Zeitschrift: Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 4 (1932)

Artikel: Sur la représentation conforme des aires triplement connexes.

Autor: Julia, Gaston

DOI: https://doi.org/10.5169/seals-5613

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 03.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Sur la représentation conforme des aires triplement connexes

par GASTON JULIA, Paris.

1. — Le présent mémoire fait suite au mémoire 1) paru en décembre 1931 dans les «Annali della R. Scuola Normale Superiore di Pisa», Série II, vol. I, pages 113—138) et traite le cas le plus simple après celui qui fut traité dans le chapitre II du mémoire précédent. La présente étude me servira pour l'étude du cas général qui sera faite dans un mémoire ultérieur.

 \mathfrak{A} étant une aire triplement connexe du plan z limitée par un contour extérieur C_0 et z contours intérieurs C_1 et C_2 qu'on peut supposer analytiques sans restreindre la généralité, considérons, après M. de la Vallée Poussin, la fonction $F(z) = e^{U+iV}$, holomorphe et uniforme dans \mathfrak{A} ayant les propriétés suivantes: 2)

 $U = \log |F|$ prend sur C_0 , C_1 , C_2 des valeurs constantes $\lambda_0 = 0$, λ_1 , λ_2 ; V admet sur C_0 , C_1 , C_2 les périodes (2.2π) , (-2π) , (-2π) , lorsque C_0 , C_1 , C_2 sont décrits dans le sens positif par rapport à \mathfrak{A} .

On sait que, λ_0 étant nul, λ_1 et λ_2 sont négatifs. Mais rien n'empêche à priori λ_1 d'être égal à λ_2 . J'ai aussi démontré (J. 1 Nos 6—13, Chapitre I) que, j étant le nombre des zéros simples de F' intérieurs à \mathfrak{A} , et f le nombre de ces zéros situés sur la frontière, on a 2j+f=2p-2 s'il y a p contours intérieurs. Ici, p=2, donc

$$2j+f=2$$

ce qui exige: ou bien j = 1, f = 0ou bien j = 0, f = 2.

Le I° cas est un cas particulier du cas traité au chapitre II du mémoire (J. 1).

¹⁾ Nous désignerons ce mémoire par J. 1. Pour compléter la bibliographie du sujet donnée dans l'introduction du mémoire J. 1, citons un intéressant petit mémoire de M. E. Picard où se trouve bien mise en lumière la façon d'envisager les 2 faces d'un disque à p trous comme une surface de Riemann générale pour la classe de courbes algébriques de M. Schottky (voir E. Picard, Annales de l'Ecole Normale Supérieure 1913: Sur la représentation conforme des aires multiplement connexes).

²⁾ Voir J. 1 no 2.

Le 2° cas fait l'objet du présent mémoire. Il y aura donc 2 zéros simples de F' ou un zéro double sur la frontière de A.

Mais on sait (J. I N° 4) qu'aucun de ces points ne peut se trouver sur C_0 ou sur la C_K (K = I ou 2) qui correspond au plus petit des nombres λ_1 , λ_2 .

Il en résulte que, dans le cas présent, λ_1 ne peut être égal à λ_2 . Nous devons donc supposer $0 > \lambda_1 > \lambda_2$, en mettant l'indice 2 au contour intérieur sur lequel U est minimum absolu. Notre hypothèse est alors que F' possède 2 séros simples ou un séro double sur C_1 . Nous poursuivons l'analyse, de laquelle en particulier résultera que l'hypothèse précédente n'est pas vide et qu'il y a effectivement des $\mathfrak A$ répondant à ces hypothèses.

§ 1. F' a deux zéros simples sur C_1

2. — En un zéro simple de F', qui est donc zéro simple de $f'(s) = \frac{d}{ds}(U+iV)$, toutes les dérivées partielles premières de U et V s'annulent. Donc $\frac{dU}{dn} = 0$ et $\frac{dV}{ds} = 0$, n étant la normale à C_1 intérieure à \mathfrak{A} et s l'abscisse curviligne sur C_1 (C_1 est supposée orientée dans le sens positif par rapport à l'aire \mathfrak{A} : ce sens positif est donc celui des aiguilles d'une montre).

Nous appellerons \underline{a} et \underline{b} les zéros de F'. Au voisinage d'un tel zéro, \underline{a} , par exemple, la courbe $U = \lambda_1$ comprend un arc de C_1 et un arc orthogonal tous deux analytiques; la courbe V = V(a) comprend également 2 arcs analytiques orthogonaux en \underline{a} qui bissectent les premiers; dans l'un des couples d'angles opposés par le sommet que ces deux arcs déterminent on aura V > V(a) et dans l'autre V < V(a) au voisinage de \underline{a} ; au passage par \underline{a} , lorsque \underline{s} décrit C_1 , et suivant que C_1 bissecte l'un ou l'autre des angles précédents, V passe par un minimum ou un maximum.

 $\frac{dV}{ds}$ s'annule en changeant de signe au passage par \underline{a} et par \underline{b} . Or, on a,

$$\frac{dU}{ds} = \frac{dV}{dn}$$
 et $\frac{dU}{dn} = -\frac{dV}{ds}$.

Par suite $\frac{dU}{dn}$, sur C_1 , change de signe en s'annulant au passage par \underline{a} et \underline{b} . Les points \underline{a} et \underline{b} délimitent donc sur C_1 deux arcs; sur l'un

 $\frac{dU}{dn} = -\frac{dV}{ds} > 0$, sur l'autre $\frac{dU}{dn} = -\frac{dV}{ds} < 0$. Lorsqu'on parcourt ce dernier arc, que nous appellerons \widehat{ab} , dans le sens positif de C_1 , nous supposerons que a est son origine et b son extrémité, en sorte que l'arc \widehat{ba} signifiera l'arc de C_1 sur lequel $\frac{dU}{dn} > 0$. On a vu (dans J. 1.) que, sur C_0 , $\frac{dU}{dn} < 0$ $\frac{dV}{ds} > 0$ partout, et sur C_2 , $\frac{dU}{dn} > 0$, $\frac{dV}{ds} < 0$ partout.

3. — Nous considérons la surface de Riemann σ , élément canonique du problème, introduite en toute généralité dans le mémoire précédent (J. I, chapitre I). Elle est décrite par $\zeta = F(z)$ lorsque z décrit \mathfrak{A} . Elle admet 1° pour frontière extérieure le cercle γ_0 , de centre 0, de rayon 1, décrit 2 fois de suite dans le sens trigonométrique (V, croissant sur C_0 , possède en effet la période (2.2π) sur C_0). 2° pour frontières intérieures les 2 courbes γ_1 et γ_2 qui correspondent à C_1 et C_2 .

Evidemment γ_2 est un cercle de centre o de rayon e^{λ_2} décrit dans le sens des aiguilles d'une montre. Quant à γ_1 , c'est ce que j'ai appelé une courbe circulaire, se projetant sur le plan ζ suivant un cercle, de centre o, de rayon e^{λ_1} , composée d'un arc $\widehat{\beta\alpha}$ que nous appelons arc direct, d'ouverture comprise entre 2π et 4π , décrit dans le sens des aiguilles d'une montre (arc correspondant à l'arc \widehat{ba} de C_1 sur lequel $\frac{dU}{dn} > 0$ $\frac{dV}{ds} < 0$), suivi d'un arc $\widehat{\alpha\beta}$ décrit dans le sens trigonométrique et que nous appelons arc de rebroussement; on verra ultérieurement que cet arc $\widehat{\alpha\beta}$, correspondant à l'arc \widehat{ab} de C_1 sur lequel $\frac{dU}{dn} < 0$, $\frac{dV}{ds} > 0$, est d'ouverture inférieure à 2π . La courbe γ_1 présente deux points de rebroussement (avec superposition des arcs afférents) aux points $\alpha = F(a)$, $\beta = F(b)$ (voir J. I, N° 4).

