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Sur une maniére de différencier les fonctions
cycliques d’'une forme donnée

par P. LAMBoSsY, Fribourg.

Introduction

Le présent travail fait directement suite aux théorémes 4, 5 et 6 du
Chapitre II du mémoire de S. Bays qui parait dans ce méme fascicule.
Il s’agissait du théoréeme suivant, énoncé par S. Bays dans son second
mémoire sur les systémes cycliques de triples de Steiner?l): Dexux fornc-
tzons cycliques de n variables x(, x,, ... x, | possédant le groupe cyclique

{(xl Ko ooo Xy )f, n=7p ou pm™, p premzer| équivalentes, se déduisent I'une
de lautre par une substitution métacyclique.

Nous avons d’abord démontré le théoréme pour le cas » = p. Il en
résulte que pour décider, dans le cas » — p, si deux fonctions cycliques
données de » variables, de nature quelconque, sont équivalentes ou non,
il suffit d’appliquer a 'une d’elles les substitutions métacycliques, faciles
a former, et de voir si Pautre fonction se trouve parmi les fonctions
déduites.

Cette démonstration forme le contenu des théoréemes 4, 5, et 6 du
mémoire de S. Bays nommés plus haut. On y trouvera également en
notes et dans les trois premiers § du méme chapitre 12 tout ce qu’i]
serait nécessaire de fixer ou de rappeler pour lire aisément cette étude.

Nous avons cherché ensuite a étendre le théoréme au cas ou » est
la puissance dun nombre premizer, et nous avons reconnu qu’il n’est pas
vrai dans ce cas, du moins pour des fonctions cycliques de nature quel-
conque. En d’autres termes, le groupe métacyclique peut toujours servir
a découvrir des fonctions cycliques équivalentes a l'une d’entre elles,
mais certaines de ces fonctions peuvent nous échapper.

Pour former, dans le cas » — p~, deux fonctions cycliques, équiva-
lentes, qui ne se déduisent pas l'une de l'autre par une substitution
métacyclique, nous devons nous appuyer sur des conclusions que nous
obtiendrons a la fin du Chapitre II de ce mémoire. Pour » — p~, des

1) S. Bays, Recherche des systémes cycliques de triples de Steiner dif-
férents pour N premier (ou puissance de nombre premier) de la forme
6 n - 1. Journal de Math,, t. 2, 1923, p. 75.

%) Voir aussi les § 1 et § de I’Avant-propos pp. 295 et 299 du méme mémoire de S. Bays,
dans le vol. précédent des Commentarii Math. Helv. fasc. 4.
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que » = 8, le groupe métacyclique contient un ou plusieurs groupes
semblables au groupe cyclique /. Désignons par A, un tel groupe, et
formons une fonction ¢ qui soit invariable par toutes les substitutions
du groupe métacyclique 7, et par celles-la seulement.3) @ est évidem-
ment cyclique. Soit ¢ une substitution qui transforme A, en A ; o n’est
pas métacyclique. En effectuant ¢ sur ¢ on obtient la fonction équiva-
lente ¢,, cyclique puisque son groupe ¢—! M ¢ contient ¢—! H, 06 = H,
mais non susceptible d’étre déduite de ¢ par une substitution méta-
cyclique, puisqu’une telle substitution ne change pas ¢.

Nous pouvons cependant élargir le théoréme cité, en adjoignant aux
substitutions métacycliques quelques substitutions construites d’une ma-
niere spéciale.

Nous avons désigné ces substitutions spéciales par o7, o7, ... et nous
avons été conduits a opérer a l'aide du complexe (47 désigne le groupe
métacyclique):

R) M4 M+to' M4 ...

qui doit fournir toutes les fonctions cycliques équivalentes a une fonction
cyclique donnée .

Le complexe R) remplace alors le groupe métacyclique de la méthode
de S. Bays. Toutefois son application n’est légitime que sous certaines
conditions que doit remplir le groupe de @. Nous les énoncerons en
temps opportun.

L’existence des groupes semblables au groupe cyclique /A joue un
grand r6le dans ce qui va suivre, et il est utile de savoir former ces
groupes. C’est pourquoi, laissant pour le moment les fonctions cycliques,
nous allons faire une étude préliminaire sur le groupe métacyclique.

Chapitre premier

1. — Proposons-nous de rechercher les groupes semblables a H contenus
dans le groupe métacyclique.

Soit # une puissance d’un nombre premier, » = p”, m > 1, le nombre
premier p pouvant étre pair ou impair, Certaines conclusions cependant
seront différentes suivant que c’est I'un ou l’autre cas; nous aurons soin
de faire la distinction.

3) On peut toujours former des fonctions qui soient invariables par les seules substitutions
d’un groupe donné, Voir E. Netto, Substitutionentheorie, p. 27, théor. IV.
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s=(1 2 3...#) est une substitution circulaire du »° ordre; le groupe
cyclique est constitué par

H=1[s, s2 s3...s* = 1].

Parmi ces substitutions, les seules qui soient circulaires du 7¢ ordre
sont celles de la forme s*, ou £ est premier a 7.

Pour qu’il existe, dans le groupe métacyclique, un groupe semblable
a H, il faut et il suffit qu’'on y puisse trouver une substitution circulaire
du #¢ ordre, différente des s* dont nous venons de parler.

Supposons que |z, &} Bx| soit semblable & s; cherchons a quelles
conditions doivent satisfaire a«, 3, # pour qu’une telle substitution existe.
On voit déja que B doit étre premier a » et différent de 1.

Voici le résultat auquel nous arriverons: Zoutes les substitutions cir-
culazres du n® ovdre du groupe métacyclique s obtiennent en prenant pour
a un nombre quelconque premzer a n, et pour B un nombre de la forme
B=1-4pr (r quelconque), si p impair, ou de la forme B =1+ 47,
(v quelconque), si p — 2.

On déduit qu'un groupe semblable 4 /A existe des que 7z = 8.4%)

Pour qu’une substitution |z, « 4 Bx| soit formée d’un seul cycle de
n €léments, il est nécessazre que la suite

) 0 a(l4B), a(1+4+B+pY) oy a0 FB+B+ ... 43

constitue un systéme complet de restes (mod 7). Cette condition néces-
saire est d’ailleurs suffisante.

Cette condition est équivalente aux deux suivantes:
2) (0, 7)) =1
2) 0, 1, 1B, 1 FBBY o, THEHE . B

forme un systeme complet de restes mod n.
Tout revient a étudier la condition 2'); elle entralne les suivantes
que nous notons 3), 4), 5), 6) et 7).

3) L=1+p4p2+ ... +p* =0 (mod )

Sinon, 'un des nombres 2'), autre que le premier, serait congru a
O (mod 7).

%) Si n est premier, il n’y a pas de groupe semblable & /f dans le groupe métacyclique.
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4) O étant le plus petit exposant tel que {3‘55 1 (mod n), & est dzviseur de n.
Multiplions par § la congruence 3) et ajoutons 1

1hBEBE b . B pr=1 (mod 2)
En tenant compte de 3) nous obtenons
4") fr=1 (mod #)

Dés que f est premier a # (ce que nous supposons), le théoreme de
Fermat est applicable

BPM =1 (mod »).
Soit & le plus petit exposant pour lequel on a

8°=1 (mod #).

& est toujours diviseur de @ (z); mais si nous voulons que 4') soit vérifide,
2l faut que § soil également diviseur de n.

On peut se demander s’il est toujours possible de trouver des nombres
B tels que leurs & soient diviseurs de .

Sip=2, on a
n=—27, @(n)=—27"1
& est toujours diviseur de #. Si p est impair
n=7p" @@n)=p"""(p—1)
& doit étre une puissance de p. Les seuls § a priori possibles sont
VA IR

Un théoréeme de la Théorie des nombres montre qu’effectivement a
chacun de ces nombres correspondent certains §.5)

5) [=14+B-FB+ ... p-1=0 (mod 3

5) se déduit de 3) en observant que # est multiple de 8. Posons
n — n'8. Puisque B8 =1 (mod #), L peut s’écrire

L=(1 4+ . +B)+ B+ .. +F )+ ... =0 (mod ).

