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Asymptotische Abschâtzung des absoluten
Betrages einer Funktion, die die Werte
0 und 1 nicht annimmt

Von Alexander Ostrowski, Basel

Es sei p (s) eine Funktion, die fur | z | < i regular und von o und i
verschieden ist. Dann gilt bekannthch nach Schottky die Ungleichung

(a) \p{z)\<Q{p;r),fi*=p{o),
\ *l:âr<1

wo Q nur von r und fl0, sogar nur von r und einer Schranke fur \ p01 ab-
hangt. Daraus folgen insbesondere die Abschatzungen

(b) |/v)(o)|^zv(/0)( v=i, 2,

wo auch Zv nur von einer Schranke fur \po\ abhangen.

Ueber Q ist durch Hrn. Landau1) bekannt, dafi es sich durch

(a) O(p0f r)^(A\po\+B)~r
abschatzen la(3t, mit absoluten positiven Konstanten A, B, C; ferner
durch Hrn. Valzron, da6 sogar

gilt fur eine gewisse absolute Konstante A, deren Wert nicht abgeschatzt
wurde2). Andererseits kann man mit einer elementaren (d. h. in diesem

Falle nur algebraische Hilfsfunktionen benutzenden) Méthode beweisen :

Fur |/01^|^, d^o gilt

(7)

*) Vgl. den von Hrn. Landau herruhrenden § 6 m der Abhandlung von Bohr und
Landau, Gott. Nachr. 1910, pp 303—330, ubngens auch die Formel (54) m § 12 der
Abhandlung von Hrn. Landau: Ueber den Picard'schen Satz. Vierteljahresschr. d.
Zurch. Naturf. Ges 1906.

2) Vgl. G. Valiron, Bull. d. Se. Math., Bd. 51 (1927).
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wo also die Grofienordnung in i — r schlechter ist, wohl aber die nu-
merischen Schranken verhaltnismafiig kleine Werte haben, was beim
Gebrauche fur kleinere r, z. B. r •£ von Wichtigkeit ist3).

Wir wollen nun mit S* (a, r) die obère Grenze der absoluten Betrage
von \p (z) | fur | z | r§ r < I fur aile Funktionen p (z) mit \p (o) | a be-

zeichnen, die fur | z | < 1 regular und =z£o, ^ 1 sind; ferner mit S (a, r)
die obère Grenze von | p (z) | fur \ z ^r< I fur aile solche Funktionen
mit p (o) a ; endlich mit 0 (a, r) die obère Grenze von

— arg/(o)|
fur | z | ^ r <C 1 fur eine solche Funktion p (z) mit p (o) « (naturlich
bei stetiger Fortsetzung des Arguments). Dann kann man die obigen Ab-
schatzungen (a), (/?), (y) als Abschatzungen von 6** (a, r) und 61 («, r) nach
oben auffassen. Fur 0 (a, r) ist durch Hrn. P, Lévy4) bekannt

(Ô) 4>{<*,r)^^r, c(a)>o.

An Abschatzungen nach unten ist bisher nur bekannt (durch Hrn.
P. Lêvy, 1. c.)

(e) \\gS(a,r) + z<P(a,r\^^, ci(a)>o.1T
Nun sind fur Zv asymptotisch genaue Schranken bekannt durch den

(ubrigens elementar, d. h. ohne Benutzung der Modulfunktion beweis-

baren) Satz:

Ist fur poz=za, Ç9V(«) die obère Grenze aller |/<v)(°)i> so gilt fur
a __>. oo und ebenso fur a —>¦ O

(b*) TiM ^Jl»)1 j }

Es sollen nun im folgenden in demselben Sinne asymptotisch genaue
Schranken fur 5* und »S ermittelt werden. Hier handelt es sich aller-

3) Vgl. A. OstfOWSki, Studien uber den Schottky'schen Satz, Rektoratspro-
gramm der Univ. Basel fur 1931 (als selbstandige Schnft erschienen im Verlag von B. Wepf
& Cie Basel), pp. 96—102

4) Vgl. P. Lévy, Bull. Soc. Math. d. France, 1912 Einen anderen Beweis gibt J. E.
Littlewood, Proc. Lond. Math. Soc (2), 23 (1924), PP- 49°, 5O9~S™.

5) Vgl. A. Ostrowskl, Berlmer Sitzungsbenchte, 1925, (math.-physik. Klasse) pp 483-484.
Fur v=l ruhrt dièse Formel von Hrn. Landau her (Vierteljahrsschnft Zurch. Nat. Ges.

51, 1906), dessen Résultat spater von Gronwall, Pans C. R. 155 (1912), pp. 764—766 und
Bemays, Zurch. Vierteljahrsschr. 58 (1913), pp. 203—238 auf anderem Wege hergeleitet wurde
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dings um Funktionen von zwei Variabeln (a, r) bezw. («, r). Dement-
sprechend sind verschiedene Auffassungen des asymptotischen Verhaltens
moglich.

Wir werden im ersten Teil dieser Mitteilung (§§ i—3, Formelnummern
1—20) r fest (o < r <^ 1) annehmen und |/0|—>oo gehen lassen. Es

ergibt sich eine asymptotische Relation fur 5* (a, r) :

(A) 16 S ^
und zwar gleichmafiig in r. Hieraus folgt insbesondere, dafi der

I + rValirorische Exponent —— in (/>) sogar in dem Sinne der genaue ist,
I Y

dafi er sich fur kein einziges r mit o < r < 1 verkleinern lafit, selbst
auf Kosten der Vergrofierung der Zahlenkoeffizienten.

Der Beweis beruht wesentlich auf der Benutzung der elliptischen Mo-
dulfunktion. Zur Untersuchung von p {z) ist die Heranziehung von À [p),
des Legendre'schen Modulquadrates, also einer Modulfunktion 2ter Stufe

notwendig. Andererseits hat die absolute Invariante J (0) den Vorteil,
da6 ihre Entwicklung nach Potenzen von q eKtz positive Koeffizienten
hat. Wir kombinieren daher die Betrachtung beider Funktionen. Dies

bringt mit sich, daG wir zugleich — und sogar zuerst — die analogen
Abschatzungen fur Funktionen m {£) herleiten, die fur | z \ < 1 regular,
den Wert o nur in dreifacher Mehrfachheit, den Wert 1 nur in doppelter
Mehrfachheit annehmen. Es ergeben sich ganz analoge Resultate, nur
muG die Konstante 16 durch 1728 ersetzt werden6).

Es ist ubrigens von prinzipiellem Interesse, dafi die ganze
Untersuchung sogar unter Benutzung der absoluten Invariante J (5) allein durch-

gefuhrt werden kann, wenn man vom folgenden Satz ausgehen will, der

ja aus der Théorie der Modulfunktionen leicht herzuleiten ist, aber auch

elementar nicht schwer zu beweisen ist: Es gilt die Relation

(c) m(s)

in dem Sinne, dafi wenn rechts ein p [z] eingesetzt wird, links ein m (z}
herauskomrnt und umgekehrt, wenn man die Gleichung bei gegebenem

6) Bei Valiron und in einer fruheren Untersuchung von Landau (1. c.) wird zur Ab-
schatzung von p (z) nur die /-Funktion benutzt, sodafi die betrefifenden Abschatzungen sich
zugleich auf aile m (z) - Funktionen beziehen Zum Nachweis aber, datë die so gefundenen
Abschatzungen fur p (z) die rbestena sind, ist pnnzipiell die Heranziehung von a (z) notig.
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m (z) nach / (z) auflost, ergeben sich 6 verschiedene Funktionen p (z),

die auseinander mit Hilfe der bekannten Ausdrùcke I —py —, i

——— hervorgehen.

