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On the Method of Infinite Descent in con-
nection with Fermat's Last Theorem for
Regular Prime Exponents

By H. S. VANDIVER, Austin (Texas, U.S.A.)

Kummer!) proved that the equation

(1) 4+ y =0

is impossible if ¢, # and y are non-zero integers in the field £ ({) prime
to each other; {=—=¢%"" and / is an odd prime greater than 3 such
that 2, B5,, ..., By—sp. have numerators which are prime to /, where
B, == 1/6, B,— 1/30, etc. are the Bernoulli numbers, expressed in their
lowest terms. The prime 3 is defined as regular.

Such primes / are called regular?). His proof of this was divided
into two distinct parts: the first part proved the result for the case
where o, £ and y were each prime to A — (1 —{). The other part gives
the proof for the case where one of the integers was divisible by A.
Proof of the first case was quite different from that of the second; the
latter involving a method of descent as follows:

Kummer took the equation (1) with y divisible by 2 and set
(2) ol + B =5 M W*

where 2 is a positive integer, # is a unit, and « an integer in the
field % ({). He showed that this relation gives

Py — 7o a1 o
o+ B¢ =, (1—{") ¢

¥y =_1,2,...,/— 1. From these he obtains:

al - Bl ==’ A=V !

1) Crelle’s Journal, vol. 40 (1850), pp. 130—138. Proof extended to the case where a, B,y
are any integers in the field by Hilbert, Algebraische Zahlkdrper, Jahresbericht der
Deutschen Mathematiker-Vereinigung, 1894, pp. 517—523.

2) In view of computations carried out in recent years by my assistants at the University
of Texas, it follows that all primes less than 307 are regular excepting 37, 59, 67, 101,
103, 131, 149, 157, 233, 257, 263, 271, 283 and 293.
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where «,, #,, and o, are integers prime to each other in £ ({) and #'
is a unit in that field. Note that the exponent of A has been decreased
by /, otherwise the equation is of the same form as (2). The repetition
of this process gives an equation of the same form with / as exponent
of A in lieu of (m—1)/, and this is readily shown to be impossible.
As a special case of Kummer’s results we infer that

9 w4y s=0

is impossible in rational integers x, y and s none zero, if / is regular.

The object of the present paper is to give a somewhat similar method
of descent to cover both cases of Fermat’s Last Theorem for regular
prime exponents. As usual, if in (3) £ys is prime to / this will be referred
to as case I and if one of the integers is divisible by / this will be
referred to as case II. As it not uncommon in mathematics a uniform
method is obtained for both cases by immersing the problem in a more
general one. Kummer’s argument for the first part of the proof of (1)
depended upon the symmetry of this equation; we consider the equation
in the generalized form with 6 and w semi-primary,

(4) 8+ o'+ Jy'=o0

where 6, w and y aee integers in the field £ ({4 {~') prime to each
other, 0 is a unit in that field and § w is prime to (1 —¢) (1 — {Y).
We first assume that in (4), y is prime to (1 —¢{) (1 — {~Y). Since the
statement that / is regular is equivalent3) to the statement that the
class number of £ ({) is prime to / and 6, w and y are prime to each
other, then we have

(5) 0wl =n'o (ea=o, 1, .., [—1)

’

where 7,’ is a unit and ¢, an integer in £ ({). It is known that,

ol =d (mod V)
where 4, is a rational integer. In the relation (5) put (— @) in lieu of
(/ — a). Obviously then 4, =d4d_, (mod A%). We have then

3) Kummer, Crelle’s Journal, vol. 40 (1850) pp. 117—129; Journal de Mathématiques,
(1), vol, 16 (1851), pp. 473-—486; abstract in Berlin Monatsberichte, 1847, pp. 305—319.
Also Vandiver, Bulletin of the American Mathematical Society, vol. 25 (1918—19), pp.
458—461.
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6) 6+ 0l _ 7

Sy mod )n.l s
b+ wli* 7., ( )

Now 7, = {** 8 where £ is a real unit in £({) and %# a rational integer,
and since (8 -} w {—*) is obtained from (0 4 w £%) by the substitution
(/1) we have 7, /5L, = {?* so that (6) gives?)

