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Sur une manière de différencier les fonctions
cycliques d'une forme donnée

par P. LambosSY, Fribourg.

Introduction

Le présent travail fait directement suite aux théorèmes 4, 5 et 6 du
Chapitre II du mémoire de S. Bays qui paraît dans ce même fascicule.

Il s'agissait du théorème suivant, énoncé par S. Bays dans son second
mémoire sur les systèmes cycliques de triples de Steiner1): Deux fonctions

cycliques de n variables xt, x2, xn ^possédant le groupe cyclique

\fx1x2 xn)\, n •=. p ou pm, p premier] équivalentes, se déduisent l'une
de l'autre par une substitution métacyclique.

Nous avons d'abord démontré le théorème pour le cas n= p. Il en
résulte que pour décider, dans le cas n p, si deux fonctions cycliques
données de n variables, de nature quelconque, sont équivalentes ou non,
il suffit d'appliquer à Tune d'elles les substitutions métacycliques, faciles
à former, et de voir si l'autre fonction se trouve parmi les fonctions
déduites.

Cette démonstration forme le contenu des théorèmes 4, 5, et 6 du
mémoire de S. Bays nommés plus haut. On y trouvera également en
notes et dans les trois premiers § du même chapitre II2) tout ce qu'i]
serait nécessaire de fixer ou de rappeler pour lire aisément cette étude.

Nous avons cherché ensuite à étendre le théorème au cas où n est

la puissa?ice dun nombre premier, et nous avons reconnu qu'il n'est pas
vrai dans ce cas, du moins pour des fonctions cycliques de nature
quelconque. En d'autres termes, le groupe métacyclique peut toujours servir
à découvrir des fonctions cycliques équivalentes à l'une d'entre elles,
mais certaines de ces fonctions peuvent nous échapper.

Pour former, dans le cas n=pm, deux fonctions cycliques, équivalentes,

qui ne se déduisent pas l'une de l'autre par une substitution
métacyclique, nous devons nous appuyer sur des conclusions que nous
obtiendrons à la fin du Chapitre II de ce mémoire. Pour n pm, dès

*) 5. Bays, Recherche des systèmes cycliques de triples de Steiner
différents pour N premier (ou puissance de nombre premier) de la forme
6/i-f- 1. Journal de Math., t. 2, 1923, p. 75.

2) Voir aussi les § 1 et 5 de l'Avant-propos pp. 295 et 299 du même mémoire de 5. Bays,
dans le vol. précédent des Commentarii Math. Helv. fasc. 4.
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que n gr 8, le groupe métacyclique contient un ou plusieurs groupes
semblables au groupe cyclique H. Désignons par Hx un tel groupe, et
formons une fonction q> qui soit invariable par toutes les substitutions
du groupe métacyclique Mf et par celles-là seulement.3) çp est évidemment

cyclique. Soit g une substitution qui transforme Hx en H; a n'est

pas métacyclique. En effectuant g sur <p on obtient la fonction équivalente

ç?j, cyclique puisque son groupe g~1 M g contient G~~'1H1G=^Hf
mais non susceptible d'être déduite de cp par une substitution
métacyclique, puisqu'une telle substitution ne change pas ç>.

Nous pouvons cependant élargir le théorème cité, en adjoignant aux
substitutions métacycliques quelques substitutions construites d'une
manière spéciale.

Nous avons désigné ces substitutions spéciales par aT\ g7\ et nous
avons été conduits à opérer à l'aide du complexe (M désigne le groupe
métacyclique) :

R) M + a-1 M+a-1 M+
qui doit fournir toutes les fonctions cycliques équivalentes à une fonction
cyclique donnée q?.

Le complexe R) remplace alors le groupe métacyclique de la méthode
de S. Bays. Toutefois son application n'est légitime que sous certaines
conditions que doit remplir le groupe de <p. Nous les énoncerons en

temps opportun.
L'existence des groupes semblables au groupe cyclique H joue un

grand rôle dans ce qui va suivre, et il est utile de savoir former ces

groupes. C'est pourquoi, laissant pour le moment les fonctions cycliques,
nous allons faire une étude préliminaire sur le groupe métacyclique.

Chapitre premier

1, — Proposons-nous de rechercher les groupes semblables à H contenus

dans le groupe métacyclique.

Soit n une puissance d'un nombre premier, n=pm, m > i, le nombre

premier / pouvant être pair ou impair. Certaines conclusions cependant
seront différentes suivant que c'est l'un ou l'autre cas ; nous aurons soin
de faire la distinction.

3) On peut toujours former des fonctions qui soient invariables par les seules substitutions
d'un groupe donné. Voir E. NettO, Substitutionentheorie, p. 27, théor. IV.

70



s (i 2 3 n) est une substitution circulaire du «c ordre; le groupe
cyclique est constitué par

H= [s, s2, s* s" i].
Parmi ces substitutions, les seules qui soient circulaires du n* ordre

sont celles de la forme sk, où k est premier à n.
Pour qu'il existe, dans le groupe métacyclique, un groupe semblable

à H, il faut et il suffit qu'on y puisse trouver une substitution circulaire
du n* ordre, différente des sk dont nous venons de parler.

Supposons que \x, <x-\-$x\ soit semblable à s; cherchons à quelles
conditions doivent satisfaire a, p, n pour qu'une telle substitution existe.
On voit déjà que p doit être premier à n et différent de i.

Voici le résultat auquel nous arriverons: Toutes les substitutions
circulaires du ne ordre du groupe mêtacyclique s'obtiennent en prenant pour
a un nombre quelconque premier a n, et pour p un nombre de la forme
p / -j-p r (r quelconque), si p impair, ou de la forme p / -J- ^r,
(r quelconque), si p 2.

On déduit qu'un groupe semblable à H existe dès que n ==r 8.4)

Pour qu'une substitution \x> a+ (3*1 soit formée d'un seul cycle de

n éléments, il est nécessaire que la suite

1) o, a, a(

constitue un système complet de restes (mod n). Cette condition nécessaire

est d'ailleurs suffisante.
Cette condition est équivalente aux deux suivantes:

2) (a, n) 1

2') o, 1,

forme un système complet de restes mod n.

Tout revient à étudier la condition 2') ; elle entraîne les suivantes

que nous notons 3), 4), 5), 6) et 7).

3) Z^=i+p-hpa-|- +P«-1eeo (mod«).

Sinon, l'un des nombres 2'), autre que le premier, serait congru à

o (mod n).

Si n est premier, il n'y a pas de groupe semblable à H dans le groupe métacyclique.
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4) 6 étant le plus petit exposant tel que J3^= I (mod n), 8 est diviseur de n.

Multiplions par {3 la congruence 3) et ajoutons 1

!+P + P2+ ••• +$M-l + $n=i (modn)

En tenant compte de 3) nous obtenons

4') p* 1 (mod n)

Dès que j$ est premier à n (ce que nous supposons), le théorème de

Fermât est applicable

f> (*) 1 (mod n).

Soit S le plus petit exposant pour lequel on a

pô 1 (mod n).

S est toujours diviseur de 0 (n) ; mais si nous voulons que 4') soit vérifiée,

il faut que 5 soit également diviseur de n.

On peut se demander s'il est toujours possible de trouver des nombres

P tels que leurs h soient diviseurs de n.

Si p 2, on a

6 est toujours diviseur de n. Si p est impair

n ~pm, 0 (n) =pM~l [p -— 1)

S doit être une puissance de p. Les seuls S a priori possibles sont

Un théorème de la Théorie des nombres montre qu'effectivement à

chacun de ces nombres correspondent certains p.5)

5) /= i+p-j-P2+ + P§-1 o (mod 8)

5) se déduit de 3) en observant que n est multiple de 8. Posons

n rih. Puisque p§ 1 (mod n), L peut s'écrire

=0 (mod/.).

8) Serret: Algèbre Supérieure, 2m» éd., t. II, p. 85, théor. II.
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Chaque parenthèse contient S termes et il y a «' parenthèses.

