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Asymptotische Abschatzung des absoluten
Betrages einer Funktion, die die Werte
O und 1 nicht annimmt

Von ALEXANDER OSTROWSKI, Basel

Es sei p (z) eine Funktion, die fiir | 2| <{ 1 reguldr und von o und 1
verschieden ist. Dann gilt bekanntlich nach Sciottky die Ungleichung

(a) Iﬁ("’ |<‘Q po, ) ﬁozﬁ(OL

lz]s7r<t

wo &2 nur von 7 und p,, sogar nur von » und einer Schranke fiir | p, | ab-
hingt. Daraus folgen insbesondere die Abschitzungen

(b) 1PV O) | =Ly (p), v=1, 2, ...,

wo auch Z, nur von einer Schranke fiir |p,| abhidngen.
Ueber £ ist durch Hrn. Landau') bekannt, daf3 es sich durch

C

() 2(20, N=(A|p| +B)-"

abschitzen 14{3t, mit absoluten positiven Konstanten A4, B, C; ferner
durch Hrn. Valiron, dad sogar

1+7»

(8) 2(20, N =(A( 2]+ 1))~

gilt fiir eine gewisse absolute Konstante 4, deren Wert nicht abgeschitzt
wurde?). Andererseits kann man mit einer elementaren (d. h. in diesem
Falle nur algebraische Hilfsfunktionen benutzenden) Methode beweisen :
Fiir |p,| = ¢, d= 0 gilt

o R 4 5 d
) Qo) =1 4 )

1) Vgl. den von Hrn. Landau herriihrenden § 6 in der Abhandlung von Bohr und
Landau, Gétt. Nachr, 1910, pp. 303—330, iibrigens auch die Formel (54) in § 12 der
Abhandlung von Hrn. Landau: Ueber den Picard’schen Satz. Vierteljahresschr. d.
Ziirch. Naturf, Ges. 1906.

2) Vgl. G. Valiron, Bull. d. Sc. Math,, Bd. 51 (1927).
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wo also die Grof3enordnung in 1 — 7 schlechter ist, wohl aber die nu-
merischen Schranken verhiltnismi3ig kleine Werte haben, was beim
Gebrauche fiir kleinere 7, z. B. » = 1 von Wichtigkeit ist?).

Wir wollen nun mit S* (¢, ») die obere Grenze der absoluten Betrige
von |p ()| fiir |#| =~ <1 fiir alle Funktionen p (s) mit | p (0) | = @ be-
zeichnen, die fiir | | < 1 regulidr und 20, £ 1 smd ferner mit S(e, #)
die obere Grenze von |p (s)| fiir | 2| =#» < 1 fiir alle solche Funktionen
mit p (0) = «; endlich mit @ (¢, ») die obere Grenze von

|arg p (5) —arg p (0) |

fir |2| =» <1 fiir eine solche Funktion p (2) mit p (0) — « (natiirlich
bei stetiger Fortsetzung des Arguments). Dann kann man die obigen Ab-
schitzungen (a), (8), (y) als Abschitzungen von S$*(a, ) und S (@, ») nach
oben auffassen. Fir @ (a, #) ist durch Hrn. 2. Lévy*) bekannt

¢ (a)

(9) P (e, 7) = » Cla)>o.

I—v7

An Abschiatzungen nach unten ist bisher nur bekannt (durch Hrn.
P. Lévy, 1. c.)
e g S(a 1) 47 0 o 7| = 21

’
-

¢ (@) > o.

Nun sind fiir Z, asymptotisch genaue Schranken bekannt durch den
(ibrigens elementar, d.h. ohne Benutzung der Modulfunktion beweis-
baren) Satz:

Ist fiir po=a, @y(a) die obere Grensze aller |p™ (0)|, so gilt fiir

a—» o0 und ebenso [fir a—=0

@y (0() 2Y 5) .

() alliglalP V7

Es sollen nun im folgenden in demselben Sinne asymptotisch genaue
Schranken fiir S* und S ermittelt werden. Hier handelt es sich aller-

8) Vgl. A. Ostrowski, Studien iiber den Schottky’schen Satz, Rektoratspro-
gramm der Univ. Basel fiir 1931 (als selbstindige Schrift erschienen im Verlag von B. Wepf
& Cie., Basel), pp. 96—102.

4) Vgl. P. Lévy, Bull. Soc. Math, d. France, 1912. Einen anderen Beweis gibt J. E.
Littlewood, Proc. Lond. Math. Soc. (2), 23 (1924), pp. 490, 509—5I0.

8) Vgl. A. Ostrowski, Berliner Sitzungsberichte, 1925, (math.-physik. Klasse) pp. 483-484.
Fiir v=1 riihrt diese Formel von Hrn. Landau her (Vierteljahrsschrift Ziirch, Nat. Ges,
51, 1906), dessen Resultat spiter von Gronwall, Paris C. R, 155 (1912), pp. 764—766 und
Bernays, Ziirch, Vierteljahrsschr. §8 (1913), pp. 203—238 auf anderem Wege hergeleitet wurde
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dings um Funktionen von zwei Variabeln (2, ») bezw. (¢, »). Dement-
sprechend sind verschiedene Auffassungen des asymptotischen Verhaltens
moglich.

Wir werden im ersten Teil dieser Mitteilung (§§ 1-—3, Formelnummern
1—20) » fest (0 << » < 1) annehmen und |p,| — oo gehen lassen. Es
ergibt sich eine asymptotische Relation fiir S* (o, 7):

1+»

(4) 16 S*([20], 7) 0o (16 20 [)7=7, | 20| oo,

und zwar glezchmdfszg in r. Hieraus folgt insbesondere, dafd3 der

147

Valiron’sche Exponent . in (f) sogar in dem Sinne der genaue ist,
—7

daf3 er sich fiir kein einziges » mit 0 < » < 1 verkleinern 1af3t, selbst
auf Kosten der Vergroflerung der Zahlenkoeffizienten.

Der Beweis beruht wesentlich auf der Benutzung der elliptischen Mo-
dulfunktion. Zur Untersuchung von p (s) ist die Heranziechung von A (s),
des Legendre'schen Modulquadrates, also einer Modulfunktion 2tr Stufe
notwendig, Andererseits hat die absolute Invariante J(s) den Vorteil,
daf3 ihre Entwicklung nach Potenzen von ¢ = ¢7# posztzve Koeffizienten
hat. Wir kombinieren daher die Betrachtung beider Funktionen. Dies
bringt mit sich, daf3 wir zugleich — und sogar zuerst — die analogen
Abschitzungen fiir Funktionen s (s) herleiten, die fiir | 2| <1 regulir,
den Wert 0 nur in dreifacher Mehrfachheit, den Wert 1 nur in doppelter
Mehrfachheit annehmen. Es ergeben sich ganz analoge Resultate, nur
muf3 die Konstante 16 durch 1728 ersetzt werden®).

Es ist tibrigens von prinzipiellem Interesse, daf3 die ganze Unter-
suchung sogar unter Benutzung der absoluten Invariante J (3) allein durch-
gefiilhrt werden kann, wenn man vom folgenden Satz ausgehen will, der
ja aus der Theorie der Modulfunktionen leicht herzuleiten ist, aber auch
elementar nicht schwer zu beweisen ist: Es gilt die Relation

_ 4 (P26 +
27 () (1—2(5)

in dem Sinne, daf3 wenn rechts ein p (s) eingesetzt wird, links ein 7 ()
herauskommt und umgekehrt, wenn man die Gleichung bei gegebenem

(c) e (5) :

6) Bei Valiron und in einer friiheren Untersuchung von Landau (1. c.) wird zur Ab-
schitzung von p (2) nur die J-Funktion benutzt, sodafy die betreffenden Abschitzungen sich
zugleich auf alle m (2) - Funktionen beziehen. Zum Nachweis aber, daff die so gefundenen
Abschitzungen fiir p (2) die ,besten® sind, ist prinzipiell die Heranziehung von 2 (2) notig.
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m (2) nach p (2) auflost, ergeben sich 6 verschiedene Funktionen p (2),
I
-p b

die auseinander mit Hilfe der bekannten Ausdriicke 1 — 2, —;—, I —

?
p—1" 1—7
Mit Hilfe dieses Satzes kann man erstens das Analogon des Sc/o#2ky’schen
Satzes fiir Funktionen =z (s) direkt und elementar aus dem elementar
beweisbaren Sckoftky’schen Satz fiir p (2) folgern, wahrend der direkte
elementare Beweis fiir » (s) mit keiner der bisherigen Methoden geht,

hervorgehen.

wobei man ja lg w2 (s) oder ’{/m betrachten miif3te. Sodann aber
lassen sich auf analogem Wege auch die Fille quantitativ genau unter-
suchen, die verschiedenen ScZwars’schen Dreiecksfunktionen entsprechen,
und insbesondere auch fiir Scharen meromorpher Funktionen, die Hr.
Montel daraus gewonnen hat, quantitative Abschatzungen finden. Darauf
hoffe ich in spiteren Mitteilungen cingehen zu konnen.