0+ w £ = §%* 0+ w (% (mod V)
whence
B (1 — (%) =w ({® V2 — {+) (mod )

which holds for ¢ = o, 1, ..., /— 1. Giving @ these values in turn and
adding the resulting congruences we obtain, using

é‘sl — 1

F—1

— 0, sz 0 (mod /);

/6 =0 (mod 2%, or 6 =0 (mod A) unless 22—1=0 (mod /) or k=0
(mod /). The first and third relations are impossible and the second
used in (5) enables us to write this relation in the form

(7) 0+ wl*=(1+L) 9,0

where 2, is a real unit in £({), and ¢, is semi-primary.

Now assume in (4) that y is a multiple of A. One of the integers
O +wlt; =0, 1,...,/— 1, is necessarily divisible by A, say 6 -} w {2,
and since 0+ 0w =0+ wl?+ 0 ({*— &%), then each 6-} w{? is
divisible by A. For z— o0 we have 6 -+ o divisible by A% since § and
o are semi-primary. But from 6 -} w{*—0 + 0 + 0 (1—) we infer
that 6 - w ¢ is divisible by A but not by A* for 2 32 0. Hence for as£ 0
we have

® et = e

4) The relation 'q; — (%* B is obtained by reducing (6) modulo A’ by known methods.

Ci. Vandiver, Algebraic Numbers, II, Bulletin, National Research Council, Washington,
D. C,, Febr., 1928, 62, p. 41.



which may be combined with (7) to form the relation

0+ wie
8a — =1 0 a= veny d— 1.
(8a) T n 05 a=1,2 .., [—1
where 7, is a real unit and ¢, is an integer in %({) and the ambiguous
sign is + according as y is not or is divisible by A. For a particular
a in (8a) set (—a) in place of 4. These relations give, since g, is real,

9-{—(9&'“_9—}—0)@““6
S

6.

where ¢_, is obtained from ¢, by the substitution ({/{—'). Now we
consider this relation mod. p, where p is a prime ideal divisor of
0 + wf. We then obtain exactly as in a former paper of the writer’s,

ifax+1 and /> 3,9
é— ga—l 1 é.a-l'-l 1
) R S
p P
and this gives as on page 635 of the same reference

zE"IZI; n=—1, 2, ..., 1*3,

p i 2

for p a prime ideal divisor of § 4+ w{. Hence

E,
(0) o=
(2—8)/2
Here E,=[[ (&)
7=0

(=) (1=
8“<u-¢>u—zﬂﬁ

and ¢(¢”') indicates the unit obtained from & by the substitution (¢/¢7);
also » is a primitive root of /.

5) Transactions of the American Mathematical Society, vol. 31, (1929), p. 633.



Now by a theorem of Kummer §)

Zr g

gE
0,

ri—1 d~* log o, (¢?)
P — 1
where 7 = p B, (—1) [ Joi—tn ]7, —0

mod. /, where if ¢, ({) =c,+ca &+ ... F 22 then 0, (7)) = 6o+,
+e 4+ ... + 2%, and since all of B's are prime to / then (g)
gives

dl——2n10 o e’ll
(10) dudal — (mod /)
dtyl—zn _ v — O
[—1 : . .
Ry 2y ey o true for last # since ¢, is semi-primary.

Consider the expression
oy (e?) 0't (e¥) = F (e?).
We have 0_1(e?) = 0, (e7?).

Whence using a result proved by the writer?)

[ d% log F (e?) ] =0 (mod /)

d?/zk UV = O

and therefore by combining with (10) we have

[(ﬁ-log il @] — 0 (mod /)

k=1, 2, ... /—2. Consequently if ¢, 0/' = &’ -} As ¢ where p is an
integer in £¢), then s = /-7, and if 6, 6=} = @’ #*~! ¢ then this can
be written in the form a -|- A’ g, following a known result8).

8) Crelle, vol. 44, (1852), pp. 121—30. Cf. also Hilbert, Algebraische Zahlkérper,
Jahresbericht der Deutschen Mathematiker-Vereinigung, 1894, p. 471.

7) Transactions of the American Mathematical Society, vol. 31, (1929), p. 619, relation (3é).

8) Landau, Vorlesungen iiber Zahlentheorie, III, pp. 269 - 270.