Entre les deux courbes γ_0 et γ_1 , se projettent 2 feuillets de σ , entre γ_1 et γ_2 un seul feuillet; à l'intérieur de γ_2 et à l'extérieur de γ_0 il n'y a aucun feuillet de σ ; ceci exprime que l'équation $F(z) = \zeta$ admet dans \mathfrak{A} 2 racines distinctes si $e^{\lambda_1} < |\zeta| < 1$, une seule si $e^{\lambda_2} < |\zeta| < e^{\lambda_1}$, et aucune racine si $|\zeta|$, ou $|\zeta| < e^{\lambda_2}$ (voir J. I, N° 5). Ces feuillets sont simples et sans points de ramification intérieurs à σ . Lorsqu'on décrit γ_0 dans le sens positif (correspondant à celui de C_0) à partir d'un point du 1° feuillet, on passe du 1° feuillet sur le 2° feuillet après une rotation de 2π (c'est-à-dire lorsque V a augmenté de 2π , puis, après une deuxième rotation de 2π (c'est-à-dire lorsque V a augmenté au total de

 4π) on revient au point initial sur le 1° feuillet. Ceci implique l'existence d'une ligne de croisement entre le 1° et le 2° feuillet dont nous examinerons ultérieurement la position. Notons maintenant que le voisinage entier de α excepté l'arc de rebroussement $\widehat{\alpha\beta}$ de γ_1 appartient à σ : ce voisinage correspond au voisinage, intérieur à \mathfrak{A} , du point α lui-même. Même conclusion pour le voisinage de β excepté l'arc de rebroussement $\widehat{\beta\alpha}$ précédent.

Notons enfin qu'au voisinage de ses frontières σ est: 1° par rapport à γ_0 du côté des U ou des $|\zeta|$ décroissants; 2° par rapport à l'arc direct $\widehat{\beta\alpha}$ de γ_1 , correspondant à l'arc \widehat{ba} de C_1 sur lequel $\frac{dU}{dn} > 0$, du côté des U croissants, c'est-à-dire des $|\zeta|$ croissants; 3° par rapport à l'arc de rebroussement $\widehat{\alpha\beta}$ de γ_1 , correspondant à l'arc \widehat{ab} de C_1 sur lequel $\frac{dU}{dn} < 0$, du côté des U ou des $|\zeta|$ décroissants; 4° par rapport à γ_2 du côté des U ou des $|\zeta|$ croissants.

4. — La fonction $z = \varphi(\zeta)$ inverse de $\zeta = F(z)$ est une fonction holomorphe et uniforme du point 5 qui décrit o, mais ce n'est pas une fonction uniforme de la variable complexe & représentant l'affixe de la projection sur le plan ζ du point ζ porté par σ . Lorsque ζ se projette entre γ_0 et γ_1 , la fonction $\varphi(\zeta)$ de la variable ζ a 2 déterminations distinctes qui sont les 2 racines de $F(z) = \zeta$. Comme les seuls zéros de F' sont \underline{a} et \underline{b} , auxquels correspondent $\alpha = F(a)$ et $\beta = F(b)$ du plan ζ , α et β étant sur γ_1 , on voit qu'en tout point de l'anneau $e^{\lambda_1} < |\zeta| < 1$, chacune des déterminations précédentes est holomorphe; chacune de ces déterminations figure la valeur de $\varphi(\zeta)$ sur chacun des 2 feuillets de σ projetés entre γ_0 et γ_1 . Lorsque ζ partant de ζ_0 y revient après avoir décrit un tour autour de o dans l'anneau précédent, on passe par continuité de l'un à l'autre feuillet, c'est-à-dire de l'une à l'autre des 2 déterminations de $\varphi(\zeta)$, et au bout de 2 tours tels que le précédent on retrouve la détermination initiale. Cela résulte de ce que le chemin en question peut se ramener à un segment de rayon allant de ζ_0 au cercle unité en ζ_0' , suivi du cercle unité décrit une fois de ζ_0' à ζ_0' , suivi enfin du segment de rayon $\zeta_0' \zeta_0$, et l'on a vu qu'un tour sur le cercle unité faisait passer de l'une à l'autre des 2 déterminations de $\varphi(\zeta)$.

Les C_i ayant été supposés analytiques, F(z) est holomorphe sur les C_i , donc $\varphi(\zeta)$, fonction du point ζ de σ est holomorphe sur les frontières γ_i de σ (i = 0, 1, 2). Lorsque les C_i sont des courbes simples de Jordan, F(z) est continue sur les C_i et $z = \varphi(\zeta)$ est continue sur les

 γ_i . Dans ce qui précède, nous avons vu que $\varphi(\zeta)$ est holomorphe en ζ en tout point de l'anneau $e^{\lambda_1} < |\zeta| < 1$ et y possède 2 déterminations se permutant par une rotation autour de 0. Un raisonnement analogue montre que, dans l'anneau $e^{\lambda_2} < |\zeta| < e^{\lambda_1}$, $\varphi(\zeta)$ est holomorphe en chaque point et n'a qu'une détermination, elle est donc uniforme.

5. — Qu'arrive-t-il lorsque ζ tend vers un des cercles

$$|\zeta| = e^{\lambda_0}$$
, e^{λ_1} ou e^{λ_2} ?

D'abord, si ζ tend vers un point ζ_0 du cercle $|\zeta| = e^{\lambda_0} = I$, chacune des déterminations de $\varphi(\zeta)$ a une limite et tend vers un point déterminé de C_0 ; ζ_0 est la projection de 2 points ζ_0' et ζ_0'' de γ_0 auxquels correspondent, sur C_0 , 2 points z_0' et z_0'' (racines de $F(z) = \zeta_0$) qui sont les valeurs limites des 2 déterminations de $\varphi(\zeta)$ lorsque ζ tend vers ζ_0 . $\varphi(\zeta)$ est d'ailleurs holomorphe en ζ_0' et ζ_0'' , en sorte que chacune des déterminations de $\varphi(\zeta)$ reste holomorphe en ζ_0 et y acquiert une valeur, z_0' ou z_0'' , située sur C_0 et racine de $F(z) = \zeta_0$.

Lorsque ζ tend vers un point ζ_0 de $|\zeta| = e^{\lambda_2}$ aucune difficulté, $\varphi(\zeta)$ uniforme a une limite z_0 , racine de $F(z) = \zeta_0$, et $\varphi(\zeta)$ reste holomorphe en ζ_0 , le point z_0 appartient d'ailleurs à C_2 .

Lorsque ζ tend vers un point ζ_0 de $|\zeta| = e^{\lambda_1}$ plusieurs cas sont possibles: nous allons préciser et examiner de plus près la structure de γ_1 , frontière de σ , se projetant sur $|\zeta| = e^{\lambda_1}$.

6. — Faisons décrire à z l'arc \widehat{ba} de C_1 , sur lequel $\frac{dU}{dn} > 0$, $\frac{dV}{ds} < 0$, ζ décrit l'arc direct $\widehat{\beta a}$ de γ_1 et V décroît d'une certaine valeur V_{β} à une valeur V_{α} qui sont des arguments des points β et α . Il est clair que la variation $V_{\alpha} - V_{\beta}$ est $\zeta - 2\pi$, puisque la variation totale de V le long de \widehat{ba} puis de \widehat{ab} , c'est-à-dire le long de C_1 tout entière est précisément (-2π) . Il existe donc un point et un seul $\underline{a'}$ de l'arc \widehat{ba} où V acquiert la valeur $V_{\alpha} + 2\pi$ et à ce point $\underline{a'}$ correspond sur γ_1 un point $\underline{a'}$ de l'arc direct $\widehat{\beta a}$ superposé à α . Lorsque ζ de σ se projette entre γ_1 et γ_0 , au voisinage de la projection de α et α' , il lui correspond l'un ou l'autre de deux points distincts dont l'un est voisin de α et l'autre de α' et lorsque ζ tend, sur σ , vers α ou vers α' , son correspondant de α , $z=\varphi(\zeta)$ tend vers α ou vers α' . Il en résulte, l'équation $F(z)=\zeta$ n'ayant pour $e^{\lambda_1}<|\zeta|<1$ que deux solutions dans α , qu'il

n'y aura pas sur l'arc direct $\widehat{\beta\alpha}$ d'autre point que α' superposé à α , c'est-à-dire que l'ouverture de l'arc $\widehat{\beta\alpha}$ de γ_1 , sera comprise entre 2π et 4π (bornes exclues) et par suite celle de l'arc $\widehat{\alpha\beta}$ de rebroussement sera entre 0 et 2π (bornes exclues).