Die Benutzung der (c) entsprechenden Relation zwischen J (2) und A (3)
stellt den eigentlichen Gedanken dar, auf dem die Betrachtungen des
ersten Teiles dieser Mitteilung beruhen. Im Uebrigen lassen sich diese
Ueberlegungen durchfiihren, ohne daf3 man auf Einzelheiten der zu J (s)
und A (2) gehorenden Modulfiguren eingeht. Ueberdies reicht die Formel
(4) fiir viele Zwecke aus.

Ferner legt (4) die Frage nahe, ob die gleiche Relation auch
fir S(a, #) mit & — oo giiltig bleibt. Endlich kann man fragen, ob fiir
feste o der Grenzwert (1 —7) log S(a, ») fir » — 1 existiert und be-
stimmt werden kann. Beide Fragen werden in bejahendem Sinne im
zweiten Teil dieser Mitteilung (§§ 4—8, Formelnummern 21—52) beant-
wortet. Zugleich wird auch die Frage nach dem Verhalten von S (e, 7)
fir ¢ — 0 entschieden. In dieser Beziehung lautet das einzige in der
Literatur zu findende Resultat, das (1927 L. c.) von G. Valiron gefunden
wurde:

1 1—»

S (o, 7) < B | 20| *7.

Andererseits lief3e sich aus der auch hierbei ihre Geschmeidigkeit neu
erweisenden Monte/’schen Theorie der normalen Funktionenfamilien leicht
direkt folgern, daf3 S (@, #)— 0 mit « — 0 gelten muf3. Wir finden
nun, daf3

1—r
1+r

Po
16

(B) S, 7)
16

o~
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gilt fiir | , | — 0 gleichmifig in p, und 7, wobei auch das Fehlerglied

sich weiter abschatzen 1af3t. Man kann also in der Valzronschen Formel
1

B'-7 durch eine absolute Konstante ersetzen. Was nun das Verhalten
von S (a, #) fiir a— oo oder » — 1 anbetrifft, so bezeichnen wir mit
w (8) denjenigen Zweig der Umkehrfunktion von A (z), dessen Werte im
Fundamentalbereiche von A (s) liegen, der zwischen den Halbstrahlen
33>0, s= + 1 und den Halbkreisen |5 + 1|=1, 32> o liegt.

Dann lautet unser wesentlichstes Ergebnis, das als Verallgemeinerung
von (4) aufzufassen ist:

73w (p0) T
(1) S(pe A~ o) > w,

und sogar noch schirfer:

73 o) i B}
(I (g0, 7)——% e —0(1), 3w () 7 > oo

16 1—v7

Daraus folgt insbesondere fiir feste p,
(4) (1 —7)1g S(po, 7)—> 27 3 o (2, rtI.

Und fiir feste » und p,— oo ergibt sich aus (I)

1+7»

(4% I6S(po,r)~(16|p0|)1—‘;,po—> o0,

gleichmif3ig in » und arg p,. Fiir die genaue Formulierung der zum
Teil noch schirferen Ergebnisse vgl. man in § 8 die Formeln I—VT*%,

Methodisch ist aber zum zweiten Teil dieser Mitteilung folgendes zu
bemerken: Es ist seit der ersten Arbeit von Hrn. Carathéodory iiber
den Picard’schen Satz bekannt, daf3 S (p,, 7) gleich dem max | X (s)| fiir
alle Punkte einer gewissen Kreislinie X ist, die ganz in der oberen Halb-
ebene verliuft und den Punkt w (p,) zu ihrem ,nicht euklidischen Mit-
telpunkt® hat. Und die Hohe u des hochsten Punktes von X iiber der

1 -} 7

. Man wiirde also ohne weiteres eine
e

reellen Axe ist gleich J o ( o)

Abschitzung von S (., #) erhalten durch das Maximum von | X ()| auf
der Strecke 3 & — w4, | R 2| =1, wenn nicht auch Punkte der unteren
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Kreishilfte in der Nihe gewisser Punkte der reellen Axe liegen wiirden,
wo A(s) auch oo wird. Man kann nun dem so begegnen, daf3 man
solche Punkte von KX, die auf3erhalb des oben angegebenen Fundamen-
talbereiches liegen, durch eine Substitution der zu A (2) gehorenden
Gruppe in den Fundamentalbereich bringt. Dann muf3 man aber die
Hohe der ,reduzierten“ Punkte iiber der x-Axe kennen und insbesondere
mit g vergleichen konnen. Die Frage liaf3t sich so wenden, daf3 man
samtliche Kreise betrachtet, in die X durch die hier zuldssigen Modul-
substitutionen iibergefiihrt wird, und nach dem Maximum der zugehorigen
Hohen y' fragt. Und die Wendung, die damit der Frage gegeben wird,
findet nun ihre Rechtfertigung im Resultat, dal3 alle sick so ergebenden
Hohen dee Hokhe des hochsten Punktes von K nicht iiberschretien kionnen,
sofern der nichteuklidische Mittelpunkt von X im obigen Fundamental-
bereich liegt. Mit dieser Tatsache (Hilfssatz B in § 4), deren Beweis
nachtriaglich sehr leicht zu fiihren ist, ist die Hauptschwierigkeit iiber-
wunden, die wohl bisher einer genauen Durchrechnung der asympto-
tischen Werte von .S im Wege stand™). Eine dhnliche Tatsache (Hilfs-
satz A § 4) gilt tbrigens auch fiir die gesamte Modulgruppe, die zur
Funktion J(s) gehort. Es diirften sich damit auch analoge Abschit-
zungen fiir die Funktion s (2) herleiten lassen. Obgleich man, was die
Form dieser Abschitzung anbetrifft, einige neue und interessante Mo-
mente erwarten diirfte, bin ich dieser Frage nicht mehr nachgegangen.
Ich hoffe, dafl3 dariiber demnidchst eine Mitteilung von anderer Seite
erfolgen wird.

Daf3 aber die Betrachtung der Strecke Jj s — p auf den asymptotisch
genauen Wert von S(p,, ) fiihrt, ist dem gliicklichen Umstand zu ver-
danken, daf3 das asymptotische Verhalten von A (s) fir J 5400 in der
hier in betracht kommenden Niherung unabhingig vom Realteil von s ist.

Analoge sehr genaue Abschidtzungen lassen sich auch fir @ (p,, 7)

— die Argumentschranke von p () — aufstellen. Man findet fiir » 11
— 1
(4) (Imr)@(po,r)—mmax<3w(po),3m>,

7) Ein Versuch einer #hnlichen Reduktion des Problems findet sich am Schlusse der be-
kannten Arbeit von G. Pick (Ueber eine Eigenschaft der konformen Abbildung
kreisformiger Bereiche, Math. Ann, Bd. 77 (1916), pp. I —6), in der zum ersten Mal
die ,nichteuklidische“ Auffassung des Schwarzschen Lemmas herausgearbeitet wurde. Doch sind
die beziiglichen Angaben von Hrn, Pick nicht stichhaltig, da die Bemerkung auf p, 5 unten:
pweil | X (2)| auf Parallelen zur Axe der imagindren Zablen nach oben zunimmt®, sicher un-
zutreffend ist, wenn das betreffende Stiick jener Parallelen aus dem Fundamentalbereich aus-
tritt und in die Nzhe von Unendlichkeitsstellen von A (2) auf der reellen Axe kommt,
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und noch scharfer

f_yj; RIS (3 o (po)y J w_(;o))

=11

(ds) P (poy 7)—

Zum Beweis dieser Abschitzungen haben wir indessen sehr ausfiihrlich
auf die geometrische Struktur der Modulfigur eingehen miissen. Und
da eine Darstellung dieser Entwicklungen im Rahmen der vorliegenden
Mitteilung keine Abkiirzung der gesamten Darstellung bedeuten wiirde,
soll der Beweis von (4,) und (4,) an einer anderen Stelle (in der Math.
Zeitschrift, unter dem Titel: Asymptotische Abschitzung der Argument-
variation einer Funktion, dee die Werte o und 1 nicht annimmt) erscheinen.

