Zeitschrift: Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 3 (1931)

Artikel: Ueber automorphe Funktionen der Picard'schen Gruppe I.

Autor: Fueter, Rud.

DOI: https://doi.org/10.5169/seals-4677

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 08.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Ueber automorphe Funktionen der Picard'schen Gruppe I

Von RUD. FUETER, Zürich

In einer früheren Arbeit habe ich Funktionen dreier Variabler aufgestellt 1), die gegenüber einer in der Ebene uneigentlich diskontinuierlichen Gruppe automorph sind. Im folgenden untersuche ich diese Funktionen näher. Ich beschränke mich dabei auf die Picard'sche Gruppe, hebe aber ausdrücklich hervor, daß die Ausführungen ohne Schwierigkeit auch auf jede andere Gruppe ausgedehnt werden können. Eine wesentliche Vereinfachung ergibt sich allerdings aus dem Umstande, daß die Zusammenhangsverhältnisse des Diskontinuitätsraumes (D. R.) der Picard'schen Gruppe besonders einfach sind, und am weitgehendsten denjenigen des Diskontinuitätsbereiches der Modulgruppe in der Ebene entsprechen. Ich beschränke mich im folgenden auch auf den dreidimensionalen Raum, trotz Einführung der Quaternionen, da sich die vierte Dimension nicht als notwendig erwiesen hat, und da so die Anschauung vollständig gewahrt bleiben kann. Doch kann alles auch in gleicher Weise mit der vierten Variablen durchdacht werden.

In dem vorliegenden ersten Teile der Untersuchungen werden die Symmetrieverhältnisse, die Differenzierbarkeit der Komponenten der Funktion, sowie ihr Verhalten bei der Annäherung an den im Unendlichen liegenden Eckpunkt, d. h. in den rationalen Punkten der komplexen Ebene angegeben. Letzteres ergibt sich durch wesentliche Verwendung der Transformationsformel der von Hecke benutzten Thetafunktionen, die zum Körper k ($\sqrt{-1}$) gehören. Sie führt auf Bessel'sche Funktionen 3. Art, deren asymptotisches Verhalten man genau kennt. Die Resultate lassen eine weitgehende, merkwürdige Analogie mit der Theorie der elliptischen Modulfunktion erkennen. Nicht nur bildet die betrachtete Funktion die ganze Umrandung des Diskontinuitätsraumes und ihrer Symmetrieebene auf eine Ebene ab, sondern sie nähert sich auch bei Annäherung an den im Unendlichen liegenden Eckpunkt einem bestimmten, von den beiden andern Koordinaten unabhängigen Werte.

¹⁾ Ueber automorphe Funktionen in Bezug auf Gruppen, die in der Ebene uneigentlich diskontinuierlich sind. Crelle's Journal, Bd. 137 (1927), S. 66.

1. Die automorphe Funktion f(z)

Die Picard'sche Gruppe & enthalte die Substitutionen

$$S = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$$
,

wo also α , β , γ , δ ganze Zahlen des Körpers $k(\sqrt{-1})$ sind, die der Bedingung $\alpha \delta - \beta \gamma = 1$ genügen. Die imaginäre Einheit derselben werde als die Einheit i_1 unter den Quaternionen Einheiten $1, i_1, i_2, i_3$ gewählt. Die *reduzierte* Quaternionenvariable $z = x_0 + i_1 x_1 + i_2 x_2$ werde im 012-Koordinatensystem des Raumes versinnbildlicht. Es bedeutet dann:

$$Sz = (\alpha z + \beta) (\gamma z + \delta)^{-1}$$

die bekannte, ursprünglich von *Poincaré* angegebene Raumtransformation, bei der Kugeln (Ebenen) wieder in Kugeln (Ebenen) übergehen. Transformiert man \mathfrak{G} mit:

$$s = \begin{pmatrix} I & i_2 \\ i_2 & I \end{pmatrix}$$
, $\mathfrak{G}' = s^{-1} \mathfrak{G} s$,

und setzt:

$$s'=s^{-1}\,S\,s,$$

so führen alle Substitutionen s' die Einheitskugel in sich über, und, wegen $\alpha \delta - \beta \gamma = 1$, geht jeder Punkt des Innern derselben wieder in einen Punkt des Innern über. Zudem entspricht bezüglich s dem obern Halbraum dieses Innere der Einheitskugel. Die von mir aufgestellten Funktionen f'(z) haben dann die Eigenschaft, daß:

$$f'(s'z) = f'(z)$$

wird. Die Funktion:

$$f(z) = f'(s^{-1} z)$$

hat dann die Eigenschaft, daß:

$$f(Sz) = f'(s^{-1}Sz) = f'(s's^{-1}z) = f'(s^{-1}z) = f(z)$$

wird, also ungeändert bleibt bei allen Substitutionen von \mathfrak{G} . f'(z) ist definiert als Quotient von zwei unendlichen, absolut konvergenten Reihen. Der Nenner konvergiert zugleich gleichmäßig in jedem, ganz im Innern der Einheitskugel liegenden Bereiche, der Zähler ebenfalls in jedem solchen Bereiche, der aber außerdem einen im Innern des D. R. von \mathfrak{G}' fest gegebenen Punkt ξ' und alle seine äquivalenten Punkte nicht enthält. Der Nenner ist zudem reell. Setzt man in f'(z) an Stelle von z den Wert:

$$s^{-1} z = (z - i_2) (-i_2 z + 1)^{-1} = (z i_2 - 1)^{-1} (-z + i_2),$$

so ergibt die Rechnung, daß sich f(z) so darstellen läßt, wobei gemeinsame, reelle Faktoren des Zählers und Nenners weggelassen sind:

$$T(z) = \sum_{(S)} \frac{1}{n((\gamma - i_2 \alpha) z + \delta - i_2 \beta)^k},$$

$$R(z) = \sum_{(S)} \frac{\left[\left((\alpha - i_2 \gamma) z + \beta - i_2 \delta\right) ((\gamma - i_2 \alpha) z + \delta - i_2 \beta)^{-1} - \zeta'\right]^{-1}}{n((\gamma - i_2 \alpha) z + \delta - i_2 \beta)^k},$$

$$I(z) = \frac{R(z)}{T(z)}, f(Sz) = f(z), S = \begin{pmatrix} \alpha \beta \\ \gamma \delta \end{pmatrix}.$$

Die Summen sind über alle Substitutionen S von \mathfrak{G} zu erstrecken, und k bedeutet eine natürliche Zahl ≥ 3 . $n(a) = a\overline{a}$ ist die Norm des Quaternions a.