Mit Hilfe dièses Satzes kann man erstens das Analogon des Schottk/schen
Satzes fur Funktionen m (z) direkt und elementar aus dem elementar
beweisbaren Sckottky'schen Satz fur p (z) folgern, wàhrend der direkte
elementare Beweis fur m (z) mit keiner der bisherigen Methoden geht,

wobei man ja lg m {z) oder \J m (z) betrachten mùCte. Sodann aber
lassen sich auf analogem Wege auch die Fàlle quantitativ genau unter-
suchen, die verschiedenen Schwarz'schzn Dreiecksfunktionen entsprechen,
und insbesondere auch fur Scharen meromorpher Funktionen, die Hr.
Montel daraus gewonnen hat, quantitative Abschâtzungen finden. Darauf
hoffe ich in spàteren Mitteilungen cingehen zu konnen.

Die Benutzung der (c) entsprechenden Relation zwischen J (z) und X (z)

stellt den eigentlichen Gedanken dar, auf dem die Betrachtungen des

ersten Teiles dieser Mitteilung beruhen. Im Uebrigen lassen sich dièse

Ueberlegungen durchfuhren, ohne daf3 man auf Einzelheiten der zu J(z)
und X (z) gehorenden Modulfiguren eingeht. Ueberdies reicht die Formel
(A) fur viele Zwecke aus.

Ferner legt (A) die Frage nahe, ob die gleiche Relation auch
fur S (a, r) mit a —> oo gûltig bleibt. Endlich kann man fragen, ob fur
feste a der Grenzwert (i—r) log S (a, r) fur r —>- i existiert und be-

stimmt werden kann. Beide Fragen werden in bejahendem Sinne im
zweiten Teil dieser Mitteilung (§§4—8, Formelnummern 21—52) beant-

wortet. Zugleich wird auch die Frage nach dem Verhalten von S (a, r)
fur « —> o entschieden. In dieser Beziehung lautet das einzige in der
Literatur zu findende Résultat, das (1927 1, c.) von G. Valiron gefunden
wurde :

1 1—r

•J Kfo y r) \ & l-ro I

Andererseits lieCe sich aus der auch hierbei ihre Geschmeidigkeit neu

erweisenden Montel''schen Théorie der normalen Funktionenfamilien leicht
direkt folgern, dafi 5 {a, r) —>¦ o mit a —» o gelten mufi. Wir finden

nun, daB

(B) S(pQ, r)
16

Po_
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1—r
gilt fur |/01 —>o gleichmafiig in/G und r, wobei auch das Fehlerglied
sich weiter abschatzen lafit. Man kann also in der Valzronschen Formel

i
Bx~r durch eine absolute Konstante ersetzen. Was nun das Verhalten
von 5 [a, r) fur a —>¦ oo oder r —>¦ i anbetnfft, so bezeichnen wir mit
w (z) denjenigen Zweig der Umkehrfunktion von X (z)f dessen Werte im
Fundamentalbereiche von X (z) liegen, der zwischen den Halbstrahlen

3#>o, H^=± i und den Halbkreisen \ s ± ^\ ^, 3 5 !> ° liegt.
Dann lautet unser wesentlichstes Ergebnis, das als Verallgemeinerung
von (A) aufzufassen ist :

und sogar noch scharfer:

OO.

Daraus folgt insbesondere fur feste /0

(4) (i— r) \gS{j>0,r)-+2st3<a(p0), rU.
Und fur feste r und pQ -+¦ co ergibt sich aus (F)

l + r
{A*) rfS{p9,r)~(i6\p9\y-r,p9-*- oo,

gleichmàfiig in r und arg fi0. Fur die genaue Formulierung der zum
Teil noch schàrferen Ergebnisse vgl. man in § 8 die Formeln I—VI**.

Methodisch ist aber zum zweiten Teil dieser Mitteilung folgendes zu
bemerken : Es ist seit der ersten Arbeit von Hrn. Carathêodory uber
den /^n/schen Satz bekannt, dafi S(/>0, r) gleich dem max | X {z) \ fur
aile Punkte einer gewissen Kreislinie K ist, die ganz in der oberen Halb-
ebene verlauft und den Punkt to (/0) zu ihrem ,,nicht euklidischen Mit-
telpunkt" hat. Und die Hohe ta des hochsten Punktes von K uber der

I -f- rreellen Axe ist gleich 3 w (/0) —'— • Man wurde also ohne weiteres eine
I r

Abschàtzung von 5 (p0, r) erhalten durch das Maximum von | X (z) \ auf
der Strecke 3 z ~ P> \&*\=l> wenn nicht auch Punkte der unteren
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Kreishalfte in der Nahe gewisser Punkte der reellen Axe liegen wurden,
wo X (s) auch co wird. Man kann nun dem so begegnen, dafi man
solche Punkte von K, die aufierhalb des oben angegebenen Fundamen-
talbereiches liegen, durch eine Substitution der zu X {z) gehorenden
Gruppe in den Fundamentalbereich bringt. Dann mufi man aber die

Hohe der ,,reduzierten" Punkte uber der .r-Axe kennen und insbesondere
mit (/ vergleichen konnen. Die Frage lafit sich so wenden, daO man
samtliche Kreise betrachtet, in die K durch die hier zulassigen Modul-
substitutionen ubergefuhrt wird, und nach dem Maximum der zugehorigen
Hohen ku' fragt. Und die Wendung, die damit der Frage gegeben wird,
findet nun ihre Rechtfertigung im Résultat, dafi aile sich so ergebenden
Hohen dte Hohe des hochsten Punktes von K nieht tiberschreiten konnen,
sofern der nichteuklidische Mittelpunkt von K im obigen Fundamentalbereich

liegt. Mit dieser Tatsache (Hilfssatz ^ in § 4), deren Beweis

nachtraglich sehr leicht zu fuhren ist, ist die Hauptschwierigkeit uber-
wunden, die wohl bisher einer genauen Durchrechnung der asympto-
tischen Werte von vS im Wege stand7). Eine ahnliche Tatsache (Hilfssatz

A § 4) gilt ubrigens auch fur die gesamte Modulgruppe, die zur
Funktion «/(#) gehort. Es durften sich damit auch analoge Abschat-

zungen fur die Funktion m (z) herleiten lassen. Obgleich man, was die

Form dieser Abschatzung anbetrifft, einige neue und intéressante Mo-
mente erwarten durfte, bin ich dieser Frage nicht mehr nachgegangen.
Ich hoffe, daO daruber demnachst eine Mitteilung von anderer Seite

erfolgen wird.
DaC aber die Betrachtung der Strecke 3 z [* au^ ^en asymptotisch

genauen Wert von ,S {p0, r) fuhrt, ist dem glucklichen Umstand zu ver-
danken, dafi das asymptotische Verhalten von X (5) fur 3 % f °° m ^er
hier in betracht kommenden Naherung unabhangig vom Realteil von z ist.