§ 1. Funktionen J (#) und 4 (?)

Wir gehen von der elliptischen Modulfunktion J(2) aus, von der wir
folgende bekannte und leicht herleitbare Eigenschaften voraussetzen :

Die Funktion J (2) ist in der oberen Halbebene 32> o definiert,
durchweg regulir und geniigt insbesondere der Relation

[~4
~

(1) J@:J@J»

Setzt man ¢ — g, so gilt fiir J(2) die bekannte Darstellung

o Q0

@ TO=s(gtI T ™,

12 = 1—g% ) 2

deren rechte Seite mit ¢* multipliziert eine fiir |¢| <1 konvergente

Potenzreihe mit positiven Koeffizienten und dem Anfangsgliede

128

darstellt, also insbesondere monoton in ¢* ist. Es folgt daher fiir |¢ |0,
Jstoo, Phoo:

(3) 122 J () =1, 12°¢=27P J (7P)} 1.

Fiir rein imagindre  ist J (w) positiv., Es gilt wegen der Positivitit der
Koeffizienten von (2)

(4) | J (=) [ =T (3 2).

Endlich sei noch erwihnt, daf3 J(s) alle endlichen Werte im ,Funda-
mentalbereich*
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L eRe< L ound|s|=1, 0o<Rz<
2 = 2 - - 2

(5) lZl>I,-——-—

annimmt, und zwar jeden von O und 1 verschiedenen Wert genau ein-
V3
2

. 1 . . .
mal, den Wert o im ,Eckpunkte "{+Z , der an drei verschiedene

Aequivalenzbereiche anstof3t, als eine dreifache Nullstelle, und den Wert
1 im ,Eckpunkte® 7z, der zwei verschiedenen Aequivalenzbereichen an-
gehort, als eine Doppelwurzel von J () — 1. Insbesondere konvergiert
die einzige im Bereich (5) liegende Wurzel der Gleichung

(sa) J(5) = w, w0, w1,

mit ins Unendliche wachsendem |w | gegen oo (und dann gilt natiirlich
auch § 5 — oo) und umgekehrt. Beachtet man, daf3 J(z) auf der ima-
giniren Achse von 7 bis 7. oo jeden Wert = 1 nur einmal annimmt, und
auf der Strecke von 7 bis 0 dieselben Werte von neuem annimmt, so
folgt, daf3 wenn man lings der imaginiren Achse von z-oo nach dem
Nullpunkt geht, die reellen Werte von J(5) zuerst monoton bis 1 ab-
nehmen und sodann wieder bis oo anwachsen. Daraus folgt:

Ist a>b6=1 bzw. 0 <l a<{ b6 =1, so gilt

(sb) J(#6) < J(ia).

Neben der Modulfunktion J(z) miissen wir noch eine sogenannte
yModulfunktion 2-ter Stufe“ A (g) betrachten, die man am einfachsten
erhdlt, wenn man das Innere des Gebietes () in der Fig. des §4):

(6) 0Bz, [5—4|> 4

auf die obere A-Halbebene jA > o so konform abbildet, daf3 die Rand-
punkte O, 1, oo sich selbst entsprechen, und sodann die Abbildungsfunktion
durch fortgesetzte Spiegelung analytisch fortsetzt. Diese Funktion hingt
mit J (2) durch die folgende Relation zusammen:

4 i)
(7) J("')'—“‘ 57 12(1 __l)z :

Aus (7) folgt fiir ins Unendliche wachsende Werte von A (2) bzw. (fiir
| A| = 2) fiir ins Unendliche wachsende Werte von J(3):
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) J(e) 22 (3, A(e) o 3V VT

wo natiirlich eine passende Bestimmung der Wurzel zu nehmen ist?®).
Es sei endlich an die Formel erinnert:

(52) l<—~l): ltz)’

&

§ 2. Abschitzung von m (2)

Fiir die Anwendungen der Funktionen J(s) und A(2) auf Probleme
aus dem ZPzcardschen ldeenkreis sind nun die beiden Tatsachen funda-
mental, die wir so formulieren konnen:

1. Dafiir, dafs p(s) eine fiir | 2| < 1 vegulire und dort die Werte o
und 1 nicht annchmende Funktion ist, ist notwendig und hinveichend,
dafs die Darstellung gilt:

(9) 2 (5) = A(C(2)),

wo C(s) eine fiir | 2| < 1 regulire Funktion ist, deren Imaginirteil fiir
| 5| < 1 stets positiv ist.

Hat p (o) = p, nicht negativen Imaginirteil, so kann und soll C (3)
so gewdhlt werden, dafs C (o) = c, im Bereiche (6) liegt.

2. Dafiir, da$ m (s) fiir | 2| < 1 regulir ist und dort in jedem Punkte I
nur in gevader, 0 nur in durch 3 tezlbarver Mehrfackhest annimmt, ist
notwendig und hinreichend, dafs die Darstellung gelt:

(10) m (5) = J (C(3)),

wo C(z) eine fiir | 5| < 1 vegulive Funktion mit 3 C(s) > o 2st. Ins-
besondere kann und soll C(s) so gewidhlt werden, daff C (0)=c, im
Bereich (5) lzegt.

Fir die Herleitung des Sckostkyschen Satzes ist weiter die folgende
Tatsache wichtig, die zur Untersuchung der , Pzcardschen Probleme“
zum ersten Male von Borel und sodann von Carathéodory herangezogen
und vom letzteren auf cinem besonders einfachen Wege — mit Hilfe
des Sciwarsschen Lemmas — bewiesen worden ist:

8) In der Literatur wird die A-Funktion oft so definiert, daf} sie fiir w =o,1,00 die
Werte 1,00,0 annimmt. Diese A-Funktion ergibt sich aus der obigen durch die Transformation

A¥ —

! X und geniigt gleichfalls der Relation (7).
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Ist fiir | 5| < 1 durchweg 3 C(s) > 0, so gilt, w = C (0) gesetzt,
(11) 3o H éJC()§3w——I—i—-}-———-.

Hier gilt fir die Funktion

(12) C*(5) = 2P 1 +f , P> o0,

offenbar das Gleichheitszeichen fiir reelle 5 > o.

Genauer liegen die Werte von ((g) innerhalb des Kreises Ko, |,

2] 5|
I—|sf

(11a) IC(Z)—-—Rw———Bw—lﬂlé:Sw

1—|[sf

2
mit dem Mittelpunkt R + J o ;—Jr :2 und dem Radius J o 27 ,

1— 7
| 2| = » gesetzt. Und fiir die Funktion

(1za)  C**( )_x—}—z_y

,}/>0, C¥*Oo)—=w=x-+12y

erfilllen die Werte von C**(s) fiir | 5| < #» den Kreis K, , vollstindig.
Nun folgt aus (10) und (4)

|m (5)| < T (3C (2)).

Ist hier 3 C(s)= 1, so folgt aus (5b) und (11) wegen des monotonen
Anwachsens von J(7#) fiir # zwischen 1 und oo:

()| = (32

2]

Ist aber 33 C(s) < 1, so folgt nach (5b) und (11) wegen des monotonen
Abnehmens von J (z#) fiir # zwischen 0 und 1 unter Benutzung von (1):

s o3e ) = ol )



1 x5
I+[ [ < 1 ist, mUB:SCoI—-—lZI

sein, so dafd fiir J¢, = 1, wegen des Monotoniecharakters von J (7 ),

Da aber jetzt wegen (11) J3¢p ——"1——

L1 142 : : : I
J (z 3 T—|7] ) nicht verkleinert wird, wenn 3 durch J¢, ersetzt
wird. Daher folgt, daf3 jedenfalls fiir J¢, = 1
I 4
(13 m@)| S I(E3a ), Jazr

gilt. Wird aber insbesondere nach (12)

(13a) ni* (5) :J(C*(z)):J(z‘P ‘+Z)

I1—23

gesetzt, so gilt fiir s =7» > 0:

(13b) m*(r)_—_.](z']’i_—{::>,0<r< I.