5 Serret: Algébre Supérieure, 2me éd., t. II, p. 85, théor. IL
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Chaque parenthése contient & termes et il y a #’ parentheéses,

L=#n"1-+8+4 ... +p")=0 (modn'd)
=148+ ... FB2'=0 (mod 3)

. n
6) l! = — est premier avec n' = 5

g

Pour le voir, observons que

LB L Bt (1 =r<a)

est un terme de la suite 2’) autre que 0; on a donc

1484824 ... +p%'5z0 (mod )

/=0 (mod #) (1=r<n)

mais » /=0 (mod #) pour » — z'.
" / . , n
On conclut que /' = 3 est premier avec 7' = 5
7) =1 (mod #')

Car on a:

po—t={f—1) OB .. +P )= (mod )
B—1)/=0 (mod 7)
B—1)/ =0 (mod #')

et comme (/, »') = 1

—1=o0 (mod 7')

2. — Ces cing conséquences 3), 4), 5), 6), 7) sont impliquées dans la
condition 2'). /nversement, si on a

4) 3 étant le plus petit exposant tel que 2 =1 (mod #), & est divi-
seur de .

§) =145+ p+ ... +P'=0 (mod 3)

6) (//, »')=1 avec /' :—g—, n' :—? la condition 2') se trouve étre
satisfaite.
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En effet, écrivons pour simplifier

a=1+8, b=14+B4p% c=1-+p-+p2+65 ...,
=14 4p2H ... fo

tous les nombres 2’) peuvent étre rangés dans le tableau suivant:

I, a, b, c, A
1+ a1, b+, c+4, ... 2
142/, a2, b+424 c+2/ ... 34 |5 colonnes

.................................... ”' lignes

------------------------------------------------------------

1+ @# —1), af@#H —1)4 ... n'l

Pour montrer que les » nombres du tableau sont incongrus entre eux
(mod #), prenons-en deux appartenant a la méme colonne. S’ils étaient
congrus entre eux, nous aurions une congruence telle que

r /=0 (mod #) rn'
r!' =0 (mod 7»’)

Elle n’est pas satisfaite par < 7', puisque (/, »') = 1. Prenons ensuite
deux nombres appartenant 3 deux colonnes différentes. Si on avait, p. ex.

at+lx=c+Ily (mod z)

[(x —9)=c—a (mod z)

on aurait

Or (/, #) = 3, et deux nombres tels que ¢ et @ ont une différence ¢ — a
qui n’est pas divisible par §, comme il est aisé de voir.

a=1+B+ i 4
=14 o BB L B (S<D)
Si on avait
c—a=p(1 4B+ ... +85)=0 (mod )
on aurait aussi
148+ ... +p5t=0 (mod 3).

Nous pouvons utiliser 7) c’est-a-dire §— 1 =0 (mod #') puisqu’elle
découle des prémisses 4), 5), 6). On déduit:

B—1) (t+p+ . +P9=0 (mod #'3)

BS—1=o0 (mod 7

ce qui n’a pas lieu puisque S<C3J.
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Il est donc démontré que tous les nombres du tableau, c’est-i-dire
tous les nombres 2') forment un systéme complet de restes (mod 7).

3. — Sur la forme de § nous avons un premier renseignement fourni
par 7)
=1 (mod =)
Sz p est impair, n = p™, ¥ peut prendre les valeurs, p, p?, ..., pm1,
et par suite 7’ :-g— contient le facteur p. En d’autres termes, § est de

la forme
B:I+pr.

Sz p=2, n=27, il n’y a pas de racines primitives (excepté pour
. 7/] om—1
n = 4),%) & atteint au plus la valeur in) =— = g3, Donc—g— con-

tient au moins le facteur 4. En d’autres termes, § est de la forme
=144~
Nous nous proposons de démontrer maintenant que tous les nombres

B=1-447 ou B =1-4p7» selon que le nombre premier p est pair
ou impair, » désignant un nombre quelconque, satisfont aux conditions

4), 5), 6).

4, — L’expression

=14 BB+ .. e
lorsque x est la puissance d’un nombre premier, donne lieu au #2éoréme
prélemenazre suivant, qui a une forme double:

A. 82 x = xyp* (v non divisible par p), et § = 1 -} pr (v quelconque),
! est divisible par p* mais non par une puissance supérieure.

B. 87 x = xy 2% (x, impazir), et B =1 47 (v quelconque), I est drvi-
stble par 2%, mais non par ume puissance supérieure.

Occupons-nous d’abord de la premiere forme:

A. On a: l——1+§—}- -{-—Bx—l_p __(I—I—ﬁf)x—-—-l

el | 2
x(xr— I) (x—2)

l_._x——[— )p + . prrie L pripet,

Le premier terme est divisible par p“ et le quotient est x,. Il faut
montrer que tous les autres termes sont divisibles par p* et que le

®) Serret, Alg. Sup., t.II, p. 52.
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quotient contient le facteur p. Laissons donc le premier terme; la forme
générale des autres est:

xr(x—1) (x—2) ... #—s41)

I.2.

P sl 2=s=ux
.S = =

Puisque I’expression

x—1)@x—2) ... x—s-F1)

1.2 ... (s— 1)

représente un nombre entier K, le terme général peut s’écrire

r K
s

9) ?s—-l ps—1

x K . \ .
— est entier; posons s=—p7¢g, ou ¢ ne contient plus le facteur p.

s est en effet une variable qui peut devenir multiple de p. Si s est
premier avec p, alors y = o.

. K . o :
Voyons comment la fraction 2 doit se simplifier. Puisque x =z, p%,
s

— . xy K ;
s = p?q, g doit étre diviseur de x, K. Posons —Oé—— — K' (K’ entier).
L’expression 9) s’écrit
7K
ﬁ)’
Nous aurons prouvé que cette expression est divisible par p* et que
le quotient contient le facteur p, si nous prouvons que

2~ 17—1 ou bien p* K’ ps—1=7 ps—1,

§—1—y=1, ou bien s=1vy 4 2.

Si y=o0, la chose est claire. Supposons donc y= 1. Nous aurons
certainement

10) Pe=y+2
sl nous avons =v-+2
ou encore, puisque p = 3, Si nous avons

¥=r+2.
Cette relation effectivement a lieu. Ainsi / se présente sous la forme

{ = p* [x, -} muiltiple de p].
Il est donc prouvé que / est divisible par p% mais non par une puis-
sance supérieure.
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B. Pour établir la seconde forme du théoréme, remarquons que tout
ce qui vient d’étre dit dans Particle A jusqu’a la formule 10) est vrai
quel que soit le nombre premier p. Imaginons qu’on ait fait » — 2 dans
toutes les formules. 10) deviendra

2Vg=y+2 (y=1).

Pour y =12, ¢ =1, et pour y =1, ¢ > 1, cette relation est évidemment
vérifiée, et pour ces valeurs le terme 9) est divisible par 2.

Il y a doute pour y = 1, ¢ = I, c’est-a-dire pour s = 2. Reprenons donc
la formule g) en y introduisant s = 2, p = 2.

x

2141 ou bien ¥ K~.

Si I'on retourne a la signification de K, on verra que K est impair.
Le terme est donc divisible par 2% mais le quotient sera pair seulement
si » est pair lui-méme. Avec cette supposition, on obtient

{ = 2%|x, -} nombre pair].

Cela veut dire que / est divisible par 2% mais non par une puissance
supérieure. Si » est impair, / est divisible par une puissance supérieure

£ ——
\

a 2% Enfin les nombres § qu'on obtient en faisant p = 2, » pair, dans
la formule § = 1} p#, sont obtenus avec § = 1 -}~ 4 en prenant pour
» une valeur quelconque.

5. La démonstration que tout § =— 1 47, pour » = 27, satisfait aux
conditions 4), 5), 6) du n° 2 est maintenant aisée. Premiérement [ est
premier a »z, et son §, étant diviseur de @ (z) = 271, est diviseur de .

Secondement, & étant une puissance de 2, &= 2%, I’expression
148 ... p2~1 est divisible par & = 2% mais non par une puissance
, ) 1+8-+ ... o—1 )
supérieure. C’est dire que /' = g 5 + B est premier avec
’ 2m o
n =g =2

La démonstration analogue pour § = 1 - p7», » = p™, exige que l'on
étudie premiérement le plus petit exposant & pour lequel on a $8=1
(mod #). Il nous faut établir que & est une puissance de p.

Supposons donc » donné dans § =1 + p» et essayons de trouver la
plus petite solution x de la congruence

11) (1 + 27)*=1 (mod 7).
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Tout d’abord on doit exclure x — 1; cette solution correspond a » = o,
B = 1, valeur écartée. 11) peut s’écrire

x.pr++ —-—= (x p2r2 + ... +p*r*=0 (mod p>)

(x——l) x(x——l) (xr — 2)

1-2-3

e+ 255+
(mod pm*l) .