7. — Supposons donc $|\zeta_0| = e^{\lambda_1}$. Io Si ζ_0 , sans être en α ou β , appartient à la projection de l'arc de rebroussement $\widehat{\alpha\beta}$ il y a 3 points ζ_0' , ζ_0'' , ζ_0''' de γ_1 qui lui sont superposés: deux, ζ_0' et ζ_0'' appartiennent à l'arc direct $\widehat{\beta}\alpha$ correspondant à $\frac{dU}{dn} > 0$, et l'autre ζ_0''' appartient à l'arc de rebroussement $\widehat{\alpha\beta}$ correspondant à $\frac{dU}{dn}$ < 0. A ces 3 points correspondent 3 points distincts z_0' , z_0'' , z_0''' situés sur C_1 , z_0' et z_0'' étant sur l'arc \widehat{ba} , $z_0^{"}$ sur l'arc \widehat{ab} . Lorsque ζ tend vers ζ_0 en restant entre γ_0 et γ_1 , les 2 déterminations de $\varphi(\zeta)$ ont pour limites z_0' et z_0'' car, l'arc direct ba bordant seul o du côté des U décroissants, les deux points de σ dont ζ est alors la projection ont pour limites les points ζ_0' et ζ_0'' de l'arc $\widehat{\beta\alpha}$; au contraire, l'arc de rebroussement $\widehat{\alpha\beta}$ bordant σ du côté des U croissants, $\zeta_0^{\prime\prime\prime}$ sera la limite du point de σ projeté en ζ lorsque ζ tendra vers ζ_0 en restant à l'intérieur du cercle $|\zeta| = e^{\lambda_1}$; s_0''' sera la valeur de $\varphi(\zeta)$ au point ζ_0''' de σ . $F(z) = \zeta_0$ a donc ici 3 racines s_0' , s_0'' , s_0''' situées sur C_1 . Notons, en passant, que les 2 déterminations de $\varphi(\zeta)$, lorsque $e^{\lambda_1} < |\zeta| < 1$ sont holomorphes en ζ_0 et y prennent les valeurs z_0' et z_0'' ; supposées prolongées à l'intérieur de $|\zeta| = e^{\lambda_1}$, elles y prennent des valeurs distinctes de la détermination unique de $\varphi(\zeta)$ définie pour $e^{\lambda_2} < |\zeta| < e^{\lambda_1}$ par $F(z) = \zeta$, laquelle, holomorphe en ζ_0 , a pour limite, lorsque ζ tend vers ζ_0 , la valeur z_0 " distincte de z_0' et z_0'' comme on vient de le voir.

2° Lorsque ζ_0 est en α ou β deux des 3 points ζ_0' , ζ_0'' , ζ_0''' sont confondus, et par conséquent deux des 3 points z_0' , z_0'' , z_0''' sont confondus en \underline{a} ou \underline{b} , le troisième étant situé situé sur l'arc $\widehat{\underline{ba}}$.

 $\widehat{\alpha\beta}$, il est la projection d'un seul point ζ_0' de γ_1 auquel correspond un seul point z_0' de l'arc \widehat{ba} de C_1 $\left(\frac{dU}{dn}>0\right)$ il est aussi la projection d'un point ζ_0'' intérieur à σ . En effet, lorsque ζ , projeté entre γ_0 et γ_1 , tendra vers ζ_0^3), les 2 déterminations de $\varphi(\zeta)$ auront des limites déterminées dont l'une sera l'affixe du point z_0' précédent pour lequel on a bien

³⁾ ζ est, par rapport à ζ_0 , du côté des U croissants.

 $\frac{dU}{dn}>0$; l'autre, ne pouvant être un point de C_1 pour lequel $\frac{dU}{dn}>0$, sera nécessairement un point z_0'' intérieur à \mathfrak{A} pour lequel $F(z_0'')=\zeta_0$. D'ailleurs, en ζ_0 , les 2 déterminations de $\varphi(\zeta)$, prenant respectivement les valeurs ζ_0' et ζ_0'' sont holomorphes et peuvent se prolonger analytiquement autour de ζ_0 . Si l'on envisage la détermination unique de $\varphi(\zeta)$, lorsque $e^{\lambda_2} < |\zeta| < e^{\lambda_1}$, cette détermination a aussi une limite lorsque ζ , restant inférieur en module à e^{λ_1} , tend vers ζ_0 et cette limite ne peut être différente de z_0'' puisqu'elle est atteinte pour des valeurs de $|\zeta|$ inférieures à e^{λ_1} , alors que z_0' ne peut être atteinte que pour des valeurs de $|\zeta|$ supérieures à e^{λ_1} (σ est, en effet, au voisinage de ζ_0' de γ_1 , du côté des U ou des $|\zeta|$ croissants par rapport à γ_1). La détermination de $\varphi(\zeta)$ qui tend vers z_0'' (intérieur à \mathfrak{A}) lorsque ζ tend vers ζ_0 par valeurs supérieures en module est le prolongement analytique de la détermination unique de $\varphi(\zeta)$ correspondant aux valeurs de ζ inférieures en module à $|\zeta_0|$.

En résumé, l'équation $F(z) = \zeta_0$ a ici 2 racines z_0' et z_0'' dont la 1^{re} est sur l'arc \widehat{ba} de C_1 où $\frac{dU}{dn} > 0$; la 2^{me}, z_0'' , est un point intérieur de \mathfrak{A} . Sur la surface de Riemann σ , les points $\zeta_0' = F(z_0')$ et $\zeta_0'' = F(z_0'')$ sont: l'un, ζ_0' , sur la partie de l'arc direct $\widehat{\beta a}$ de γ_1 non superposée à l'arc de rebroussement $\widehat{\alpha \beta}$, l'autre, ζ_0'' , est intérieur à σ .

8. — Nous reviendrons là-dessus dans la suite et, pour poursuivre l'étude de la structure de \mathfrak{A} et σ nous démontrerons le théorème fondamental suivant:

Théorème. Tout point ζ_0 intérieur à σ peut être joint à γ_0 par une ligne intérieure à σ sur laquelle U ne décroît jamais. Cette ligne peut, suivant les cas, consister en un simple rayon $V = C^{te}$ ou en 2 segments de rayon $V = C_1$, $V = C_2$ unis par un arc de cercle $U = C^{te}$.

En effet, 1° si le point ζ_0 est projeté entre γ_0 et γ_1 , le segment de rayon $\zeta_0 \zeta_0'$ allant de ce point à γ_0 répond à la question. $U = \log |\zeta|$ croît de ζ_0 à ζ_0' .

2° Si le point ζ_0 est projeté sur $|\zeta| = e^{\lambda_1}$, comme c'est un point intérieur à σ par hypothèse, c'est nécessairement un point du type 3° considéré au N° 7, dont la projection n'appartient pas à l'arc de rebroussement $\alpha\beta$. La fonction $\varphi(\zeta)$, holomorphe en ζ_0 peut être prolongée analytiquement tout le long du rayon $\zeta_0 \zeta_0'$ vers les $|\zeta|$ croissants, jusqu'au cercle $|\zeta| = 1$: Ce segment de rayon $\zeta_0 \zeta_0'$ unit ζ_0 à γ_0 et répond à la question.

3° Il en est évidemment de même qu'au 2° si ζ_0 , se projetant entre γ_1 et γ_2 , le rayon $o\zeta_0$ prolongé ne rencontre pas l'arc de rebroussement $\alpha\beta$, alors le segment de rayon allant de ζ_0 à ζ_0' ($|\zeta_0'| = 1$) sur γ_0 répond à la question. Tout le long de ce segment $\varphi(\zeta)$ se prolonge analytiquement, reste holomorphe, et $U = \log |\zeta|$ croît.

4° Supposons enfin que le rayon $οζ_0$ rencontre l'arc de rebroussement $\widehat{\alpha\beta}$ en $ζ_0''$. $\varphi(ζ)$ pourra évidemment être prolongé analytiquement le long du segment $ζ_0 ζ_0''$, $|ζ| = e^U$ allant en croissant depuis $ζ_0$ jusqu'à $ζ_0''$. L'on aborde la frontière $γ_1$ en $ζ_0''$ sur l'arc $\widehat{\alpha\beta}$ par rapport auquel, on le sait, σ est du côté des U décroissants. On suit alors l'arc $\widehat{\alpha\beta}$ depuis $ζ_0''$ jusqu'en un des points α ou β, par exemple jusqu'en β, de manière que V aille en croissant; enfin, à partir de β, on suit un rayon $βζ_0'$ jusqu'à la rencontre avec $γ_0^4$).