Analoge sehr genaue Abschatzungen lassen sich auch fur @{po,r)
— die Argumentschranke von p {%) — aufstellen. Man findet fur r\\

(1 — r) 0 (A, r)-*n max (3 o> (/0), 3

7) Ein Versuch einer ahnhchen Reduktion des Problems findet sich am Schlusse der be-
kannten Arbeit von G. Pick (Ueber eme Eigenschaft der konformen Abbildung
kreisformiger Bereiche, Math. Ann. Bd. y1/ (1916), pp. I—6), in der zum ersten Mal
die ^nichteuklidische44 Auffassung des Schwarzschen Lemmas herausgearbeitet wurde. Doch sind
die bezughchen Angaben von Hrn. Pick nicht stichhaltig, da die Bemerkung auf p. 5 unten :

,,weil | X (z) | auf Parallelen zur Axe der imaginaren Zahlen nach oben zunimmt", sicher un-
zutreffend ist, wenn das betreffende Stuck jener Parallelen aus dem Fundamentalbereich aus-
tntt und m die Nahe von Unendhchkeitsstellen von X (z) auf der reellen Axe kommt.
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und noch scharfer

Zum Beweis dieser Abschatzungen haben wir indessen sehr ausfùhrlich
auf die geometrische Struktur der Modulfigur eingehen mussen. Und
da eine Darstellung dieser Entwicklungen im Rahmen der vorliegenden
Mitteilung keine Abkurzung der gesamten Darstellung bedeuten wurde,
soll der Beweis von (Jt) und (J2) an einer anderen Stelle (in der Math.
Zeitschrift, unter dem Titel: Asymptotische Abschatzung der Argument-
variation einer Funktion, die dze V[ erte o und i nicht annimmt) erscheinen.

§1. Funktionen J[v) und A(*)

Wir gehen von der elliptischen Modulfunktion J(z) aus, von der wir
folgende bekannte und leicht herleitbare Eigenschaften voraussetzen :

Die Funktion J (z) ist in der oberen Halbebene 3z /> ° definiert,
durchweg regular und genugt insbesondere der Relation

Setzt man e^iz q, so gilt fur J(z) die bekannte Darstellung

deren rechte Seite mit q2 multipliziert eine fur | q \ < i konvergente

Potenzreihe mit positiven Koeffizienten und dem Anfangsgliede r
darstellt, also insbesondere monoton in q2 ist. Es folgt daher fur | q | \ o,
3 # \ °°> p ^c>o î

(3) I23 q2 J{z) -? I, I23 e-*«PJ(iF) l I.

Fur rein imaginare w ist J (w) positiv. Es gilt wegen der Positivitat der
Koeffizienten von (2)

(4)

Endlich sei noch erwahnt, daG J(z) aile endlichen Werte im ,,Funda-
mentalbereich"
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(S) \z I > i, < H# < — und Ul— i, o<K5<—v ' !l 2 2 ' ' ==2

annimmt, und zwar jeden von o und I verschiedenen Wert genau ein-

mal, den Wert o im ,,Eckpunkte" h*—» der an drei verschiedene

Aequivalenzbereiche anstoBt, als eine dreifache Nullstelle, und den Wert
i im ,,Eckpunkte" z, der zwei verschiedenen Aequivalenzbereichen an-

gehort, als eine Doppelwurzel von J[z)—i. Insbesondere konvergiert
die einzige im Bereich (5) liegende Wurzel der Gleichung

(Sa) J(s) w, Wy£o, Wy£\,

mit ins Unendliche wachsendem | w | gegen 00 (und dann gilt naturlich
auch 3 5 ~^ °°) und umgekehrt. Beachtet man, dafl J (z) auf der ima-

ginaren Achse von 1 bis i • 00 jeden Wert ^ 1 nur einmal annimmt, und
auf der Strecke von t bis o dieselben Werte von neuem annimmt, so

folgt, dafi wenn man langs der imaginaren Achse von t • <^> nach dem

Nullpunkt geht, die reellen Werte von J(s) zuerst monoton bis I ab-
nehmen und sodann wieder bis 00 anwachsen. Daraus folgt :

Ist a^> d^.1 bzw. o < a < b ^ 1, so gilt

(5b) J(tb)<J(ta).

Neben der Modulfunktion J(z) mûssen wir noch eine sogenannte
,,Modulfunktion 2-ter Stufe" X (5) betrachten, die man am einfachsten

erhalt, wenn man das Innere des Gebietes (Jt in der Fig. des § 4) :

(6) o<H*<i, |*-*|>*
auf die obère X-Halbebene 3 ^ > ° so konform abbildet, dafi die Rand-
punkte o, 1, 00 sich selbst entsprechen, und sodann die Abbildungsfunktion
durch fortgesetzte Spiegelung analytisch fortsetzt. Dièse Funktion hàngt
mit J (5) durch die folgende Relation zusammen :

Aus (7) folgt fur ins Unendliche wachsende Werte von X (z) bzw. (fur
| X | =rr 2) fur ins Unendliche wachsende Werte von J (2) :
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(o J (Z) <^> A (Z)

wo natûrlich eine passende Bestimmung der Wurzel zu nehmen ist8

Es sei endlich an die Formel erinnert:

(8a)

§2. Abschâtzung von m{z)
Fur die Anwendungen der Funktionen J(z) und X(z) auf Problème

aus dem Ficardschen Ideenkreis sind nun die beiden Tatsachen
fondamental, die wir so formulieren konnen :

1. Dafilr, da/3 p (z) eine fur | z | <^ / reguldre und dort die Werte o

und 1 nicht annehmende Funktion ist, ist notwendig und hinreiche?id,
da/3 die Darstellung gilt:
(9) p{z) \(C(*)),

wo C (z) eine fiir | z \ <^ 1 regulâre Funktion ist, deren Imaginàrteil fiir
| z | <^ / stets positiv ist.

Hat p (o) p0 nicht negativen Imaginàrteil, so kann und soll C (z)
so gewahlt werden, dafi C (o) c0 im Bereiche (6) liegt.

2. Dafilr, da/3 m (z) fiir \ z \ < / regulàr ist und dort in jedem Punkte 1

nur in gerader, o nur in durch 3 teilbarer Mehrfachheit annimmt, ist
notwendig und hinreichend, dafi die Darstellung gilt:
(10) m(s) J(C(s)),

wo C (z) eine fiir \ z \ <^ / regulâre Funktion mit 3 C (z) ^> o ist. Ins-
besondere kann und soll C (z) so gezvàhlt werden, dafS C (o) c0 im
Bereich (5) liegt.

Fiir die Herleitung des Sckottkj/schen Satzes ist weiter die folgende
Tatsache wichtig, die zur Untersuchung der ^Ficardschen Problème"
zum ersten Mâle von Borel und sodann von Carathêodory herangezogen
und vom letzteren auf einem besonders einfachen Wege — mit Hilfe
des Sckwarzschen Lemmas — bewiesen worden ist:

8) In der Literatur wird die X-Funktion oft so defmiert, dafi sie fiir <o 0,1,00 die
Werte i,oo,o annimmt. Dièse X-Funktion ergibt sich aus der obigen durch die Transformation

X* — — und geniigt gleichfalls der Relation (7).
I A
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Ist fur | z | < I durchweg 3 C [z] > o, so gilt, w C (o) gesetzt,

\*\(ii)

Hier gilt fur die Funktion

(12) P>O,

offenbar das Gleichheitszeichen fur réelle z > o.