Nach (3) folgt nun aus (13):

(14) :

wo gvo fir 3¢t oo gilt. Fir m*(r) folgt aber aus der zweiten
Relation (3)

(142) P
m* (v) > I; € , o<l r< 1.

Wie hingt nun J¢, mit m, = » (0) zusammen? Aus (10) folgt
insbesondere

12y = J (¢o)-
Da hier ¢, im Bereiche (5) liegt, folgt aus dem oben iiber die Gleichung
(5 a) Gesagten, daf3 fiir |m,| — oo auch 3 ¢,— oo gilt. Daher liefert
dann (3):
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WO & == & (|m2,|) y 0 fiir |m, |1 oo ist. Daraus folgt

€2ﬂ3c°§(1 + &) 12° |0,

und daher nach (14):

1+ r

(15) | 12° e (3)| <X ((1 + &) 12° | m,|) 1= 7, & | O fiir |m,|4 oo.
lz]| £ r<it
Man kann (15) auch so schreiben:
6" 147
(16) m (5)] <120 T=7 (14 8) |mo]) T .
ls] £r <1

Andererseits ist aber nach dem Obigen
my* = m* (0) = J(C*(0)) = J(¢ P)

eine monotone Funktion von P =1, die fiir 1 < P < oo alle positiven
Werte von J(7) =1 bis oo durchlduft. Daher gilt fiir »,*4% oo:

—2a P
12 m,* e YI,
2a P
e = (1 — &) 12° m,*, ey 0 fiir m* 4 oos
Dann liefert (14a):
1+
(16a) 12° m* () > ((1 — &) 12°m,*) ' =7, g}o fiir m*} oo
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§ 3. Abschitzung von 2 (?)

Wir betrachten nun p(s) fiir absolut grofde p (0) = p,, und zwar
zuerst mit _§ p,= 0, und machen Gebrauch von der Relation (9), be-

trachten aber zugleich fiir das C () aus (9) die Funktion = (2) = J (C(2)).
Es gilt dann nach (15):

1+7»

;'Izzlssnfw;;](z t- &) 12°m (0)| =7, e=¢(|m (0)]) {0 mit | (0)| 1 oo.

Fir p, = A (c,) — oo folgt nun aus (8) fiir m (0) = me,:

"y N—2_7f(2): ﬁo—> @,

so dafl die obige Abschitzung in

142

(17) llfsm 5)| (1 + &) 2°2% |1=7, ey0 mit |p|1 oo
iibergeht.

Aus m(3) = J(C(2), p(s) = A (C(z)) folgt weiter nach (8), sobald
P8 | =2 ist:

(18) 222 @] (1 &) 22—

Sobald aber |p,| > 2 ist, gilt diese Relation auch fiir | (2) | < 2, wenn

man ¢ (p,) langsam genug gegen o abnehmen lidf3t, so daf3 wir nun
ganz allgemein schlief3en konnen :

14»

) < (146 16, |7, &40 mit |, |+ oo.

g
<1

(19) | 162 ()

Andererseits betrachten wir fiir die Funktion C*(2) aus (12)

(5 =M(CH () =2 (P “*"‘"’).

I—23

Fiir positive » liegt nun der Wert von p*(r) = A <z'P i i:), wegen



der Symmetrie der konformen Abbildung, auf der Geraden 8 2 = { und
wandert auf dieser Geraden mit 2 monoton ins Unendliche. Daher folgt
aus (16a) wegen (8)

147

| 28 p** () | = | (1 — &) 2° p** (0) | *=7, &} 0 mit P4 oo,
oder
}i—_’:
(20) |16p* () | = | (1 — &) 16 ™ (0) |1=7, &} 0 mit P4 oo.

Ist aber 3 p, < 0, so laf3t sich die ganze Deduktion auf die Potenz-
reihe um den Nullpunkt mit konjugiert komplexen Koeffizienten an-
wenden, so daf3 dann (19) fiir diese Potenzreihe gilt und daher auch

- fiir p (2).
Die Relation (16a) zeigt nun, daf3 in einer Abschidtzung vom Typus

| (2) | <|(1+&) 4, m ()77, e=¢&(|m (0)]|)y0 mit | (0) |4 0.

|
~p 7

fir kein einziges », 0 < » < 1, fiir ¢ () eine kleinere Zahl als

147
I1—7

1 —7

gesetzt werden kann, noch fiir ¢ (») = ein kleineres 4, als 12%

Betrachtet man allgemein eine Abschitzung vom Typus
(4@ L+ Bm©[79, sy 0, |m(0)] 4o,

so kann in ihr ¢ () fiir kein einziges » durch eine kleinere Zahl als

I+ : 3y 3y
- " ersetzt werden, wie A, und B, auch gewdhlt werden mogen.
-

Soll aber diese Abschitzung fiir ¢ (#) = ! + fiir unendlich viele 7, 4 1

gelten und hingen A4,, B, von » nicht ab, SO muB B, > 12* sein.

In demselben Sinne ist unsere Abschitzung (19) fiir p (2) die beste,
wenn in den obigen Formulierungen 12*° durch 16 ersetzt wird.

§ 4. Ueber die Aequivalenz von Kreisen in der Modulfigur

Wir betrachten fiir w =x -7y, y >0 und o< » <1 den Kreis
Ky,, um den Mittelpunkt ¢, mit dem Radius R, wo
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re 2vr
(21) w=rtiy it Ry 2L

ist. Dann gilt fiir den Abstand ¢ von Xw,, von der z-Axe und die
Hohe g des hochsten Punktes von H, , iiber der x-Axe

N 4 I+" — 2 p2___ .2
(22) =Y, H=I T cu =000 =B =5

Den Punkt & nennen wir den Pseudomittelpunkt, die Zahl » den Pseudo-
radius von Ky ,°). Nun gilt fiir jedes reelle J

23) a—df—R=]a—df = (r— 0+, 177 =2 =3=K,

so daf3 durch ¢, und R auch w und 7 esndeutig bestimmt sind. Ist uns
umgekehrt ein ganz in der oberen Halbebene verlaufender Kreis H mit

dem Mittelpunkt ¢, und dem Radius R gegeben, so kann man aus (21)
und (23) solche Zahlen xr = Re¢,, y >0 und 7 (0 < » < 1) bestimmen,

da3 K=K, , wird.
Was geschieht nun mit ¥, ,, wenn auf die s-Ebene eine Substitution

(24) o = f;j_—i, , @y b, ¢, d reell, ad —bc—=4>0

ausgeiibt wird ?
Man kann (24) so schreiben :

R T N i LIS SRR Y TN

T T )T T T
¢

Ist ¢,— 0 =¢|e,—J|, | ] = 1, so schneidet der von J nach ¢, gehende,

Halbstrahl die Kreislinie K in den Punkten §4-¢,,—d -+ ¢&(|e,— 0| + R)
denen vermoge (25) die beiden Punkte (vgl. (23))

9) In der im Inneren der oberen Halbebene geltenden nichteuklidischen Mafibestimmung
ist o der nichteuklidische Mittelpunkt von ¥, der nichteuklidische Radius von K ist aber

{
+ . Der Kreis Ky, » geht aus dem Kreise um den Ursprung mit dem Radius r

hervor, wenn man das Innere des Einheitskreises so auf die obere Halbebene konform ab-
bildet, daff der Ursprung in den Punkt o iibergeht.
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entsprechen. In den beiden Punkten (26) wird aber die aus K durch
(25) hervorgehende Kreislinie H* von der Geraden geschnitten, in die
der Strahl von ¢ nach ¢, iibergeht (da J in den unendlich fernen Punkt
transformiert wird), und die als Orthogonalsehne von K* durch den
Mittelpunkt ¢ von H* hindurch geht. Daher ergibt sich fiir den Mittel-
punkt ¢ und den Radius R* von H*

eo*:el*_{;fz*:a_—%l_j_;g_‘z,R*:‘fi}@:%m—g—_w,
Rt = —%ﬁ:“*%Rﬁ:R(a"%wiﬁ)'
360*:%#}5?:;:";:}:::'0,15'2:ij:::s(a__%;jj‘)’
Fes st e 42
Setzt man also
o e ]

so ist

27
I —7

2
Re* =R w* Jeo*= I+723w*, RE =

I—7 s 3o
so daf3 K* den gleichen Pseudoradius hat wie ¥ und den Pseudomittel-
punkt o*, der aus @ durch (24) hervorgeht®).