On peut, si l'on veut rester à l'intérieur de σ , éviter β en arrêtant le segment du rayon $\zeta_0 \zeta_0''$ un peu avant d'atteindre en ζ_0'' l'arc $\widehat{\alpha \beta}$, puis en suivant un arc de cercle de rayon un peu inférieur à e^{λ_1} jusqu'à un point $\zeta_0^{"}$ tel que $o\zeta_0^{"}$ prolongé ne rencontre plus l'arc $\widehat{\alpha\beta}$, enfin en allant de $\zeta_0^{\prime\prime\prime}$ à ζ_0^{\prime} sur γ_0 par un segment de rayon comme en 2°. On a ainsi un chemin formé de 2 segments $V = C^{te}$, U croissant, réunis par un arc de cercle $U = C^{te}$, V croissant, et sur lequel ζ va de ζ_0 à γ_0 , $U = \log |\zeta|$ ne décroissant jamais. Transportant cet énoncé dans le plan s, on voit que tout point s_0 intérieur à \mathfrak{A} peut être uni à C_0 par une courbe, formée de 3 arcs analytiques au plus, sur laquelle U ne décroît pas quand on va de s à Co. Cette courbe peut être: ou bien un arc de courbe $V(z) = V(z_0)$ analytique, allant de z_0 à C_0 , lorsque sur cet arc U va toujours en croissant (cas 1º et 2º); ou bien (cas 3º) formée de 2 arcs de courbe $V(z) = C^{te}$ réunis par un arc de courbe $U = C^{te}$ lequel peut, à la rigueur, coïncider avec une partie de l'arc \widehat{ab} de C_1 , [chemin signalé dans la note 4) précédente composé d'un arc $V(\overline{z}) = V(z_0)$ jusqu'en z_0'' de l'arc \widehat{ab} , puis l'arc $\widehat{z_0''b}$ puis l'arc allant de b à C_0 de la courbe V(z) = V(b) et faisant l'angle $\frac{\pi}{4}$ avec la tangente positive en $b \ a \ C_1$].

9. — Section de σ par le cylindre $|\zeta| = e^{\lambda_1}$. Il découpe σ en deux régions, la région $e^{\lambda_1} < |\zeta| < 1$ et la région $e^{\lambda_2} < |\zeta| < e^{\lambda_1}$.

1º Région
$$e^{\lambda_1} < |\zeta| < e^{\lambda_0} = 1$$
. Anneau $[\lambda_1, \lambda_0]$. La région $e^{\lambda_1} < |\zeta| < 1$

⁴⁾ Ce premier chemin n'est pas complètement intérieur à σ puisqu'il longe la frontière γ_1 , depuis ζ_0'' jusqu'à β , mais il peut être commode pour la suite.

⁸ Commentarii Mathematici Helvetici

est une surface de Riemann doublement connexe ouverte, à deux feuillets, bornée d'une part par la courbe γ_0 ; d'autre part par une courbe γ_1 composée du cercle $|\zeta| = e^{\lambda_1}$ parcouru 2 fois de suite dans le sens des aiguilles d'une montre car, on suppose toujours que les sens de parcours sont positifs par rapport à l'aire délimitée. Cela résulte des considérations développées au Nº 4 sur l'allure holomorphe des 2 déterminations de $\varphi(\zeta)$ dans l'anneau $e^{\lambda_1} < |\zeta| < 1$ et leur permutation sur tout cercle concentrique et appartenant à cet anneau. La fonction $\varphi(\zeta)$, de la variable ζ , cessant d'être holomorphe en α et β pour y avoir un point critique algébrique simple, on pourra, si on veut, imaginer que lorsqu'on décrit γ_1' on évite α et β par des demi-cercles infiniment petits de centre α et β du côté des $|\zeta| > e^{\lambda_1}$. Cette courbe γ_1 est la limite de la courbe γ_{ϵ} découpée dans σ par le cylindre $U = \lambda_1 + \epsilon$ ou $|\zeta| = e^{\lambda_1 + \epsilon}$, lorsque e tend vers zéro par valeurs positives. Pour cette raison nous l'appelons courbe $U = \lambda_1 + 0$ de σ . Par rapport à γ_1' , l'anneau $e^{\lambda_1} < |\zeta| < 1$ de σ que, pour abréger, nous appelons l'anneau $[\lambda_1, \lambda_0]$ de σ , est situé du côté des $|\zeta|$ ou des U croissants; il en est déjà ainsi, comme on l'a vu au N° 3, de σ par rapport à l'arc direct $\widehat{\beta}\alpha$ de γ_1 il en résulte que l'arc direct $\widehat{\beta \alpha}$ de γ_1 , correspondant à l'arc \widehat{ba} de C_1 , sur lequel $\frac{dU}{dn}$ > 0, appartient à γ_1' . γ_1' comprend, outre l'arc précédent $\widehat{\beta}\widehat{\alpha}$ d'ouverture comprise entre 2π et 4π , un arc $\widehat{\alpha}\widehat{\beta}$, toujours décrit dans le sens des aiguilles d'une montre, et qui, complété par l'arc de rebroussement de γ_1 , fournirait une circonférence entière. Ce second arc $\widehat{\alpha\beta}$ est composé des points intérieurs à σ du type signalé au N° 7 (3°), points dont la projection est sur $|\zeta| = e^{\lambda_1}$ mais n'appartient pas à la projection de l'arc de rebroussement. Cet arc $\widehat{\alpha\beta}$, intérieur à σ , nous l'appellerons un arc de passage λ_1 de σ . C'est en effet cet arc que doit traverser le point ζ lorsqu'en restant intérieur à σ il fait acquérir à U la la valeur λ_1 .

En définitive, la courbe $U=\lambda_1+o$ se compose: a) de l'arc direct $\widehat{\beta}\alpha$ de la courbe γ_1 frontière de σ sur lequel $\frac{dU}{dv}>o$ (v normale intérieure à σ), ou par rapport auquel σ est du côté des U croissants; b) de l'arc de passage λ_1 de σ , arc intérieur à σ unissant les 2 points de rebroussement α et β et que nous pouvons dire aussi arc associé de l'arc de rebroussement.

2º Région $e^{\lambda_2} < |\zeta| < e^{\lambda_1}$. Anneau $[\lambda_2, \lambda_1]$. C'est un anneau à un seul

feuillet 5) limité d'une part par γ_2 , d'autre part par une courbe γ_1'' composée ainsi qu'il suit: a) l'arc de passage λ_1 de σ par où l'anneau actuel confine à l'anneau $[\lambda_1, \lambda_0]$ (nous disons alors que les deux anneaux $[\lambda_2, \lambda_1]$ et $[\lambda_1, \lambda_0]$ sont adjacents le long de l'arc de passage λ_1); b) l'arc de rebroussement $\widehat{\alpha\beta}$ de γ_1 puisqu'on sait qu'il borde σ et que, dans son voisinage, σ est du côté des U décroissants 6), c'est-à-dire $U < \lambda_1$. L'ensemble γ_1'' des 2 arcs associés précédents, constitue un cercle de centre 0 de rayon e^{λ_1} . C'est la limite du cercle $\gamma_{-\epsilon}$ découpé dans σ par le cylindre $U = \lambda_1 - \epsilon$, lorsque ϵ tend vers zéro par valeurs positives. Pour cette raison la courbe γ_1'' sera appelée courbe $U = \lambda_1 - 0$. Par rapport à l'anneau $[\lambda_2, \lambda_1]$ le sens positif de ce cercle γ_1'' est le sens trigonométrique (V croissant); il coïncide bien avec le sens positif que l'orientation de γ_1 imprimait à l'arc de rebroussement $\widehat{\alpha\beta}$.

Conclusion. L'arc de passage λ_1 de σ divise σ en 2 régions distinctes: 1° La région $U > \lambda_1$ ou anneau $[\lambda_1, \lambda_0]$, bordée d'une part par γ_0 , d'autre part par la courbe γ_1 ' ou $U = \lambda_1 + o$, composée de l'arc de passage λ_1 et de l'arc direct $\widehat{\beta \alpha}$ de γ_1 $\left(\frac{dU}{dv} > o\right)$.