Soit p= la plus haute puissance de p contenue comme facteur dans 7;
on a: a=wm — 2,

f2r2 + _,*_ﬁx——l 7”"‘1]50

12) x+f£{:_—ﬁpr+x(x~l)(x—2)

I1-2 1-2-3
(mod p7—1—a).

i .. Fplrel=0

D’aprés le théoréme préliminaire, un nombre quelconque x = x,p*(x,
non divisible par p) est solution de 12) si e = m — 1 — a. La solution
la plus petite de la congruence 12), et aussi de la congruence 11), qui
lui est équivalente, est évidemment § — p7—1—2. Cela étant, / =1 4§ ..
-+ B8~! est divisible par & = p™~1—¢, mais non par une puissance supé-
1+8+4...  po! : ,  m

5 est premier avec » — -

rieure. C’est dire que // = :

:Pm’i‘l—a —_—_pl'f'ﬂ_

Il est donc prouvé que tout nombre § = 1 - p 7 vérifie les conditions
4), 5), 6).

6. — Lorsque n = p™ ou n = 2™, le nombre des groupes semblables a
H contenus dans tout diviseur métacyclique est rvespectivement une puis-
sance de p ou une puissance de 2.

Pour plus de généralité nous prenons un diviseur métacyclique ¥; la
proposition est aussi vraie pour le groupe métacyclique complet.

Soient A, H,, H,, ... les groupes semblables a // contenus dans 9,
et V leur nombre. Dénombrons les substitutions circulaires du #¢ ordre
contenues dans ¥ Dans chaque A il y a @ (») substitutions circulaires
d’ordre z». Comme les différents /A n’ont entre eux aucune substitution
circulaire commune, il y a donc dans ¥ N . @ (») substitutions circulaires.

Ces substitutions sont de la forme |z, « +  x|. « peut prendre @ (#)
valeurs (les nombres premiers a #) et les prend réellement. A une valeur
admissible pour § (donnant lieu 2 une substitution circulaire contenue
dans ¥) correspondent @ (») substitutions circulaires qu’on obtient en
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donnant a a @ (z) valeurs. Donc le nombre des valeurs admissibles
pour f est

ﬁ\[—@%@— = MN.
Désignons ces valeurs par
13) L Bys By -
Les substitutions
14) Lz, Birl, |x Barl, oo

sont également dans #. On obtient p. ex. |x, B, x| a partir de |z, « 4, x|
en multipliant cette derni¢re par |z, » — a + x|. Leur nombre est V.
Il est utile de remarquer que ¥ peut contenir d’autres |z, B x|, mais
alors B n’est pas de la forme 1 4 p7» ou 14 47.

Nous pouvons montrer que les substitutions 14) forment un groupe,

qui par suite est contenu dans 7. Formons le produit de deux d’entre
elles

s= |z, BB 7|
s est dans ¥ Cette substitution multipliée par |x, 1 -} x| fournira une
substitution de ¥ qui sera circulaire si §, B, est de la forme 1 4-p7 ou
1 4 47. Cest en effet le cas, parce que le produit de deux nombres
de la forme 1 4 p7» est aussi de la forme 1 4 p7». Alors §, B, figure
dans 13), et enfin s est dans 14). Donc les substitutions 14) forment
un groupe,

A ce groupe correspond un groupe isomorphe formé par l’ensemble
des nombres 13) pris mod #; il a le méme ordre. 13) est un sous-
groupe du groupe abélien total qu’on obtient en prenant tous les 3 de
la forme 1+ p#» qui sont au nombre de p”—!, ou tous les § de la forme
1 4 47 qui sont au nombre de 2772,

Donc N est une puissance de p ou de 2.

7. — Formaition des groupes H. En utilisant les nombres 13) formons
les substitutions circulaires s, s,, 5, ... et les groupes correspondants
H, H, H,, ...

s =|x, 14 x| H =][s, s ...]
sy == I+B1xl H, =[5, 52 ...]
sg=|x, 1+ By x| Hy=[s5, sg% ...]

------------------------------------------------
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Nous formons ainsi tous les groupes semblables a A contenus dans
le diviseur métacyclique; pour le voir, il suffit de montrer qu’ils sont
tous différents.

Deux substitutions quelconques prises parmi s, s;, Sy, ... sont bien
différentes, mais s’il arrivait que l'une fiit une puissance de l’autre, que
’ A . . . ‘

Pon elit p. ex. s, = s,Y, les groupes 7, et A, seraient identiques. Cela
n’a pas lieu, car si 'on forme les puissances successives de s;, la con-
stante «, qui est égale a 1 dans s, deviendra successivement égale a

By T B 4842 -

et, d’aprés la propriété de B,, ne deviendra égale a 1 qu'a la (# + 1)°
puissance.

Exemple: Voici pour » = 32=—=9 les 3 groupes A contenus dans le
groupe métacyclique (nous n’écrirons que les substitutions circulaires).
De =1+ 37 on déduit: B =1, §; =4, By =7.

H H, H,
= |x, 1+ x| $; = |x, 14 4x] Sg =¥, 14 7x]
s?=|x, 24 7| si2 =% 5+ 7| 52 =%, 8447
34:'}:, 4+x1 314211’, 4+4Il 524:]'1‘" 4+7XI

$S=|x, 5+ 7 sP =z 84 7] 52 =|x, 2+ 4x]
sT=lx, 742  s7=|x 74+ 4% 52 =z 7+ 77|
S le bxl  s0—|n2trel  sf—lr 1 arl

Désignons par g, et g, deux substitutions capables de transformer /&
respectivement en /7, et /,; on les obtient comme suit:

s __123456789
01“(s1)“( 53486729) (258)
(s _ 234567 9)_,_
02"'(%)"’(183426759 = (53]

Les substitutions telles que ¢, et ¢, joueront un grand réle dans la
suite.

Chapitre deuxiéme

8. — Lorsque le nombre des variables est 7z = p™ ou n— 27 le
probléme de la recherche des fonctions cycliques équivalentes a 'une
d’entre elles est moins simple que dans le cas » — p. Les substitutions
métacycliques peuvent toujours étre utilisées, mais elles ne peuvent suf-
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fire, du moins en général. Toutefois le méme groupe métacyclique peut
servir a construire d’autres substitutions qui, concuremment avec les
précédentes, peuvent servir parfois a découvrir toutes les fonctions cy-
cliques équivalentes. Nous allons former ces substitutions et en méme
temps chercher des criteres qui fixeront des cas ou cette méthode est
applicable.

Soit G le groupe d’une fonction cyclique @ de » variables (z — p~
ou 27); H le groupe cyclique; ¥ le groupe formé de toutes les substi-
tutions de G qui sont métacycliques. En général ¥ n’est qu’un diviseur
du groupe métacyclique complet /7. ¥ contient, a c6té de A, des groupes
semblables a /A que nous désignerons par H,, H,, ....

Soit ¢; une substitution qui transforme /7 en A,

o' Ho=H,.

Comme on sait, les substitutions du complexe M g,, et celles-la seule-
ment ont cette propriété.

o7t effectuée sur ¢ donne une fonction cyclique ¢, . En effet, le groupe
de @, est g, Go7', lequel contient ¢, /7, 07! = H. Les substitutions
7! M donnent également des fonctions cycliques.

Cela nous améne a examiner les complexes:

R) M, G;IM 0'2—1.[‘1,

ou M est le groupe métacyclique et ¢; une substitution qui transforme
H en H;de ¥ Si nous voulons obtenir toutes les fonctions cycliques
équivalentes a ¢ en utilisant les substitutions R), il nous faut établir le
théoréme suivant:

Theoreme 1. La condition nécessazve et suffisante pour que toutes les
fonctions cycliques équivalentes a @ puissent se déduire de ¢ par les sub-
stitutzons R) est que tous les groupes H de G puissent se déduive de ceux
de F en transformant ceux-ci par des substitutions de G.

Supposons, en premzer licu, que les H; de (G puissent étre obtenus
en transformant ceux de ¥ par des substitutions de . Pour entrer dans
les détails, soit

1) H, H, H", ...

un premier systéme conjugué obtenu en transformant /A par toutes les
substitutions de G. Il est possible que dans cette liste figure un ou
plusieurs groupes appartenant a ¥ autre que A. Soit A, un groupe
semblable 4 /A contenu dans ¥ et qui ne fasse pas partie de la liste I).
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Transformons /A par toutes les substitutions de G ; nous obtenons un
second systéme conjugué

10) H,, H', H", ...

Soit A, un groupe semblable a /A contenu dans ¥ et qui n’ait paru ni
dans I) ni dans II). On obtient de méme

I11) H,, Hy, H,", ..

Ainsi de suite, jusqu'a épuisement des AH; de ¥. En vertu de notre
hypothése, nous obtiendrons de cette fagon tous les groupes semblables
a H contenus dans G.