6)

Pour

L n' (î -
/= i-\

/'

le voir, observons

f-p-
-H

que

- :+Ê
s£ premier

l) o (mod #'
[ o (mod 6)

<zz^£ ^ — —-
0

P2+ -f p*-i (i<r<«'
est un terme de la suite 2') autre que O; on a donc

1 + P + P2 + -•• + P^"1 =N° (mod n)

r/=|EO (mod ^) (i^r<»')
mais rl^o (mod ;^) pour r -= n''.

On conclut que /' — est premier avec nf -rr0 0

7) p 1 (mod n1)

Car on a:

pô — î (p— î) (î + P4~ ••• H-P8""1)^0 (mod n)

(P— i)/eeo (mod «)

(P— i)/'eeo (mod »')

et comme (/', ;/) î

P — î eeo (mod #f)

2. — Ces cinq conséquences 3), 4), 5), 6), 7) sont impliquées dans la

condition 2'). Inversement, si on a

4) 6 étant le plus petit exposant tel que p$ 1 (mod #), S est diviseur

de n.

5) /= _|_p_[_p2_|_ _|_pô-i o (mod 6)

6) (/', nr) 1 avec /'=—, n' =-- la condition 2') se trouve être

satisfaite.
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En effet, écrivons pour simplifier

tous les nombres 2') peuvent être rangés dans le tableau suivant:

I, a, b, c, /,
I -f~ /, & —j— /, b —|— /, c —J- /, 2 /,

A ••• 3A S colonnes
8) [

#' lignes

y-1)1,
Pour montrer que les « nombres du tableau sont incongrus entre eux

(mod n), prenons-en deux appartenant à la même colonne. S'ils étaient

congrus entre eux, nous aurions une congruence telle que

rl~o (mod n) r<Cri
r /' o (mod ri)

Elle n'est pas satisfaite par r < n\ puisque (/', ri) =: 1. Prenons ensuite

deux nombres appartenant à deux colonnes différentes. Si on avait, p. ex.

a-\- lx~c -\-ly (mod ri)
on aurait

l(x — y) c — a (mod ri)

Or (/, ri) S, et deux nombres tels que c et a ont une différence c — a

qui n'est pas divisible par 5, comme il est aisé de voir.

Si on avait

t — « p^(i+p4- +p5-») o (mod S)

on aurait aussi

i-f P+ +ps-» o (mod S).

Nous pouvons utiliser 7) c'est-à-dire (5 — 1=0 (mod n') puisqu'elle
découle des prémisses 4), 5), 6). On déduit:

(p —1) (i-|-p-f- H-p^-^so (mod n'i)
$s — 1=0 (mod »)

ce qui n'a pas lieu puisque .S < S.
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Il est donc démontré que tous les nombres du tableau, c'est-à-dire
tous les nombres 2') forment un système complet de restes (mod n).

3. — Sur la forme de p nous avons un premier renseignement fourni
par 7)

P 1 (mod n')

Si p est impair, n pm, S peut prendre les valeurs, /, p2, pm~l,

et par suite n' =— contient le facteur p. En d'autres termes, p est de

la forme

Si p 2, n 2m, il n'y a pas de racines primitives (excepté pour
0 (n) 2m~* n

n 4),6) S atteint au plus la valeur —— 2W~"2. Donc—
contient au moins le facteur 4. En d'autres termes, p est de la forme

Nous nous proposons de démontrer maintenant que tous les nombres

P=i-j-4r ou p=i-|-/r, selon que le nombre premier p est pair
ou impair, r désignant un nombre quelconque, satisfont aux conditions
A), 5), 6).

4. — L'expression

lorsque x est la puissance d'un nombre premier, donne lieu au théorème

préliminaire suivant, qui a une forme double:
A. Si x xoï>* (xQ non divisible par p), et p / -\-pr (r quelconque),

l est divisible par p* mais non par une puissance supérieure.
B. Si x x0 2* (x0 impair), et p / -j- ^ r (r quelconque), l est divisible

par 2a, mais non par une puissance supérieure.
Occupons-nous d'abord de la première forme:

A. On a, ;=.+,+ ¦¦¦+»-¦ f5i <

1 !.2 ' 1.2.3 r '

Le premier terme est divisible par p% et le quotient est xQ. Il faut

montrer que tous les autres termes sont divisibles par /a et que le

6) Serret, Al g. Su p., t. II, p. 52.
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quotient contient le facteur p. Laissons donc le premier terme ; la forme
générale des autres est:

x(x—i) (x—2) (x — J+i) t ^} LAL1LZ ps-i rs-\ 2<s^zxI .2 s

Puisque l'expression

(x— 1) (x—2) (x —
1.2 (s— I)

représente un nombre entier K, le terme général peut s'écrire

9) Ps fs~~l
s

est entier; posons s=p7q, où q ne contient plus le facteur/.
s est en effet une variable qui peut devenir multiple de p. Si s est

premier avec p, alors y o.

Voyons comment la fraction doit se simplifier. Puisque x =^0/a,
s

x K
s=.py q, q doit être diviseur de x0 K. Posons —— Kf {K' entier).

L'expression 9) s'écrit

v Ps~x r*~x ou bien p* K'p*"1-? r*"1.
P7

Nous aurons prouvé que cette expression est divisible par /a et que
le quotient contient le facteur p, si nous prouvons que

s — 1 — yE^ri, ou bien s ^ y -j- 2.

Si y o, la chose est claire. Supposons donc y 1. Nous aurons
certainement

10) PrÇ Y-\~2

si nous avons py ^ y -j- 2

ou encore, puisque p ^ 3, si nous avons

Cette relation effectivement a lieu. Ainsi / se présente sous la forme

/ =/a [x0 -[- multiple de p].
Il est donc prouvé que / est divisible par p*, mais non par une
puissance supérieure.
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B. Pour établir la seconde forme du théorème, remarquons que tout
ce qui vient d'être dit dans l'article A jusqu'à la formule 10) est vrai
quel que soit le nombre premier p. Imaginons qu'on ait fait /n2 dans
toutes les formules. 10) deviendra

Pour y 2, q^zi, et pour y I, q > I, cette relation est évidemment
vérifiée, et pour ces valeurs le terme 9) est divisible par 2.

Il y a doute pour y 1, q 1, c'est-à-dire pour s 2. Reprenons donc
la formule 9) en y introduisant s — 2, p =2 2.

x K t2lr\ ou bien xKr.
2

Si l'on retourne à la signification de K, on verra que K est impair.
Le terme est donc divisible par 2a, mais le quotient sera pair seulement
si r est pair lui-même. Avec cette supposition, on obtient

/ 2a [x0 -f- nombre pair].

Cela veut dire que / est divisible par 2a, mais non par une puissance
supérieure. Si r est impair, / est divisible par une puissance supérieure
à 2a. Enfin les nombres p qu'on obtient en faisant p 2, r pair, dans

la formule p 1 -\-pr, sont obtenus avec (3 1 -\- 4r en prenant pour
r une valeur quelconque.

5. La démonstration que tout p 1 -f~4r> pour n 2m, satisfait aux
conditions 4), 5), 6) du n° 2 est maintenant aisée. Premièrement p est

premier à n, et son 8, étant diviseur de 0 (n) 2m~\ est diviseur de n.

Secondement, 8 étant une puissance de 2, 8 2a, l'expression
1 ~+~ P H— ••• P0"1 est divisible par 8 2a, mais non par une puissance

j J g I _L ftô-1
supérieure. C'est dire que /' := r^———- est premier avec

0

n' ^= 2--a.
2a

La démonstration analogue pour p 1 -f / r, n —pm, exige que l'on
étudie premièrement le plus petit exposant S pour lequel on a pâ =1 1

(mod n). Il nous faut établir que 8 est une puissance de /.
Supposons donc r donné dans p 1 -\- pr et essayons de trouver la

plus petite solution x de la congruence

11) (i-f-/r)*=i (mod n).
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Tout d'abord on doit exclure x i ; cette solution correspond àr o,
P i, valeur écartée, il) peut s'écrire

/V2 -f- -\-pxr*~o (mod pm)

[t x(x — i) X (X — i) (X 2) o o t
1

xA - Lpr-\ — -/V2 + A-p*-1 r*-1 \~o
(mod pm~x).