Genauer liegen die Werte von C (^) innerhalb des Kreises

(lia) C(s) —

^ \ z \

mit dem Mittelpunkt Hw + 3W — 2
und dem Radius 3 ^ r

| r gesetzt. Und fur die Funktion

(12 a)
1 —.

den Kreis K^r vollstandig.crfullen die Werte von C** (s) fur

Nun folgt aus (10) und (4)

Ist hier ^C(z)^.i, so folgt aus (5b) und (11) wegen des monotonen
Anwachsens von J (z u) fur u zwischen 1 und 00 :

Ist aber 3 £*(#) < 1, so folgt nach (5 b) und (11) wegen des monotonen
Abnehmens von J(iu) fur u zwischen o und 1 unter Benutzung von (1):

i+\z
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Da aber jetzt wegen (n) 3 ^>
— \z

sein, so dafi fur 3 co !> wegen des Monotoniecharakters von J(iu),
nicht verkleinert wird, wenn ^-— durch 3^> ersetzt

wird. Daher folgt, daG jedenfalls fur 3^0

(13) 3 ^0 ^ 1,

gilt. Wird aber insbesondere nach (12)

gesetzt, so gilt fur z r ^> o :

(13b)

Nach (3) folgt nun aus (13):

(14)

^6 3^0 1,

wo £t j o fur 3 ^01 00 gilt. Fur ?/z* (r) folgt aber aus der zweiten
Relation (3)

(14a)
\ ^ I23

Wie hangt nun 3 ^> mit m0 m (o) zusammen? Aus (10) foîgt
insbesondere

m0 J(c0).

Da hier c0 im Bereiche (5) liegt, folgt aus dem oben uber die Gleichung
(5 a) Gesagten, dafi fur | m0 \ —»¦ œ auch 3 co ~*- °° ë^ Daher liefert
dann (3):

5 Commentara Mathematici Helvetici



I23 e
2 % Z' Co

I,

wo e2z=z et(\fn0\) ^ o fur | m0 \ t oo ist. Daraus folgt

2*0*o
e <^

und daher nach (14) :

(15) fur 00.

Man kann (15) auch so schreiben:

1 + r
(16) +e)\nh\) 1~-

Andererseits ist aber nach dem Obigen

^* (o) J( C* (o)) J(/

eine monotone Funktion von P^i, die fur i^/>< 00 aile positiven
Werte von ,/(/) z= 1 bis 00 durchlàuft. Daher gilt flir ^0* t 00 :

23 m*123 m*e

2^P
e (1 — «) 123 w0*, e | o fur ^0* t 00,

Dann liefert (14 a):

(16a) 12> m*(r):

66
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§ 3. Abschatzung von P (s)

Wir betrachten nun p{z) fur absolut groOe / (o) —p0, und zwar
zuerst mit 3A °> unc* niachen Gebrauch von der Relation (9),
betrachten aber zugleich fur das C(#) aus (9) die Funktion m (z) J(C(z)).
Es gilt dann nach (15):

1 + r
1123 m[z)\ ^ |(i -j- a) 123 ^(o)l1-7*, 6 6(|^ (o)|) |omit |#« (o)| t 00.
\z\ S. r < 1

Fur po=z X (c0) —> 00 folgt nun aus (8) fur m (o) m0 :

4 2
00,

so da(3 die obige Abschatzung in

(17) |i23^(*)|<: |(i +^)28
\*\£r <1

ubergeht.

Aus w(^)
p (5) | ^ 2 ist :

(18)

Sobald aber |^

mit |/0|t 00

folgt weiter nach (8), sobald

>2 ist, gilt dièse Relation auch fur |/(^)|^2, wenn
man £t (/0) langsam genug gegen o abnehmen laOt, so dafi wir nun

ganz allgemein schlief3en konnen :

(19) ^| (1 1-'', 6f o mit od.

Andererseits betrachten wir fur die Funktion C* (z) aus (12)

* (s) x x

Fur positive r liegt nun der Wert von p* (r) X \iP———I, wegen\ I T ]
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der Symmetrie der konformen Abbildung, auf der Geraden 2? z ^ und
wandert auf dieser Geraden mit P monoton ins Unendliche. Daher folgt
aus (16 a) wegen (8)

\2»p*2{r)\^\{i — £) 28/*2 (o) | !-% e\o mit

oder

l+r
(20) | \6p*(r) | ^ |(i — a) i6p*{o)\l-r, e\o mit

Ist aber 3 A <C °> so la*3t SIC^ die ganze Deduktion auf die Potenz-
reihe um den Nullpunkt mit konjugiert komplexen Koeffizienten an-

wenden, so daf3 dann (19) fur dièse Potenzreihe gilt und daher auch
fur p (z).

Die Relation (16a) zeigt nun, dafi in einer Abschatzung vom Typus

\m(z)\<\{i-\-a)Arm{p)\?{r)y a a (| m (o) | | o mit | m (o) 11 00.

fur kein einziges r, o<V< 1, fur cp (r) eine kleinere Zahl als

1 + r
gesetzt werden kann, noch fur cp (r) ' ein kleineres Ar als 123.

1 /**

Betrachtet man allgemein eine Abschatzung vom Typus

\Arm(s)\^\(i+e)Brm(o)\nr)y E + o, \ m (o) || oo

so kann in ihr ^? (r) fur kein einziges r durch eine kleinere Zahl als

1 + r ersetzt werden, wie Ar und Br auch gewahlt werden mogen.I — f
I 4- rSoll aber dièse Abschatzung fur cp {r) ¦ fur unendlich viele ry ^ 1

gelten und hangen Ar, Br von r nicht ab, so mufi Br^_i2z> sein.

In demselben Sinne ist unsere Abschatzung (19) fur p {z) die beste,
wenn in den obigen Formulierungen 123 durch 16 ersetzt wird.

§ 4. Ueber die Aequivalenz von Kreisen in der Modulfigur

Wir betrachten fur w x -f~ iy, y ^> o und o<^r<^i den Kreis
Kw,r um den Mittelpunkt e0 mit dem Radius i?, wo
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I 1 y* 2 V
(21) e^x + ty-J—, ^=^___

ist. Dann gilt fur den Abstand o von Koo, r von der ;r-Axe und die
Hohe fi des hochsten Punktes von K^, r uber der ^r-A

(22)

Den Punkt w nennen wir den Pseudomittelpunkt, die Zahl ^ den Pseudo-

radius von K^ r9). Nun gilt fur jedes réelle ô

(23) \ea-S\*-R*=\v-ô\* (x-Ô IT ^ 3i*^
so daG durch e0 und i£ auch w und r eindeutig bestimmt sind. Ist uns

umgekehrt ein ganz in der oberen Halbebene verlaufender Kreis K mit
dem Mittelpunkt e0 und dem Radius R gegeben, so kann man aus (21)
und (23) solche Zahlen x H e0, y > o und r (o < r < 1) bestimmen,
dafi tf — tf^ wird.