Setzt man:

$$\zeta' = (\zeta - i_2) (-i_2 \zeta + I)^{-1}$$
,

so ist ζ sicherlich ein Punkt des obern Halbraumes und liegt im Innern des D. R. Die Reihen von f(z) sind dann absolut und gleichmäßig konvergent in jedem endlichen, ganz über der 01-Ebene gelegenen Raume Ω , der weder ζ noch einen seiner äquivalenten Punkte enthält. Setzt man also:

$$w = f(z) = u_0 + u_1 i_1 + u_2 i_2$$
,

so sind u_0 , u_1 , u_2 stetige und endliche Funktionen der drei Variablen x_0 , x_1 , x_2 in Ω .

Im folgenden werden wir uns mit dieser Funktion w = f(z) genauer beschäftigen.

2. Symmetrieeigenschaften

Wir wollen den D. R. von & durch die Bedingungen:

$$x_0^2 + x_1^2 + x_2^2 \ge 1$$
, $0 \le x_0 \le \frac{1}{2}$, $-\frac{1}{2} \le x_1 < \frac{1}{2}$, (siehe Fig. 1),

festlegen. Die 02-Ebene ist dann eine Symmetrieebene dieses D. R. Ferner wollen wir von der Umgrenzung desselben nur die Flächenstücke mit negativem x_1 hinzunehmen. Denn zunächst ist wegen:

$$-i_1 z i_1^{-1} = i_1 z_1 i_1 = -x_0 - x_1 i_1 + x_2 i_2, \ S_1 = \begin{pmatrix} -i_1 & 0 \\ 0 & i_1 \end{pmatrix},$$

jeder Punkt der 12-Ebene seinem in bezug auf die 2-Axe spiegelbildlichen äquivalent.

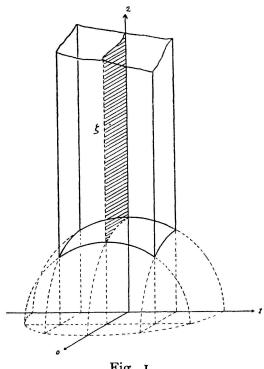


Fig. 1.

Ferner sind wegen $S_2 z = z + i_1$, $S_2 = \begin{pmatrix} I & i_1 \\ O & I \end{pmatrix}$, alle Punkte der Grenzfläche $x_1 = -\frac{1}{2}$ dem Spiegelpunkt in bezug auf die 02-Ebene äquivalent. Wegen:

$$(-i_1z+i_1)i_1^{-1}=(-x_0+1)-i_1x_1+i_2x_2$$

ist jeder Punkt $x_0 = \frac{1}{2}$ seinem Spiegelpunkt in bezug auf die 02-Ebene äquivalent. Und schließlich ist für jeden Punkt der Einheitskugel:

$$i_1(i_1 z)^{-1} = x_0 - x_1 i_1 + x_2 i_2$$

seinem Spiegelbild in bezug auf die 02-Ebene äquivalent.

Wir wählen jetzt ξ im Innern dieses D. R. auf der 02-Ebene. Dann ist auch ξ' ein Quaternion, das nur von den Einheiten 1, i_2 abhängt. Wir setzen:

$$\xi = z_0 + z_2 i_2$$
, $\xi' = z_0' + z_2' i_2$, wo $z_2 > \frac{1}{2} \sqrt{3}$, $0 < z_0 < \frac{1}{2}$, $z_0^2 + z_2^2 > 1$.

Wir wollen von nun an die Spiegelung an der 02-Ebene durch einen Strich bezeichnen. Es sei also:

$$z' = x_0 - x_1 i_1 + x_2 i_2$$

während der Querstrich stets die Konjugierte, also die Spiegelung um die o-Axe bedeute. Dann ist:

$$n((\gamma - i_{2}\alpha)z + \delta - i_{2}\beta) = n(-i_{2}((\gamma - i_{2}\alpha)z + \delta - i_{2}\beta)i_{2})$$

$$= n((\bar{\gamma} - i_{2}\bar{\alpha})z' + \bar{\delta} - i_{2}\bar{\beta});$$

$$i_{2}[((\alpha - i_{2}\gamma)z + \beta - i_{2}\delta)((\gamma - i_{2}\alpha)z + \delta - i_{2}\beta)^{-1} - \zeta']i_{2}^{-1}$$

$$= i_{2}((\alpha - i_{2}\gamma)z + \beta - i_{2}\delta)((\gamma - i_{2}\alpha)z + \delta - i_{2}\beta)^{-1}i_{2}^{-1} - \zeta'$$

$$= ((\bar{\alpha} - i_{2}\bar{\gamma})z' + \bar{\beta} - i_{2}\bar{\delta})i_{2}[((\bar{\gamma} - i_{2}\bar{\alpha})z' + \bar{\delta} - i_{2}\bar{\beta})i_{2}]^{-1} - \zeta'$$

$$= ((\bar{\alpha} - i_{2}\bar{\gamma})z' + \bar{\beta} - i_{2}\bar{\delta})((\bar{\gamma} - i_{2}\bar{\alpha})z' + \bar{\delta} - i_{2}\bar{\beta})i_{2}]^{-1} - \zeta'.$$

Somit wird:

$$T(z) = \sum_{(S)} \frac{1}{n((\bar{\gamma} - i_2 \ \bar{\alpha}) z' + \bar{\delta} - i_2 \ \bar{\beta})^k}$$

$$i_2 R(z) i_2^{-1} = \sum_{(S)} \frac{[((\bar{\alpha} - i_2 \bar{\gamma}) z' + \bar{\beta} - i_2 \bar{\delta}) ((\bar{\gamma} - i_2 \bar{\alpha}) z' + \bar{\delta} - i_2 \bar{\beta})^{-1} - \zeta']^{-1}}{n((\bar{\gamma} - i_2 \bar{\alpha}) z' + \bar{\delta} - i_2 \bar{\beta})^k}.$$

Nun ist aber auch:

$$\overline{S} = \begin{pmatrix} \bar{\alpha} & \bar{\beta} \\ \bar{\gamma} & \bar{\delta} \end{pmatrix}$$

eine Substitution von \mathfrak{G} . Wenn also S alle Substitutionen von \mathfrak{G} durchläuft, so wird auch \overline{S} dasselbe tun. Somit ist:

$$\left.\begin{array}{c}
T(z) = T(z'), \\
i_2 R(z) i_2^{-1} = R(z'),
\end{array}\right\} \text{ also } i_2 f(z) i_2^{-1} = f(z').$$

Nun ist aber:

$$i_2 f(z) i_2^{-1} = i_2 (u_0 + u_1 i_1 + u_2 i_2) i_2^{-1} = u_0 - u_1 i_1 + u_2 i_2 = f(z)',$$

und es folgt die grundlegende Symmetrieeigenschaft:

$$\frac{f(z') = f(z)'}{z' = x_0 - i_1 x_1 + i_2 x_2, f(z)' = u_0 - i_1 u_1 + i_2 u_2}.$$
 II.