Soit pa la plus haute puissance de p contenue comme facteur dans r ;

on a: a^Sm — 2.

x(x—i) x (x—i) (x—2)
12) *+ i/?- + ;

' I • 2 ^ ' I -2-3 -f 1

(mod /*-1-«).

D'après le théorème préliminaire, un nombre quelconque x x^p* (x0

non divisible par/) est solution de 12) si a^im— 1 —a. La solution
la plus petite de la congruence 12), et aussi de la congruence 11), qui
lui est équivalente, est évidemment S =.pm-x~-a. Cela étant, / — 1 -{- {$ + .••
-f- [Î&-1 est divisible par 6 /*«-1-*, mais non par une puissance

supérieure. C'est dire que /' ° L" — est premier avec nf —-
S 5

pm-l-a f
II est donc prouvé que tout nombre p 1 +/ r vérifie les conditions

4), 5), 6).

6. — Lorsque n~pm ou n 2m, le nombre des groupes semblables à

H contenus dans tout diviseur mêtacyclique est respectivement une puissance

de p ou une puissance de 2.
Pour plus de généralité nous prenons un diviseur mêtacyclique J-, la

proposition est aussi vraie pour le groupe mêtacyclique complet.
Soient H> Hx, H%, les groupes semblables a H contenus dans J,

et N leur nombre. Dénombrons les substitutions circulaires du n* ordre
contenues dans % Dans chaque H il y a 0 (n) substitutions circulaires
d'ordre n. Comme les différents H n'ont entre eux aucune substitution
circulaire commune, il y a donc dans J N.0 (n) substitutions circulaires.

Ces substitutions sont de la forme | x, a + p x \ a peut prendre 0 (n)
valeurs (les nombres premiers à n) et les prend réellement. A une valeur
admissible pour p (donnant lieu à une substitution circulaire contenue
dans jf) correspondent 0 {n) substitutions circulaires qu'on obtient en
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donnant à a 0 (n) valeurs. Donc le nombre des valeurs admissibles

pour p est

N9[n)
<P(n)

Désignons ces valeurs par

13) 1, plf k,...
Les substitutions

14) 1, \x, p^|, \xy fax\,
sont également dans y. On obtient p. ex. \x, pt x| à partir de \x, a + Pj #1

en multipliant cette dernière par \x, n — a + x \ • Leur nombre est N.
Il est utile de remarquer que y peut contenir d'autres \x, p ^|, mais
alors p n'est pas de la forme 1 -\-pr ou 1 -f- 4^.

Nous pouvons montrer que les substitutions 14) forment un groupe,
qui par suite est contenu dans y. Formons le produit de deux d'entre
elles

s= \x> Pi Ml
s est dans y. Cette substitution multipliée par \x, 1 -j- x \ fournira une
substitution de y qui sera circulaire si pj p2 est de la forme 1 A- pr ou
1 ~f"4r. C'est en effet le cas, parce que le produit de deux nombres
de la forme 1 -\-pr est aussi de la forme \ -\-pr. Alors ^ p2 figure
dans 13), et enfin s est dans 14). Donc les substitutions 14) forment
un groupe.

A ce groupe correspond un groupe isomorphe formé par l'ensemble
des nombres 13) pris mod n; il a le même ordre. 13) est un sous-

groupe du groupe abélien total qu'on obtient en prenant tous les p de

la forme 1 -\~ pr qui sont au nombre de pm~\ ou tous les p de la forme
1 -f- 4r qui sont au nombre de 2m~2.

Donc N est une puissance de p ou de 2.

7, — Formation des groupes H. En utilisant les nombres 13) formons
les substitutions circulaires s, st, s2, et les groupes correspondants
H, Hlf H2,

s | xy 1 + x I H [ s, s2, ]
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Nous formons ainsi tous les groupes semblables à H contenus dans
le diviseur métacyclique ; pour le voir, il suffit de montrer qu'ils sont
tous différents.

Deux substitutions quelconques prises parmi s, sx, s2, sont bien
différentes, mais s'il arrivait que Tune fût une puissance de l'autre, que
l'on eût p. ex. s2 ^1^ >

^es groupes Hx et H2 seraient identiques. Cela
n'a pas lieu, car si l'on forme les puissances successives de sl9 la
constante a, qui est égale à i dans sl9 deviendra successivement égale à

et, d'après la propriété de px, ne deviendra égale à i qu'à la (n-{- i)e
puissance.

Exemple: Voici pour n 32 g les 3 groupes H contenus dans le

groupe métacyclique (nous n'écrirons que les substitutions circulaires).
De p 1 -f 3 r on déduit: p 1, ^ 4, p2 7.

H
s X, l -\- X

Xy 2+X
x, 4 + x
x, S+x
x} 7-i-x
x} S+x

si
s 2

st4

st*
sl*
sts

X,

r
x,
X,

x,
x,

I -
5n
4-
8n
7 ~

2 -i

VAX
- 7 x
-4x
- 7x

2 '"

s2±~
s 5

^27

s2s

x,
x,
x,
X,

x,
x,

i -f- 7 x
8 + 4.r
4+7-^
2 -j- 4X
7 + 7*
5 -\- 4x

Désignons par cj1 et o2 deux substitutions capables de transformer H
respectivement en Hx et H2 ; on les obtient comme suit :

'¦=(;) 12345678 9\
153486729/ l3j
123456789

3426759 (285)

Les substitutions telles que ot et a2 joueront un grand rôle dans la

suite.

Chapitre deuxième

8, — Lorsque le nombre des variables est n pm ou n 2m, le

problème de la recherche des fonctions cycliques équivalentes à l'une
d'entre elles est moins simple que dans le cas n=p. Les substitutions
métacycliques peuvent toujours être utilisées, mais elles ne peuvent suf-
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fire, du moins en général. Toutefois le même groupe métacyclique peut
servir à construire d'autres substitutions qui, concuremment avec les

précédentes, peuvent servir parfois à découvrir toutes les fonctions
cycliques équivalentes. Nous allons former ces substitutions et en même

temps chercher des critères qui fixeront des cas où cette méthode est

applicable.
Soit G le groupe d'une fonction cyclique q? de n variables {n z=.pm

ou 2W); H le groupe cyclique; J le groupe formé de toutes les
substitutions de G qui sont métacycliques. En général J n'est qu'un diviseur
du groupe métacyclique complet M. J contient, à côté de H, des groupes
semblables à H que nous désignerons par Hx, H2,

Soit g1 une substitution qui transforme H en Hx

Comme on sait, les substitutions du complexe M ot, et celles-là seulement

ont cette propriété.
g~1 effectuée sur çp donne une fonction cyclique <p1. En effet, le groupe

de (pt est ot G o~x lequel contient ot Hx g~a H. Les substitutions
g~1 M donnent également des fonctions cycliques.

Cela nous amène à examiner les complexes:

R) M, G'1 M, g-1 M,
où M est le groupe métacyclique et ot- une substitution qui transforme
H en H{ de J. Si nous voulons obtenir toutes les fonctions cycliques
équivalentes à q> en utilisant les substitutions R), il nous faut établir le
théorème suivant:

Théorème I. La condition nécessaire et suffisante pour que toutes les

fonctions cycliques équivalentes à q> puissent se déduire de <p par les
substitutions R) est que tous les groupes H de G puissent se déduire de ceux
de J en transformant ceux-ci par des substitutions de G.

Supposons, en premier lieu, que les //",- de G puissent être obtenus
en transformant ceux de J par des substitutions de G. Pour entrer dans
les détails, soit

I) 7/, H\ H\
un premier système conjugué obtenu en transformant H par toutes les

substitutions de G. Il est possible que dans cette liste figure un ou
plusieurs groupes appartenant à y, autre que H, Soit Hx un groupe
semblable à H contenu dans y et qui ne fasse pas partie de la liste I).
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Transformons Hx par toutes les substitutions de G; nous obtenons un
second système conjugué

II) Ht, Htff H"',

Soit H2 un groupe semblable à H contenu dans J et qui n'ait paru ni
dans I) ni dans II). On obtient de même

III) H2y H%\ H2'> •••

Ainsi de suite, jusqu'à épuisement des Hf de y. En vertu de notre
hypothèse, nous obtiendrons de cette façon tous les groupes semblables
à H contenus dans G.