Parmi les substitutions ¢,, d,, ... déja définies, nous ne retenons que
celles qui transforment /A en H,, H,, ... lesquels groupes sont les tétes
des listes I), II), III), ... . Ces substitutions o; ne sont pas contenues dans
G. On notera que les substitutions 4/ ¢, ont comme ¢, la propriété de
transformer / en H,, et aucune d’elles n’est contenue dans (G parce
qu’aucune substitution de G ne transforme H en H,.

Appliquons maintenant & ¢ toutes les substitutions métacycliques. On
obtient diverses fonctions cycliques

I') @, 99', an’

Appliquons ¢7'4 @; nous obtenons une fonction cyclique ¢,; en ef-
fectuant sur ¢, toutes les substitutions métacycliques, nous obtenons une
deuxieme liste de fonctions cycliques.

1T’ ®1> 1 @1

De méme, en appliquant ¢;! 24 ¢ nous obtenons ¢,, puis une 3¢ liste

1IT") Pa> Po's P’y oen

Ainsi de suite;7) nous prétendons que toutes les fonctions cycliques
équivalentes a @ ont été obtenues.

En effet soit @, une fonction cyclique équivalente a ¢, d’ailleurs quel-
conque, et soit T une substitution qui change ¢ en ¢,. Le groupe de
@as st 7! Grt. Puisque ¢, est cyclique; son groupe contient /7; par
suite // est provenu par transformation par t d’un des groupes sem-
blables a A contenus dans G.

7) Les substitutions que nous appliquons sont justement les substitutions R).
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Si A est provenu de A, alors t est métacyclique, et ¢, fait partie
de la liste T').

Si H est provenu d’un groupe du systéme conjugué I), autre que A,
de A’ par exemple, 1 n’est pas métacyclique. Mais si s’ de G change
H en H', la substitution s't qui, exactement comme 1, change ¢ en g,
est métacyclique. Cela prouve que, dans ce cas encore, ¢, fait partie
de I').

Si A est provenu de A, alorst est de la forme (7 ¢,)~!, m désignant
une substitution métacyclique déterminée. On peut écrire T— ¢! m!
= o7!' m'. Mais alors ¢, a été obtenue et figure dans la liste II').

Si H provient d’un groupe du systéme conjugué II), autre que /4,
de H,' p.ex., désignons par s,/ une substitution de G qui transforme
H, en A'. Alors s/t aura sur ¢ le méme effet que t. Mais s,"t change
H, en H; comme on vient de le voir, s,'t est de la forme o7! #’, et
par conséquent ¢, a été obtenue dans la liste II').

En poursuivant le raisonnement on démontre ainsi qu’il n'y a pas
d’autres fonctions cycliques équivalentes a ¢ que celles des listes I'), IT'), ...

Supposons, ex second lieu, qu’on ne puisse pas déduire tous les A de
G en transformant ceux de ¥ par les substitutions de G.

On peut commencer par effectuer sur ¢ toutes les substitutions R),
et les fonctions cycliques obtenues se rangent en un certain nombre de
listes I'), II'), ... comme on I'a vu. Mais il faut montrer que des fonc-
tions cycliques nous échapperont.

Soit /A, un groupe semblable a A contenu dans G, non déductible
de ceux de ¥ par les substitutions de G, et t une substitution qui trans-
forme A en H,. Par hypothése, A, ne fait donc pas partie des listes
I), ), .... On a:

TV Hr=H,.

T ne fait pas partie de G. Effectuons sur ¢ la substitution t—!. Nous
obtenons ¢, qui est cyclique parce que son groupe t Gt~! contient
tH,v'=H. G1! est le complexe de toutes les substitutions qui
changent ¢ en ¢, .

@, n’a pas été obtenue a l'aide des substitutions R); car si @, figurait
parmi les listes I'), II'), ..., nous aurions une égalité telle que

—1 — —1 1 -1 — —1
o;'m=—gnt!, ou bien m~lo;=1g

(g est une certaine substitution de G). Or m—! g; transforme A en Hj;
comme t transforme A en H,, il s’ensuivrait qu'on pourrait trouver dans
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G une substitution g—! transformant /, en A;; et aussi une substitution
g transformant A; en A,. Mais cela est contraire a2 I'hypothese.

9, — Par ce théoréme général le probléme des fonctions cycliques se
trouve ramené a un probléme de la théorie des groupes, puisque Plap-
plication des substitutions R) donnera toutes les fonctions cycliques équi-
valentes a ¢ si le groupe de ¢ remplit certaines conditions.

Malheureusement la détermination pratique du groupe des substitutions
qui n’altéerent pas une fonction donnée est laborieuse, et la recherche
des propriétés de ce groupe plus difficile encore. C’est pourquoi nous
devons supposer que le groupe G de ¢ n’est pas connu; et nous diri-
gerons notre étude vers la recherche de crzteres, qui utilisent les données
immédiates de la fonction. Parmi ces données immédiates, mentionnons,
outre le nombre des variables, le groupe des substitutions métacycliques
contenues dans (. Ce groupe, dont l'ordre est relativement petit, est

\

toujours facile a découvrir.

Nous allons donc rechercher des critores fixant des cas asses btendus
o les substitutions R) sont suffisantes. Car, contrairement a ce qui a
lieu dans le cas » = p, ces substitutions R) ne peuvent suffire dans tous
les cas possibles.

Nous traiterons séparément les cas » — p™ et » — 27, et nous com-
mencerons par le cas ou le nombre des variables est » — 27.

10. — Sur les fonctions de degré n — 2. Soit @ une fonction cyclique
de degré » — 27, dont le groupe est , Comme précédemment, /7 est
le groupe cyclique, et ¥ le diviseur métacyclique contenu dans G.

Lordre de F est une puissance de 2. En effet, 'ordre du groupe mé-
tacyclique est z. @ (n) = 27. 27! = 2?»—1 et l'ordre de ¥ est un divi-
seur de 2?1 .

¥ contient en général, a c6té de A, d’autres groupes semblables a 7,
et le nombre de ces groupes /A est une puissance de 2 (n° 6).

Il se peut qu’il existe dans G, en dehors de ¥, des substitutions per-
mutables ‘a4 ¥, Désignons par ¥’ le groupe formé par toutes les substi-
tutions de G permutables 2 ¥; ce sont donc les substitutions s qui ont
la propriété: s—! Fs = F# ¥ contient ¥

Théoréeme II. Si dans G on ne trouve en dehors de F aucune substs-
tution permutable o F, tous les groupes semblables a H contenus dans G
peuvent .se déduire de ceux de F por des substitutions de G. Et par suite
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toutes les [fonctions cycliques équivalentes a @ peuvent se déduive de @
par les substitutions R).

La condition imposée revient a dire ¥ = F. Soit v, une fonction in-
variable par toutes les substitutions de ¥ et par celles-la seulement.

Quand on effectue sur i, toutes les substitutions de (, cette fonction
acquiert un certain nombre de valeurs

15) Wi Yo5 YWay ooy Yk

k est égal a l'indice de ¥ dans G. Nous désignerons par sy, S5, ...
s des substitutions de G qui changent y, en w,, wg, ..., Y.

Effectuons sur les fonctions 15) toutes les substitutions de % 1l est
clair que 1y, ne change pas par cela. On peut se demander si une autre
valeur, p. ex. y,, est invariable par toutes les substitutions de ¥. Sup-
posons qu’il en soit ainsi. Alors le groupe de vy,, qui est s;! ¥s,, est
identique a %

s;l ?Sa o }

Cela étant contraire 4 notre hypothése, on conclut que w, est la seule
fonction de la liste 15) qui ne change pas par %

Sous laction de ¥ v, prend un certain nombre de valeurs parmi
celles de 15); ces valeurs sont reliées transitivement les unes aux autres,
relativement aux substitutions de ¥, et constituent un systeme dont le
nombre des fonctions est un diviseur de 'ordre de ¥, c’est-a-dire une
puissance de 2. Si y; ne figure pas dans le systéme précédent, cette
fonction donne lieu a un autre systéme. Ainsi de suite. Puisque, a part
y; qui constitue un systéme a elle seule, les fonctions de chaque systeme

sont au nombre de 22, 22, ...; on a

E=1-4 22420 . (@240, 60, ..)
ou bien

k=1-42%

Maintenant soit A’ un groupe semblable a /A contenu dans G, d’ailleurs
quelconque. Effectuons sur la liste 15) les substitutions de /Z’. Ces 1 -} 2/
fonctions vont de nouveau s’organiser en systéemes, et le nombre de v
par systéme et un diviseur de l'ordre de A’, donc une puissance de 2,
On aura donc une égalité telle que:

142h=20420 4 ...
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Cette égalité ne peut exister que si I'un au moins des exposants ¢, 7, ...
est nul, autrement dit si un systéme ne contient qu'une fonction. Appelons
Y, cette fonction, qui en conséquence est invariable par A’. Le groupe
de y, est s;! ¥s,. On conclut que A’ est le transformé par s, de
I'un des groupes A, de ¥

—1 - '
sV H, sy = H'.