1. Satz: Punkten, die in bezug auf die 02-Ebene spiegelbildlich sind, entsprechen Funktionswerte, die ebenfalls in bezug auf die 02-Ebene spiegelbildlich sind.

Nun nimmt nach dem obigen f(z) auch in bezug auf Punkte der Umgrenzung, die spiegelbildlich zur 02-Ebene liegen, gleiche Werte an. Denn diese Punkte sind äquivalent bezüglich der Gruppe \mathfrak{G} , und es gilt I. Da diese Werte zugleich spiegelbildlich sein müssen, so müssen sie auf der 02-Ebene selbst liegen. Dasselbe gilt für alle Punkte z auf der 02-Ebene selbst. Unsere Funktionen genügen also einem Spiegelungsprinzip.

2. Satz: Die Umrandung, sowie die Symmetrieebene des D.R. der Gruppe & werden auf Punkte der 02-Ebene durch f (z) abgebildet.

Wenden wir dieses Resultat auf die Funktionen u an, so sieht man: $u_1(x_0, x_1, x_2)$ ist auf der 02-Ebene und auf der Umrandung des D.R. = 0;

$$u_0(x_0, -x_1, x_2) = u_0(x_0, x_1, x_2),$$

 $u_1(x_0, -x_1, x_2) = -u_1(x_0, x_1, x_2),$
 $u_2(x_0, -x_1, x_2) = u_2(x_0, x_1, x_2),$

Dieses Resultat legt natürlich die Vermutung nahe, daß f(z) jede Symmetriehälfte des D. R. auf einen Halbraum abbildet.

Weitere, nicht so wichtige Symmetrien findet man auf dieselbe Weise. Es ist:

$$S_1 z = i_1 z i_1 = -x_0 - i_1 x_1 + i_2 x_2; f(S_1 z) = f(z);$$

also:

$$f(-\bar{z}) = f(-x_0 + i_1 x_1 + i_2 x_2) = f(x_0 - i_1 x_1 + i_2 x_2) = f(z)'.$$

Wird also in f(z) an Stelle von x_0 der Wert — x_0 eingesetzt, so ändern u_0 und u_2 sich nicht, dagegen wechselt u_1 das Vorzeichen:

$$u_0(-x_0, x_1, x_2) = u_0(x_0, x_1, x_2),$$

 $u_1(-x_0, x_1, x_2) = -u_1(x_0, x_1, x_2),$
 $u_2(-x_0, x_1, x_2) = u_2(x_0, x_1, x_2).$

3. Die Differentialquotienten der u

Es fragt sich, ob die u partielle Differentialquotienten besitzen. Um einfacher zu schreiben, wollen wir unter dem partiellen Differentialquotient irgend einer Funktion $w = u_0 + u_1 i_1 + u_2 i_2 + u_3 i_3$ verstehen.

$$\frac{\partial w}{\partial x_{y}} = \frac{\partial u_{0}}{\partial x_{y}} + \frac{\partial u_{1}}{\partial x_{y}} i_{1} + \frac{\partial u_{2}}{\partial x_{y}} i_{2} + \frac{\partial u_{3}}{\partial x_{y}} i_{3}, \quad \nu = 0, \quad 1, \quad 2.$$

Man sieht leicht, daß dann die Regel gilt:

$$\frac{\partial awb}{\partial x_{\mathbf{v}}} = a \frac{\partial w}{\partial x_{\mathbf{v}}} b,$$

falls a, b konstante Quaternionen sind.

Wir denken uns jetzt um den Punkt $\zeta(\zeta')$ eine Kugel von einem beliebig kleinen, aber festen Radius $\varrho(\varrho')$ errichtet, und um jeden äquivalenten Punkt die äquivalente Kugel. Die Punkte dieser Kugeln schließen wir stets von der Betrachtung aus. Ferner denken wir uns einen beliebigen, ganz im obern Halbraum gegebenen endlichen Bereich ϱ . Für alle seine Punkte ϱ sei ϱ sei ϱ o, wo ϱ fest gegeben ist. ϱ sei also außerhalb der genannten Kugeln, und im Innern von ϱ gelegen. Nun ist:

$$n ((\gamma - i_2 \alpha) z + \delta - i_2 \beta)$$

$$= (\alpha \bar{\alpha} + \gamma \bar{\gamma}) ((x_0 + A_0)^2 + (x_1 + A_1)^2 + (x_2 + A_2)^2),$$

wo:

$$2\left(lphaar{lpha}+\gammaar{\gamma}
ight)A_{0}=\gammaar{\delta}+\deltaar{\gamma}+lphaar{eta}+etaar{lpha},\ 2\left(lphaar{lpha}+\gammaar{\gamma}
ight)A_{1}=i_{1}\left(\gammaar{\delta}-\deltaar{\gamma}+lphaar{eta}-etaar{lpha}
ight),\ 2\left(lphaar{lpha}+\gammaar{\gamma}
ight)A_{2}=2,\ A_{0}^{2}+A_{1}^{2}+A_{2}^{2}=rac{\deltaar{\delta}+etaar{eta}}{lphaar{lpha}+\gammaar{\gamma}} \quad ext{ist.}$$

 A_0 , A_1 , A_2 sind reell. Da x_2 und A_2 stets positiv sind, so ist für alle z von Ω :

$$n((\gamma - i_2 \alpha) z + \delta - i_2 \beta) > N^2(\alpha \alpha + \gamma \gamma) \ge N^2.$$

Nun ist:

$$\frac{\partial T(z)}{\partial x_{\nu}} = -2k \sum_{(S)} \frac{x_{\nu} + A_{\nu}}{(x_{0} + A_{0})^{2} + (x_{1} + A_{1})^{2} + (x_{2} + A_{2})^{2}} \times \frac{1}{n((\gamma - i_{2}\alpha) z + \delta - i_{2}\beta)^{k}}, \nu = 0, 1, 2.$$