! : i
Hence 0,0, =0_1a (mod AY), and since ¢__ =a, (mod A%, we have

0,8 =0_ya (mod ). Using g, =0_; (mod ) and reducing, modulo A
gives @ =a, (mod /), whence

(10a) 0, = 0—; (mod A*1).

As already noted in (7) and (8a), ¢, may be multiplied by an
arbitrary power of {, hence we may define it as semi-primary, that is,
of the form ¢ (mod 2?), where ¢ is a rational integer.

This shows that the relation (10a), which was proved only for /> 3,
is also true for /— 3.

We then consider, using (8a)

where the exponent #=— 0 or (—1) according as y is not or is divisible
by A. Eliminating 6, « from the last three equations we obtain

Z /N A/
(10Db) o, o_ =1, o0,

where 7 is a unit in & ({). This relation s not of the same form as (4)

stnce 0, and o—y1 do not belong to the field 2 (& —+ ¢—'), hence it requires
a bit different treatment. Consider the case where we have the plus sign
in the left hand member, that is when ¢, is prime to A. Since ¢, and
0—1 are prime to each other, we obtain, in the manner that (5) was derived,

01‘1“5“0'—1:?5; ’f,
where 5; is @ real unit in £ ({). Using (10a) we have
o, (1 + §9)=¢ &; /t (mod A%)
where /2 and s are rational integers. Setting {~! for { in this relation

and dividing yields easily s= a/2 (mod /).
We may then write

oo =14 &,



where &, is @ real unit and ¢, is an integer in £ ({4 1), being unaltered
by the substitution ({/{—!). We also have for the case y divisible by A, by
proceeding with (10b) as in the derivation of (8), the relation,

.1
01— ro_y = (1—{7) £ 75 a0,
Then we may write

(11) oo =014%5) b,

the ambiguous signs being positive or negative according as y is not or
is divisible by A. Using ¢, = ¢_; (mod A*~!) we have, since this relation
is true in both cases,

and also

Hence §,/§_, is primary. (Note that _, is not necessarily obtained
from &, by the substitution ({/{—1)). Since it is a unit and the field is
regular,’) it is the /-th power of a unit in £({). Taking ¢ = 1,— 1, in
(11) together with

3 (01 :t 0—1) — ‘S; t(l, ’

and eliminating ¢, and ¢_,; from the three resulting equations, we have
? -1 ! _
T, -+ “E T d 7, =0

Using the fact that & /& is an /-th power we obtain

(12) 0 o+ 8y =0

which is the same form as (4), since 6,, w, and y, each belong to
2 (¢ -+ Y and are prime to each other.

We may now employ the same transformations on (12) as were used
in connection with (4) and we shall obtain the relation

0, + o, +-dy, =0

9 Landau, 1. c., p. 240.



of the same type as (4) and (12) but ¢, is a divisor ot y, and z, is a
divisor of ¢, and hence y, is a divisor of y; and similarly y, is a divisor
of y, and so on. Proceeding in this way we have an infinite series of
ideals each containing less ideal prime factors than the preceding, which
is impossible, unless at some stage, possibly in (4), we find that y, is a
unit in £({); but if this latter condition holds then we have for some
s, since in (8) ¢, is real,

6, Lo, 6, &,
1+¢ 0 1+ &t

which gives tor the plus sign in the denominators 6, — w, which is
impossible, since, if applied to

(13) 0+ w! + .y =0
we find 20/ = —J y/. The relation with the minus signs in the deno-
minators gives 0, = — w, which substituted in (13) leads to y = 0 and

this is contrary to hypothesis.

The above argument assumed that in (4) 6 @ was prime to A in £ ({).
If 6 is divisible by A then (4) gives w’=—J 3/ (mod A%} whence J is
primary and is therefore the /— ¢/ power of a unit and this case
reduces to one of those already discussed. We may therefore state the
Theorem. Z/e relation

o - +ny=o0

zs impossible for integers a, § and y in the field 2 ({+ (7)) prime to
eack other and none sero; n being a given unit in this field and [ a
given regular prime.

The method above described leads to an extension of this theorem
with 7 replaced by certain given non-units in £({), to which general
equation the method of proof properly belongs.

(Eingegangen den 8. September 1931)
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