Il n’y a donc, en dehors de ¥, en fait de groupes semblables a4 //, que
ceux qu’on obtient en transformant ceux de ¥ par les substitutions de G.

11. — Remargue. On aurait pu, semble-t-il, donner a I’énoncé de ce
critere une plus grande généralité. Si, en effet, au lieu de la condition
exigée qui revient a dire ¥ — ¥ on avait seulement supposé sury > ¥
que l'indice de ¥ dans ¥ fit impair, la démonstration n’aurait été mo-
difiée qu’en ce que, au lieu de 2=1 -+ 2%, on aurait eu 2 =7} 24,
le nombre impair 7 désignant justement I'indice de ¥ dans ¥. Et alors
la conclusion énoncée dans le critére subsisterait.

Toutefois ce cas ne se présente pas, car nous montrerons que Sordre
de § est une puissance de 2, et par suite l'indice de § dans F' est toujours
pazr, a moins qu’il ne se réduise a l'unité.

D’autre part, si 'on suppose que l’indice en question est pair, la
démonstration, reprise suivant la voie que nous avons adoptée, n’aboutit
pas. Effectivement, la proposition contenue dans le critére ne peut étre
étendue a ce cas, du moins si 'on n’introduit pas de condition supplé-
mentaire; car on peut donner des exemples ol cette proposition, sup-
posée ainsi généralis€e, serait en défaut. Ainsi pour » — 16, on peut
former un groupe ¥ pour lequel ¥ > ¥; ¥ contient des substitutions
circulaires du #* ordre qui n’appartiennent pas a % Si maintenant on
prend G =¥, il est clair qu’on ne peut obtenir tous les groupes A de
G en transformant ceux de ¥ par des substitutions de G.

Voici comment on montre que lordre de ¥ est une puissance de 2.
Si 'ordre de ¥ était 22p%¢° ..., ol p, ¢, ... sont des nombres premiers
différents, nous aurions dans ¥, d’aprés un théoréme de Sylow,8) un
groupe K d’ordre p? . Ce groupe K est d’ordre impair, et il ne contient,
a part I'unité, que des substitutions dont l'ordre est une puissance de p,
donc impair.

8) L. Sylow, Théorémes sur les substitutions, Math, Ann, 1872, Bd. s,
Théor. I, p. 586.
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Soient maintenant
H, H, H,, ...

tous les groupes semblables a A contenus dans ¥; nous savons que
leur nombre /V est une puissance de 2 (n° 6). Transformons ces groupes
par toutes les substitutions de K'; les Z sont simplement permutés entre
eux. Nous affirmons qu’aucun des / ne reste invariant par toutes les
substitutions de KA.

Premierement, /A doit changer par les substitutions de K; car sinon
K serait contenu dans ¥, comme formé de substitutions métacycliques.
Ce n’est pas possible, parce que les sous-groupes de ¥ sont d’ordre pair.

Un A, quelconque doit aussi changer, car si s de K avait la propriété
sTVH, s = H,,

alors transformons cette équation par une substitution appropriée qui
transforme /, en H. Par cette transformation s devient s’, et 'on a

S 1VHs = H

s’ serait métacyclique. Mais cela n’est pas possible parce que s’, qui
est semblable a s, est d’ordre impair.

Par les substitutions de K, les groupes /A s’organisent en systémes,
et le nombre des / par systeme est un diviseur de l'ordre de K, donc
une puissance de p

N =% 4 5% 4" .

a, o', ", ... étant différents de zéro, on déduit que N est un multiple
de p. Ce résultat étant en contradiction avec la proposition démontrée
selon laquelle N est une puissance de 2, nous devons rejeter ’hypo-
thése et conclure que l'ordre de ¥ ne contient aucun des facteurs im-
pairs p, ¢, .... L’ordre de ¥ est une puissance de 2.

12. — Procédé pratique. La démonstration du théoréme général au
n° 8 donne en méme temps la méthode pratique qu'il faut suivre pour
déduire de ¢ toutes les fonctions cycliques équivalentes, Il y a cepen-
dant quelques remarques a faire touchant cette méthode elle-méme et
la maniére de reconnaitre si la condition exigée par le théoréme est
remplie.
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Les divers A de G peuvent, comme on 'a vu, étre répartis en divers
systémes conjugués:

I) ]{’ HI, H", )
II) H, H', H", ..
IH) H2: H2” Hz";
H, H, H,, ... sont les #tes des systétmes conjugués, et font partie de

¥. Comme nous l’avons dit, il est possible que dans chaque systéme il
y ait plusieurs A de %

Contrairement a la notation du n° 8, nous désignerons par g, gy, ...
des substitutions qui transforment /A respectivement en fous les H; de
F sans exception. Ces substitutions seront réparties en trois classes, que
nous noterons o,, og, Oy-

g, transforme A en H;, téte d’un systéme conjugué quelconque (Les
0y, Oy, ... du n° 3 sont des a,).

o transforme A en A/ appartenant au premier systéme.

Oy transforme /4 en A7 n’appartenant pas au premier systeme et
n’étant pas téte d’un systeme.

Comme nous I’avons expliqué au n° 7, ¢, 0y, ... se forment au moyen
des substitutions circulaires s =|#, 1 4 x|, s;=|x, 14 B;x| qui par
leurs puissances engendrent les divers A; du groupe métacyclique. On
obtient les §; au moyen de la formule § = 1 - 4~. Pour distinguer les
s; qui appartiennent a ¥ des autres, on les essaie sur la fonction ¢:
celles qui ne changent pas ¢ appartiennent a ¥

A Tlaide de ¢, 0y, ... ainsi formées, on déduit les fonctions cycliques
équivalentes a @ selon les principes exposés au n° 8. Le fait que ces
substitutions ne correspondent pas uniquement aux /; qui peuvent étre
pris comme tétes des systémes conjugués n’est d’aucune importance; il
arrivera simplement que des listes de fonctions cycliques se répeteront;
on ne conservera naturellement que celles qui sont différentes. C’est ce
que nous allons montrer.

Imaginons qu’on ait pu séparer les g, et qu’'on ait déduit au moyen
d’elles toutes les fonctions cycliques équivalentes a @. Ltudions maznte-

nant le résultat que donnme o7’

Ce sera une fonction obtenue dans la premiere liste, ¢' p. ex., et en
effectuant sur ¢’ toutes les substitutions métacycliques, on obtiendra
une liste de fonctions coincidant avec la premicre, obtenue avec o7,
sauf l'ordre.
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En effet, o3 change A en A7 du premier systéme conjugué. Soit s
une substitution de G qui transforme /7 en 7. On peut poser s—wmay,
ou sz est une substitution métacyclique déterminée. En formant la liste
relative a ¢z, nous sommes appelés a effectuer sur ¢ la substitution

o' m™!, et puisque celle-ci est dans (, nous devons voir apparaitre ¢
dans cette liste qui ne sera autre que I').

Inversement, si en opérant avec ¢, nous voyons apparaitre ¢, cela
prouve qu’une certaine substitution que nous pouvons représenter par
o' m~! est dans G. m g, est aussi dans G et par suite transforme 77
en un /7 du premier systeme; cette propriété appartient aussi a g, et
par suite ¢, — og, c’est-a-dire est de la 2¢ classe.

Etudions enfin le vésultat que donne o' sur @. Ce sera I'apparition

d’une liste de fonctions autre que la premiére. oy change A en A’ et
nous supposons que H7 fait partie du systéme dont A; est la téte. Si
s est une substitution de G qui change #; en H’, on peut poser
R

M Oy = Oy §

oyt m~t =571 oyt
Or oy! m~—1 est une substitution qu’on se propose d’effectuer sur ¢;
mais s—! ne change pas ¢, et s;! change @ en ¢, déja obtenue puisque
o, est de la premiére classe. Ainsi ¢, réapparaitra, de méme que la
liste entiere a laquelle @, appartient. Inversement, si par application de
o on voit apparaitre une liste déja obtenue et autre que la premiere,
on a g =/ G’Y’

En résumé, le procédé pratique lui-méme, en méme temps qu’il fournit
des fonctions cycliques, fournit 'une des répartitions possibles des ¢ en
trois classes: g, 03, 0y ce qui sera nécessaire pour nous assurer de la
validité du procédé tout entier, comme nous allons le montrer.