Parmi les substitutions alt 62, déjà définies, nous ne retenons que
celles qui transforment H en H1, i/2 > • • • lesquels groupes sont les têtes
des listes I), II), III), Ces substitutions at- ne sont pas contenues dans

G. On notera que les substitutions Mot ont comme ot la propriété de

transformer H en Hl9 et aucune d'elles n'est contenue dans G parce
qu'aucune substitution de G ne transforme H en Hj.

Appliquons maintenant à <p toutes les substitutions métacycliques. On
obtient diverses fonctions cycliques

Appliquons a^"1 à q> ; nous obtenons une fonction cyclique (px ; en
effectuant sur cp1 toutes les substitutions métacycliques, nous obtenons une
deuxième liste de fonctions cycliques.

II') <pl9 ç?/, 99/',

De même, en appliquant o~l à cp nous obtenons ç>2, puis une 3e liste

III') <p2, <p2', <p2",

Ainsi de suite;7) nous prétendons que toutes les fonctions cycliques
équivalentes à <p ont été obtenues.

En effet soit <pa une fonction cyclique équivalente à 99, d'ailleurs
quelconque, et soit x une substitution qui change <p en <pa. Le groupe de

(pa est x"1 Gx. Puisque <pa est cyclique^ son groupe contient H\ par
suite H est provenu par transformation par x d'un des groupes
semblables à H contenus dans G.

7) Les substitutions que nous appliquons sont justement les substitutions R),
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Si H est provenu de H, alors x est métacyclique, et (pa fait partie
de la liste I').

Si H est provenu d'un groupe du système conjugué I), autre que H,
de H1 par exemple, x n'est pas métacyclique. Mais si s' de G change

H en H\ la substitution /t qui, exactement comme x, change <p en cpa

est métacyclique. Cela prouve que, dans ce cas encore, cpa fait partie
de I').

Si H est provenu de H1, alors x est de la forme {m g^"1 m désignant
une substitution métacyclique déterminée. On peut écrire x o~x m~x

g~x m1'. Mais alors <pa a été obtenue et figure dans la liste II').
Si H provient d'un groupe du système conjugué II), autre que H1,

de Hxf p. ex., désignons par sx' une substitution de G qui transforme
Hx en Hx'. Alors st'x aura sur q> le même effet que x. Mais st\ change
H1 en H-, comme on vient de le voir, stfz est de la forme g~1 m1\ et

par conséquent <pa a été obtenue dans la liste II').
En poursuivant le raisonnement on démontre ainsi qu'il n'y a pas

d'autres fonctions cycliques équivalentes à q> que celles des listes I'), II'),....
Supposons, en second lieu, qu'on ne puisse pas déduire tous les H de

G en transformant ceux de y par les substitutions de G.

On peut commencer par effectuer sur cp toutes les substitutions R),
et les fonctions cycliques obtenues se rangent en un certain nombre de
listes I'), II'), comme on l'a vu. Mais il faut montrer que des fonctions

cycliques nous échapperont.
Soit Ha un groupe semblable à H contenu dans G, non déductible

de ceux de y par les substitutions de G, et x une substitution qui
transforme H en Ha. Par hypothèse, Ha ne fait donc pas partie des listes

I), II), On a:

x ne fait pas partie de G. Effectuons sur cp la substitution x""1 Nous
obtenons <pa qui est cyclique parce que son groupe x G x~l contient
xHax~l H. Gx~x est le complexe de toutes les substitutions qui
changent ç? en cpa

cpa n'a pas été obtenue à l'aide des substitutions R) ; car si q>a figurait
parmi les listes I'), II'), nous aurions une égalité telle que

GTl m=.g x"1 ou bien m~l <j/= x^""1

{g est une certaine substitution de G). Or m~x at- transforme H en Ht-;
comme x transforme H en Ha, il s'ensuivrait qu'on pourrait trouver dans
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G une substitution g~x transformant Ha en Hi ; et aussi une substitution

g transformant Ht en Ha Mais cela est contraire à l'hypothèse.

9. — Par ce théorème général le problème des fonctions cycliques se

trouve ramené à un problème de la théorie des groupes, puisque l'ap-
plication des substitutions R) donnera toutes les fonctions cycliques
équivalentes à çp si le groupe de çp remplit certaines conditions.

Malheureusement la détermination pratique du groupe des substitutions
qui n'altèrent pas une fonction donnée est laborieuse, et la recherche
des propriétés de ce groupe plus difficile encore. C'est pourquoi nous
devons supposer que le groupe G de 99 n'est pas connu; et nous
dirigerons notre étude vers la recherche de critères, qui utilisent les données
immédiates de la fonction. Parmi ces données immédiates, mentionnons,
outre le nombre des variables, le groupe des substitutions métacycliques
contenues dans G. Ce groupe, dont l'ordre est relativement petit, est

toujours facile à découvrir.

Nous allons donc rechercher des critères fixant des cas assez étendus

où les substitutions R) sont suffisantes. Car, contrairement à ce qui a
lieu dans le cas n p, ces substitutions R) ne peuvent suffire dans tous
les cas possibles.

Nous traiterons séparément les cas n pm et n 2m, et nous
commencerons par le cas où le nombre des variables est n 2m.

10. — Sur les fonctions de degré n 2m. Soit 99 une fonction cyclique
de degré n — 2m, dont le groupe est G. Comme précédemment, H est
le groupe cyclique, et J le diviseur métacyclique contenu dans G.

L'ordre de J est une puissance de 2. En effet, l'ordre du groupe
métacyclique est n. 0 (n) 2m. 2m-~l 22m~1f et l'ordre de J est un diviseur

de 22*-1.

J contient en général, à côté de H, d'autres groupes semblables à H,
et le nombre de ces groupes H est une puissance de 2 (n° 6).

Il se peut qu'il existe dans G, en dehors de % des substitutions
permutables à y. Désignons par yf le groupe formé par toutes les
substitutions de G permutables à y-, ce sont donc les substitutions s qui ont
la propriété : s-1 ys y. y contient y.

Théorème IL Si dans G on ne trouve en dehors de y aucune substitution

> permutable a y, tous les groupes semblables à H contenus dans G

peuvent se déduire de ceux de y par des substitutions de G. Et par suite
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toutes les fonctions cycliques équivalentes à <p peuvent se déduire de (p

par les substitutions K).
La condition imposée revient à dire Jf J. Soit %p1 une fonction

invariable par toutes les substitutions de y et par celles-là seulement.

Quand on effectue sur ipx toutes les substitutions de G, cette fonction
acquiert un certain nombre de valeurs

k est égal à l'indice de y dans G* Nous désignerons par s%, s%,

sk des substitutions de G qui changent \p1 en \p2, ^3, \pk
Effectuons sur les fonctions 15) toutes les substitutions de % II est

clair que yjx ne change pas par cela. On peut se demander si une autre
valeur, p. ex. ^;a, est invariable par toutes les substitutions de y.
Supposons qu'il en soit ainsi. Alors le groupe de ya, qui est s~x ys^, est

identique à y.

ç-l cy c>

Cela étant contraire à notre hypothèse, on conclut que tpt est la seule

fonction de la liste 15) qui ne change pas par y.
Sous Faction de y, y>2 prend un certain nombre de valeurs parmi

celles de 15); ces valeurs sont reliées transitivement les unes aux autres,
relativement aux substitutions de y, et constituent un système dont le

nombre des fonctions est un diviseur de Tordre de y, c'est-à-dire une

puissance de 2. Si yjt- ne figure pas dans le système précédent, cette
fonction donne lieu à un autre système. Ainsi de suite. Puisque, à part
tpt qui constitue un système à elle seule, les fonctions de chaque système
sont au nombre de 2a 2Ô, ; on a

k 1 + 2a -f 2b + (a?£o, b?£o,
ou bien

k= \-\-2h

Maintenant soit H' un groupe semblable à H contenu dans G, d'ailleurs
quelconque. Effectuons sur la liste 15) les substitutions de H\ Ces \-\-2h
fonctions vont de nouveau s'organiser en systèmes, et le nombre de \p

par système et un diviseur de l'ordre de H9, donc une puissance de 2.

