durch die Definition
der Zahlen selbst gefordert zu werden. Aber eine Definition kann
noch nicht die Existenz eines Dinges sicherstellen. Und darf man
die Existenz eines Dinges fordern, das vielleicht einen logischen
Widerspruch in sich trigt und deshalb gar nicht existieren kann? Das
ist genau der Weg zu den Antinomien. Etwas logisch Widerspruchsvolles,
also nicht Existierendes, konnen wir auch nicht durch einen Willkiirakt
erschaffen.

Welche Griinde veranlassen uns zu dem Glauben, dafl es zu jeder Zahl
eine nachstfolgende geben miisse?

Man konnte sich auf die Erfahrung berufen: zu jeder wirklich ge-
gebenen Zahl konnen wir eine groflere angeben. Aber die wirklich
gegebenen Zahlen bilden einen so verschwindend winzigen Teil der Zahlen
tiberhaupt, daB dies nicht als Beweis gelten kann.

Man koénnte weiter sagen: Es ist kein Grund vorhanden, der gegen die
Existenz einer nichstfolgenden Zahl spricht, also kann die Annahme
dieser Existenz nicht zu einem Widerspruch fiihren.

Darauf ist zu erwidern, daBl eben doch ein solcher Grund vorhanden
ist. Er besteht darin, daf die genetische Definition der natiirlichen Zahlen
von zirkelhafter Natur ist, und zirkelhafte Definitionen kénnen unerfill-
bar sein.

Wenn man nimlich die Definition auf eine schiarfere Form zu bringen
sucht, so tritt der Zirkel hervor. Die genetische Definition der Zahlen-
reihe ist im wesentlichen eine Konstruktionsvorschrift, der man etwa
die folgende Form geben kann:

Konstruktion A : Man beginne mit der Zahl 1 und setze hinter jede
Zahl, die sich aus dieser Konstruktion 2 ergibt, eine neue Zahl.
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Bei der zuerst angegebenen Definition der einzelnen Zahlen hat man

in ganz entsprechender Weise hinter jede durch ebendieselbe Vorschrift
gefundene Zahl ein neues Zeichen 4 I zu setzen.

Diese Vorschrift bezw. Konstruktion bezieht sich also ganz ausdrick-
lich auf sich selbst, und das ist ein offenbarer Zirkel. DaB aber dieser
Zirkel nicht ungefihrlich ist, erkennt man aus der anderen, aber in ganz
analoger Weise gebildeten Konstruktionsvorschrift:

Konstruktion B: Man beginne mit der Zahl 1 und setze hinter jede
Zahlenreihe, die sich aus dieser Konstruktion 8 ergibt, eine neue Zahl.

Diese Konstruktion B ist sicher nicht 4) in" jedem Falle erfiillbar, man
kame sonst zu der Antinomie von Burali-Fortis. Es ist daher auch nicht
selbstverstindlich, daB die Konstruktion A in jedem Falle erfillbar ist.
Der Satz, daP es zu jeder Zahl eine folgende gibt ®), bedarf eines Beweises.

b) Bei der axiomatischen Definition bilden die natiirlichen Zahlen ein
System von Dingen, die einem gegebenen Axiomensystem geniigen. Die-
sem Axiomensystem kann man (nach Peano) etwa die folgende Gestalt
geben:

I. 1 ist eine Zahl

II. Wenn # eine Zahl ist, so ist auch # - 1 eine Zahl.
ITI. Sind m und » Zahlen und ist m 4 1 =n -+ 1, so ist m=mn.
VI. Fiir jede Zahl »n ist n 4 134 1.

V. Eine Aussage, die fiir die Zahl 1 gilt, und die fiir die Zahl » 4+ 1
gilt, sofern sie fiir » gilt, gilt fir jede Zahl #,

Ein solches Axiomensystem hat den Vorteil, daBl es die Forderungen,
die man an den Begriff der natiirlichen Zahl stellt und die zu seiner
Definition notwendig sind, einzeln und vollstandig angibt, so da man ein
Fundament besitzt, auf dem sich die Lehre von den natiirlichen Zahlen
aufbauen laBt. Es bleibt aber die Frage, ob dieses Fundament selbst ge-

sichert ist, d. h. ob das Axiomensystem keinen Widerspruch in sich
enthalt.