13. — Il est nécessaire de s’assurer si la condition exigée par le
théoréme est bien remplie, c’est-a-dire sz G ne contient aucune substitu-
tion permutable & ¥, sinon on ne serait pas sir d’avoir trouvé toutes
les fonctions cycliques équivalentes a ¢.

Une telle substitution, si elle existe, transforme nécessairement /A en
I'un ou l'autre des groupes semblables a A contenus dans 7. Les subs-
titutions ¢; que nous avons formées, ont justement cette propriéte. Si
o, transforme A en H, toutes les substitutions du complexe #/ g,, ou
M désigne le groupe métacyclique, font de méme, et celles-la seulement.
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Par conséquent les substitutions dont nous parlons sont a chercher parmi
les trois classes de complexes

A) Ma,, B) M ag, C) Mo, .

Nous pouvons écarter d’emblée les complexes A et C, car ils n’ont
aucune substitution commune avec G. En effet, si s était commune 2a
A et G, ou a C et G, on pourrait par une substitution de G passer de
H a un H; non contenu dans le premier systéme conjugué.

Il reste donc a examiner les complexes B, et si, dans un cas parti-
culier, ces complexes n’existent pas, la discussion est close, et I'on a
=3

Supposons qu’il existe des complexes B; chacun d’eux contient tou-
jours des substitutions qui font partie de G, et nous devons reconnaitre
si ces derniéres transforment ¥ en lui-méme. Cette recherche se sim-
plifie par le fait qu’il suffit d’examiner les oy elles-mémes, car nous
allons voir que les complexes M/ g3 se partagent entre ceux dont toutes
les substitutions transforment ¥ en lui-méme, et ceux dont aucune sub-
stitution n’a cette propriété.

Tout d’abord si g, fait partie d’'un complexe M o, ce méme complexe

peut étre représenté par M o,. Pour le voir, remarquons que l'on a:
0y = m 0g . On peut €crire M og = M m~' .mog=Mm™" .0y = M g,.

Ensuite, si g, du complexe M/ 0 transforme ¥ en lui-méme, toutes
les substitutions du complexe ont la méme propriété. En effet, puisque
M oy = M o, la chose est claire si 'on observe que toute substitution
métacyclique transforme en lui-méme le diviseur ¥

On saura donc si un complexe transforme ¥ en lui-méme en faisant
essai avec gp et voici comment:

On dresse le tableau des substitutions métacycliques fondamentales
contenues dans ¥

16) | %, ux|, |z, ' =|, ....

Une étude plus approfondie des substitutions ¢ montre que si on a
O’E‘l Jog =, ces substitutions 16), apres transformation par gz, sont
simplement permutées entre elles. Si au contraire, 'une ou l'autre est
transformée en une substitution qui ne fait pas partie de 16), alors on

n’a pas O'é‘l ¥ 0p = 7.
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14. — Nous nous proposons, pour illustrer cette théorie, de former
deux exemples de [fonctions cycliques, en choisissant le nombre des va-
riables # — 16,

L’expression
— 3 3 .2 3 2
S=airizr, + vivgr,+ ... F 2l xix,

se compose de 16 termes; nous pouvons, en n’écrivant que les indices,
représenter cette somme S symboliquement par la colonne suivante:?)

I 2 3
2 3 4
3 4 5
5 6" 1
6/ 1 2
Dans chaque terme 1 2 3, 234, ... l'ordre des chiffres ne doit pas

étre changé. On remarquera que la colonne toute entiere s’écrit aisé-
ment en partant de la #fe de colonne 1 2 3, et en effectuant sur 1 2 3
toutes les puissances de la substitution circulaire (1 2 3 ... 6"); de sorte
que nous pouvons nous contenter d’écrire le premier terme 1 2 3 qui,
par suite, représentera toute la colonne. L’expression S peut donc s’écrire
d’une maniére trés concise comme suit:

S=1 23

La premiére fonction que nous considérons se compose de 64 termes
répartis en quatre colonnes

@ =123+ 161" 4 103 } 14'1'.

C’est une fonction cyclique. Cherchons le diviseur métacyclique qui
appartient a .

Le groupe métacyclique de 16 éléments est défini par les substitutions
fondamentales suivantes:

|z, 32|, |x 72|, |x 112|, |x 15%|
m=\|x, sx|, mt=|x 9x|, mdP=|x, 13x|

%) Les indices 10, 11, 12, ..., 16 seront notés plus commodément o, 1’, 2, ..., 6’,
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Il est facile de voir que, des 7 substitutions écrites, seules les trois
dernieres: s, m?2, m3 ne changent pas la valeur de ¢, et par suite ap-
partiennent a ¥ L’ordre de ¥ est la demi de 'ordre du groupe méta-
cyclique. Il n’est pas nécessaire d’examiner si le groupe de ¢ contient
autre chose que des substitutions métacycliques. En résumé, ¥ est
engendré par

s=\x, 14+=x|, m=|x 5x|.

¥ contient, indépendamment de A, trois groupes semblables a /4, que
nous désignerons par H,, H,, H;. En effet, m, m?2, m3 sont aptes a
former des substitutions circulaires du 16° ordre par multiplication par
|z, 14 x|, puisque les constantes 5, 9, 13 sont de la forme 1+ 47.
Formons les substitutions s,, s,, §; qui par leurs puissances donnent
H,, H,, H;, et enfin formons ¢,, 0y, 03.

o7 ' Hoy=H,  0,=(26) (35") (42") (53") (71') (04') = o7
0;' Hog = Hy 0, =1(20) (31") (64') (75') = 0,!
o; ' Hog—=H; a3 =1(24") (37) (42") (53") (60) (1'5") = ¢3!

En nous conformant a la théorie, cherchons toutes les fonctions cy-
cliques équivalentes a ¢. Pour cela, on effectue sur ¢ toutes les substi-
tutions métacycliques. Nous obtenons une nouvelle fonction ¢’

¢ = 147 + 16'5" + 12’7 4 185’
et nous avons une premiere liste
]) ¢ @

Effectuons ¢7!sur ¢; nous obtenons une nouvelle fonction ¢, :

p, = 165" 4 127 + 14'5' 4 107.

Cette derniére donne lieu, par les substitutions métacycliques, a une
2¢ liste :

1I) 91, P
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Ainsi de suite. On a le tableau suivant:
I) o, @
II) par o7? P P
II)  par o, P2y P2’
V) par o7t gy, gy

avec ¢ = 123 4 161’ 4 103 + 14'1" ¢’ — 147 + 16’5’ 4 12’7 4 185’
9, = 165" 4+ 127 + 14'5" 4 107 cpl 16’1'+143+181'+12’3
9o = 101 - 143 + 121" + 163 g = 12’5’ + 187 + 145’ + 1677
93 = 14’7 + 105" 4 167 + 125" 3’ = 183 + 12"1" - 16'3 |- 141’

R

D’aprés la théorie, nous pouvons affirmer que toutes les fonctions cycliques
équivalentes a ¢ ont été obtenues, parce que I'application de 07!, o7

07! nous a donné chaque fois une liste nouvelle.

2 ’

La deuxiéme fonction que nous prenons pour exemple est simplement
la somme

Y=+ ¢;.

Cette fonction cyclique possede le méme diviseur métacyclique ¥ que
la fonction ¢. En effet, d’une part, =, m2 m3 n’alterent ni ¢ ni ¢,.
D’autre part, une autre substitution métacyclique p. ex. |z, 3x|, change
cette fonction en ' = ¢' 4 ¢,’, et 'on peut constater que ¢’ n’a aucun
terme commun avec .

Essayons, comme précédemment, d’appliquer sur ¢ -+ ¢, les substi-
tutions métacycliques et les substitutions 67, 67, 0;1. On a le tableau
suivant:

I) ¢ +oi5 ¢ +of
)  par 07" ¢+ ¢ +¢
II) par ¢;! Po + P35, P2 @5
V) par o7’ @5+ P20 @3’ T

Déja la 2¢ liste n’est que la répétition de la 1. D’apres la théorie,
puisque ce fait se présente, nous ne pouvons étre sirs d’avoir obtenu
toutes les fonctions cycliques équivalentes a ¢ - ¢;, que si ¢, ne trans-
forme pas en lui-méme le diviseur #. Or c’est le contraire qui a lieu:
si on transforme par ¢, les substitutions wz, m2, m3, ces derniéres sont
simplement permutées entre elles, et 'on a 07! Fo,=3F.
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Il est donc possible que des fonctions cycliques équivalentes a ¢ - ¢,
nous aient échappé. Effectivement, la fonction ¢ 4- ¢4 est cyclique et en
outre équivalente a ¢ -}-¢,; elle se déduit de cette derniére par la
substitution (35'1'7) (42') (64').