as-+b
cs+d
mit @d — bc > 0 und reellen a, 4, ¢, 4. K sei ein ganz in der oberen
Halbebene Jj s > o liegender Kreis mit dem Pseudomittelpunkt w und
der Ordinate des hochsten Punktes x. Man betrachte nun alle aus K

Es sei nun G eine Gruppe von linearen Substitutionen w —

10) Die damit bewiesene Tatsache folgt offensichtlich unmittelbar daraus, dafi (24) eine
Bewegung in unserer ,nichteuklidischen Ebene“ ist, durch die der nichteuklidische Radius
invariant bleibt, der Mittelpunkt aber kovariant transformiert wird.
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vermoge der Substitutionen von ( hervorgehenden Kreise und ins-
besondere die Ordinaten ihrer hochsten Punkte. Ist dann die obere
Grenze M dieser Ordinaten zu bestimmen, so beachte man, daf3, da alle
diese Kreise den gleichen Pseudoradius haben, jene Ordinate wegen des
Ausdrucks (22) fiir ¢ um so grof3er wird, je gréf3er die Ordinate des
aw—+ 6

To i d fiir

Pseudomittelpunktes ist. Ist also die obere Grenze von J}

alle Substitutionen von G gleich 7, so gilt

— oy ]

(26a) M= Sa

Ist nun z. B. erstens die Gruppe G die Gesamtheit aller ganzzahligen

Substitutionen mit der Determinante 1, so ist bekannt, daf3 es unter den

Transformierten einer Zahl w mit § w >> O stets eine und nur eine gibt,

die im Bereich (5) liegt, und zwar hat dieses ,reduzierte“ w nach Hurwsits
die maxzmale Ordinate 11). Daraus folgt:

Hilfssats A. Ist Y ein Kreis, der gans innevhalb der obern Halb-
cbene liegt, und liegt sein Pseudomittelpunkt im Bereich (5), zst ferner
die Ordinate des hichsten Punktes von K gleich u, so sind die Ordinaten
aller Transformazerten simtlicher Punkte von Y vermige der Substitutionen
von G hichstens gleich u.

Es sei swestens I' die sogenannte ,Hauptkongruenzgruppe® zweiter
Stufe, d. h. die Gesamtheit aller Substitutionen

_as—+b
(7) Y=t d
mit ganzen @, 4, ¢, 4 und ad —bc =1,

a=d=1 (mod 2), 6 =c¢=0 (mod 2).

Zu dieser Gruppe gehort die oben benutzte A(z)-Funktion als Invariante

(d. h. es gilt A (%) = A (2) fiir alle Substitutionen von I'), sowie die
in der Figur a. p. 72 ausschnittweise dargestellte Modulfigur. Diese
Figur entsteht aus dem Haupidreieck ¥, o < Rz < 1, |5—%| > 4 durch
fortgesetzte Spiegelung an den drei Seiten und besteht aus lauter null-
winkligen Dreiecken, die die obere Halbebene einfach und liickenlos

liberdecken. A (z) bildet ¥ auf die obere A-Halbebene J A >0 ab, jedes

) Hurwitz, Dissertation, Math. Werke, Bd. I, p. 6.
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der an Y angrenzenden Dreiecke wird aut die untere A-Halbebene
31 < o0 abgebildet und so fort. Insbesondere wird das in der Figur
mit ' bezeichnete Dreieck auf die untere A-Halbebene abgebildet.

i
H
'
Bp
H’ E X
Hu
5
W1 i

a
pX

-1

Durch jede Substitution von I' wird nun unsere ganze Modulfigur in
sich iibergefiihrt, jedes Dreieck D der Figur geht durch eine eindeutig
bestimmte Substitution von I' entweder in }{ oder in ' iiber. Ist (27)

diese Substitution, so wird dabei offenbar 2 — — f:-,— in den unendlich
fernen Punkt von ¥} (oder ¥') iibergefiilhrt. — Fiigt man die Kreis-
bogendreiecke ¥ und X' aneinander, i3t aber dann die Strecke
Rz = — 1, sowie den Halbkreis |5 4 4| = 1 bis auf 5 = o fort, so ergibt

sich ein sogenannter Fundamentalbereich # der Gruppe I', so daf3 jeder
Punkt z mit 3z >0 einem und nur einem Punkt aus H vermoge I’
dquivalent ist. Ist nun w ein Punkt aus A und geht daraus vermoge
einer Substitution (27) von I' ein Punkt w* hervor, so gilt, wie eine kurze
Rechnung zeigt,

Jo

(28) 3w*:m.
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Nun ist aber fiir jeden Punkt o aus H |cow +&| > 1 fiir c=o0, d=1
(mod 2). Denn es geniigt beim Beweis X w > 0 anzunehmen, da man
sonst w, ¢ durch —w, — ¢ ersetzen kann. Fiir & v >0 ist nun

co+df=(clo—1) + <t d)(clo—D+ - +d) =
=c'|w 7|2+25( )Rw*—-)—{"(";—f‘d),

wegen |w — 1| >4, —1 < Rew— 4 <1 ist dies aber

ct ¢ ¢ z ¢ c\?

> de(L+ a’)+(—2—+d) =@+t 221,

da ¢ gerade, & ungerade ist. Daher folgt aus (28) Jw* < Jw, so daf3
auch fiir die Gruppe I' (und den Fundamentalbereich H) ein Analogon
der Hurwitzschen Eigenschaft gilt. Nun konnen wir aus dem Obigen

schlie3en:

Hilfssats B. Ist K ein gans in 35 > 0 verlaufender Kreis mit dem
Pseudomittelpunkt aus H und der Ordinate des hichsten Punktes u, so
sind die Ordinaten aller Transformaierten der Punkte von W vermige
der Substitutionen von I’ hichstens gleich u.

§ 5. Die parabolischen Umgebungen von rationalen Punkten in der
Modulfigur

Als eine parabolische s-Umgebung (s >> 0) des unendlich fernen Punktes
bezeichnen wir die Halbebene 32> s. Diese Umgebung ist invariant
gegeniiber den linearen Substitutionen der ganzen Modulgruppe, die den
unendlich fernen Punkt in sich iiberfithren und also die Gestalt haben
w=5-0b, b ganz.

Fiihrt eine Substitution von G:

as-+6 I
2 ey T —
(20) Y= ta © F(s—39)’
a, b, ¢, d ganz, ad — bc —= 1, oc:i;—, 5:————?,5:00 in ‘w:‘oc:—?

liber, so geht die Halbebene Jjz > s in das Innere einer Kreislinie
Us, . liber, die die reelle Axe im Punkte « beriihrt. Man erhilt den
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Durchmesser dieses Kreises, wenn man fiir die Punkte 5—=x-} 75,

: I
— oo < x < oo, die entsprechenden Punkte w — a — von

& (x+as—0)

Uy, s bildet und die grof3te Distanz eines solchen Punktes von a:

(30) max |w — & | = max

I
¢lx+2s—0|

bestimmt. (30) ist offenbar gleich

SC

und hingt nur von ¢ ab, dagegen nicht von der speziellen Substitution
(29), die 5 = o in w = a iberfithrt. Wir bezeichnen das Innere des in

a. beriihrenden Kreises /.