On aura donc une égalité telle que :

I -f- 2 h 2a -j- 2â + • • • •
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Cette égalité ne peut exister que si l'un au moins des exposants a, b,

est nul, autrement dit si un système ne contient qu'une fonction. Appelons
xp% cette fonction, qui en conséquence est invariable par Hf. Le groupe
de %pa est s-1 Js^. On conclut que H' est le transformé par sa de
Pun des groupes H% de J.

Il n'y a donc, en dehors de y, en fait de groupes semblables à //, que
ceux qu'on obtient en transformant ceux de J par les substitutions de G.

11. — Remarque. On aurait pu, semble-t-il, donner à l'énoncé de ce
critère une plus grande généralité. Si, en effet, au lieu de la condition
exigée qui revient à dire y % on avait seulement supposé sur?" > y
que l'indice de y dans y fût impair, la démonstration n'aurait été
modifiée qu'en ce que, au lieu de £ i -\-2k> on aurait eu k i -\- 2 k,
le nombre impair i désignant justement l'indice de y dans y. Et alors
la conclusion énoncée dans le critère subsisterait.

Toutefois ce cas ne se présente pas, car nous montrerons que l'ordre
de y est une puissance de 2, et par suite l'indice de y dans y est toujours
pair, à moins qu'il ne se réduise à l'unité.

D'autre part, si l'on suppose que l'indice en question est pair, la
démonstration, reprise suivant la voie que nous avons adoptée, n'aboutit
pas. Effectivement, la proposition contenue dans le critère ne peut être
étendue à ce cas, du moins si l'on n'introduit pas de condition
supplémentaire; car on peut donner des exemples où cette proposition,
supposée ainsi généralisée, serait en défaut. Ainsi pour n 16, on peut
former un groupe y pour lequel yf > y-, y contient des substitutions
circulaires du nc ordre qui n'appartiennent pas à y. Si maintenant on
prend G y', il est clair qu'on ne peut obtenir tous les groupes H de
G en transformant ceux de y par des substitutions de G.

Voici comment on montre que l'ordre de y' est une puissance de 2.

Si l'ordre de y* était 2apb gc oùp, ç, sont des nombres premiers
différents, nous aurions dans yr, d'après un théorème de Sylow,8) un

groupe K d'ordre pb Ce groupe K est d'ordre impair, et il ne contient,
à part l'unité, que des substitutions dont l'ordre est une puissance de p,
donc impair.

8) L. SylOW, Théorèmes sur les substitutions, Math. Ann., 1872, Bd. 5,
Théor. I, p. 586.
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Soient maintenant

Hy Hx, H2,

tous les groupes semblables à H contenus dans J\ nous savons que
leur nombre N est une puissance de 2 (n° 6). Transformons ces groupes
par toutes les substitutions de K\ les H sont simplement permutés entre
eux. Nous affirmons qu'aucun des H ne reste invariant par toutes les

substitutions de K.
Premièrement, H doit changer par les substitutions de K; car sinon

K serait contenu dans Jy comme formé de substitutions métacycliques.
Ce n'est pas possible, parce que les sous-groupes de J sont d'ordre pair.

Un H% quelconque doit aussi changer, car si s de K avait la propriété

s-1 Ha s Hw

alors transformons cette équation par une substitution appropriée qui
transforme H^ en H. Par cette transformation s devient s', et l'on a

s'-lHs' =H
s' serait métacyclique. Mais cela n'est pas possible parce que s', qui
est semblable à s, est d'ordre impair.

Par les substitutions de K, les groupes H s'organisent en systèmes,
et le nombre des H par système est un diviseur de l'ordre de K, donc

une puissance de p

a, a', a", étant différents de zéro, on déduit que N est un multiple
de p. Ce résultat étant en contradiction avec la proposition démontrée
selon laquelle N est une puissance de 2, nous devons rejeter l'hypothèse

et conclure que l'ordre de y ne contient aucun des facteurs
impairs /, g, L'ordre de y est une puissance de 2.

12. — Procédé pratique. La démonstration du théorème général au
n° 8 donne en même temps la méthode pratique qu'il faut suivre pour
déduire de <p toutes les fonctions cycliques équivalentes. Il y a cependant

quelques remarques à faire touchant cette méthode elle-même et
la manière de reconnaître si la condition exigée par le théorème est

remplie.
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Les divers H de G peuvent, comme on Ta vu, être répartis en divers
systèmes conjugués :

I)
II)
III)

H,

H,,

H',

• Ht'.

H",
H",
Ht\

H, H1, H2, ••• sont les têtes des systèmes conjugués, et font partie de

y. Comme nous Pavons dit, il est possible que dans chaque système il
y ait plusieurs H de y.

Contrairement à la notation du n° 8, nous désignerons par ol9 g2,
des substitutions qui transforment H respectivement en tous les Hi de

y sans exception. Ces substitutions seront réparties en trois classes, que
nous noterons (ja, 03, g~.

aa transforme H en Hiy tête d'un système conjugué quelconque (Les

ot, g2, du n° 8 sont des (Xa).

(73 transforme H en HJ appartenant au premier système.

Gy transforme H en H?, n'appartenant pas au premier système et
n'étant pas tête d'un système.

Comme nous l'avons expliqué au n° 7, g1 g2 se forment au moyen
des substitutions circulaires s \x, 1-\-x\, Si~\x, \-\-$ix\ qui par
leurs puissances engendrent les divers Hi du groupe métacyclique. On
obtient les (3/ au moyen de la formule j3 1 -f- 4 r. Pour distinguer les

Si qui appartiennent à y des autres, on les essaie sur la fonction <p:

celles qui ne changent pas 99 appartiennent à y.
A l'aide de Gt, o2, ainsi formées, on déduit les fonctions cycliques

équivalentes à <p selon les principes exposés au n° 8. Le fait que ces
substitutions ne correspondent pas uniquement aux Hi qui peuvent être

pris comme têtes des systèmes conjugués n'est d'aucune importance; il
arrivera simplement que des listes de fonctions cycliques se répéteront ;

on ne conservera naturellement que celles qui sont différentes. C'est ce

que nous allons montrer.
Imaginons qu'on ait pu séparer les aa et qu'on ait déduit au moyen

d'elles toutes les fonctions cycliques équivalentes à 99. Etudions maintenant

le résultat que donne a"1.
Ce sera une fonction obtenue dans la première liste, ç/ p. ex., et en

effectuant sur 99' toutes les substitutions métacycliques, on obtiendra
une liste de fonctions coïncidant avec la première, obtenue avec g~1

sauf l'ordre.
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En effet, g$ change H en HJ du premier système conjugué. Soit s
une substitution de G qui transforme H en //>*. On peut poser s=ntG#,
où m est une substitution métacyclique déterminée. En formant la liste
relative à (7S, nous sommes appelés à effectuer sur (p la substitution
o~l w1, et puisque celle-ci est dans G, nous devons voir apparaître ç>

dans cette liste qui ne sera autre que F).

Inversement, si en opérant avec o> nous voyons apparaître (p, cela

prouve qu'une certaine substitution que nous pouvons représenter par
ojl m~~l est dans G. m Ok est aussi dans G et par suite transforme H
en un ffl du premier système; cette propriété appartient aussi à ok et

par suite a^ (73 c'est-à-dire est de la 2e classe.

Etudions enfin le résultat que donne g~x sur (p. Ce sera l'apparition
d'une liste de fonctions autre que la première, cry change H en HJi et
nous supposons que Hj fait partie du système dont H{ est la tête. Si
s est une substitution de G qui change H{ en //{•, on peut poser

m g^
s*1 a"1

Or a"1 m"1 est une substitution qu'on se propose d'effectuer sur 99;

mais s~l ne change pas (p, et s~l change <p en ç?a déjà obtenue puisque

cra est de la première classe. Ainsi <pa réapparaîtra, de même que la

liste entière à laquelle <pa appartient. Inversement, si par application de

a on voit apparaître une liste déjà obtenue et autre que la première,
on a g Gy.

En résumé, le procédé pratique lui-même, en même temps qu'il fournit
des fonctions cycliques, fournit l'une des répartitions possibles des g en

trois classes: aa, (7B, g~ ce qui sera nécessaire pour nous assurer de la
validité du procédé tout entier, comme nous allons le montrer.