15. — Sur les fonctions cycliques de degré n — p. Nous allons donner
un critére analogue a celui du n° 10 lorsque le nombre des variables
est n=p". H, ¥, M, et G ont la méme signification que plus haut, et
sont relatifs a une certaine fonction ¢.

Considérons les différents dzviseurs métacycliques contenus dans %, et
ayons spécialement en vue ceux qui ont pour ordre une puissance de
2. En général il y en a, puisque A et M/ ont pour ordres respective-
ment p” et p27—1 (p — 1). Appelons F* le driviseur métacyclique dont ' ordre
p* est le plus élevé. S'il s’en trouvait plusieurs qui eussent cet ordre
maximum, nous choisirions 'un d’eux; mais nous montrerons qu’il n’y
en a qu'un. L’ordre de toutes les substitutions de ¥*, différentes de la
substitution unité, est une puissance de p.

¥ ne contient, en dehors de 7%, aucune substitution dont l'ordre est
une puissance de p. Car s’il y en avait une s, le diviseur métacyclique
{5‘*, s}, puisque s est permutable a ¥*, aurait pour ordre l'ordre de
F* multiplié par Pexposant de la plus petite puissance de s qui figure
dans ¥*. Cet ordre serait une puissance de p supérieure a p¢, ce qui
contredit ce que nous avons supposé sur F*.

F ne contient aucun groupe de méme ordre p* que F*, ou dordre p¥
supérieur, si ce nwest F* lui-méme. Car s'il existait un tel groupe dif-
férent de ¥* nous aurions, en dehors de ¥*, une substitution ayant
pour ordre une puissance de p.

Comme ce diviseur ¥* joue ici un certain rdle, il est utile de savoir
former les substitutions |z, x| qui le déterminent. Les valeurs de § qui
peuvent convenir sont celles qui sont telles que le plus petit exposant
& pour lequel

=1 (mod p~)

est une puissance de p. Tous les B qui répondent a ce caractére satis-
font a la congruence

=1 (mod p).
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En dehors de ¥*, mais a l'intérieur de ¥ on trouve des substitutions
|z, Bx| mais ici B ne peut avoir la forme sus-indiquée, car 'ordre de
ces substitutions serait une puissance de p. On reconnait qu’une subs-
titution particuliére |z, x| fait partie de ¥ ou de F* en I’essayant sur
la fonction ¢: elle la laisse invariante.

A toute substitution |x, B+ | de F* correspond un groupe /A, semblable
a H, completement contenu dans F*.

Occupons-nous maintenant du théoreme ; nous en donnerons I’énoncé
apres la démonstration.

Soit i, une fonction invariable par les substitutions de ¥ et par celles-
la seulement. Soient

17) Yis Yoo ooer Yi

toutes les valeurs qu’elle prend quand on lui applique toutes les substi-
tutions de G. # est égal a l'indice de ¥ dans G.

Effectuons sur les fonctions 17) toutes les substitutions de F*. ),
demeure évidemment invariable. Cherchons si une autre fonction, p. ex.
Yy, (qui se déduit de y, par s, de ) reste invariable par toutes les
substitutions de ¥*. S'il en est ainsi, le groupe de y,, quiest s;! ¥s,,
contient ¥* Mais le seul groupe semblable a F* contenu dans ¥ est
F* lui-méme, On aurait donc

gt Frs, =
La question posée conduit donc a celle-ci: Le groupe G contient-il, en

dehors de % des substitutions permutables a F*?

Désignons par ¥’ le groupe formé de toutes les substitutions de G
permutables a ¥* Donc ¥ —! ¥* ¥' — ¥* Décomposons ¥’ suivant ¥
en ses divers complexes

F'=F+ Fso+Fss+ ...+ Fs»

s, transforme A en un certain A, de ¥*; s;! Hs, = H,. Tout le com-
plexe 7s, a la méme propriété, et aucune autre substitution de G n’a
cette propriété.

s3 et par conséquent ¥s, transforme Z en un certain A, de ¥*. Ainsi
de suite. Chaque complexe est caractérisé par le fait qu’il transforme A
en un certain A; de ¥*.
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Cela dit, G peut étre décomposé comme suit:

C=F+Fs+ I+ o + I+ It o +F2

et nous pouvons supposer que dans la liste des fonctions 17), s, s, ...,
yr ont €t€ obtenues a partir de i, précisément au moyen de s,, S5, ..., Sz .

Maintenant il est facile de voir que par ’effet des substitutions de ¥,
les fonctions suivantes

Yis Yo -0 Ysr
resteront invariables.

Pour 1, cela est clair. Examinons y,. Le groupe de ), est s;! ¥s,;
ce groupe contient s;! F*s5,— F* Il en est de méme de toutes les
autres fonctions jusqu’a , ; mais y,,; n'a plus cette propriété.

On conclut que le nombre des fonctions 3 qui restent invariables par
F* est r, et ce nombre r est égal & Uindice de ¥ dans ¥'.

Par les substitutions de #* les autres fonctions 17) se groupent en
systemes, et le nombre des fonctions par systéme est un diviseur de
l’ordre de ¥*, donc une puissance de p; on a donc

E=r+p* 4+ + ..
k:r—{—/zp

Soit maintenant A’ un groupe semblable a A contenu dans G, n’im-
porte lequel. Effectuons encore une fois sur les fonctions 17) les substi-
tutions de A'. Ces £ fonctions se groupent en de nouveaux systémes,
et le nombre des fonctions par systéme est une puissance de p. On a
done une égalité telle que

b hp=p"4pt+ ...

Sz r nest pas divisible par p, une telle égalité peut subsister seule-
ment si 'un des exposants, p.ex. @ est nul; autrement dit seulement
si 'une des fonctions 17), p. ex. y,, est invariable par toutes les sub-
stitutions de /A’. Or le groupe de vy, est s;! ¥s,. On conclut que Zout
groupe H' est le transformé par une substitution de G dun groupe
semblable @ H contenu dans ¥ Cette derniére conclusion, jointe au
théoreme du n° 8 nous permet de dire:
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Théoveme. St lUindice de ¥ dans F' west pas divisible par p, toutes
les fonctions cycliques équivalentes & ¢ sont obtenues par Iapplication des
substitutions R).

Mazs si r est divisible par p, notre conclusion n’est plus légitime; et
effectivement on peut former des exemples ou les divers A; de G ne
peuvent étre tous obtenus en transformant ceux de ¥ par des substitu-
tions de G, et ou par conséquent les substitutions R) ne donnent pas
toutes les fonctions cycliques équivalentes a ¢.

16. — Procédé pratique. 1l nous reste a montrer: 1°. — comment on
construit et applique les substitutions R); 2°. — comment on s’assure que
Iindice de ¥ dans ¥’ n’est pas divisible par p.

Nous serons brefs, car les explications et les démonstrations des

n°s 12 et 13 relatives au cas » — 27 peuvent étre répétées ici presque
textuellement.

On part de la fonction étudiée ¢ et on applique a ¢ toutes les subs-
titutions métacycliques. On obtient ainsi une premiere liste de fonctions
équivalentes.

I') o, ?I’ cPn’ .

La plus simple maniére de procéder consiste a chercher une racine
primitive § pour le module p”, puis a appliquer |z, Bx| et ses puissances
a la fonction ¢. Toute substitution |z, Bx| qui laisse ¢ invariable ap-
partient a %

Parmi les substitutions |z, 8| de ¥ il s’en trouve de plus remar-
quables pour lesquelles =1 (mod p). A chacune de ces derni¢res
correspond une autre |r, I - x| qui par ses puissances engendre un
groupe H; de ¥

Apres avoir formé toutes les substitutions circulaires |z, 1 +Bx|, on
construit les o; qui leur correspondent et qui transforment A en fous
les groupes semblables a A contenus dans ¥.

En appliquant ¢;'a ¢ on obtient une fonction cyclique ¢,. En effec-
tuant, exactement comme pour ¢, toutes les substitutions métacycliques,
on obtient une deuxiéme liste

Ir’) Prr P1's Q1 r oees
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On procéde .d’'une maniére pareille avec g7, 67!, ... et I'on a pour
finir autant de listes qu’il y a de o;. C’est en cela que consiste la
construction et I'application des substitutions R).

'La seconde question posée est relative a l'indice » de ¥ dans ¥'. C’est
seulement dans le cas ou cet indice n’est pas divisible par p que l'on
sera slir d’avoir obtenu toutes les fonctions cycliques équivalentes a ¢.