Für den ersten Faktor jedes Summanden gilt:

$$\left| \frac{x_{\nu} + A_{\nu}}{(x_{0} + A_{0})^{2} + (x_{1} + A_{1})^{2} + (x_{2} + A_{2})^{2}} \right|$$

$$\leq \frac{1}{\sqrt{(x_{0} + A_{0})^{2} + (x_{1} + A_{1})^{2} + (x_{2} + A_{2})^{2}}} \leq \frac{1}{N}.$$

Somit konvergiert auch $\partial T(z)/\partial x_{\nu}$ für $\nu = 0$, 1, 2 in Ω gleichmäßig und absolut. Man sieht in gleicher Weise, daß auch alle höhern partiellen Differentialquotienten existieren und stetig sind. Außerdem gilt:

$$\Delta T(z) = 2k (2k - 1) \sum_{(S)} \frac{\alpha \bar{\alpha} + \gamma \bar{\gamma}}{n ((\gamma - i_2 \alpha) z + \delta - i_2 \beta)^{k+1}}$$

Entsprechend ist:

$$\frac{\partial R(z)}{\partial x_{\nu}} = -2k \sum_{(S)} \frac{(x_{\nu} + A_{\nu}) \left[((\alpha - i_{2}\gamma)z + \beta - i_{2}\delta) ((\gamma - i_{2}\alpha)z + \delta - i_{2}\beta)^{-1} - \zeta' \right]^{-1}}{((x_{0} + A_{0})^{2} + (x_{1} + A_{1})^{2} + (x_{2} + A_{2})^{2}) n ((\gamma - i_{2}\alpha)z + \delta - i_{2}\beta)^{k}} + \sum_{(S)} \frac{\partial}{\partial x_{\nu}} \left[((\alpha - i_{2}\gamma)z + \beta - i_{2}\delta) ((\gamma - i_{2}\alpha)z + \delta - i_{2}\beta)^{-1} - \zeta' \right]^{-1}}{n ((\gamma - i_{2}\alpha)z + \delta - i_{2}\beta)^{k}} \cdot \frac{\partial}{\partial x_{\nu}} \left[((\alpha - i_{2}\gamma)z + \beta - i_{2}\delta) ((\gamma - i_{2}\alpha)z + \delta - i_{2}\beta)^{-1} - \zeta' \right]^{-1}}{n ((\gamma - i_{2}\alpha)z + \delta - i_{2}\beta)^{k}} \cdot \frac{\partial}{\partial x_{\nu}} \left[((\alpha - i_{2}\gamma)z + \beta - i_{2}\delta) ((\gamma - i_{2}\alpha)z + \delta - i_{2}\beta)^{k} - \zeta' \right]^{-1}}{n ((\gamma - i_{2}\alpha)z + \delta - i_{2}\beta)^{k}} \cdot \frac{\partial}{\partial x_{\nu}} \left[((\alpha - i_{2}\gamma)z + \beta - i_{2}\beta) ((\gamma - i_{2}\alpha)z + \delta - i_{2}\beta)^{k} - \zeta' \right]^{-1}}{n ((\gamma - i_{2}\alpha)z + \delta - i_{2}\beta)^{k}} \cdot \frac{\partial}{\partial x_{\nu}} \left[((\alpha - i_{2}\gamma)z + \beta - i_{2}\beta) ((\gamma - i_{2}\alpha)z + \delta - i_{2}\beta)^{k} - \zeta' \right]^{-1}}{n ((\gamma - i_{2}\alpha)z + \delta - i_{2}\beta)^{k}} \cdot \frac{\partial}{\partial x_{\nu}} \left[((\alpha - i_{2}\gamma)z + \beta - i_{2}\beta) ((\gamma - i_{2}\alpha)z + \delta - i_{2}\beta)^{k} - \zeta' \right]^{-1}}{n ((\gamma - i_{2}\alpha)z + \delta - i_{2}\beta)^{k}} \cdot \frac{\partial}{\partial x_{\nu}} \left[((\alpha - i_{2}\gamma)z + \beta - i_{2}\beta) ((\gamma - i_{2}\alpha)z + \delta - i_{2}\beta)^{k} - \zeta' \right]^{-1}}{n ((\gamma - i_{2}\alpha)z + \delta - i_{2}\beta)^{k}} \cdot \frac{\partial}{\partial x_{\nu}} \left[((\alpha - i_{2}\gamma)z + \beta - i_{2}\beta) ((\gamma - i_{2}\alpha)z + \delta - i_{2}\beta)^{k} - \zeta' \right]^{-1}}{n ((\gamma - i_{2}\alpha)z + \delta - i_{2}\beta)^{k}} \cdot \frac{\partial}{\partial x_{\nu}} \left[((\alpha - i_{2}\gamma)z + \beta - i_{2}\beta) ((\gamma - i_{2}\alpha)z + \delta - i_{2}\beta)^{k} - \zeta' \right]^{-1} \right] \cdot \frac{\partial}{\partial x_{\nu}} \left[((\alpha - i_{2}\gamma)z + \beta - i_{2}\beta) ((\gamma - i_{2}\alpha)z + \delta - i_{2}\beta)^{k} - \zeta' \right]^{-1}$$

Die erste Summe konvergiert wieder absolut und gleichmäßig in Ω , da ja der zweite Faktor im Zähler jedes Summanden absolut kleiner als ϱ'^{-1} ist. Wir müssen also nur noch die gleichmäßige Konvergenz der zweiten Summe beweisen. Dazu setzen wir:

$$w^* = u_0^* + u_1^* i_1 + u_2^* i_2 = ((\alpha - i_2 \gamma) z + \beta - i_2 \delta) ((\gamma - i_2 \alpha) z + \delta - i_2 \beta)^{-1}$$

Dann folgt durch Rechnung:

$$w^* = (\alpha - i_2 \gamma) (\gamma - i_2 \alpha)^{-1} [(\gamma - i_2 \alpha) z + \delta - i_2 \beta - (\delta - i_2 \beta) + (\gamma - i_2 \alpha) (\alpha - i_2 \gamma)^{-1} (\beta - i_2 \delta)] ((\gamma - i_2 \alpha) z + \delta - i_2 \beta)^{-1} = (\alpha - i_2 \gamma) (\gamma - i_2 \alpha)^{-1} - 2(\gamma - i_2 \alpha)^{-1} ((\gamma - i_2 \alpha) z + \delta - i_2 \beta)^{-1},$$

wobei von der Relation:

$$(\gamma - i_2 \alpha) (\alpha - i_2 \gamma)^{-1} = (-\alpha + \gamma i_2)^{-1} (-\gamma + \alpha i_2)$$