2º La région $U < \lambda_1$ ou anneau $[\lambda_2, \lambda_1]$ bordée, d'une part par γ_2 , d'autre part par γ_1 " ou $U = \lambda_0 - o$ formée par l'arc de passage λ_1 associé à l'arc de rebroussement $\widehat{\alpha\beta}$ de γ_1 $\left(\frac{dU}{d\nu} < o\right)$.

10. — Section de \mathfrak{A} par l'arc de passage λ_1 de \mathfrak{A} . Nous appelons arc de passage λ_1 de \mathfrak{A} , l'image dans le plan z de l'arc de passage λ_1 de σ . C'est un arc analytique intérieur à \mathfrak{A} , unissant les zéros a et b de $F'(z)^7$, sur lequel $U = \lambda_1$. De même que l'arc de passage $\overline{\lambda_1}$ de σ était dit associé de l'arc de rebroussement $\alpha \beta$, nous dirons que l'arc de passage λ_1 de \mathfrak{A} est associé de l'arc \overline{ab} de C_1 sur lequel $\frac{dU}{dn} < 0$.

L'arc de passage λ_1 de \mathfrak{A} divise \mathfrak{A} en 2 domaines doublement connexes.

1° Le domaine $\lambda_1 < U < \lambda_0 = 0$ ou anneau $[\lambda_1, \lambda_0]$ bordé d'une part par C_0 , d'autre part par la courbe C_1' , ou $U = \lambda_1 + 0$ (limite de $U = \lambda_1 + \varepsilon$ pour $\varepsilon > 0$ tendant vers zéro), composée de l'arc de passage λ_1 et de l'arc \widehat{ba} de C_1 sur lequel $\frac{dU}{dn} > 0$.

b) $\varphi(\zeta)$ est en effet une fonction holomorphe et uniforme dans la région considérée.

⁶⁾ $\frac{dU}{dv}$ est < 0 sur l'arc de rebroussement $\widehat{\alpha\beta}$.

⁷⁾ Orthogonal en a et b à C_1 lorsque C_1 est, comme on le suppose ici, analytique.

2° Le domaine $\lambda_2 < U < \lambda_1$ ou anneau $[\lambda_2, \lambda_1]$ bordé intérieurement par C_2 et extérieurement par la courbe C_1'' ou $U = \lambda_1 - 0$ (limite de $U = \lambda_1 - \varepsilon$ pour $\varepsilon > 0$ tendant vers zéro) composée de l'arc de passage λ_1 et de l'arc \widehat{ab} de C_1 sur lequel $\frac{dU}{dr} < 0$ (arcs associés).

Lorsque z décrit C_0 dans le sens positif par rapport à $[\lambda_1, \lambda_0]$, V croît toujours et sa variation totale est $(+4\pi)$; lorsque z décrit C_1' dans le sens positif par rapport à $[\lambda_1, \lambda_0]$, V décroît toujours et sa variation totale est (-4π) . En tout point de C_0 la dérivée normale $\frac{dU}{dn_i} < 0$, $(n_i$ normale intérieure à l'anneau $[\lambda_1, \lambda_0]$), et en tout point de C_1' la dérivée normale $\frac{dU}{dn_i}$ est > 0.

Lorsque z décrit C_1'' dans le sens positif par rapport à $[\lambda_2, \lambda_1]$ V croît toujours et sa variation totale est $(+2\pi)$; lorsque z décrit C_2 dans le sens positif par rapport à $[\lambda_2, \lambda_1]$, V décroît toujours et sa variation totale est (-2π) . En tout point de C_1'' , la dérivée normale $\frac{dU}{dn_i'} < 0$ $(n_i'$ normale intérieure à l'anneau $[\lambda_2, \lambda_1]$), et en tout point de C_2 la dérivée normale $\frac{dU}{dn_i'}$ est > 0.

Notons encore que C_1' et C_1'' présentent en \underline{a} et \underline{b} des points anguleux à tangentes rectangulaires et surtout que \overline{les} valeurs précédentes des variations totales de V imposent cette conséquence: ni sur l'arc de passage λ_1 , ni sur l'arc associé \widehat{ab} de C_1 la variation totale de V n'atteint 2π , elle reste entre 0 et 2π , limites exclues.

A tout point z de l'anneau $[\lambda_1, \lambda_0]$ est associé un point $z' \neq z$ et un seul, intérieur aussi à cet anneau, et tel que F(z) = F(z'); z'(z) et z(z') sont des fonctions holomorphes en tout point intérieur à l'anneau $[\lambda_1, \lambda_0]$; on reconnaît aussitôt qu'elles sont uniformes en remarquant que l'équation F(u) = F(z) a dans l'anneau précédent z solutions et z seulement z et z en sorte que, si z revient à sa valeur initiale en décrivant une courbe de l'anneau non réductible à un point, z' toujours z devra aussi revenir à sa valeur initiale. Les courbes z0 en z1, z2, z3, z4, z5, z5, z5, z6, z7, z7, z8, z8, z9, sont des courbes fermées analytiques, non réductibles à un point, de l'anneau précédent. z2, et z'3 associés sont sur une telle courbe et correspondent, sur cette courbe à des valeurs de z4 différant de z5. Il en résulte que lorsque z5 tend vers z6, z7, z7, z8, z9, ne tend pas vers z9 ainsi qu'on pourrait le croire, mais vers le point z5 signalé au z7, z9, ne tend pas vers z9 ainsi qu'on pourrait le croire, mais vers le point z5 signalé au z7, z9, ne tend pas vers z9 ainsi qu'on pourrait le croire, mais vers le point z7 signalé au z9, z9, z9, sont des courbes le point z9 signalé au z9, z9, sont des courbes de z9, sont des courbes le point z9, signalé au z9, signalé

situé sur l'arc $\widehat{\underline{ba}}$ de C_1 ou $\frac{dU}{dn} > 0$ et tel qu'en suivant cet arc de $\underline{a'}$ à \underline{a} , V décroisse de 2π . Au contraire, dans l'anneau $[\lambda_2, \lambda_1]$, F(z) est univalente.

11. — Structure et reconstruction de σ . Pour reconstruire à priori une surface du type de la surface σ ici étudiée, nous prendrons 2 anneaux:

I° un anneau à 2 feuillets du type $[\lambda_1, \lambda_0]$ composé de 2 feuillets identiques en forme d'anneau circulaire réunis par une ligne de croisement disposée par exemple suivant un rayon commun, les rayons des cercles frontière étant e^{λ_1} et $e^{\lambda_0} = 1$. Le feuillet supérieur sera le I^{er}, le feuillet inférieur le 2°. Sur le feuillet inférieur nous distinguerons un arc $\alpha\beta$ du cercle frontière intérieur et la ligne de croisement étant arbitraire nous supposerons qu'elle ne rencontre pas cet arc $\alpha\beta$. L'arc distingué sera l'arc de passage λ_1 de la α à construire.

2° Un anneau à un feuillet du type $[\lambda_2, \lambda_1]$, anneau circulaire de rayons e^{λ_2} et e^{λ_1} , placé sur le même plan que le 2° feuillet de l'anneau précédent et sur lequel on distingue l'arc $\widehat{\alpha\beta}$ du cercle frontière extérieur qui coïncide avec l'arc $\widehat{\alpha\beta}$ distingué sur la frontière intérieure de l'anneau précédent.

Nous collons ensemble les 2 anneaux précédents le long des arcs coïncidents $\alpha\beta$ distingués sur leurs frontières. La surface de Riemann σ obtenue possède tous les caractères reconnus à σ aux Numéros 8, 9, 10. Elle est triplement connexe, bornée extérieurement par le cercle $|\zeta| = e^{\lambda_0} = 1$ parcouru 2 fois de suite dans le sens trigonométrique (courbe γ_0); intérieurement a) par le cercle $|\zeta| = e^{\lambda_2}$ parcouru dans le sens des aiguilles d'une montre (courbe γ_2), enfin b) par une courbe fermée γ_1 circulaire, $|\zeta| = e^{\lambda_1}$, composée 1° d'un arc direct $\widehat{\beta}\alpha > 2\pi$ obtenu en retranchant sur le 2° feuillet l'arc distingué $\widehat{\alpha}\beta$ ou arc de passage λ_1 du cercle double que forme la frontière intérieure de l'anneau $[\lambda_1, \lambda_0]$ 2° d'un arc $\widehat{\alpha}\beta < 2\pi$ situé sur le 2° feuillet et obtenu en retranchant l'arc distingué $\widehat{\alpha}\beta$ du cercle simple qui forme la frontière extérieure de l'anneau $[\lambda_2, \lambda_1]$.