Was geschieht nun mit H^ r, wenn auf die £-Ebene eine Substitution

/ \ # Z ~\~ &
r r 11 7 7 a ^(24) w ~—~z, ^, <?, Cj d reell, ^— ^ J > o

ausgeubt wird
Man kann (24) so schreiben :

x a ad — fo J a ~ d
(2S) "=T- S

Ist ^0 — J £ I ^0 — J |, | £ | 1, so schneidet der von S nach e0 gehende,
Halbstrahl die Kreislmie K in den Punkten S-\-elti S + e(\ e0 — S\ ± R)
denen vermoge (25) die beiden Punkte (vgl. (23))

9) In der îm Inneren der oberen Halbebene geltenden nichteuklidischen Mafibestimmung
ist a) der nichteuklidische Mittelpunkt von K, der nichteukhdische Radius von K ist aber

lg # j)er Kreis Ku), r geht aus dem Kreise um den Ursprung mit dem Radius r
hervor, wenn man das Innere des Einheitskreises so auf die obère Halbebene konform ab-
bildet, dafi der Ursprung in den Punkt a) ubergeht.
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(26) ,& =a— s-ll '¦ + — g_J*

enteprechen. In den beiden Punkten (26) wird aber die aus K durch
(25) hervorgehende Kreislinie K* von der Geraden geschnitten, in die
der Strahl von S nach e0 ubergeht (da S in den unendlich fernen Punkt
transformiert wird), und die als Orthogonalsehne von K* durch den

Mittelpunkt et von W hindurch geht. Daher ergibt sich fur den Mittel-
punkt e* und den Radius R* von K*