Gebrauch gemacht wurde. Da nun:

$$(\gamma - i_2 \alpha) z + \delta - i_2 \beta = (\gamma - i_2 \alpha) ((x_0 + A_0) + (x_1 + A_1) i_1 + (x_2 + A_2) i_2)$$

ist, so wird:

$$\frac{\partial w^*}{\partial x_{\nu}} = -2(\gamma - \alpha i_2)^{-1} \frac{\partial}{\partial x_{\nu}} \left(\frac{x_0 + A_0 - (x_1 + A_1) i_1 - (x_2 + A_2) i_2}{(x_0 + A_0)^2 + (x_1 + A_1)^2 + (x_2 + A_2)^2} \right) (\gamma - i_2 \alpha)^{-1},$$
also:

$$\left| \frac{\partial w^*}{\partial x_{\nu}} \right| = \frac{2}{\alpha \bar{\alpha} + \gamma \bar{\gamma}} \left| -2 \frac{(x_{\nu} + A_{\nu}) (x_0 + A_0 - (x_1 + A_1) i_1 - (x_2 + A_2) i_2)}{((x_0 + A_0)^2 + (x_1 + A_1)^2 + (x_2 + A_2)^2)^2} \right| + \frac{i_{\nu}}{(x_0 + A_0)^2 + (x_1 + A_1)^2 + (x_2 + A_2)^2} \right|$$

$$\leq \frac{2}{\alpha \overline{\alpha} + \gamma \overline{\gamma}} \left\{ 2 \frac{1}{[(x_0 + A_0)^2 + (x_1 + A_1)^2 + (x_2 + A_2)^2]} \times \frac{|x_{\nu} + A_{\nu}|}{\sqrt{(x_0 + A_0)^2 + (x_1 + A_1)^2 + (x_2 + A_2)^2}} + \frac{1}{(x_0 + A_0)^2 + (x_1 + A_1)^2 + (x_2 + A_2)^2} \right\}$$

Die rechte Seite ist aber nach unsern Annahmen beschränkt, somit gibt es ein endliches, festes, von z und S unabhängiges M, so daS:

$$\left|\frac{\partial u_{\mu}^{*}}{\partial x_{\nu}}\right| < M, \quad \frac{\nu}{\mu} = 0, \quad 1, \quad 2.$$

Ferner ist:

$$W = (w^* - \zeta')^{-1}, \frac{\partial W}{\partial u_{\nu}^*} = (\overline{w^*} - \overline{\zeta}') \frac{-2(u_{\nu}^* - z_{\nu}')}{n(w^* - \zeta')^2} \pm \frac{i_{\nu}}{n(w^* - \zeta')}, \nu = 0, 1, 2.$$

Da $n(w^* - \zeta') \leq \varrho'^2$ angenommen ist, so sieht man genau wie oben, daß auch $|\partial W/\partial u_v^*|$ beschränkt ist, also auch:

$$\left| \frac{\partial U_{\mu}}{\partial u_{\nu}^{*}} \right| \leq M_{1}, \left| \frac{\mu}{\nu} \right| = 0, 1, 2, W = \sum U_{\mu} i_{\mu},$$

wo M_1 nur von Ω und ϱ abhängt. Da nun:

$$\frac{\partial U_{\mu}}{\partial x_{\nu}} = \frac{\partial U_{\mu} \partial u_{0}^{*}}{\partial u_{0}^{*} \partial x_{\nu}} + \frac{\partial U_{\mu} \partial u_{1}^{*}}{\partial u_{1}^{*} \partial x_{\nu}} + \frac{\partial U_{\mu} \partial u_{2}^{*}}{\partial u_{2}^{*} \partial x_{\nu}}, \quad \stackrel{\mu}{\nu} = 0, 1, 2,$$

ist, muß auch:

$$\left|\frac{\partial W}{\partial x_{\nu}}\right| \leq M_{0}, \quad \nu = 0, 1, 2,$$

$$W = \left[\left((\alpha - i_{2}\gamma) z + \beta - i_{2}\delta\right)\left((\gamma - i_{2}\alpha) z + \delta - i_{2}\beta\right)^{-1} - \xi'\right]^{-1},$$

sein, wo wieder M_0 nur von Ω und ϱ abhängt, nicht aber von z. Damit ist aber die gleichmäßige und absolute Konvergenz auch der zweiten Reihe vollständig bewiesen.

Daraus folgt, daß T(z) und R(z) beide stetig differentierbar sind. Somit ist es auch ihr Quotient, da der Nenner reell ist.

3. Satz: Die drei Koordinaten der Funktion w = f(z) sind stetige und stetig differentierbare Funktionen in jedem endlichen Bereiche, der ganz über der 01-Ebene liegt, und weder den Punkt ζ noch seine äquivalenten Punkte enthält.

4. Hilfssatz über die Abzählung der Substitutionen von G

Es sei $S = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$ irgend eine Substitution von \mathfrak{G} . Wir setzen:

$$f = \alpha \bar{\alpha} + \gamma \bar{\gamma},$$

$$f_1 = \beta \bar{\beta} + \delta \bar{\delta},$$

$$\rho = \bar{\gamma} \delta + \bar{\alpha} \beta.$$
(1)

Dann ist:

$$\varrho \bar{\varrho} = -1 + f f_1. \tag{2}$$

Denn:

$$\varrho\bar{\varrho} = \gamma\bar{\gamma}\delta\bar{\delta} + \alpha\bar{\alpha}\beta\bar{\beta} + \gamma\bar{\beta}\alpha\delta + \alpha\bar{\delta}\gamma\beta$$
,

wo man im 3. Gliede $\gamma \beta = \alpha \delta - 1$ und im 4. Gliede $\alpha \delta = \beta \gamma + 1$ setzt. Wegen $\alpha \delta - \beta \gamma = 1$ folgt dann sofort (2).