13. — II est nécessaire de s'assurer si la condition exigée par le

théorème est bien remplie, c'est-à-dire si G ne contient aucune substitution

permutable à % sinon on ne serait pas sûr d'avoir trouvé toutes
les fonctions cycliques équivalentes à (p.

Une telle substitution, si elle existe, transforme nécessairement H en

l'un ou l'autre des groupes semblables à H contenus dans % Les
substitutions Gi que nous avons formées, ont justement cette propriété. Si

gx transforme H en H1 toutes les substitutions du complexe MGt, où

M désigne le groupe métacyclique, font de même, et celles-là seulement.
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Par conséquent les substitutions dont nous parlons sont à chercher parmi
les trois classes de complexes

A) Mo^ B) Moi, C) Moy.

Nous pouvons écarter d'emblée les complexes A et C, car ils n'ont
aucune substitution commune avec G. En effet, si s était commune à

A et G, ou s. C et G, on pourrait par une substitution de G passer de

H à un Hi non contenu dans le premier système conjugué.

Il reste donc à examiner les complexes B, et si, dans un cas
particulier, ces complexes n'existent pas, la discussion est close, et Ton a

r %

Supposons qu'il existe des complexes B ; chacun d'eux contient
toujours des substitutions qui font partie de G, et nous devons reconnaître
si ces dernières transforment y en lui-même. Cette recherche se
simplifie par le fait qu'il suffit d'examiner les #a elles-mêmes, car nous
allons voir que les complexes Mgq se partagent entre ceux dont toutes
les substitutions transforment J en lui-même, et ceux dont aucune
substitution n'a cette propriété.

Tout d'abord si a0 fait partie d'un complexe M 6$ ce même complexe
peut être représenté par M a0. Pour le voir, remarquons que l'on a :

a0 m On On peut écrire 3foa Mm~l. m Oa Mm"1 a0 MoQ.

Ensuite, si a0 du complexe Mcfa transforme J en lui-même, toutes
les substitutions du complexe ont la même propriété. En effet, puisque
M o$ Mo0, la chose est claire si l'on observe que toute substitution
métacyclique transforme en lui-même le diviseur J.

On saura donc si un complexe transforme y en lui-même en faisant
l'essai avec o^ et voici comment:

On dresse le tableau des substitutions métacycliques fondamentales
contenues dans y

16) \x, f£*\, \X, fi'x\,

Une étude plus approfondie des substitutions a montre que si on a

or1 y 6$ y, ces substitutions 16), après transformation par o^9 sont
simplement permutées entre elles. Si au contraire, l'une ou l'autre est
transformée en une substitution qui ne fait pas partie de 16), alors on
n'a pas o~l yo$ y.
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14. — Nous nous proposons, pour illustrer cette théorie, de former
deux exemples de fonctions cycliques, en choisissant le nombre des
variables n 16.

L'expression

O -f- X2 Xs Xé —(— —f-

se compose de 16 termes; nous pouvons, en n'écrivant que les indices,
représenter cette somme 5 symboliquement par la colonne suivante:9)

I
2

3

5'
6'

2

3

4

6'
T

3

4
5

i
2

Dans chaque terme 123,234, Tordre des chiffres ne doit pas
être changé. On remarquera que la colonne toute entière s'écrit
aisément en partant de la tête de colonne 123, et en effectuant sur 123
toutes les puissances de la substitution circulaire (1 2 3 6'); de sorte

que nous pouvons nous contenter d'écrire le premier terme 123 qui,

par suite, représentera toute la colonne. L'expression 6* peut donc s'écrire
d'une manière très concise comme suit:

S— 1 2 3

La première fonction que nous considérons se compose de 64 termes

répartis en quatre colonnes

99= 123 -f- 161' + 103 f 14'if.

C'est une fonction cyclique. Cherchons le diviseur métacyclique qui
appartient à (p.

Le groupe métacyclique de 16 éléments est défini par les substitutions
fondamentales suivantes :

m*=\x, çx\, m*-=.\x
9) Les indices io, 11, 12, 16 seront notés plus commodément o, 1', 2', 6'.

91



Il est facile de voir que, des 7 substitutions écrites, seules les trois
dernières: m, m2, nfî ne changent pas la valeur de cp, et par suite
appartiennent à y. L'ordre de y est la demi de Tordre du groupe méta-

cyclique. Il n'est pas nécessaire d'examiner si le groupe de cp contient
autre chose que des substitutions métacycliques. En résumé, jf est

engendré par

s !x, 1 -\-x|, m |x, $x\.

y contient, indépendamment de H, trois groupes semblables à H, que
nous désignerons par Hx, i/2 > ^3 • ^n effe^, m>, m*, m^ sont aptes à

former des substitutions circulaires du 16e ordre par multiplication par
\x, i-\-x\i puisque les constantes 5, 9, 13 sont de la forme 1 -\-4r.
Formons les substitutions s19 s2, ss qui par leurs puissances donnent

Hl9 H2, H%, et enfin formons olf a2, a3.

trr1 Hax HX ol (26) (35') (42') (53') (71') (04') g~>

o7> Ho2 H2 a, (20) (31') (64') (/s') a;1
0-1 Ha% H3 as (24') (37) (42') (53') (60) (l's') a7l

En nous conformant à la théorie, cherchons toutes les fonctions
cycliques équivalentes à cp. Pour cela, on effectue sur cp toutes les
substitutions métacycliques. Nous obtenons une nouvelle fonction cp'

et nous avons une première liste

I) cp, cp'.

Effectuons a~l sur cp ; nous obtenons une nouvelle fonction cpj :

Ti l65' + 127 + 14Y + 107.

Cette dernière donne lieu, par les substitutions métacycliques, à une
2e liste :

II) cpj, cpj'.
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Ainsi de suite. On a le tableau suivant:

II)
III)
IV)

par a~l
par a~l
par a~l

«Pi»

<Ps»

¦Pi'

9%

<P3

avec <p 123 4~ 161' 4~ IO3 + 14'1' 9' l47 + i6f5' -+- I2'7 4~ ^5'
9l 165' 4- 127 4- 14Y + 107 9/ 16V + 143 4- 181' 4- I2'3
cp2 j= 101' 4- I4'3 + 121' 4- 163 cp2' I2'5' + 187 + 145' -f 16'7

cp3 I4'7 4- 105' 4- 167 4- 125' cp3' 183 + 12V 4- 16'3 4- 141'

D'après la théorie, nous pouvons affirmer que toutes les fonctions cycliques
équivalentes à cp ont été obtenues, parce que l'application de gJ1, g~1,

gj1 nous a donné chaque fois une liste nouvelle.

La deuxième fonction que nous prenons pour exemple est simplement
la somme

Cette fonction cyclique possède le même diviseur métacyclique J que
la fonction ç. En effet, d'une part, my m2, m* n'altèrent ni ç ni ç1§
D'autre part, une autre substitution métacyclique p. ex. \x, 3x\, change
cette fonction en xpr cpf -\- y^, et l'on peut constater que yjr n'a aucun
terme commun avec yj.

Essayons, comme précédemment, d'appliquer sur cp 4" 9i les
substitutions métacycliques et les substitutions a~l, 6~x, (T71. On a le tableau
suivant :

1) ÇQ
—I— Çù* ÇQ —I— ÇD^

II) par o~1 ççi 4~ 9> 9i' 4~ 9'

îiij pd.r o2 cp2 ~i 93 > 92 i~ 93

IV) par o~l cps —(— cp2 93'4~92^

Déjà la 2e liste n'est que la répétition de la ière. D'après la théorie,
puisque ce fait se présente, nous ne pouvons être sûrs d'avoir obtenu
toutes les fonctions cycliques équivalentes à 9 4~ 9i > clue s* Gi ne trans*
forme pas en lui-même le diviseur y. Or c'est le contraire qui a lieu:
si on transforme par ax les substitutions m, m2, m3, ces dernières sont

simplement permutées entre elles, et l'on a 071 Jot=-%
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Il est donc possible que des fonctions cycliques équivalentes à cp -f- cpt

nous aient échappé. Effectivement, la fonction cp -j- cp3 est cyclique et en
outre équivalente à cp -j- cpt ; elle se déduit de cette dernière par la
substitution (3S'i'7) (42') (64').