2 £2 |o> <J|2' 2 £2 |w — J

A x — S A ~ i

?0

~~~7|w —J|2~7" I—r2|w —rî|2~ I —r2^r~7"^^/'

Setzt man also

: a

so ist

so dafi K* den gleichen Pseudoradius hat wie K und den Pseudomittel-

punkt (a*y der aus w durch (24) hervorgeht10).

Es sei nun G eine Gruppe von linearen Substitutionen w :—-r^^ c s -f d
mit ad—fc > o und reellen a, b, c, d. K sei ein ganz in der oberen

Haibebene 3 * > ° liegender Kreis mit dem Pseudomittelpunkt <o und

der Ordinate des hochsten Punktes p. Man betrachte nun aile aus K

10) Die damit bewiesene Tatsache folgt offensichtlich unmittelbar daraus, dafi (24) cme

Bewegung in unserer wmchteuklidischen Ebenett ist, durch die der mchteukhdische Radius
invariant bleibt, der Mittelpunkt aber kovanant transformiert wird.
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vermoge der Substitutionen von G hervorgehenden Kreise und ins-
besondere die Ordinaten ihrer hôchsten Punkte. Ist dann die obère
Grenze M dieser Ordinaten zu bestimmen, so beachte man, daG, da aile
dièse Kreise den gleichen Pseudoradius haben, jene Ordinate wegen des

Ausdrucks (22) fur ^ um so groGer wird, je groGer die Ordinate des

Pseudomittelpunktes ist. Ist also die obère Grenze von 3 ;—r fù'r

aile Substitutionen von G gleich rj, so gilt

3«

Ist nun z. B. erstens die Gruppe G die Gesamtheit aller ganzzahligen
Substitutionen mit der Déterminante 1, so ist bekannt, daG es unter den
Transformierten einer Zahl o> mit 3w>o stets eine und nur eine gibt,
die im Bereich (5) liegt, und zwar hat dièses ,,reduzierte" o> nach Hurwitz
die maximale Ordinate n). Daraus folgt :

Hilfssatz A. Ist K ein Kreis, der ganz innerhalb der obern Halb-
ebene liegt\ und liegt sein Pseudomittelpunkt im Bereich (5), ist ferner
die Ordinate des hôchsten Punktes von H gleich ^/, so sind die Ordinate?i
aller Transformierten sàmtlicher Punkte von T& verm'ôge der Substitutionen

von G h'ôchstens gleich {/.
Es sei zweitens T die sogenannte ,,Hauptkongruenzgruppe" zweiter

Stufe, d. h. die Gesamtheit aller Substitutionen

a z A- b
<27) W 77T^
mit ganzen a, b, c, d und ad—bc= 1,

a^d^i (mod 2), b^c^o (mod 2).

Zu dieser Gruppe gehort die oben benutzte À (^)-Funktion als Invariante

(d. h. es gilt X (—* "*¦)== A.(z) fur aile Substitutionen von J1), sowie die
\ c z —y- a 1

in der Figur a. p. 72 ausschnittweise dargestelite Modulfigur. Dièse

Figur entsteht aus dem Hauptdreieck 3f, O<S^< 1, \z —^|>^ ^urch
fortgesetzte Spiegelung an den drei Seiten und besteht aus lauter null-
winkligen Dreiecken, die die obère Halbebene einfach und lùckenlos
ùberdecken. À (z) bildet % auf die obère À-Halbebene 3 À > ° ab, jedes

n) Hurwitz, Dissertation, Math. Werke, Bd. I, p. 6.
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der an % angrenzenden Dreiecke wird aut die untere À-Halbebene

3 À < o abgebildet und so fort. Insbesondere wird das in der Figur
mit 3C; bezeichnete Dreieck auf die untere A-Halbebene abgebildet.

Durch jede Substitution von F wird nun unsere ganze Modulfigur in
sich ubergefuhrt, jedes Dreieck D der Figur geht durch eine eindeutig
bestimmte Substitution von F entweder in % oder in %' uber. Ist (27)

dièse Substitution, so wird dabei offenbar z in den unendlich

fernen Punkt von JC (oder JC') ubergefuhrt. — Fugt man die Kreis-

bogendreiecke % und % ' aneinander, lafit aber dann die Strecke

H# — 1, sowie den Halbkreis | z + -J-1 \ bis auf z o fort, so ergibt
sich ein sogenannter Fundamentalbereich H der Gruppe F, so daf3 jeder
Punkt z mit 3 z > o einem und nur einem Punkt aus H vermoge F
équivalent ist. Ist nun co ein Punkt aus H und geht daraus vermoge
einer Substitution (27) von F ein Punkt o>* hervor, so gilt, wie eine kurze

Rechnung zeigt,

(28)



Nun ist aber fur jeden Punkt w aus H \ciû -\- d\^>=i fur £ o, //= i
(mod 2). Denn es genùgt beim Beweis Hw^o anzunehmen, da man
sonst a), £ durch — (ô, — £ ersetzen kann. Fur H u) > o ist nun

wegen

da c gerade, d ungerade ist. Daher folgt aus (28) 3a)*=^3a)> so
auch fur die Gruppe T (und den Fundamentalbereich H) ein Analogon
der Hurwitzschtn Eigenschaft gilt. Nun konnen wir aus dem Obigen
schlieCen :

Hilfssatz B. Ist K ein ganz in 3^ >o verlaufender Kreis mit dem

Pseudomittelpunkt aus H und der Ordznate des hochsten Punktes f/, so

sind die Ordinaten aller Transformierten der Punkte von K vermoge
der Substitutionen von T hochstens gleich u.

§5. Die parabolischen Umgebungen von rationalen Punkten in der
Modulfigur

Als eine parabolische ^-Umgebung (s > o) des unendlich fernen Punktes
bezeichnen wir die Halbebene 3 # 2> s- Dièse Umgebung ist invariant
gegenùber den linearen Substitutionen der ganzen Modulgruppe, die den

unendlich fernen Punkt in sich uberfuhren und also die Gestalt haben

w z -\- b, b ganz.

Fuhrt eine Substitution von G*.

a z -\- b 1

(29) w= =za -jrr jr->

a, b, c, d ganz, ad— bc 1, a —, â z oo in w=a —ce c

uber, so geht die Halbebene 3z ^>s m ^as Innere einer Kreislinie
U^s uber, die die réelle Axe im Punkte a beruhrt. Man erhalt den
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Durchmesser dièses Kreises, wenn man fur die Punkte z x -f-1 s,

— oo < x <C °°, die entsprechenden Punkte w a 5-7—: 77 von
c (x-f-zs—a)

U^s bildet und die grofite Distanz eines solchen Punktes von a*

max(30) max \w — a — m«A —9 rw ' à | x -f- zs — à

bestimmt (30) ist offenbar gleich

und hangt nur von c ab, dagegen nicht von der speziellen Substitution
(29), die z 00 in w a uberfuhrt. Wir bezeichnen das Innere des in

a beruhrenden Kreises £7a} ^ mit dem Durchmesser —-t als die parabohsche

^-Umgebung von a (groGeren Werten von s entspncht also eine ,,kleinere"

Umgebung)12). Fuhrt allgemein eine Substitution (S) w ^f—z einen
c z Y et

reellen rationalen Punkt a in einen andern a' uber, so wird durch sie

12) An den Begnff dieser parabohschen Umgebungen knupft das folgende Analogon des
Hilfssatzes B in § 4 an

Ist U=Uo,a ein die réelle Axe im o-Punkl berilhrender Kreis mit dem Durchmesser

— und beriihrt U einen in 3 z > o verlaufenden Kreis K mit dem Pseudomittelpunkt
a

w aus H von aufien, so dnngt keiner der Kreise, die aus K durch Substitutionen von
F hervorgehen, in das Innere von U ein Beweis Wir bezeichnen allgemein den Kreis,

der aus einem Kreis K durch w — ——]" entsteht, durch T^ Nach Voraussetzung

hegt der Kreis P —jy~ im Bere«ch 2 z a* Ist w — ——î-~ «ne Substitution von T,
A 7^+ â

so ist zu beweisen, dafi—^j* ^ nicht in (7 eindnngt, d. h., dafi ^rj^- im Bereich

3 z g a hegt.

Nun ist aber

l-i ôP —

02 — y — Iund da w ~— zu Y gehort und mit o> in H liegt, folgt dies aus dem
— p Z -f- % (1)

Hilfssatz B

74



auch Ua,s in [fartS ùbergefuhrt, und zwar fur jedes s > o. Denn man
kann 6" ,,auf Umwege uber den unendlich fernen Punkt" ausfuhren. Die
Gesamtheit derparabolischen s-Umgebungen aller reellen rationalen Punkte
geht also durch jede ganzzahlige lineare Substitution von der Déterminante