Umgekehrt sei f gegeben, sowie eine Lösung o der Kongruenz:

$$\varrho \bar{\varrho} \equiv - \text{ I (mod. } f).$$

Man setze $\varrho\bar{\varrho} + 1 = ff_1$. Wir setzen zunächst voraus, daß wir f in der Form:

$$f = \alpha \bar{\alpha} + \gamma \bar{\gamma}$$

darstellen können, wo α und γ ohne gemeinsamen Teiler seien. Soll dann $\varrho = \bar{\gamma} \delta + \bar{\alpha} \beta$ sein, so sind β und δ eindeutig bestimmt. Denn es folgt:

$$\bar{\varrho}\beta = \bar{\delta}\beta\gamma + \beta\bar{\beta}\alpha = -\bar{\delta} + \alpha(\beta\bar{\beta} + \delta\bar{\delta}) = -\bar{\delta} + \alpha f_1,$$

$$\bar{\varrho}\delta = \gamma\delta\bar{\delta} + \alpha\bar{\beta}\delta = \bar{\beta} + \gamma(\beta\bar{\beta} + \delta\bar{\delta}) = \bar{\beta} + \gamma f_1.$$

Aus diesen beiden Gleichungen für β , δ folgt durch Auflösuug:

$$f\beta = -\bar{\gamma} + \alpha \varrho,$$

$$f\delta = \bar{\alpha} + \gamma \varrho.$$
(3)

Wir fragen jetzt, wie viele Darstellungen α , γ von f es für ein gegebenes ϱ , das (2) genügt, gibt, so daß die Gleichungen (1) erfüllt sind? Wegen (3) sind ja dann β , δ eindeutig bestimmt. Damit nun (3) durch ganze Zahlen β , δ lösbar ist, ist jedenfalls notwendig. daß:

$$\frac{\bar{\alpha} \equiv -\gamma \varrho}{\bar{\gamma} \equiv \alpha \varrho}$$
 (mod. f) ist. (4)

Es gibt nun wenigstens eine Darstellung $f = \alpha \bar{\alpha} + \gamma \bar{\gamma}$ mit zueinander teilerfremden Zahlen α , γ , für die (4) erfüllt ist. Denn setzt man:

$$\bar{\gamma} = \alpha \varrho - \beta f$$

so ist:

$$\gamma \bar{\gamma} = \alpha \bar{\alpha} \varrho \bar{\varrho} + f^2 \beta \bar{\delta} - f \varrho \alpha \bar{\delta} - f \bar{\varrho} \bar{\alpha} \beta.$$

Setzt man hier für $\gamma \bar{\gamma}$ den Wert $f - \alpha \bar{\alpha}$ ein, und $\varrho \bar{\varrho} = f f_1 - 1$, so wird nach Division durch f:

$$1 = f_1 \alpha \overline{\alpha} + f \beta \overline{\beta} - \varrho \alpha \overline{\beta} - \overline{\varrho \alpha} \beta.$$

Führt man reelle Koordinaten ein:

$$\alpha = t_0 + t_1 i_1$$
, $\beta = u_0 + u_1 i_1$, $\rho = r_0 + r_1 i_1$,

so lautet die Gleichung:

$$I = f_1(t_0^2 + t_1^2) + f(u_0^2 + u_1^2) - 2 r_0(t_0 u_0 + t_1 u_1) - 2 r_1(t_0 u_1 - t_1 u_0).$$

Diese quaternäre quadratische Form hat die Determinante:

$$D = \begin{vmatrix} f_1 & 0 & -r_0 & -r_1 \\ 0 & f_1 & r_1 & -r_0 \\ -r_0 & r_1 & f & 0 \\ -r_1 & -r_0 & 0 & f \end{vmatrix} = 1.$$

Da es nur eine Klasse quaternärer Formen der Determinante I gibt, so ist unsere Form der Form $t_0'^2 + t_1'^2 + u_0'^2 + u_1'^2$ äquivalent, wodurch die Darstellung der eins gegeben ist. Somit sind α und β gefunden. Setzt man dann:

$$\gamma = \overline{\alpha \varrho} - f \overline{\beta}$$
,

so wird für dieses y:

$$\alpha \bar{\alpha} + \gamma \bar{\gamma} = \alpha \bar{\alpha} (\mathbf{I} + \varrho \bar{\varrho}) + f^2 \beta \bar{\beta} - f \varrho \alpha \bar{\beta} - f \bar{\varrho} \bar{\alpha} \beta = f.$$

Damit haben wir das Resultat, daß es zu jeder natürlichen Zahl f und jeder Lösung der Kongruenz:

$$\varrho \bar{\varrho} \equiv - \text{ I } (\text{mod. } f)$$

wenigstens eine Darstellung $f = \alpha \bar{\alpha} + \gamma \bar{\gamma}$ gibt, für die:

$$\bar{\alpha} \equiv -\gamma \varrho \pmod{f}$$
 (5)

ist. Für diese Darstellung können wir nach (3) β , δ als ganze Zahlen berechnen. Aus (3) folgt aber:

$$f(\alpha\delta - \beta\gamma) = \alpha\bar{\alpha} + \gamma\bar{\gamma} = f$$
, oder $\alpha\delta - \beta\gamma = 1$.
 $f(\bar{\alpha}\beta + \bar{\gamma}\delta) = (\alpha\bar{\alpha} + \gamma\bar{\gamma}) \varrho = \varrho f$, oder $\varrho = \bar{\alpha}\beta + \bar{\gamma}\delta$.

Somit sind α , γ auch teilerfremd.

Wir können daher sagen, daß es zu jeder natürlichen Zahl f und jeder Lösung ρ der Kongruenz:

$$\varrho \bar{\varrho} \equiv - \text{ I } (\text{mod. } f)$$

wenigstens eine Substitution $S = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$ von \mathfrak{G} gibt, so da \mathfrak{G} :

$$f = \alpha \bar{\alpha} + \gamma \bar{\gamma}, \ \rho = \bar{\alpha} \beta + \bar{\gamma} \delta$$

ist.

Es fragt sich nun, wie viele solcher Substitutionen es gibt? Es sei α' , γ' eine weitere Lösung, die zu demselben f und ϱ gehöre. Es sei also auch:

$$\alpha'\bar{\alpha'} + \gamma'\bar{\gamma'} = f, \ \bar{\alpha'} \equiv \varrho\gamma' \ (\text{mod. } f).$$