. I . .
v, s mit dem Durchmessers——zals die parabolische
c

s-Umgebung von « (grof3eren Werten von s entspricht also eine  kleinere®

Umgebung)®). Fiihrt allgemein eine Substitution (S)w = fz——j_—b einen

s5+d

reellen rationalen Punkt « in einen andern o« iiber, so wird durch sie

12) An den Begriff dieser parabolischen Umgebungen kniipft das folgende Analogon des
Hilfssatzes B in § 4 an:

Ist U= Ub, . ein die reelle Axe im o-Punkt berlthrender Kreis mit dem Durchmesser
% und berihrt U einen in 3 z>> o verlaufenden Kreis K mit dem Pseudomittelpunkt

o aus H von auflen, so dringt keiner der Kreise, die aus K durch Substitutionen von
I' hervorgehen, in das Innere von U ein. Beweis: Wir bezeichnen allgemein den Kreis,

der aus einem Kreis { durch w— pz :I,:q entsteht, durch ' K:Il_—q Nach Voraussetzung
—1 —{-B o
liegt der K = B h <qa. Ist w=— ne Substitution T
iegt der Kreis P = K Kljt_l}_ ereich Jz=<a. Ist w= yz-l— ; ei ion von T,
. . o B .., . o —yK—d . .
so ist zu beweisen, dafl —————nicht in () eindringt, d. h,, dafl — 2.~ im Bereich
yK+9 & «K+8
J2< a liegt.
Nun ist aber
AN
—yK—d¢ P _ éP—x
«aK+B  —a T P+’
—5 18
0z—vy .. . ; . .
und da w::—~—82:—“~ zu T' gehért und mit w in H liegt, folgt dies aus dem

Hilfssatz B.
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auch U,,s in Uy, iibergefiihrt, und zwar fiir jedes s> 0. Denn man
kann S ,jauf Umwege iiber den unendlich fernen Punkt“ ausfithren. Dze
Gesamthezt der parabolischen s-Umgebungen aller reellen rationalen Punkte
geht also durch jede ganssahlige lineare Substitution von der Determsi-

nante 1 zn sich iber. Wir zeigen nun ferner, daf3 fir s = 1 dre s-Umge-
b
:27 ’
(@, ¢) = (b, d) = 1, keine Punkte gemeinsam haben konnen*). Dann konnen
erst recht fiir s > 1 die parabolischen s-Umgebungen von verschiedenen
rationalen Punkten keine Punkte gemeinsam haben.

Es geniigt zu zeigen, daf3 die Mittelpunktsdistanz von Uy ; und
Ug, 1 nicht kleiner ist als die Summe der Radien, d.h.:

( Py I I )2> I I )2
=8+ (Gr ) = o Taa)
ad—bc‘)2> I

: . . a
bungen wvon swei verschiedenen rationalen Punkten o ——, =
A

(“_ﬂ)2z< cd =24

was wegen ad — bc 740 (a2 () sicher richtig ist.

Wir betrachten nun den Durchschnitt 2 von /# und U, ,. Ferner
sei die Vereinigungsmenge der Durchschnitte von 7y, mit H (vgl. Fig.)
mit 2 bezeichnet.

Es moge nun ein Kreis K = K, , den Pseudomittelpunkt » in 3
haben, und die Hoéhe des hochsten Punktes von X sei gleich w. Wir

wollen nun das grof3te s:——I;, d. h., die kleinste parabolische s-Um-

gebung U, ; von 0 bestimmen, fiir die das Innere von K ganz im Inneren
von [, ; liegt. Dann muf} die Radiendifferenz = der Mittelpunktsdistanz
der beiden Kreise sein, d.h., da der Radius von He,, nach (21) gleich

R :ywzr

I — 72

ist,

13) Die Konfiguration der parabolischen s-Umgebungen diirfte zuerst fiir § =— \/23 bei

Humbert (J.d.m.p.e.a, (7) 2 (1916), pp. 84 ff.) auftreten. Fiir beliebige § wurde sie an-
scheinend zum ersten Mal von L. R. Ford (Proc. Ed. M. S., Bd. 35 (1916—17), pp. 40 ff.)
angegeben, von beiden Autoren im Zusammenhang mit der Theorie der Kettenbriiche. An-
schlieend an eine kurze Mitteilung von A. Speiser (Verh. d. Schweiz. Nat. Ges. (1923),
pp- 113—114) wurde sie ferner in der Ziircher Dissertation von J. Zillig (Ueber eine
geometrische Deutung unendlicher Kettenbriiche und ihre Approxima-
tion durch rationale Zahlen, Ziirich, Orell Fiissli, 1928) behandelt. Die Invarianz
dieser Konfiguration fiir § = 1 ist implizite in den Betrachtungen von R. Picard, (Unter-
suchung einer Untergruppe der unimodularen Picard’schen Gruppe, Basel,
Dissertation, 1927) sowie in den ilteren Untersuchungen von v. Didk (Leipz. Ber. (1883),
pp. 61 ff.) und R, Fricke (Fricke-Klein, Automorphe Funktionen, Bd. 1 (1897), p. 431)
enthalten. Verallgemeinerungen auf héhere Riume finden sich in den Arbeiten von L. R. Ford
(Trans. A.M.S., Bd. 27 (1925), pp. 146 fl.) und A. Speiser (Journal f.r.u.a. M., Bd. 167
(1932), pp. 88 ff.).
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s I—7 1-+7"’ s
r£_, =1 _{_zu<x2+72>__ P«
g { yz— s Nl s — ! J/2 { ( LO) :_..i
Jud
Daher ist
u 2 -+ 5 1 —1 1—7
I o = < 2uy,— —
(3 ) ltl 30)3:_{ ﬂ J/2 j— IL("u* 3 w 1 +7’ ’
®
: . 2 2+ 9 .
da @ in 3 liegt und daher — =1, —— =2ist. So ist y*tiir g = 1
¥ y

sicher nicht grofler als 1, so daf3 insbesondere fiir ¢ =1 das Innere
von K gans in der parabolischen 1-Umgebung U, , von 5 = o liegt, d. k.

<3

em Krezs

A
8 —
2

Daraus folgt aber nun, dal3 wenn ein belicbiger Punkt des Kreises K
durch eine Substitution S von I' in H gebrackt wird, er im Bereich 2©
liegen mup. (Die Alternative wire, da ja seine Ordinate jedenfalls
nicht grof3er als 1 ist, daf3 er in die Nahe der Spitzen + 1 (d.h. in
den Bereich 3®) transformiert wiirde.)

Es geniigt zu zeigen, da3 S fiir ® < 3© den Nullpunkt und daher
auch (/, invariant li{3t, da ja dann KX in 0, bleibt. Transformiert
nun .S den Nullpunkt in einen Punkt e 40, so kann a auch nicht + 1
oder oo sein, da ja diese Punkte vermége I' nicht mit o dquivalent sind.
Dann geht U, in U, , iiber, und U, hat keinen Punkt mit {},, noch
mit {/,,, gemeinsam, also auch nicht mit dem ganzen Gebiet A. Da
aber K ganz in U,, liegt, muf3 das Bild von K ganz in U, liegen, hat
also auch keine Punkte mit H gemeinsam, entgegen der Voraussetzung.
Daraus folgt insbesondere, daf3 ein solcher Kreis X, ebenso wie U
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nur solche Dreiecke der Modulfigur durchsetzen kann, die eine Spitze
im o-Punkt haben. 14)

Die gleiche Ueberlegung zeigt, daf3 wenn ein Kreis Ko, mit w <3
ganz in einer parabolischen s-Umgebung U, (s > 1) des Nullpunktes
verlduft, jeder K Transformierte eines Punktes von K vermoge einer Sub-
stitution von I, der in H liegt, dann innerhalb 77, ;, also innerhalb des
Durchschnitts von U, , und H liegt.

§ 6. Abschatzung von S (»,, 7) durch €y und wp

Ist nun wieder p (s) fiir |5| < 1 reguldr und 3£ 0, £ 1, so daf3 (9) gilt,
so ist fir |g] <r <1

(32) 19 (s)] < max |A(s)] fiir 5 < Ko,»,

wo Ky,» der Kreis mit dem Pseudomittelpunkt w und dem Pseudoradius
7 ist. Dabei ist w eine solche Zahl aus H, daf3 p, = A (w) ist. Bezeichnet
man also den Zweig der Umkehrung von A (z), dessen Werte in H liegen,
mit o (1), so ist & = w(p,). — (32) folgt daraus, daf3 wegen (11a) die
Werte von (C (g) fiir | 5| < » stets im Kuw, » liegen.

Wir bezeichnen nun mit By fiir ¢ > 1 die in H enthaltene Strecke
der Geraden Jj5— w. Ferner bezeichnen wir mit B fiir u < 1 den
in 3O enthaltenen Teilbogen des in o0 berithrenden Kreises mit dem
Durchmesser u:

d. h. des Begrenzungskreises von [/, /i . Diese Strecken und Bogen

sind in der Figur eingezeichnet.
Wir bestimmen nun die Maxima und Minima von |4 (s)| auf By (¢ > 1)
und B (¢ < 1) und bezeichnen sie resp. mit

(33) Ly, 0,5 29, wi©.