15. — Sur les fonctions cycliques de degré n~pm. Nous allons donner

un critère analogue à celui du n° 10 lorsque le nombre des variables
est n=pm. H, J, M, et G ont la même signification que plus haut, et
sont relatifs à une certaine fonction cp.

Considérons les différents diviseurs niètacycliques contenus dans y et

ayons spécialement en vue ceux qui ont pour ordre une puissance de

p. En général il y en a, puisque H et M ont pour ordres respectivement

pm etp2m~l (p — 1). Appelons y* le diviseur métacyclique dont l'ordre
pa est le plus élevé. S'il s'en trouvait plusieurs qui eussent cet ordre
maximum, nous choisirions l'un d'eux ; mais nous montrerons qu'il n'y
en a qu'un. L'ordre de toutes les substitutions de y*, différentes de la
substitution unité, est une puissance de p.

J ne contient, en dehors de y*, aucune substitution dont l'ordre est

une puissance de /. Car s'il y en avait une s, le diviseur métacyclique
{y*, *}t puisque s est permutable à y*, aurait pour ordre l'ordre de

y* multiplié par l'exposant de la plus petite puissance de s qui figure
dans y*. Cet ordre serait une puissance de p supérieure à pa, ce qui
contredit ce que nous avons supposé sur y*.

y ne contient aucun groupe de même ordre pa que y*, ou d?ordre pa*

supérieur, si ce n'est y* lui-même. Car s'il existait un tel groupe
différent de y*, nous aurions, en dehors de y*, une substitution ayant
pour ordre une puissance de p.

Comme ce diviseur y* joue ici un certain rôle, il est utile de savoir
former les substitutions \x, $x\ qui le déterminent Les valeurs de p qui
peuvent convenir sont celles qui sont telles que le plus petit exposant
8 pour lequel

est une puissance de p. Tous les p qui répondent à ce caractère satisfont

à la congruence

§ 1 (mod p).
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En dehors de y*, mais à Pintérieur de % on trouve des substitutions
\x9 $x\ mais ici (3 ne peut avoir la forme sus-indiquée, car Tordre de

ces substitutions serait une puissance de p. On reconnaît qu'une
substitution particulière \x, $x\ fait partie dey ou de y* en l'essayant sur
la fonction ç : elle la laisse invariante.

A toute substitution \x, px\ de y* correspond un groupe //a semblable
à H, complètement contenu dans y*.

Occupons-nous maintenant du théorème ; nous en donnerons l'énoncé
après la démonstration.

Soit %px une fonction invariable par les substitutions de y et par celles-
là seulement. Soient

toutes les valeurs qu'elle prend quand on lui applique toutes les
substitutions de G. k est égal à l'indice de y dans G.

Effectuons sur les fonctions 17) toutes les substitutions de y*. yjt
demeure évidemment invariable. Cherchons si une autre fonction, p. ex.

Va.* fauî se déduit de ipt par sa de G) reste invariable par toutes les

substitutions dey*. S'il en est ainsi, le groupe de ya, qui est s~l y^a,
contient y*. Mais le seul groupe semblable à y* contenu dans J est

y* lui-même. On aurait donc

La question posée conduit donc à celle-ci: Le groupe G contient-il, en
dehors de % des substitutions permutables à y*?

Désignons par Jf le groupe formé de toutes les substitutions de G

permutables à y*. Donc y'-1 y* y' y*. Décomposons Jf suivant y
en ses divers complexes

s2 transforme H en un certain H% de y* ; s~x Hs2 H2. Tout le
complexe y ^2 a la même propriété, et aucune autre substitution de G n'a
cette propriété.

^3 et par conséquent y^3 transforme H en un certain Hz de y*. Ainsi
de suite. Chaque complexe est caractérisé par le fait qu'il transforme H
en un certain Ht de y*.
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Cela dit, G peut être décomposé comme suit:

G 7+ Js* + Jst + + Jsr + ?sr+1 + + Jsk

et nous pouvons supposer que dans la liste des fonctions 17), yi2, ip%,

\pk ont été obtenues à partir de yjt précisément au moyen de s2, s$9 ...,sk.
Maintenant il est facile de voir que par l'effet des substitutions de y*,

les fonctions suivantes

y>l9 xp29 y)r

resteront invariables.

Pour ip19 cela est clair. Examinons \p2. Le groupe de yj2 est sjl Js2;
ce groupe contient s~% y* s2 y*. Il en est de même de toutes les

autres fonctions jusqu'à xpr ; mais yr+i n'a plus cette propriété.
On conclut que le nombre des fonctions yj qui restent invariables par

y* est r, et ce nombre r est égal a l'indice de J dans y'.
Par les substitutions de y* les autres fonctions 17) se groupent en

systèmes, et le nombre des fonctions par système est un diviseur de

l'ordre de y*, donc une puissance de/; on a donc

k r-\-hp.

Soit maintenant Hf un groupe semblable à H contenu dans G,

n'importe lequel. Effectuons encore une fois sur les fonctions 17) les
substitutions de H*. Ces k fonctions se groupent en de nouveaux systèmes,
et le nombre des fonctions par système est une puissance de p. On a
done une égalité telle que

Si r n'est pas divisible par p, une telle égalité peut subsister seulement

si l'un des exposants, p. ex. a est nul ; autrement dit seulement
si l'une des fonctions 17), p. ex. ya, est invariable par toutes les
substitutions de //'. Or le groupe de \pa est sjl Jsa. On conclut que tout
groupe Hf est le transformé par une substitution de G d'un groupe
semblable à H contenu dans % Cette dernière conclusion, jointe au
théorème du n° 8 nous permet de dire :
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Théorème. Si l'indice de J dans Jf n'est pas divisible par p, toutes
les fonctions cycliques équivalentes à cp sont obtenues par Papplication des

substitutions R)*

Mais si r est divisible par p, notre conclusion n'est plus légitime ; et
effectivement on peut former des exemples où les divers H{ de G ne

peuvent être tous obtenus en transformant ceux de y par des substitutions

de G, et où par conséquent les substitutions R) ne donnent pas
toutes les fonctions cycliques équivalentes à cp.

16. —Procédé pratique. Il nous reste à montrer: i°.—comment on
construit et applique les substitutions R) ; 2°. — comment on s'assure que
l'indice de y dans J' n'est pas divisible par /.

Nous serons brefs, car les explications et les démonstrations des
nos 12 et 13 relatives au cas n 2m peuvent être répétées ici presque
textuellement.

On part de la fonction étudiée cp et on applique à cp toutes les
substitutions métacycliques. On obtient ainsi une première liste de fonctions
équivalentes.

I') cp- *>'. ?"> ¦•• •

La plus simple manière de procéder consiste à chercher une racine

primitive (3 pour le modulepm, puis à appliquer \x, $x\ et ses puissances
à la fonction cp. Toute substitution \x, $x\ qui laisse cp invariable
appartient à y.

Parmi les substitutions \xf $x\ de y il s'en trouve de plus
remarquables pour lesquelles p 1 (mod p). A chacune de ces dernières

correspond une autre \x, 1 -\-$x\ qui par ses puissances engendre un

groupe Hi de J.

Après avoir formé toutes les substitutions circulaires \x9 1 -|- p x |, on
construit les at- qui leur correspondent et qui transforment H en tous
les groupes semblables à H contenus dans y.

En appliquant g~x à ç on obtient une fonction cyclique <jp1# En
effectuant, exactement comme pour <y, toutes les substitutions métacycliques,
on obtient une deuxième liste

IF) ep!, cp/, cp/',
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On procède d'une manière pareille avec g~* 071 et Ton a pour
iinir autant de listes qu'il y a de o/. C'est en cela que consiste la
construction et l'application des substitutions R).

La seconde question posée est relative à l'indice r de y dans y. C'est
seulement dans le cas où cet indice n'est pas divisible par p que l'on
sera sûr d'avoir obtenu toutes les fonctions cycliques équivalentes à cp.