Lorsqu'on décrit γ_1 à partir de β dans le sens positif par rapport à la σ obtenue on rencontre d'abord l'arc direct $\widehat{\beta}\alpha$ du 1° précédent décrit dans le sens des aiguilles d'une montre, $V = \arg \zeta$ décroissant, ensuite l'arc $\widehat{\alpha}\widehat{\beta}$ du 2° précédent, décrit dans le sens de V croissants et qui est donc bien par rapport à l'arc $\widehat{\beta}\alpha$ précédent un arc de rebroussement. La ligne de croisement θ_1 θ_0 de l'anneau $[\lambda_1, \lambda_0]$ aborde donc γ_1 en un

point θ_1 de l'arc direct $\widehat{\beta\alpha}$ (1°) superposé à un point de l'arc de rebroussement (2°). Ce point θ_1 peut à priori être quelconque, mais on peut normaliser la construction en le prenant par exemple en α ou en β . La ligne de croisement s'arrête à ce point et ne se prolonge pas dans l'anneau adjacent $[\lambda_2, \lambda_1]$.

Une telle surface σ possède les propriétés caractéristiques nécessaires. 1° elle est morcelée par toute courbe fermée tracée sur elle puisqu'il en est ainsi de ses 2 anneaux constitutifs réunis par l'arc de passage; elle est donc de genre séro (schlichtartig).

- 2° Elle est triplement connexe.
- 3° Ses 2 frontières extrêmes γ_0 et γ_2 sont sans rebroussement et sa frontière intermédiaire en présente 2: en α et β .

Les théorèmes généraux sur la représentation conforme des aires de Riemann multiplement connexes (voir les références dans J. 1, N° 15) montrent qu'on peut déterminer une fonction holomorphe, uniforme et univalente du point ζ qui décrit σ , $z = \varphi(\zeta)$, telle que, lorsque ζ décrit σ , z décrive une aire plane $\mathfrak A$ triplement connexe limitée par 3 courbes fermées analytiques C_0 (extérieure), C_1 et C_2 intérieures.

Alors $\zeta = F(z) = e^{U+iV}$, fonction inverse de $\varphi(\zeta)$, fonction holomorphe et uniforme dans \mathfrak{A} , sera la fonction de \mathfrak{M} . de la Vallée Poussin) relative à l'aire \mathfrak{A} puisqu'elle en possède les propriétés caractéristiques de module et d'argument sur les frontières C_0 , C_1 , C_2 , à savoir $e^U = |F(z)| = e^{\lambda_0}$, e^{λ_1} , e^{λ_2} , respectivement sur C_0 , C_1 , C_2 , $V = \arg F(z)$ admettant les périodes $(+4\pi)$, (-2π) , (-2π) sur C_0 , C_1 , C_2 décrits dans le sens positif par rapport à \mathfrak{A} . On peut même supposer que C_0 , C_1 , C_2 sont des cercles. Les 2 points distincts \underline{a} et \underline{b} de C_1 correspondant par $z = \varphi(\zeta)$ aux points de rebroussement α et $\overline{\beta}$ de γ , seront évidemment des zéros simples de F'(z). On a bien, en définitive, reconstitué une α ayant toutes les propriétés requises et fourni en même temps une \mathfrak{A} présentant sur la frontière C_1 deux zéros simples de la dérivée F'(z).

12. — Image, dans \mathfrak{A} , de la décomposition de σ en feuillets. Il n'y a aucune difficulté pour l'anneau $[\lambda_2, \lambda_1]$ de σ qui, appartenant au 2° feuillet de σ , correspond à l'anneau $[\lambda_2, \lambda_1]$ de \mathfrak{A} , biunivoquement. Tous les points de la courbe C_1'' , frontière extérieure de $[\lambda_2, \lambda_1]$, correspondent à des points du 2° feuillet de σ , pour lesquels $V = \arg \zeta$ éprouve une variation totale de 2π .

L'anneau $[\lambda_1, \lambda_0]$ de σ est à 2 feuillets, raccordés ensemble le long de la ligne de croisement $\theta_1 \theta_0$ qui suit le rayon $V = \arg \theta_1$. L'image de l'anneau précédent sera l'anneau $[\lambda_1, \lambda_0]$ de \mathfrak{A} compris entre C_0 et $\overline{}$ Voir J. 1 N° 2.

 C_1' [$U = \lambda_1 + 0$]. L'image dans \mathfrak{A} de la ligne de croisement se compose de 2 arcs de courbe analytiques $V = V_1$ et $V = V_1 - 2\pi$ orthogonaux à C_0 et à C_1 , le 1^{er} respectivement aux points t_0 et t_1 , le second respectivement aux points t_0' et t_1' .

Lorsqu'on suit C_0 dans les sens positif par rapport à \mathfrak{A} , on aura $V_{t_0} = V_{t'_0} + 2\pi$ et lorsqu'on suit C_1 dans le sens positif par rapport à $[\lambda_1, \lambda_0]$ on aura $V_{t'_1} = V_{t_1} + 2\pi$. Enfin, le long de l'arc $t_1 t_0$, V reste constant, de même que le long de l'arc t_1' t_0' . La portion de courbe C_1' comprise entre t_1 et t_1' et contenant l'arc de passage λ_1 , est l'image de points de o du 2e feuillet puisque le long de l'arc de passage, C1 et C_1'' coïncident. Au contraire l'autre arc de C_1' entre t_1 et t_1' à savoir l'arc $\widehat{t_1'Mt_1}$ correspond à des points de γ_1 , du 1er feuillet. Les points t_1 et t_1' sont, à cause de la propriété reconnue à θ_1 sur γ_1 , des points de l'arc $\widehat{\underline{ba}}$ de C_1 , où $\frac{dU}{dn} > 0$ auxquels correspond encore un point t_1 " de l'arc $\widehat{\underline{ab}}$ où $\frac{dU}{du}$ < 0 tels que $F(t_1) = F(t_1') = F(t_1'') = \theta_1$ (points 1° du N° 7). De t_1' à t_1 le long de l'arc $\widetilde{t_1'}Mt_1$ de C_1' ou de C_1 (sens positif), V diminue de 2π : de t_1 à t_1' le long de C_1' (sens positif), V diminue de 2π : l'arc de passage λ_i est ainsi isolé sur C_i' par un arc $\widehat{t_i\,t_i'}$ correspondant à une variation (-2\pi) de V, arc image de la portion de frontière de l'anneau $[\lambda_1, \lambda_0]$ de σ située sur le 2^e feuillet. La portion de frontière de cet anneau située sur le 1er feuillet a pour image l'arc $t_1'Mt_1$ (sens positif) de C_1' ou C_1 . La partie de l'anneau $[\lambda_1, \lambda_0]$ de σ située sur le 2° feuillet a donc pour image la partie de l'anneau $[\lambda_1, \lambda_0]$ de \mathfrak{A} comprise entre les lignes $t_1 t_0$ et $t_1' t_0'$ et confinant à l'arc de passage λ_1 ; la partie de $[\lambda_1, \lambda_0]$ de σ située sur le 1^{er} feuillet aura pour image la partie de l'anneau $[\lambda_1, \lambda_0]$ de $\mathfrak A$ comprise entre les lignes t_1 t_0 et t_1' t_0' et ne confinant pas à l'arc de passage λ_1 , mais à l'arc $t_1'Mt_1$ (sens positif) de C_1' ou de C_1 . Nous pouvons noter encore que, si l'on suit par continuité C_1 dans le sens positif par rapport à \mathfrak{A} , V décroît de 2π de t_1 ' à t_1 , décroît encore jusqu'à a, puis croît de a à b, enfin décroît de b à t_i en sorte que, au passage par t_i , on aura $V_{t_1"} = V_{t_1} = V_{t'_1} - 2\pi.$

13. — Prolongement à 2 feuillets de σ dans l'intérieur de ses frontières γ_1 et γ_2 .