Um diese Frage zu beantworten, konnte man zu zeigen versuchen, da8
es nicht moglich ist, von dem Axiomensystem ausgehend ,,in endlich vielen

4) Dabei wird allerdings vorausgesetzt, dafl man jede Reihe von Zahlen (z. B. die Reihe
aller npatiirlichen Zahlen) auch als Ganzes auffassen kann. Dies wird fiir die natiirlichen

Zahlen unter 3, gezeigt und lifit sich auf Grund des in der ,Grundlegung“ definierten
Systems aller Mengen auch allgemein zeigen.

5) Der Satz diirfte hinfillig werden, wenn man verlangt, dafl sich jede Zahl durch ein

materielles Zeichen darstellen lifit. Sobald alle Atome der Welt fiir die Zeichen verbraucht
sind, gibt es kein neues mehr.
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Schritten* einen Widerspruch herzuleiten. Wenn ein solcher Nachweis
gelingt, so ist das wohl von Wichtigkeit, aber noch nicht geniigend.

Wenn man nimlich annimmt, es gabe nicht zu jeder Zahl eine folgende,
dann gibt es auch nicht zu jedem Schritt einen folgenden, und die be-
schrankt vielen Schritte brauchen keinen Widerspruch zu ergeben. Es ist
also wieder nicht gezeigt, daB es zu jeder Zahl eine folgende gibt, obschon
das Gegenteil dieses Satzes mit dem Axiomensystem in offenkundigem
Widerspruch steht. Dieser Widerspruch lieBe sich aber nicht formali-
sieren und wire deshalb fiir eine formale Methode nicht angreifbar.

Die Widerspruchsfreiheit des Axiomensystems 1aft sich aber in einem
absoluten Sinne beweisen, wenn es gelingt, ein widerspruchsfrei exi-
stierendes System von Dingen anzugeben, fiir welches simtliche Axiome
erfullt sind. DaB man ein solches System nicht aus der genetischen
Definition der Zahlenreihe allein entnehmen kann, wurde oben gezeigt. Es
gelingt aber, ein solches System aus der Mengenlehre zu entnehmen.

Ebenso, wie sich die Widerspruchsfreiheit der Geometrie aus der
Arithmetik beweisen 1aBt, 148t sich auch die Widerspruchsfreiheit der
Arithmetik aus der Mengenlehre beweisen. Fiir die Mengenlehre ist ein
anderer Weg notwendig; hier kann man sich direkt auf die Logik stiitzen,
wie in der ,,Grundlegung* gezeigt wurde.

Die widerspruchsfreie Existenz des Kontinuums folgt aus der der
Zahlenreihe nur dann, wenn man weiB, daf die Operationen der Mengen-
lehre, insbesondere die beliebige Teilmengenbildung, auf die Reihe der
natiirlichen Zahlen angewendet werden diirfen.

3. Der Beweis

Als ,,Mengen®“ bezeichnen wir ideclle Dinge, die durch eine bestimmte
Beziehung (,,als Element enthalten) miteinander verkniipft sind. Zu-
sammenfassungen von Mengen heiflen Systeme. Nicht jedem System
braucht eine Menge zu entsprechen. Das durch 3 Axiome festgelegte Sy-
stem aller Mengen werde mit 3 bezeichnet. Wegen des Begriffs ,,zirkel-
frei® muB auf die ,,Grundlegung* selbst verwiesen werden; ebenso be-
ziehen sich die angefiihrten Satze auf diese Arbeit.

Wir betrachten Systeme S, welche, wie z. B. das System X, die Null-
menge und mit jeder Menge M stets auch die Menge { M | enthalten, sofern
diese Menge, die M als einziges Element enthalten soll, existiert. Der
Durchschnitt aller dieser Systeme, der also alle und nur die Mengen ent-
halt, die in jedem System S vorkommen, werde mit & bezeichnet. & ent-
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hilt ebenfalls die Nullmenge und mit jeder Menge 47 auch die Menge
|M |, sofern diese Menge existiert. Auflerdem gilt aber fiir das System
& das Induktionsprinzip:

Eine Aussage 2, die fiir die Nullmenge gilt und die fiir die Menge
{ M| gilt, sofern sie fiir M gilt und {M/| existiert, gilt fiir jede Menge
von &.