Il peut arriver que certaines listes II'), III'), ne soient que la
répétition de la première F), peut-être avec un autre ordre des fonctions

cp, <?', cp",

Envisageons les ot- qui ont donné lieu à de telles listes; ce sont,
d'après la notation du n° 12, des a$. Nous ne retiendrons de ces <jp que
celles qui ont la propriété de transformer y* en lui-même.

Cette vérification se fait aisément: on dresse le tableau des \x, $x\ de

y*; ces substitutions sont alors simplement permutées entre elles, si la

propriété signalée a lieu.

Pour finir, après élimination, il nous reste un nombre N de cjp ; alors
N"-f- / est Pindice cherché de J dans J1\

En effet, prenons l'un des <jo, disons a2. Au cas où a2 n'appartiendrait
pas à G, le complexe Mo2 contiendrait certainement une substitution

s2 de G (n° 13); alors Js2 renferme toutes les substitutions de G qui
transforment y* en lui-même et H en H2 • On voit aisément qu'à chacune
de ces ao correspond un complexe Js£ de la décomposition de J'
suivant y que nous avons considérée au n° 15 ; on voit aussi que r N-\-i.

17. — Pour terminer, nous donnerons un exemple concret, afin de

prouver surtout que, si nos démonstrations [concernant les substitutions

R) sont longues et délicates, l'application de ces substitutions à un cas

pratique est au contraire très facile.

La fonction cp que nous considérons a un nombre de variables égal
à 38 27. On fera bien de se reporter au n° 14 où un exemple
semblable a été donné, et nous emploierons les mêmes notations abrégées
qu'alors. Le symbole

S=zi 2 3

98



représente une somme de 27 termes, et chacun s'obtient à partir du
précédent par la substitution cyclique s (1234...). Nous imaginerons
ces termes écrits en colonne, et le terme principal 123 est la tête de
colonne.

Appliquons à la colonne cyclique 123 toutes les substitutions méta-

cycliques qu'on peut former avec 27 éléments. Il suffit évidemment

d'appliquer les substitutions \x, $x\ où jî prend les 18 valeurs qui sont
les nombres premiers à n 27 et inférieurs à n. Ces substitutions sont
toutes les puissances de

x, 2x\.

Si Ton fait la somme des 18 colonnes obtenues, on obtient la fonction

cp que nous nous proposons d'étudier.10)

4. i7»6"-{-16V +14"°' + iof 2f +12'3" +13*8' +18'8 +185' +15'2.

Nous allons chercher toutes Ie3 fonctions cycliques équivalentes à <p,

en employant à cet effet les substitutions R). Tout d'abord les
substitutions métacycliques laissent ç invariable, et notre première liste
contient l'unique fonction ç.

Formons les a,-. Les diverses valeurs de fî qui sont de la forme 1 -\-pr
sont les suivantes:

18) 4, 7, 10, 13, 16, 19, 22, 25.

Avec chacune de ces valeurs on peut construire une substitution
circulaire \xf i-f-P-^l- Par exemple

sx \x,i

et l'on a:

(65'4")

10) Les chiffres accentués représentent les nombres supérieurs à 9: ainsi 9', of, Ier. 2*
représentent 19, 20, 21, 22. — D'après la théorie, une substitution métacyclique p. ex. | je, Sx\
change une fonction cyclique en une fonction cyclique. Le terme 123 deviendra 86' 4" ; ce
terme appartient à la colonne cyclique dont la tête est 197'. Ainsi, sans plus de calcul, nous
pouvons dire que la colonne 123 est devenue 197'.

99



De même a2 se construit à l'aide de s2—\x, i-\~7x\. Nous n'écrirons

pas ces divers a,- dans le détail ; nous les désignerons par

at, a2. a3, a4, a5, o>6, a7, a8

et chacun d'eux correspond au nombre du même rang dans 18).

En appliquant a~* à ç nous obtenons une nouvelle fonction cyclique
cpj ;n) on constante alors que les substitutions métacycliques effectuées

sur Çj donnent les 6 fonctions cycliques

Ce sera notre seconde liste; nous n'entrons pas dans le détail des

calculs qui sont aisés. Chaque ar1 donne lieu à une liste, et nous obtenons,

pour finir, le tableau suivant:

9
par 071

G"1

or1
G71

J

V71

Vit
9Ï11 >

cpîv,

tf,
9I1,

cpi,

^2>

9ÏV,

91 >

91,
.~hi
<f>i

9i »

CP2 »

?r,
9o
cpï,

9ÏV,
-«niCi >

9Ï>
cpi>

9Ï,
»?,

IV
91 9

9Î
çï>

9Ï1,

9?1,

9i>
y

91 9

97
9?

9"
9"
91

91

Si, comme nous allons le montrer en effet, toutes les fonctions
cycliques équivalentes à <p ont été obtenues, il y en a 9 en tout, qui sont :

1 n in iv v 1
CPt cpi • cpi • ^1 « cpi * tt)i cPi « ce? » ^2»

Conformément à la théorie, nous devons voir si la liste à laquelle
appartient cp, se trouve répétée. Ce n'est pas le cas; par conséquent
Jf ¦==. J, et toutes les fonctions cycliques équivalentes à cp ont été
obtenues.

Pour illustrer davantage la théorie, nous pouvons, sans changer d'exemple,

observer l'une quelconque des 9 fonctions qui sont équivalentes
entre elles, p. ex. cpj, et traiter cpx à l'aide des substitutions R).

n) II est important de remarquer qu'uue substitution o, qui correspond à | Jtr, 1 -(- P X |,
ne donnera une fonction cyclique que si \x, §x\ fait partie du groupe de cp (n'altère pas
§3). — Par o"1 le terme 123 devient 182'; mais la colonne 123, après substitution, n'est plus
cyclique. Ce n'est qu'après avoir rétabli l'ordre dans le résultat de la substitution qu'on verra
la fonction <px sous la forme cyclique, et l'on verra apparaître toute la colonne cyclique 182'.
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cpx est invariable par les substitutions \x, ioor| et \xfgx\; son groupe
y* contient donc deux groupes semblables à H, et nous devons appliquer

à cpx les substitutions a~x et a^1 à l'exclusion des autres. Nous
obtenons le tableau suivant:

par 071

par G71 cp?,

cpî,

cp7,

cpî11,

cpî1,

cpi,

cpr,

?î\

cp7,

cpi

..II
cpi

cpi,

cpi

<fî"

cpî,

Chose remarquable, il est impossible, à l'aide des substitutions R) de
déduire de cpt toutes les fonctions cycliques qui lui sont équivalentes;
nous n'obtenons pas cp2 et cpT2. On vérifie aisément qu'on a

r N-\- 1 =2+ 1 3

r est divisible par 3. Conformément à la théorie, des fonctions ont pu
nous échapper, et c'est le cas en effet.

Enfin partons de cp2, dont le groupe possède les substitutions

\x, §x\ où p 4, 7, 10, 13, 16, 19, 22, 25.

Tous les a,- peuvent être appliqués à cp2; aucun n'est à exclure.

On trouve:

CP2, Cpg,

par aj1 y\, cp2,

——1 -«IV .^V M .1 «,11 ..IIIG Cpi Cpi Cpi, CDi j CDi u?i

G"1 Cp7, Cp!, Cpï, Cpl Cpi Cpi

a71 9? » TÎ11 » çiT, cp7, cpi, cpï

a71 ?ï » T1 » Ti11» ?ïv» ^i » Ci

G71 cpi, cpi, cpi, cpî11, cpi cpj

tffT1 9Î11» TÎV» 9^» 9*> TÎ» ?"
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La liste à laquelle appartient cp2 ne se trouve répétée qu'une fois, le

<î3 correspondant à la propriété:

3e*.

L'indice de y dans y9 est cette fois

r N-\- i i-f-i 2.

Cet indice n'est pas divisible par p 3. Conformément à la théorie,
nous devons cette fois obtenir toutes les fonctions cycliques équivalentes
à <p2 • Ce résultat est bien, en effet, en concordance avec le premier.

(Reçu le 12 mars 1931)
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	Sur une manière de différencier les fonctions cycliques d'une forme donnée.