14) Genauer gilt folgendes: Der Kreis um den Punkt / mit dem Radius 1, also der Rand-
kreis von Up 4, durchsetzt simtliche Dreiecke mit der Spitze im Nullpunkt und beriihrt
jedesmal ihre dritten, nicht an o anstoflenden Halbkreise, so daf} er der grofite im Nullpunkt
berithrende Kreis ist, der nur in die Dreiecke mit der Spitze im Nullpunkt eindringt. Aus
dieser Eigenschaft folgt iibrigens unmittelbar, dafl dieser Kreis bei jeder Modulsubstitution,
die den Nullpunkt in sich iiberfiihrt, unverindert bleibt. Dies wiirde fiir unsere Zwecke
bereits ausreichen, so daf bei Benutzung dieses Kreises anstatt Uy 1 unsere Betrachtungen
iiber parabolische Umgebungen unnétig wiren. Doch liefert dieser Kreis eine relativ un-
symmetrische Abgrenzung der Spitze o gegen die Spitzen + I.
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Wir bezeichnen ferner den Teil von # mit J 2z < p (0 > 1) mit Hy und
den Durchschnitt von 2X© mit U"’T} mit 2 (vgl. Fig.).

Ist nun p die grof3te Ordinate der Punkte von Kw -, also nach § 4

L — (g

I—v7

p=J3w

’

so gilt sicher:

I

(34) (M) | S @ fir 5L Hy, p =

’

(35) A | < @50 fiir 2< 39, 4 < 1.

Denn da die Randteile von H,, die zum Rand von A gehoren, durch
A (2) auf ein Stiick der positiven reellen Axe (doppelt iiberdeckt) abge-
bildet werden, wird auf ihnen der grofdte Wert von |A(g)| in einem der
beiden Schnittpunkte mit der Geraden 35 = g erreicht. Und das Ana-
loge gilt fiir X

Liegt nun ferner ein Punkt von Ky » nicht in A, so wird er durch
eine Substitution von I, die den Wert von A (z) unverindert laf3t, in
iibergefiihrt und liegt alsdann nach §§ 4 und 5 in H. fir 4 =4 . Falls

ferner u* < 1 ist, liegt ein solcher Punkt in Z:,,S"), wenn @ in 2 liegt,

wo u* nach (31) gleich~——gj:~1~§ 2 u ist. Daher ist |A(g)| fiir alle
=

®
Punkte von K, , resp. hochstens gleich (‘u* ::—-—‘u——:):
Jo I35
Qu, .Q:,ﬁ”.

Andererseits hat K, , sicher wenigstens einen Punkt mit Bﬂ bzw. B:,&“}

gemeinsam, und da nach § 2 die Werte der entsprechend gebildeten
Funktion (12a)

(36) C* ) =Ro+:i30 T2, w=uw(s)

)

fir || <7» den ganzen Kreis K, , erfillen, ist S(p,, ») sicher wenig-
stens gleich dem entsprechenden Minimum w,, bzw. w:ﬁ”. Daher er-
gibt sich

'u’

78



() 6, <S(p0 NS fir p= 3w (p) Tl >

I
1’:2

’

1
(38) *(o)< S(pe,7) < gz(w fiir ”——Jw(ﬁo);—*—t?< =
u

u*: {

‘ 3“’(?0)30{@’:)‘) .

Um hieraus weitere Folgerungen zu ziehen, leiten wir zundchst asym-
ptotische Abschdtzungen von | (z)| in der Nihe der Spitzen von H her.

§ 7. Asymptotische Abschatzungen von J (2) und 4 (z)

Wir setzen ¢ =—¢™7# und gehen von der Formel (2) fir w = 5 aus,
deren erste Glieder fiir ¢ — 0, d. h. 354 oo liefern:

39) 122 ¢ J(5) = (1 720 ¢+ ..) (1 + 24¢° +..) = 1 + 744¢* + O(g").
Hieraus folgt
(40) 1 —744|2 |+ O(g)<|12°¢* J(s)| < 1+ 744 ¢ + O (||

I

(41) 176 — 3t 0lghgo,

= gF | =7
p2m 3z 31 s
(42) ’]J(z)]—- o |<5 4 0l S sk o

Andererseits setzen wir in der Formel (7)

2A—I1=p, P—1=4AQA—1)=

und erhalten

3 8 6
2776 ="E =y B %y Lo
da A—> oo fiir J2% o0 gilt. Daraus und aus (41) folgt weiter
I I\
P e=an J o(1)= —~ OI:(———) I O(g%),
p =27 T+ 0= g+ 0= (5] (1+0()
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daher

p== q( + 0(7)-

Da aber ¢ fiir rein imagindre s positiv ist und A, daher auch p Punkte
der imagindren Axe auf Punkte der negativen reellen Axe abbildet, gilt
hier das Minuszeichen und wir erhalten

A= 1= (4 0(g)), 20 =g (1—8¢ + 0(¢),

169X | =|1—8¢ 4 0(")],

1—38|g|+ 0@)<|16gA <1+ 8[|+ O
13— g | <4+ 0w

(43) 116} — 3| <4+ 0(emw30), 35 on,

Lassen wir aber 2z gegen o innerhalb A konvergieren, so benutze man
die Formel

Dann gilt nach (43)

(44) L LT < 03T, s o
. RCIRECAER

Beachten wir aber, daf3 in'H fir s =x-}+7y (x+ 1) > 1 ist,
d. h. |z|<#* 4 #* und fiir 5— o daher x = 0 (5%, so gilt

__ry _r_x # _ L
3 ""‘xz_{_yz—y J/3+J/5+""‘—1’+0(J’)’

-1 T

und daher ¢~ 7 — ¢35 (1-F+0(32)
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(45%)
Je= I_g—pq:] ( llgg|1l6| To (lg A )): l_g_:IT;I —7151526*0 (TgIW)

§ 8. Abschitzungen von S (P,,7) durch ® (p,) und P,

Das fiir uns Wesentliche an den in § 7 erhaltenen Abschitzungen
ist, daf3 sie in der dort angegebenen Naherung nur von 33z bezw.

3 —_-Z—I- abhingen, sodaf3 wir £ und w im Wesentlichen in gleicher Weise

abschitzen, woraus, wegen (37), (38), die gleiche Abschitzung auch fiir
S (o, 7) folgt.

Es sei zuerst ¢ > 1. Dann liefert (43) eine Abschiatzung fiir alle Werte
von | A(s)| auf By, die also auch auf S(p,,#) anwendbar ist und ergibt

OS(p0r) = 4L 0™, 8] <1, =T w(p) 10>y,

wo O sich auf den Grenziibergang u 4 co bezieht, und (I) im Ubrigen
gleichmi@3ig in p, und » gilt. Hieraus folgt weiter

(46) S(£u,7) =g (1 + 807 4 0 (¢ 2™),

(I1) lg (16 S (o, 7)) = s + 806 ™ -+ O (2™,

sodaf3 nicht nur lg (16 S (p,, #)) — w4 — O, sondern sogar
e™ (Ig (16 S (p,, 7)) — ) beschrankt fiir L << w — oo bleibt. Fiir die in

1+7
diesen Abschitzungen vorkommende GroBe ¢™ —(¢73®)1-7 erhalten

wir fiir p,—> oo aus (43)

=10 ()| = g #3054 0™,

6 Commentarii Mathematici Helvetici 31



@) 30 =16]p|+80+0(-),

\-'/

Do
@8) 30 =16]p (s +2 o7 H0(5))s (e 181

(49) w30 =1g(16]24[) + 1 |+O< )

Konvergiert also insbesondere p, gegen oo, so ergibt sich aus (46)
und (48)

1+ 147

S (207 =15 161"’{ iiE 190;"*‘0(}372,)%1—7(‘*0(1’;%))'

Hieraus folgt aber fiir alle p,

14+7»

(I* 16 S (po,7) = (16| py |+ 0c)1=7, |6| < 1, ¢ = const.,

147

und insbesondere fiir » > 1, T >2 und p,—> o
Fed —, =

14~

(%) 165 (40, 7)== (16[20| + 80+ 0 (=) ) 7, [6]< 1, 1> 7> 1.