i in sich uber. Wir zeigen nun ferner, daf3 fur s I die s-Umge-

bungen von zwei verschiedenen rationalen Punkten a — >.ft— ~j >

c a
(a, c) (b,d)— I, keine Punkte gemeinsam haben konnen13). Dann konnen
erst recht fur s > i die parabolischen s-Umgebungen von verschiedenen
rationalen Punkten keine Punkte gemeinsam haben.

Es genugt zu zeigen, da(3 die Mittelpunktsdistanz von U^\ und
C/pf i nicht kleiner ist als die Summe der Radien, d. h. :

(ad — i

v r/ "" V cd

was wegen ad — bcy^o (a ^ /?) sicher richtig ist.
Wir betrachten nun den Durchschnitt 2^0) von H und £70, i • Ferner

sei die Vereinigungsmenge der Durchschnitte von If±1,1 niit H (vgl. Fig.)
mit I(1) bezeichnet.

Es moge nun ein Kreis K ïi^ r den Pseudomittelpunkt ta in 2X0)

haben, und die Hôhe des hochsten Punktes von K sei gleich fj. Wir
wollen nun das groGte s —-, d. h., die kleinste parabolische .y-Um-

gebung Uo,s von o bestimmen, fur die das Innere von iTganz im Inneren
von U0>s liegt. Dann mu6 die Radiendifferenz ^ der Mittelpunktsdistanz
der beiden Kreise sein, d. h., da der Radius von l{e»,r nach (21) gleich

13) Die Konfiguration der parabolischen 5-Umgebungen durfte zuerst fur S — bei

Humbert (J. d. m p.e.a., (7) 2 (1916), pp. 84 ff.) auftreten. Fur beliebige 5 wurde sie an-
scheinend zum ersten Mal von L R. Ford (Proc. Ed. M. S., Bd. 35 (1916 —17), pp. 40 ff.)
angegeben, von beiden Autoren im Zusammenhang mit der Théorie der Kettenbruche. An-
schlieftend an eine kurze Mitteilung von A. Speiser (Verh. d. Schweiz. Nat. Ges. (1923),
pp. 113—114) wurde sie ferner in der Zurcher Dissertation von J. Zlillig (Ueber eine
geometrische Deutung unendlicher Kettenbruche und îhre Approximation

durch rationale Zahlen, Zurich, Orell Fussli, 1928) behandelt. Die Invarianz
dieser Konfiguration fur 5=1 ist implizite in den Betrachtungen von R. Picard, (U n t e r -

suchung einer Untergruppe der unimodularen Picard'schen Gruppe, Basel,
Dissertation, 1927) sowie in den alteren Untersuchungen von v. Dick (Leipz. Ber. (1883),
pp. 61 ff.) und R. Fricke (Fridte-Klein, Automorphe Funktionen, Bd. 1 (1897)^.431)
enthalten. Verallgemeinerungen auf hohere Raume finden sich in den Arbeiten von L. R. Ford
(Trans. A M. S., Bd. 27 (1925), pp. 146 ff.) und A. Speiser (Journal f. r. u. a. M., Bd. 167
(1932), pp. 88 ff.).
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2

^ f / I

I i -f r2\ / i-f-r2— —yb2s J 1 — r2/ V 1 — r2 ^ 1 —

,*>^(-!--fi)o,

Daher ist

\+r '

_^2 ^2 _I_ */2
da w in ^(0) liegt und daher — ^5 i, —— ^ 2 ist. So ist f/* fur ^ ^ ^

sicher nicht grofier als i, so da6 insbesondere fur (i ^ \ das Innere
von K ganz in der parabolischen i-Umgebung £70}1 von z o liegt, d. k.

im Kreis z

Daraus folgt aber nun, da6 wenn ein beliebiger Punkt des Kreises K
durch eine Substitution S von V in H gebracht wird, er im Bereich 2i0)

hegen mu@. (Die Alternative ware, da ja seine Ordinate jedenfalls
nicht groGer als \ ist, daC er in die Nahe der Spitzen + i (d. h. in
den Bereich U(1)) transformiert wurde.)

Es genugt zu zeigen, daC 5 fur (o -^ 3°) den Nullpunkt und daher
auch [/Otl invariant Iàl3t, da ja dann K in UOtl bleibt. Transformiert
nun 5 den Nullpunkt in einen Punkt a 7^ o, so kann a auch nicht + 1

oder 00 sein, da ja dièse Punkte vermoge T nicht mit o aquivalent sind.
Dann geht U% t in U&, 1 uber, und U^ x hat keinen Punkt mit U% 1 noch
mit &4-i,i gemeinsam, also auch nicht mit dem ganzen Gebiet H. Da
aberiTganzin £/0,i liegt, muO das Bild von K ganz in U^x liegen, hat
also auch keine Punkte mit H gemeinsam, entgegen der Voraussetzung.
Daraus folgt insbesondere, daG ein solcher Kreis iT, ebenso wie Z70)i
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nur solche Dreiecke der Modulfigur durchsetzen kann, die eine Spitze
im o-Punkt haben.14)

Die gleiche Ueberlegung zeigt, da6 wenn ein Kreis Ku,r mit (a^2{0)
ganz in einer parabolischen ^-Umgebung l/OiS(s^i) des Nullpunktes
verlauft, jeder.Transformierte eines Punktes von K vermoge einer
Substitution von JP, der in H liegt, dann innerhalb UOfS, also innerhalb des

Durchschnitts von U%s und H liegt.

§6. Abschâtzung von SlpOir) durch Q|i und o>|i

Ist nun wieder p (z) fur \z\ < I regular und 7^ o, ^= 1, so daC (9) gilt,
so ist fur

(32) |/ (5) | <C max | K(z) | fur xr ^ K&,r

wo iTa),rder Kreis mit dem Pseudomittelpunkt w und dem Pseudoradius

r ist. Dabei ist a> eine solche Zahl aus H, da!3 J>0 k (to) ist. Bezeichnet

man also den Zweig der Umkehrung von À {z), dessen Werte in H liegen,
mit a) (À), so ist a) a) (/<>)• — (32) folgt daraus, da6 wegen (na) die
Werte von C(z) fur |s|<lr stets im iT^r liegen.

Wir bezeichnen nun mit Bfi fur p ^ i die in // enthaltene Strecke
der Geraden 3^==:^- Ferner bezeichnen wir mit Bp0) fur ^ <^ 1 den
in J^o) enthaltenen Teilbogen des in o beruhrenden Kreises mit dem
Durchmesser a :

d. h. des Begrenzungskreises von £70>J_. Dièse Strecken und Bogen

sind in der Figur eingezeichnet.
Wir bestimmen nun die Maxima und Minima von | À (z) | auf Bp (ft ^\)

und B*{0) (ft <^ 1) und bezeichnen sie resp. mit

(33) ûu, co>!

14) Genauer gilt folgendes: Der Kreis um den Punkt / mit dem Radius 1, also der Rand-
kreis von (Jo, i 5 durchsetzt samtliche Dreiecke mit der Spitze im Nullpunkt und beruhrt
jedesmal îhre dritten, nicht an o anstofienden Halbkreise, so dafi er der groftte im Nullpunkt
beruhrende Kreis ist, der nur in die Dreiecke mit der Spitze im Nullpunkt emdrmgt. Aus
dieser Eigenschaft folgt ubrigens unmittelbar, datë dieser Kreis bei jeder Modulsubstitution,
die den Nullpunkt m sich uberfuhrt, unverandert bleibt. Dies wurde fur unsere Zwecke
bereits ausreichen, so daC bei Benutzung dièses Kreises anstatt Uo, 1 unsere Betrachtungen
uber parabohsche Umgebungen unnotig waren. Doch liefert dieser Kreis eine relativ un-
symmetnsche Abgrenzung der Spitze o gegen die Spitzen + 1.
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Wir bezeichnen ferner den Teil von H mit 3 z iÇ t* ((^ ^ y) m^ Hp urîc*

den Durchschnitt von 2*°> mit U% J_ mit 2<°> (vgl. Fig.).

Ist nun fjt die grofite Ordinate der Punkte von Km,r, also nach § 4

f1 3w !_r 3<°(A) t_r »

so gilt sicher:

(34) \X(z)\<^ fur g*(Hp, [*>~',

(35)
• UW|<fl?w fur 5^2?, ^<i.

Denn da die Randteile von /j/^, die zum Rand von ZT gehoren, durch
X (z) auf ein Stuck der positiven reellen Axe (doppelt uberdeckt) abge-
bildet werden, wird auf ihnen der grofite Wert von | X (z) \ in einem der
beiden Schnittpunkte mit der Geraden 3 # f* erreicht. Und das Ana-
loge gilt fur 2£0).

Liegt nun ferner ein Punkt von Km, r nicht in H, so wird er durch
eine Substitution von F, die den Wert von X (z) unverandert laCt, in H
ubergefuhrt und liegt alsdann nach §§ 4 und 5 in Hp fur ku ~ \ Falls
ferner ^* <^ 1 ist, liegt ein solcher Punkt in 2*i°\ wenn w m 2(0) liegt,

wo p* nach (31) gleich '-—^y<2^ ist. Daher ist | X (5) | fur aile