Imaginons d'abord que nous réunissions les points de l'arc de rebroussement $\widehat{\alpha\beta}$ de γ_1 (situés sur le 2° feuillet), aux points de l'arc direct $\beta \alpha$ de γ_1 situés sur le 2° feuillet et correspondant respectivement aux mêmes valeurs de V: ces derniers points constituent 2 arcs $\widehat{\theta_1} \alpha$ et $\widehat{\theta_1} \beta$ de longueur $< 2\pi$ qui, retranchés de l'arc direct $\widehat{\beta} \alpha$ de γ_1 , le réduisent à une circonférence du 1^{er} feuillet dont l'image dans \mathfrak{A} est l'arc $t_1' M t_1$ de t_1 sur lequel t_2 o. Adjoignons à t_2 , le long de cette circonférence, le disque circulaire bordé extérieurement par cette circonférence, ce disque étant adjoint au t_1 feuillet. Enfin, au t_2 ° feuillet de t_2 , adjoignons le disque circulaire bordé extérieurement par t_2 .

Après ces opérations de prolongement σ est devenue une surface de Riemann σ_1 à 2 feuillets, simplement connexe, limitée par la seule courbe γ_0 . Au point de vue de l'Analysis situs: la $I^{\text{ère}}$ des opérations précédentes conduit dans le plan z à identifier les arcs at_1 et at_1 " de C_1^* , ainsi que les arcs bt_1 ' et bt_1 ", en identifiant les points de ces arcs respectifs) qui, par continuité à partir de a ou de b donnent la même valeur à V (et par suite à F(z)); après quoi C_1 se réduit à une courbe fermée t_1 ' M t_1 munie de 2 prolongements: $\widehat{t_1}a$ (confondu avec $\widehat{t''}a$) et $\widehat{t_1}b$ (confondu avec t_1 " b).

La 2° opération consiste topologiquement à adjoindre à \mathfrak{A} l'aire intérieure à la courbe fermée précédente. La 3° opération consiste topologiquement à adjoindre à \mathfrak{A} l'aire intérieure à C_2 . La surface σ_1 est donc homéomorphe à l'intérieur de C_0 .

On peut passer de σ_i à σ .

1° en enlevant l'intérieur du cercle y2 du 2° feuillet.

2° en enlevant sur le 1° feuillet l'intérieur du cercle $|\zeta| = e^{\lambda_1}$ et fendant le 2° feuillet le long de ce cercle depuis θ_1 jusqu'à α d'un côté, depuis θ_1 jusqu'à β de l'autre.

14. — Représentation conforme canonique de σ_1 et σ . σ_1 est une surface simplement connexe à 2 feuillets bornée extérieurement par γ_0 et possédant en θ_1 un point de ramification simple. C'est un cas particulier, le plus simple possible, de la surface σ_1 envisagée au N° 19 de mon précédent mémoire (J. I pages 129 et suivantès). Les prolongements de σ_1 à l'extérieur de γ_0 pourront se faire, soit comme au N° 21, soit comme au N° 22 de ce mémoire et tout ce qu'on a dit aux N° 23, 24, 25, d'une part, aux numéros 28, 29, 30, s'applique ici.

⁹⁾ On voit qu'alors les voisinages dans \mathcal{A} de 2 tels points correspondants se prolongent mutuellement, en sorte que F(z) ne cesse pas d'être holomorphe au passage par chacun des 2 arcs doubles ouverts obtenus après identification des arcs $\underline{at_1}$ et $\underline{at_1}''$ d'une part, $\underline{bt_1}'$ et $\underline{bt_1}''$ d'autre part.

A. Avec le 1er prolongement (J. I No 21) il existe un polynome du 2º degré 10)

$$P_0(u) = (u - u_1) (u - u_2)$$

tel que l'équation $\zeta = P_0(u)$ définisse $u = \pi_0(\zeta)$, holomorphe et univalente sur σ_1 , et fournisse de σ_1 une représentation conforme sur une aire D_1 du plan u limitée par une cassinienne analytique K_0 d'équation $|P_0(u)| = 1$, entourant les 2 zéros u_1 et u_2 de $P_0(u)$. Au point θ_1 correspondra, dans le plan u, un point unique $u_0 = \frac{u_1 + u_2}{2}$, où l'on aura $P_0'(u_0) = 0$ et ce point sera intérieur à D_1 . Par un déplacement dans le plan u on peut supposer $u_0 = 0$, u_1 et u_2 réels, $u_1 > 0$.

A la courbe γ_1' passant par θ_1 , correspondrait la cassinienne entière à point double 11) $|P_0(u)| = e^{\lambda_1}$, la boucle droite venant du premier feuillet, la boucle gauche du 2° feuillet. Mais γ1 est une courbe fermée tracée sur σ_i et ne coïncidant avec γ_i' que sur la partie fournie par l'arc direct $\widehat{\beta \alpha}$ de γ_1 . Il faudra donc, pour obtenir la courbe K_1 correspondant à γ_1 par $u = \pi_0(\zeta)$, tronquer la cassinienne $|P_0(u)| = e^{\lambda_1}$ aux 2 points A et B correspondant à α et β de γ_1 ou de ${\gamma_1}'$, et, d'une part n'en conserver que les 2 arcs \widehat{OA} et \widehat{OB} correspondant aux arcs $\widehat{\theta_1 \alpha}$ $\hat{\theta}_1 \hat{\beta}$ de γ_1 situés sur le 2° feuillet, d'autre part conserver la boucle droite correspondant à l'arc de y₁ situé sur le 1° feuillet. Lorsque y₁ est décrite par ζ dans le sens positif par rapport à σ , le point $u = \pi_0(\zeta)$ décrit la cassinienne tronquée de la manière suivante: si ζ part de β, décrit l'arc direct $\widehat{\beta}\alpha$ puis l'arc de rebroussement $\widehat{\alpha}\widehat{\beta}$, u part de B, décrit l'arc tronqué BO, puis la boucle droite, puis l'arc tronqué OA de la cassinienne tronquée (cet ensemble \widehat{BO} , boucle droite, \widehat{OA} , correspond à l'arc direct $\widehat{oldsymbol{eta}}\alpha$), puis l'arc \widehat{AO} et enfin l'arc \widehat{OB} (cet ensemble \widehat{AOB} correspond à l'arc de rebroussement $\widehat{\alpha\beta}$). Nous appellerons K_1 , cette cassinienne tronquée correspondant à γ_1 . Enfin, à γ_2 , correspondra une cassinienne courbe fermée analytique K_2 d'équation $|P_0(u)| = e^{\lambda_2}$ intérieure à la boucle gauche de la cassinienne $|P_0(u)| = e^{\lambda_1}$ et entourant le zéro u_2 intérieur à cette boucle.

$$P(u) = P_0 (ue^{i\theta} + b).$$

 $^{^{10}}$) Tous les polynomes en u, du 2° degré, et de 1^{er} coefficient égal à 1 en module, ayant cette propriété sont compris dans la formule

¹¹⁾ $e^{\lambda_1} = |P_0(0)| = -u_1 u_2 = u_2^2$.

De même que σ se déduit de σ_1 :

1° en enlevant l'intérieur du cercle γ₂ du 2° feuillet.

2° en enlevant sur le 1^{er} feuillet l'intérieur du cercle $|\zeta| = e^{\lambda_1}$ et fendant le 2° feuillet le long de ce cercle suivant les arcs $\widehat{\theta_1 \alpha}$ et $\widehat{\theta_1 \beta}$;

De même D, décrit par $u = \pi_0(\zeta)$ lorsque ζ décrit σ , se déduit de D_1 : 1° en enlevant l'intérieur de la courbe K_2 précédente.

2° en enlevant l'intérieur de la boucle droite de la cassinienne tronquée $K_1[|P_0(u)| = e^{\lambda_1}]$ et fendant l'aire obtenue suivant les arcs \widehat{OA} et \widehat{OB} de la partie tronquée de cette cassinienne.