2o

Durch Logarithmieren von (I*) und (I**) ergibt sich

W) g (65 (s ) =12 (1g1162 ] +0(5-)). 20> o,

0

(I*) g (16 S( 0, 7)) = ;Jr (lglléﬁol +- |2(;| FO(ﬁo))

7.2'15’ \eigla Do —> 0.

Es sei nun w < 1 oder allgemeiner ¢* < 1. Konvergiert x4 gegen o,
so muf3 dann offenbar § w — 0 gelten, sodaf3 w —> 0 oder w— 1 gilt.
Es moge nun w — o und daher p,— 0 gelten. Dann liefert (38) recht
scharfe Ergebnisse, wenngleich in ihnen auch der Realteil von w (2,)
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eine Rolle spielt. Denn die Werte von |A(2)| auf dem Kreisbogen

By («* < 1) werden von N )\(—~ —I—> auf der Strecke B 1 an-
' |A(2) | 5 3
genommen. Dort gilt aber wegen (43)
T _ i
1 8 p* N
M@ =qge " Ao+ 0l ") 181<1, 4 >0,
und daher
™ T 27T
TR Y %
(50) S(po,?) =16¢ " (1+89e " +0(e g ))
P | 1+ 7
iﬁ}___<_l,p._ . I___r—'fo,j?o—-}O.
® (Po)
T 27 3n

D) S(pe,r)—16¢ " 1280 ”*+0<e ”*>,

[elgly p*: I~I ii:—}o,ﬁo—fo.
3 ® (po)
Man iiberzeugt sich leicht, daf3 die Bedingung p* — o0 mit ;—;_3—_(_2;——+ o}

dquivalent ist; dies ist aber, wegen (45%), dquivalent mit |z, |\~ — o.
Logarithmiert man nun (50), so ergibt sich

T 27T
S Loy 7) _ T op* Cop¥
(IV) lgT————p’*—{*SGe ~§—O<e ),
16 <1, p* = 1—4 :j:-*@ﬂ—*o-
&(po)

Der Zusammenhang mit p, ergibt sich jetzt aus (31):

v —1I 1 »
1

e pL*: ® 1+r,ﬁo:7\( (20)) = ——>
(6 ) ’ (w(l’o)>
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wenn man beachtet, daf3 wegen (43) fiir p,— 0

I
2o |

gilt.

(51)

= (5!

S(po, 7) = 16

S0, 7) _

Y 3;1
1 w(l’o) o (po) .
=16° +5+0(e )=

—I —1 —

T —T —2n}
:TIBE w(po)(1+86€ w(,vo)+ 0(6 w(po))>’

—1I

Denn dann folgt aus (50)

1—» 1—»
1+» ?1+r

+ i+ 0]

Do
16

1—» j -
1+

to(x—nnlsl +0('1’°‘21—}7%’

50|56

1—» 1——r 1—»
o7 01— 2o |
(I 214—7“%‘—{—86‘

To(inl ).

T 116

16

Hieraus folgt dann erstens fiir alle »

11—y 1—»
S(Los 7) | 20| T3r | 20|~ 147 1—»
(III¥) 6 = |16 +0(|1—6 ) FO
Fir r>§, +7 < 1 aber gilt zweitens
S 1—r i—r 31:_’_’
0 0 4 o| 1+7 o| "1+~
wey S|l o)

wo || >0, |8] <1 ist.

Durch Logarithmieren ergibt sich aus diesen Formeln aber
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1—»

o St \—@i+o<w+"),w-f—->o,

1—7r

1+r + 0 (‘P0|2m),

r24, 2> 0, 8] K1

S (20,
v WS

Konvergiert fiir p* < 1 aber p, gegen 1, so hat man nur die Formeln
I — IV* auf 1-—p(2) anzuwenden und erhdlt Abschitzungen fiir

[1—2()].
Ist im Falle der Formel (I) (. — o) p,— oo fiir festes », oder all-

gemeiner fiir | p, ll_—; o, so laf3t sich diese Formel mit Hilfe von (III)
durch die Angabe einer (asymptotisch genauen) unteren Grense von | p (s) |

fiir | 2| < # ergidnzen. Denn fiir | 2, \1_—; oo lassen sich auf ¢ (s) = :;(:)
wegen |¢ (0 |1——r>0 (III), sowie (IIT*), (III**) anwenden und es ergibt
sich fiir | 2| < 7» wegen p* — ! .I+7: ! It _ 1

3% 1—7 JSw(p) 1—7» ¢’

| 160 4 12892 L 0 (¢3), |§] <1,
20—
1—» 21_"
1 I 147 1 1+~
el (|2,
16p<z>‘~ 65 T %
1— 1—» 1—r 1—»
1 1 1+‘r 1+1’ 147 > 1
@l = enl telwal tollnl )z

und daraus folgt in Verbindung mit (I), (I*), (I**) mit p = 3 o ( ;ﬁo)i—f—: >
>0:3w(po)i%:——>oo.
(V) 486 0( —“°<116pz )| K™ 80,4 0(™),[8|=1,6/<1,
lz| <~
147

(V¥ ( Iélfo\—cl+’<llﬁ ) | < (16]po] 4 0)'=", 0L e < oo,

z| =7
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1—r

147
(V91162 1% 48040 (| - 7)< 169(2)| <16 20| +-80,+0{ -] =

z|<»r

("

[IESHIAESES S
Andererseits folgen aus den linken Hilften dieser Formeln umgekehrt
(IIT) (III*) (III**). Es ist noch von Interesse zu bemerken, daf3 die linke
Hilfte der Formel (V*) (und damit auch (III*)) in etwas schwicherer
Fassung aus (I*) direkt mit Hilfe eines Gedankens von Hrn. Valzron her-
geleitet werden kann. Valiron bemerkt niamlich®), daf3 eine lineare
Abbildung des Einheitskreises in sich, die ein ¢ mit | 5| =7 in den Null-
punkt bringt, den Nullpunkt in einen Punkt sz tiberfithrt mit |z, | = 7.
In einer Relation zwischen f(0) und f(2), in der ein # mit |z | =~ vor-
kommt, darf man daher z mit 0 vertauschen, sofern die Bedingungen fiir
die Giiltigkeit der Relation gegeniiber einer linearen Transformation des
Einheitskreises in sich invariant sind. Danach folgt aus (I*)

1+~

(162 ) [ < (1612 (5) [ +¢) =, | e[ < oo,

1—»

(52) 16| 2 ()| > (16 | 20 '+~ + O (1),

Dies ist aber nur insofern schwicher als die linke Hailfte von (V*), als

1—»
die linke Seite von (V*) gleich 16 |p, li:;—}—O( : ) ist.

2r

| 201

Acehnliches gilt auch fiir (I**). Denn aus | p, | -l;oo folgt ja, da mit (I*¥)
auch (I*) gilt, nach (52) p (g) — oo, so daf3 in (I*¥*) p (o) mit p (s) vertauscht
werden kann und man eine Abschitzung von p (2) nach unten erhilt,
die sogar etwas schiarfer als die linke Halfte von (V*#) ist.

Durch ganz analoge Betrachtungen oder durch Benutzung von (V), (V¥),

(V**) fiir %;5 erginzt man auch die Formeln (III), (III*), (III**) (wenn ¢* —

- I —7»
3w(xf’o) I+7"

15) Vgl. die a. p. 55 zitierte Abhandlung.

1

gesetzt wird) zu
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T 2T 3n T 27 3T

T o*
VI -~ + 80 ¢

S— —— — — — e

lge E-{-Sﬁle F—{—O(e M),

— (l_lz’,ﬁql_;_()(pﬁ)):é =

14» 1—»

3 1?0‘ 01 2 3 1= p(Z) fo ﬁ;
VI** (Té+§5 vd ‘FO(P0)> <l5el=l@l T
?0 E_: 3;_;':_: v 1
+380|7¢ -+ O(| 20| ), ”_>_=‘3"

Diese Formeln gelten unter der Voraussetzung ¢* — 0, d. h., wegen
(45%), {#o|' " —o0. Dabei ist |8]|<1, |6,|<1.

(Eingegangen den 14. Miarz 1932)
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