Punkte von K^r resp. hochstens gleich lu* =——{——f) :

Andererseits hat K^ r sicher wenigstens einen P unkt mit B bzw. 5

gemeinsam, und da nach § 2 die Werte der entsprechend gebildeten
Funktion (12 a)

(36) C**(^Hw +*i±f1 — z

<2r den ganzen Krezs K&}r erfullen, ist 5(/0, r) sicher wenig-
stens gleich dem entsprechenden Minimum a^, bzw. w*i0). Daher er-

gibt sich
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(37) ^

(38) wfî <S(po,r)< Qy fur p 3 „ (A)f^ < y

Um hieraus weitere Folgerungen zu ziehen, leiten wir zunachst asym-
ptotische Abschatzungen von | A (z) | in der Nahe der Spitzen von H her.

§ 7. Asymptotische Abschatzungen von J{z) und ^(#)

Wir setzen q en*z und gehen von der Formel (2) fur w

deren erste Glieder fur q —> o, d. h. 3z ^ °° liefern :

aus,

39) i

Hieraus folgt

(40) 1 - 744 O(|?|')^|i2VJ»|^i + 744kP +

(42)
I23

Andererseits setzen wir in der Formel (7)

2l— 1 [i, |x2— 1 4À(A— 1)

und erhalten

v,

da X->oo fur 3^ - Daraus und aus (41) folgt weiter
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daher

Da aber q fur rein imaginare z positiv ist und X, daher auch jx Punkte
der imaginàren Axe auf Punkte der negativen reellen Axe abbildet, gilt
hier das Minuszeichen und wir erhalten

21- ï ~
\i6q\

i6\ç\

(43) •)\-T6e'

Lassen wir aber z gegen o innerhalb H konvergieren, so benutze man
die Formel

¦K)=-
Dann gilt nach (43)

(44)

Beachten wir aber, daf3 in 'H fur s=.x-\-ty (x ± \f -f- y% ^ \ ist,
d. h. l^lf^^+y und fur s->o daher x=O(y), so gilt

y
i
V

-1 jn__

und daher ^ z e^z I -f- o(3 -))>
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(45)

(45*)

.- d | !g6 i( \\te l6

w
§8. Abschâtzungen von S(po,r) durch <o (p0) und 2>0

Das fur uns Wesentliche an den in § 7 erhaltenen Abschâtzungen
ist, daf3 sie in der dort angegebenen Naherung nur von 32 bezw.

3 abhangen, sodaC wir i? und w im Wesentlichen in gleicher Weise

abschatzen, woraus, wegen (37), (38), die gleiche Abschatzung auch fur

S{p^r) folgt.
Es sei zuerst [i*>_\. Dann liefert (43) eine Abschatzung fur aile Werte

von | \{z) | auf B^, die also auch auf S(p0, r) anwendbar ist und ergibt

wo 0 sich auf den Grenzubergang f/^oo bezieht, und (I) im Ûbrigen
gleichmaGig in p0 und r gilt. Hieraus folgt weiter

(46) 5 (A, r) ^ e^ (1 + 8 9 e"*? + 0 (e~ 2^)),

(II) lg (16 5(/o, r)) nfi + SQe-^1 + 0 (e"2^),

sodaB nicht nur lg (16 S (fl0, r)) — si fi ~> o, sondern sogar
e ^ (lg (i6S(p0, r)) — n,ft) beschrankt fur \ ^ ku —>- 00 bleibt. Fur die in

diesen Abschâtzungen vorkommende GroGe e^ ={eK'${û)1-r erhalten
wir fur pQ —>¦ 00 aus (43)

|/01 | X (o> (A)) I

Yë ^^ + -^- + ° (é'~7r3a>)»
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0 i
IA

0 oo,

(47)

(48)

(40)

Konvergiert also insbesondere p0 gegen oo, so ergibt sich aus (46)
und (48)

16/0

l+r
\—r

l + r

Hieraus folgt aber fur aile

(I*) I
l + r

I A-rund insbesondere fur r > \, ^> 2 und p0 -> oo

a**) i

Durch Logarithmieren von (I*) und (I**) ergibt sich

(II*)

(II**)

00.

Es sei nun ^ <C| °der allgemeiner p* <^ i. Konvergiert [/ gegen o,
so muG dann offenbar 3«->o gelten, sodafi w —>- o oder w —>- i gilt.
Es moge nun w —>¦ o und daher/0—>-o gelten. Dann liefert (38) recht
scharfe Ergebnisse, wenngleich in ihnen auch der Realteil von w (fi0)

82



eine Rolle spielt. Denn die Werte von | A (#) | auf dem Kreisbogen

B*f}?} (,«/*< i) werden von ————== X( J

genommen. Dort gilt aber wegen (43)

auf der Strecke B i an-

und daher

(50)

7C

7* Ole

27t

|1*

i i + r
•^ ti\( tl \

o, /0

(III) +12881?

O, O.

30)Man ùberzeugt sich leicht, dafi die Bedingung (1* —> o mit -
aquivalent ist; dies ist aber, wegen (45*), équivalent mit |/ô I1""r

Logarithmiert man nun (50), so ergibt sich

(IV) lg 16

Der Zusammenhang mit p0 ergibt sich jetzt aus (31):

e =.\e
U(Po)/
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wenn man beachtet, daG wegen (43) fur A

~i6

gilt. Denn dann folgt aus (50)

(A, r) 16 A
16

1—r

1—y

1-r

1-r

16

(si)

1—r
I+r

Hieraus folgt dann erstens fur aile r

(IIP)
r)

16

I—r

A
16

1—r
î+r /

+ \
A
16

Fur r > 4, —;— < 4 aber gilt zweitens

1-r

(III**) 16 ~~

1—r 1—r

El
16

1+r
86 h

ï6

wo l/ol1 r->o, |6|<i ist.

Durch Logarithmieren ergibt sich aus diesen Formeln aber
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(IV*) lg

(IV**) lg

S(A> r)
i6

S(A,r)
16

i
i

i
i

— r
+ r ë

— T

+ r

A
16

A
16

1 D ri*

1 8 fi A
16

1 —r
1 +r

+ 0 1/

^i.|Arr~^o, |6|<i.
Konvergiert fur p* <^ i aber /0 gegen I, so hat man nur die Formeln
III — iv** auf i—p (z) anzuwenden und erhalt Abschatzungen fur

Ist im Falle der Formel (I) (jjl —> oo) p0 -> oo fur festes r, oder ail-

gemeiner fur \po\ -> oo so laCt sich dièse Formel mit Hilfe von (III)
durch die Angabe einer (asymptotisch genauen) unteren Grenze von | p (z) \

fur | z j <1 r erganzen. Denn fur \p01 -> oo lassen sich auf q (z) —-r^-

?- o (III), sowie (IIP), (IIP*) anwenden und es ergibtwegen | q (o) |

• u c i i ^ * I ï JTr ï i +r i
sien fur \ z\<^r wegen (x ———j- !— — — —i—r~2'

I
p{z) _\

I
i6p{z)

I
\6p (z)

I

I

i6/0

128 9 0 | 9 | < i,

\—r

2^

und daraus folgt in Verbindung mit (I), (P), (P*) mit (x 3 tô (A) ïz~

(V*) ^)1"r > o < c < oo



^ J>o

|6|<i, |6i|<i, r>—.
3

Andererseits folgen aus den linken Halften dieser Formeln umgekehrt
(III) (IIP) (III**). Es ist noch von Interesse zu bemerken, dafi die linke
Hàlfte der Formel (V*) (und damit auch (III*)) in etwas schwacherer

Fassung aus (I*) direkt mit Hilfe eines Gedankens von Hrn. Vahron her-
geleitet werden kann. Valiron bemerkt namlich15), da6 eine lineare

Abbildung des Einheitskreises in sich, die ein z mit | z | r in den Null-
punkt bringt, den Nullpunkt in einen Punkt zx uberfuhrt mit \zx\~r.
In einer Relation zwischen / (o) und / (z), in der ein z mit \z\ r vor-
kommt, darf man daher z mit o vertauschen, sofern die Bedingungen fur
die Gultigkeit der Relation gegenuber einer linearen Transformation des

Einheitskreises in sich invariant sind. Danach folgt aus (I*)

(52)

Dies ist aber nur insofern schwàcher als die linke Halfte von (V*), als

die linke Seite von (V*) gleich iôl ~*ï~) ist

\-rr
Aehnliches gilt auch fur (I**). Denn aus |^>01 —>- oo folgt ja, da mit (I**)

auch (I*) gilt, nach (52)/ (z)—>- 00, so daf3 in (1**)/ (o) mit/ (z) vertauscht
werden kann und man eine Abschatzung von p (z) nach unten erhalt,
die sogar etwas scharfer als die linke Halfte von (V**) ist.

Durch ganz analoge Betrachtungen oder durch Benutzung von (V), (V*),

(V**) fur — erganzt man auch die Formeln (III), (IIP), (IIP*) (wenn a*
P\%)

gesetzt wird) zu

15) Vgl. die a. p. 55 zitierte Abhandlung.

86



VI +0(e

VI*

1+r
1—r

\-r
p(z)

16

16

16

A
16

1—r
1 + r

Dièse Formeln gelten unter der Voraussetzung a* —>- o, d. h., wegen
(45*)- o. Dabei ist |6|<i, 16, |< i.

(Eingegangen den 14. Marz 1932)
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