Eliminiert man aus dieser Kongruenz und (5) ϱ , so folgt:

$$\bar{\alpha \gamma}' - \bar{\alpha'} \gamma = f \eta$$

wo η eine ganze Zahl von $k(\sqrt{-1})$ ist. Es muß:

$$f^{2} \eta \bar{\eta} = \alpha \bar{\alpha} \gamma' \bar{\gamma'} + \alpha' \bar{\alpha'} \gamma \bar{\gamma} - \bar{\alpha} \alpha' \bar{\gamma} \gamma' - \alpha \bar{\alpha'} \gamma \bar{\gamma'}$$

sein. Setzt man hier für $\alpha \bar{\alpha}$ den Wert $f - \gamma \bar{\gamma}$ und für $\gamma \bar{\gamma}$ den Wert $f - \alpha \bar{\alpha}$, so wird:

$$f^{2}\eta\bar{\eta} = f^{2} - \gamma\gamma\bar{\gamma}'\bar{\gamma}' - \alpha\bar{\alpha}\alpha'\bar{\alpha}' - \bar{\alpha}\alpha'\bar{\gamma}\gamma' - \alpha\bar{\alpha}'\gamma\bar{\gamma}' = f^{2} - (\bar{\alpha}\alpha' + \gamma\bar{\gamma}')(\alpha\bar{\alpha}' + \bar{\gamma}\gamma'),$$
oder

$$f^2(\mathbf{I} - \eta \bar{\eta}) = n(\bar{\alpha}\alpha' + \gamma \bar{\gamma'}).$$

Die rechte Seite ist stets ≥ 0 ; auf der linken Seite ist $\eta \eta \geq 0$, $1 - \eta \eta \leq 1$. Daher sind nur die beiden Fälle möglich, da alle Zahlen ganz sind:

a)
$$\eta \bar{\eta} = 1$$
, d. h.

$$\bar{\alpha}\gamma' - \bar{\alpha}'\gamma = f i_1^{\dot{\gamma}},$$
 $\bar{\alpha}\alpha' + \bar{\gamma}\gamma' = 0,$
 $\nu = 0, 1.2, 3;$

woraus sich für α' und γ' ergibt:

$$ar{lpha}' = -i\dot{\gamma}_1\cdotar{\gamma}_1, \ \gamma' = i\dot{\gamma}_1\cdotlpha_1;$$

dies sind 4 Lösungen α' , γ' , von denen sich aber je zwei nur um das Vorzeichen unterscheiden. Umgekehrt sieht man, daß diese Lösungen auch wirklich allen Bedingungen genügen.

b)
$$\eta \bar{\eta} = 0$$
, d. h.:

$$\bar{\alpha}\gamma' - \bar{\alpha'}\gamma = 0,$$
 $\alpha\bar{\alpha'} + \bar{\gamma}\gamma' = i^{\gamma}_{1}\varphi,$
 $\nu = 0, 1, 2, 3;$

wo (φ) ein festes Ideal ist, dessen Norm f^2 ist: $n(\varphi) = f^2$. Daraus folgt:

$$f\gamma' = i^{\gamma}_{1} \cdot \varphi \gamma,$$

 $f\bar{\alpha}' = i^{\gamma}_{1} \cdot \varphi \bar{\alpha};$

es müssen daher $\varphi \gamma / f$ und $\varphi \overline{\alpha} / f$ ganze Zahlen sein. Setzt man:

$$\varphi = f_0 \cdot \varphi_0^2$$
, $f = f_0 \cdot n (\varphi_0)$,

wo f_0 ganz, rational und φ_0 ungerade und zu $\overline{\varphi}_0$ teilerfremd angenommen werden darf, so wird:

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} ar{\gamma} &= i \dot{\gamma}_1 \cdot arphi_0 \cdot rac{ar{ar{\gamma}}}{\overline{arphi}_0} \,, \ ar{lpha}' &= i \dot{\gamma}_1 \cdot arphi_0 \cdot rac{ar{ar{lpha}}}{\overline{arphi}_0} \,, \end{aligned}$$

und γ und $\bar{\alpha}$ müssen durch $\bar{\varphi}_0$ teilbar sein. Dann folgt aus den (3) entsprechenden Formeln für α' , β' , γ' , δ' :

$$f\beta' = -\frac{\bar{\gamma}'}{\bar{\alpha}'} + \alpha' \varrho,$$

 $f\delta' = \frac{\bar{\alpha}'}{\bar{\alpha}'} + \gamma' \varrho,$

daß:

$$f\beta' = (-i_1)^{\gamma} \overline{\varphi}_0 (-\overline{\gamma} + \alpha \varrho) \frac{1}{\varphi_0},$$

$$f\delta'=i\dot{\gamma}_1\cdotar{\varphi}_0\;(ar{\alpha}+\gamma\varrho)rac{1}{\overline{\overline{\varphi}}_0}$$
,

oder:

$$-\frac{\bar{\gamma}}{\bar{\alpha}} + \alpha \varrho \equiv 0 \pmod{f_0. \varphi_0^2},$$
$$\frac{\bar{\alpha}}{\bar{\alpha}} + \gamma \varrho \equiv 0 \pmod{f_0. \bar{\varphi}_0^2}.$$

Wegen (3) muß daher:

$$eta \equiv ext{o} \pmod{\frac{arphi_0}{arphi_0}}, \ \delta \equiv ext{o} \pmod{\frac{arphi_0}{arphi_0}},$$

sein. Somit ist:

$$\alpha\delta \equiv 0 \pmod{\varphi_0 \cdot \overline{\varphi_0}}, \ \beta\gamma \equiv 0 \pmod{\varphi_0 \cdot \overline{\varphi_0}},$$

was wegen $\alpha \delta - \beta \gamma = 1$ nur für $\varphi_0 = 1$, $\varphi = f_0 = f$ möglich ist. Daher gibt es nur die vier Lösungen:

$$\bar{\alpha}' = -i \gamma_1 . \bar{\alpha},$$
 $\gamma' = i \gamma_1 . \gamma,$
 $\nu = 0, 1, 2, 3.$

Die so gefundenen 4 Lösungen unterscheiden sich zu zwei und zwei nur durch das Vorzeichen.

Die unter a) und b) gefundenen 8 Lösungen sind nun alle von einander verschieden, außer im Falle, daß α oder $\gamma = 0$ oder beide $= i_1^{\gamma}$, $\nu = 0$, 1, 2, 3 sind. Dies ist nur für f = 1 und 2 möglich. Sie reduzieren sich hier auf die Hälfte.