Zum Beweis betrachten wir das System aller der Mengen, fiir die die
Aussage A gilt. Dieses System enthilt die Nullmenge und mit jeder
Menge M auch die Menge | M|, sofern |} existiert, und gehdrt daher zu
den Systemen S. Nach der Definition von § muB also jede Menge von 3
diesem System angehoren, d. h. es gilt fiir sie die Aussage 2.

Es folgt nun weiter, da die Mengen von & samtlich zirkelfrei sind.
Nach Satz 14 der ,,Grundlegung* gilt dies namlich fiir die Nullmenge,
und nach Satz 15 existiert zu jeder zirkelfreien Menge M stets auch die
Menge | M } und sie ist ebenfalls zirkelfrei. Nach dem Induktionsprinzip
ergibt sich also noch, da Z tatsichlich mit jeder Menge M stets auch
eine Menge { /7| enthalt.

Wenn die Menge | 4/| mit der Menge | V| identisch ist, so ist auch M
mit N identisch nach dem Axiom der Beziehung. Ferner ist jede Menge
;M } von der Nullmenge verschieden, da diese im Gegensatz zu ;M ! kein
Element enthilt,

Damit sind aber fiir das System & die Axiome Peanos simtlich als
erfillt nachgewiesen, wenn man fiir die Zahl 1 die Nullmenge und fiir die
Zahl n 1 die Menge | }/| einsetzt, sofern # die Menge M bedeutet.

Bei der Definition von § wurde der Begriff zirkelfrei nicht benutzt, das
System & ist also von diesem Begriff unabhingig. Nach Satz 12 existiert
daher eine zirkelfreie Menge Z, welche gerade die Mengen von & als Ele-
mente enthalt 6),

Nach Satz 17 gibt es eine zirkelfreie Menge, welche die simtlichen Teil-
mengen von Z und nur diese enthilt. Diese Menge ist aber bekanntlich
dem Kontinuum iquivalent.

4. Schlussbemerkung

Man koénnte fragen, ob sich die Existenz der Zahlenreihe und des
Kontinuums nicht auch nachweisen 14B8t, ohne da man den Begriff zirkel-
frei zu Hilfe nimmt.

6) Damit ist auch das 7. Axiom E. Zermelos (Math. Ann. Bd. 65, 1908, S. 261), das in
der ,Grundlegung® noch fehlte, fiir die zirkelfreien Mengen als erfiillt nachgewiesen und
somit die Widerspruchsfreiheit dieses Axiomensystems der Mengenlehre dargetan,
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Fiir die Zahlenreihe konnte dies moglich sein, da man, allerdings nicht
in einfacher Weise (und vielleicht auch nicht ohne eine Zirkeldefinition),
einsehen kann, daf es zu jeder Menge M eine Menge |1/} gibt, also auch
dann, wenn M nicht zirkelfrei ist.

Fiir den Nachweis jedoch, daB das System aller Mengen eine dem Kon-
tinuum Aquivalente Menge enthalt, durfte der Begriff zirkelfrei oder cin
dquivalenter Begriff jedenfalls nicht zu vermeiden sein.

Man konnte aber, wenn die Zahlenreihe gegeben ist, fiir das Kontinuum
die Gesamtheit aller Teilsysteme der Zahlenreihe nehmen, dies ware
jedoch ein System héherer Stufe. Fiir die Bildung von Funktionen usw.
kimen dann Systeme noch hoherer Stufe in Frage. Dies wire unbequem
und konnte auch zu Schwierigkeiten fithren. Die allgemeine Mengenlehre
konnte man auf diese Weise jedenfalls nicht erhalten.

Der Vorteil der angewendeten Methode ist gerade der, daB die erste
Stufe (die Mengen) schon die ganze Mengenlehre umfafit; die zweite
Stufe (Systeme von Mengen) und die dritte (alle Systeme einer Eigen-
schaft) braucht man nur fiir die Begriindung, so dafl man sich also z. B.
in der Analysis, nachdem sie einmal begriindet ist, um verschiedene Stufen
nicht mehr zu kiitmmern braucht.

(Eingegangen den 1. April 1932)
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