On voit que, par $P_0(u) = F(z)$, on obtient une fonction $u = \pi_0[F(z)]$, holomorphe et univalente dans \mathfrak{A} et sur ses frontières sauf en t_1 , t_1' , t_1'' , et qui transforme $\mathfrak A$ dans l'aire D limitée par les cassiniennes $K_{\scriptscriptstyle 0}$, $K_{\scriptscriptstyle 1}$, K_2 , la cassinienne moyenne K_1 étant tronquée en A et B correspondant aux zéros \underline{a} et \underline{b} de F'(z). L'image de l'arc de passage λ_1 serait l'arc \overrightarrow{AB} enlevé à la boucle gauche de la cassinienne, en sorte que le domaine doublement connexe compris entre K_2 et la boucle gauche de K_1 est l'image du domaine $\lambda_2 < U < \lambda_1$ ou de l'anneau $[\lambda_2, \lambda_1]$ du domaine \mathfrak{A} . Aux points t_1 , t_1' , t_1'' , du N° 12, correspond le point u = 0 et la fonction $u = \pi_0[F(z)]$ a, en chacun de ces 3 points, un point critique algébrique simple. En normalisant au N^o II le choix de θ_1 en α ou en β , on voit que l'un des arcs tronqués \widehat{OA} ou \widehat{OB} disparaît ipso facto, et le nombre des paramètres essentiels dont dépend l'aire D est bien réduit à 3p-3=3, car p=2 (à savoir les nombres réels u_2 , λ_2 et le nombre réel fixant la position de B sur la boucle gauche de la cassinienne K_1) et ce nombre correspond exactement au nombre des modules de l'aire A.

B. Avec le 2° prolongement il existe 12) une fraction rationnelle du 2° degré à cercle fondamental

$$R_0(v) = \frac{v - a_1}{1 - \overline{a}_1 v} \cdot \frac{v - a_2}{1 - \overline{a}_2 v}, \left[|a_1| < 1, |a_2| < 1 \right]$$

telle que l'équation $\zeta = R_0(v)$ définisse $v = \varrho_0(\zeta)$ holomorphe et univalente sur σ_1 et fournisse de σ_1 une représentation conforme sur le cercle D_1' défini par |v| < I.

¹²⁾ Toutes les autres sont de la forme $R(v) = R_0 \left(\frac{v - a}{1 - \bar{a} v} e^{i\omega} \right)$, a constante complexe de module < 1, ω constante réelle quelconque.

Aux courbes γ_2 et γ_1 correspondront, par $v = \varrho_0(\zeta)$, 2 cassiniennes généralisées K_2' et K_1' intérieures à D_1' , d'équations respectives $|R_0(v)| =$ e^{λ_2} , $|R_0(v)| = e^{\lambda_1}$. K_1' est une cassinienne tronquée tout à fait analogue \dot{a} K_1 ; elle possède un point double que, par un déplacement non euclidien convenable appliqué à v, on peut supposer à l'origine, les 2 zéros a_1 et a_2 étant alors réels et symétriques par rapport à O, $(a_1 > 0)$. K_1' comprend la boucle droite de la cassinienne (1° feuillet de σ_1) et deux arcs $\widehat{OA'}$ et $\widehat{OB'}$ de la boucle gauche obtenus en enlevant de cette boucle l'arc $\widehat{A'B'}$ correspondant à l'arc de passage λ_i de σ (2° feuillet). L'équation de K_1' est $|R_0(v)| = e^{\lambda_1} = |R_0(0)| = a_1^2$. K_2' est une cassinienne généralisée analytique fermée entourant a₂ et intérieure à la boucle gauche de K_1' . Enfin à γ_0 correspond le cercle fondamental |v|=1 que nous appelons K_0' . L'aire D', image de σ par $v = \rho_0(\zeta)$, et par suite de \mathfrak{A} par $v = \varrho_0[F(z)]$, est bornée par K_0' , K_1' , K_2' . Lorsqu'on normalise le choix de θ_1 comme en A. précédent on réduit à 3 le nombre des paramètres essentiels dont dépend D'.

§ 2. F'(z) a un zéro double sur C_1

15. — Après les explications détaillées qui précédent il nous suffira d'indiquer rapidement les modifications que présente le cas actuel, cas limite du précédent où a et b de C1 sont venus se confondre en a (par suite α et β de γ_1 , confondus en α). L'arc de rebroussement de γ_1 est ici nul. Les points α , β et θ_1 sont confondus. Rien à changer à ce qui précède en ce qui concerne les anneaux $[\lambda_1, \lambda_0]$ et $[\lambda_2, \lambda_1]$ en dehors des conséquences du fait précédent. γ_1 se compose donc du cercle $|\zeta| = e^{\lambda_1}$ du 1er feuillet décrit dans le sens des aiguilles d'une montre. Le domaine $\lambda_2 < U < \lambda_1$ est limité d'une part par C_2 , d'autre part par l'arc de passage λ_1 qui est une courbe fermée analytique intérieure à \mathfrak{A} , émanée du point a et revenant au point a [zéro double de F'(s)] après avoir entouré C_2 ; en a, les branches de cette courbe font, avec les 2 demi-tangentes à C_2 des angles de 60°. Cet arc de passage λ_1 est ce que devient ici la courbe fermée C_1 ", $[U = \lambda_0 - 0]$, car l'arc de C_1 associé à l'arc de passage est ici nul. La courbe C_1' , $[U = \lambda_1 + 0]$ se compose de C_1 et de l'arc de passage λ_1 , elle admet un point double en a. Le prolongement de σ à l'intérieur de γ_2 se fait comme précédemment; à l'intérieur de γ_1 il est plus simple que dans le \S 1, il suffit comme pour γ_2 , d'ajoindre au 1er feuillet de σ le disque circulaire intérieur à y_1 . On obtient une σ_1 du type de la σ_1 envisagée au § 1,

ayant un point de ramification simple en $\alpha = F(a)$. La représentation canonique par $u = \pi_0(\zeta)$, fonction inverse de $\zeta = P_0(u)$, $P_0(u)$ polynome ayant les caractères envisagés au N° 14 (A), fera correspondre à γ_0 la cassinienne fermée K_0 [$|P_0(u)| = 1$] entourant les 2 zéros u_1 et u_2 de P_0 $[u_1 > 0, u_2 = -u_1]$; elle fera correspondre à γ_1 la boucle de droite K_1 de la cassinienne $|P_0(u)| = e^{\lambda_1} = u_1^2$, ayant O pour point double, la boucle de gauche étant l'image de l'arc de passage λ, de σ; elle fera correspondre à γ_2 l'ovale de gauche K_2 de la cassinienne $|P_0(u)| = e^{\lambda_2}$: cet ovale est intérieur à la boucle gauche de la cassinienne $|P_0(u)| = e^{\lambda_1}$ et il entoure le zéro u_2 . Le domaine canonique D sur lequel est représenté conformément \mathfrak{A} par $u = \pi_0 [F(z)]$, ou $F(z) = P_0(u)$, est borné par K_0 , K_1 , K_2 . La fonction de représentation $u = \pi_0 [F(z)]$, holomorphe dans $\mathfrak A$ et sur ses contours, sauf en a, présente en a un point critique algébrique simple, au voisinage duquel on a $u = (z - a)^{\frac{3}{2}} H(z)$, la fonction H(z) étant holomorphe et \neq 0 pour z = a [on avait, en a, $\zeta - \alpha = F(z) - \alpha = (z - a)^3 F_1(z)$, avec $F_1(a) \neq 0$ et d'autre part, en α , $\pi_0(\zeta) = (\zeta - \alpha)^{\frac{1}{2}} \text{ Hol } (\zeta), \text{ avec Hol } (\alpha) \neq 0$.

En adoptant le 2° prolongement de σ_1 , on aurait, en modifiant les conclusions du N° 14 (B) comme on vient de modifier celles du N° 14 (A), une aire canonique D' limitée d'une part par le cercle fondamental K_0' , |v|=1; d'autre part, par la boucle droite K_1' de la cassinienne généralisée à point double O d'équation $|R_0(v)|=R_0(0)=a_1^2=e^{\lambda_1}$, entourant le zéro a_1 de la fraction à cercle fondamental R_0 ; enfin par l'ovale de gauche K_2' de la cassinienne généralisée d'équation $|R_0(v)|=e^{\lambda_2}$, intérieure à la boucle gauche de la cassinienne dont K_1' est la boucle droite, et entourant le zéro a_2 de R_0 . La fonction $v=\varrho_0[F(z)]$, qui représente $\mathfrak A$ sur D', est holomorphe et univalente dans $\mathfrak A$ et sur ses contours, sauf en a, où elle a un point critique algébrique simple au voisinage duquel on a $v=(z-a)^{\frac{3}{2}}H(z)$ la fonction H(z) étant holomorphe et $\neq 0$ pour z=a.

(Reçu le 29 janvier 1932)