Il peut arriver que certaines listes II'), III'), ... ne soient que la ré-
pétition de la premiére I'), peut-étre avec un autre ordre des fonctions

4 "
P PP, e
Envisageons les o; qui ont donné lieu a de telles listes; ce sont,

d’apres la notation du n° 12, des o3. Nous ne retiendrons de ces a3 que
celles qui ont la propriété de transformer ¥* en lui-méme.

oﬁ_l F* o = F*.

Cette vérification se fait aisément: on dresse le tableau des |z, fx| de
F*; ces substitutions sont alors simplement permutées entre elles, si la
propriété signalée a lieu.

Pour finir, aprés élimination, il nous reste un nombre N de og; alors
N 1 est Uindice cherché de ¥ dans F'.

En effet, prenons I'un des og, disons g,. Au cas ol o, n’appartiendrait
pas a G, le complexe Mo, contiendrait certainement une substitution
sy de G (n° 13); alors ¥s, renferme toutes les substitutions' de G qui
transforment ¥* en lui-méme et A en /,. On voit aisément qu’a chacune
de ces og correspond un complexe ¥s; de la décomposition de ¥ sui-
vant ¥ que nous avons considérée au n° 15; on voit aussi que » = NV 1.

17. — Pour terminer, nous donnerons un exemple concret, afin de
prouver surtout que, si nos démonstrations lconcernant les substitutions
R) sont longues et délicates, I'application de ces substitutions a un cas
pratique est au contraire tres facile.

La fonction ¢ que nous considérons a un nombre de variables égal
a 33=127. On fera bien de se reporter au n° 14 o un exemple sem-
blable a été donné, et nous emploierons les mémes notations abrégées
qu’alors. Le symbole

S=—1 23
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représente une somme de 27 termes, et chacun s’obtient a4 partir du
précédent par la substitution cyclique s —(1234...). Nous imaginerons
ces termes écrits en colonne, et le terme principal 1 2 3 est la téte de
colonne.

Appliquons a la colonne cyclique 123 toutes les substitutions méta-
cycliques qu’on peut former avec 27 éléments. Il suffit évidemment
d’appliquer les substitutions |x, Bx| ou B prend les 18 valeurs qui sont
les nombres premiers a » — 27 et inférieurs a ». Ces substitutions sont
toutes les puissances de

|x, 22].

Si 'on fait la somme des 18 colonnes obtenues, on obtient la fonction
¢ que nous nous proposons d’étudier. 10)

@ =123+ 135+ 1590+ 197" +17'6 161" 111" - 11"4" + 14'7"

+17"6"416"4" 4-14"0" +10"2' +-12"3" 4 13"8" + 18’8+ 185" | 15'2.
Nous allons chercher toutes les fonctions cycliques équivalentes a ¢,

en employant a cet effet les substitutions R). Tout d’abord les substi-

tutions métacycliques laissent ¢ invariable, et notre premicre liste con-
tient 'unique fonction ¢.

Formons les o;. Les diverses valeurs de § qui sont de la forme 1 4-p7
sont les suivantes:

18) 4, 7, 10, 13, 16’ 19, 22, 25.

Avec chacune de ces valeurs on peut construire une substitution cir-
culaire |x, 1 4 Bx|. Par exemple

si=|x 142 =(151"47"5'72904'33'6"4"6"1'8'9’ 3"2'2"865"0' ;")

et I'on a:
s [N Y4 PN 0ot ! "
“01-——(s1)*~——(257 1'46"0'3"8) (31"2') (65'4")

10) Les chiffres accentués représentent les nombres supérieurs & 9: ainsi o', o', 1". 2"
représentent 19, 20, 21, 22, — D’aprés la théorie, une substitution métacyclique p. ex. | x, 8 x|
change une fonction cyclique en une fonction cyclique. Le terme 123 deviendra 86’ 4" ; ce
terme appartient 2 la colonne cyclique dont la téte est 197’. Ainsi, sans plus de calcul, nous
pouvons dire que la colonne 123 est devenue 197'.
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De méme o, se construit a l'aide de s,— |z, 1} 7x|. Nous n’écri-
rons pas ces divers g; dans le détail; nous les désignerons par

Oys> Og- O3> O4» 05, Ogs O7, T

et chacun d’eux correspond au nombre du méme rang dans 18).

En appliquant 67! a ¢ nous obtenons une nouvelle fonction cyclique
;1) on constante alors que les substitutions métacycliques effectuées
sur ¢, donnent les 6 fonctions cycliques

i nu . m Iy Vv
Py Q1 P1y P15 P1y Pi-

Ce sera notre seconde liste; nous n’entrons pas dans le détail des
calculs qui sont aisés. Chaque o' donne lieu a une liste, et nous obte-
nons, pour finir, le tableau suivant:

¢

par o7' @i, i, @, @, @i, ¢,
;' e, e, @, P 9L Pr
0;1 Cpiv ’ CPY y  P1y CP: ’ ?{l ’ CP}H ’
oyl el, P gL, Y. i, %1,
o7 i, i, 9, Prs Py P
;! @t @, @, U, 9, Py,
;! ¢, i,

1 1
GG CPZQ CPZ!

Si, comme nous allons le montrer en effet, toutes les fonctions cy-
cliques équivalentes a ¢ ont été obtenues, il y en a 9 en tout, qui sont;
P Pis Pis Pis Prs Pis Ply Py P

Conformément a la théorie, nous devons voir si la liste a laquelle
appartient ¢, se trouve répétée. Ce n’est pas le cas; par conséquent
¥ =%, et toutes les fonctions cycliques équivalentes a ¢ ont été ob-
tenues.

Pour illustrer davantage la théorie, nous pouvons, sans changer d’exem-
ple, observer l'une quelconque des g fonctions qui sont équivalentes
entre elles, p. ex. ¢, et traiter ¢, a 'aide des substitutions R).

11) 11 est important de remarqter qu’uue substitution g, qui correspond a |x, 1 4B x]|,
ne donnera une fonction cyclique que si |x, x| fait partie du groupe de ¢ (n’altere pas
¢). — Par o* le terme 123 devient 182"; mais la colonne 123, aprés substitution, n’est plus

cyclique. Ce n’est qu’aprés avoir rétabli Pordre dans le résultat de la substitution qu'on verra
la fonction ¢, sous la forme cyclique, et I'on verra apparaitre toute la colonne cyclique 182’.
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¢, est invariable par les substitutions |z, 10x| et |z, 9x|; son groupe
F* contient donc deux groupes semblables a /, et nous devons appli-
quer a ¢, les substitutions ¢! et o7! a l'exclusion des autres. Nous
obtenons le tableau suivant:

1 1 111 v v
®, P1s P1 s P %1 P10
- 1V A2 I II 1514
par ;' @',  9f, i, i, P, Pis
I

s 1 v v 1
par G, P1 P17, P P » @1, Py

Chose remarquable, il est impossible, a 'aide des substitutions R) de
déduire de ¢, toutes les fonctions cycliques qui lui sont équivalentes;
nous n’obtenons pas ¢, et ¢: On vérifie aisément qu'on a

U;Iy*%:y*v 5:1.7*06—:.‘7*
r=N—+1=2-4+1=3

r est divisible par 3. Conformément a la théorie, des fonctions ont pu
nous échapper, et c’est le cas en effet.

Enfin partons de ¢,, dont le groupe possede les substitutions
|z, Bx| ot B =4, 7, 10, 13, 16, 19, 22, 25.

Tous les o; peuvent étre appliqués a ¢,; aucun n’est a exclure.

On trouve:

P2 P2y
par o7 @1, @i,

— v v 1 1 111
o7l o, o, P, P, P, @

it III IV

5‘2—1 P P CPL P, Y1y ¢
o7l el @i, @, e, P, P

I 1 111 v v
Py Py Py Py Prs, @1
- 1 11 1 v
g, 1 P11 ©1, P> 1 P, @
I

_ v v 1
0'81 Py Py Py Piy P1y P
-1

O 14
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La liste a laquelle appartient ¢, ne se trouve répétée qu’une fois, le
og correspondant a la propriété:

O‘s—l .‘;{* 03 — 7*.
L’indice de ¥ dans ¥’ est cette fois
r=N+1—1-+}+1=2,

Cet indice n’est pas divisible par p — 3. Conformément a la théorie,
nous devons cette fois obtenir toutes les fonctions cycliques équivalentes
a ¢y . Ce résultat est bien, en effet, en concordance avec le premier.

(Regu le 12 mars 1931)
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	Sur une manière de différencier les fonctions cycliques d'une forme donnée.