Wegen $S = {\alpha \beta \choose \gamma \delta} = {-\alpha - \beta \choose -\gamma - \delta}$ ergeben die 8, resp. 4 Lösungen nur 4 resp. 2 verschiedene Substitutionen, da für $-\alpha$, $-\gamma$ in (3) auch β und δ das umgekehrte Zeichen annehmen. Daraus folgt der

Hilfssatz: Fede Substitution $S = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$ von $\mathfrak B$ legt eindeutig die Zahlen $f = \alpha \bar{\alpha} + \gamma \bar{\gamma}$, $\varrho = \bar{\alpha} \beta + \bar{\gamma} \bar{\delta}$ fest, für die

$$\varrho\bar{\varrho} \equiv -1 \pmod{f}$$

ist. Ist umgekehrt f eine natürliche Zahl, und o eine feste Lösung der Kongruenz:

$$\varrho \bar{\varrho} \equiv -1 \pmod{f}$$

so gibt es genau 4 (für f = 1 oder = 2 nur 2) Substitutionen S von \mathfrak{G} , für die $f = \alpha \bar{\alpha} + \gamma \bar{\gamma}$, $\varrho = \bar{\alpha} \beta + \bar{\gamma} \bar{\delta}$ ist.

Für jede durch 4 teilbare natürliche Zahl f hat die Kongruenz

$$\varrho \bar{\varrho} \equiv - 1 \pmod{f}$$

keine Lösung, weil sie für f = 4 keine hat. Man sieht aus dem Hilfssatz, daß die Darstellung $f = \alpha \bar{\alpha} + \gamma \bar{\gamma}$ in zwei zueinander teilerfremden Zahlen α , γ genau 8 (resp. 4) mal so oft möglich ist, als die angegebene Kongruenz inkongruente Lösungen hat. Ersetzt man ϱ durch eine (mod. f) kongruente Wurzel, so ändern sich α , γ nicht. Dagegen erhalten β , δ einen andern Wert. Setzt man $\varrho^* = \varrho + f\tau$, wo τ eine ganze Zahl von $k(\sqrt{-1})$ ist, so werden die zugehörigen β^* , δ^* nach (3):

$$\beta^* = \beta + \alpha \tau, \ \delta^* = \delta + \gamma \tau. \tag{6}$$

Daraus ergibt sich für die Summation unserer Reihen T(z) und R(z) folgendes:

Die äußere Summe wird über alle natürlichen Zahlen f von 1 bis unendlich zu nehmen sein.

Die *innere* Summe ist zunächst über ein (mod. f) inkongruentes System von Wurzeln ρ der Kongruenz:

$$\bar{\varrho\varrho} \equiv -1 \pmod{f}$$
 (7)

zu erstrecken.

Die *innerste* Summe ist über die 4 resp. 2 zugehörigen α , γ , die uns ein Paar β , δ festlegen, und für die $f = \alpha \bar{\alpha} + \gamma \bar{\gamma}$ ist, und dann noch über die unendlich vielen Werte: $\beta + \tau \alpha$, $\delta + \tau \gamma$ zu erstrecken, wobei τ alle ganzen Zahlen des Körpers $k(\sqrt{-1})$ durchläuft.

5. Der Grenzwert der Funktionen T(z) und R(z) für $x_2 \rightarrow \infty$

Legt man die in 4. angegebene Bezeichnungsweise der Formeln (1) zu Grunde, so lauten die in 3. aufgestellten Gleichungen jetzt so:

$$n((\gamma - i_2 \alpha) z + \delta - i_2 \beta) = f((x_0 + A_0)^2 + (x_1 + A_1)^2 + (x_2 + A_2)^2),$$

wo:

$$fA_0 = \frac{1}{2} (\rho + \bar{\rho}) = r_0,$$

 $fA_1 = -\frac{1}{2} i_1 (\rho - \bar{\rho}) = r_1,$
 $fA_2 = 1$

ist. Hält man gemäß der Schlußbemerkung von 4. f und ρ fest, und setzt:

$$\Xi = x_0 + i_1 x_1$$
, $\mu = f\tau + \rho$,

so kann man nach (6) schreiben:

$$n\left(\left(\gamma-i_{2}\alpha\right)z+\delta^{*}-i_{2}\beta^{*}\right)=f\left(x_{2}+\frac{1}{f}\right)^{2}+\frac{n\left(fZ+\mu\right)}{f}.$$

Statt über alle ganzen Zahlen τ von $k(\sqrt{-1})$ ist jetzt über alle ganzen Zahlen μ zu summieren, für die

$$\mu \equiv \rho \pmod{f} \tag{8}$$

ist. Daher wird:

$$T(z) = \sum_{f=1}^{\infty} \sigma \sum_{(P)} T_{P,f}(z), \text{ wo}:$$

$$T_{P,f}(z) = \sum_{(P)} \frac{1}{\left(f(x_2 + \frac{1}{f})^2 + \frac{n(fZ + \mu)}{f}\right)^k},$$

$$\sigma = 2, f = 1, 2; \ \sigma = 4, f \geq 3, \equiv 0 \pmod{4}, \ \sigma = 0, f \equiv 0 \pmod{4}$$

ist. Um $T_{\rho,f}(z)$ zu berechnen, benutzen wir in bekannter Weise das Integral:

$$\frac{1}{n^k} = \frac{(2 \pi)^k}{\Gamma(k)} \int_0^\infty \exp \left(-2 \pi n \tau\right) \tau^{k-1} d\tau.$$

Dann wird wegen der erlaubten Vertauschung von Integration und Summation nach $Hecke^2$):

$$T_{\rho,f}(z) = \frac{(2\pi)^k}{\Gamma(k)} \int_0^{\infty} \exp\left(-2\pi f (x_2 + \frac{1}{f})^2 \tau\right) \sum_{(\mu)} \exp\left(-2\pi \tau \frac{n(f\Xi + \mu)}{f}\right) \tau^{k-1} d\tau$$

$$= \frac{(2\pi)^k}{\Gamma(k)} \int_0^{\infty} \exp\left(-2\pi f (x_2 + \frac{1}{f})^2 \tau\right) \vartheta(i_1 \tau; 2\Xi f + 2\rho, 1, 2f i_1) \tau^{k-1} d\tau.$$

Im Integral machen wir jetzt die Substitution $\tau \to \frac{1}{\tau}$. Nach der Transformationsformel³) wird dann:

$$\sum_{(\mu)} \exp\left(-2\pi \frac{1}{\tau} \frac{n(f\Xi + \mu)}{f}\right)$$

$$= \frac{\tau}{2f} \sum_{(\lambda)} \exp\left(2\pi i_1 S(\frac{\rho \lambda}{2f})\right) \sum_{(\nu)} \exp\left(2\pi i_1 S(\frac{\Xi \nu}{2})\right) \exp\left(-2\pi \tau \frac{n(\nu)}{4f}\right),$$

wo S() die Spur der Zahl in $k(\sqrt{-1})$ bedeutet, λ ein vollständiges Restsystem (mod. 2 f) und ν alle Zahlen durchläuft, für die:

$$\nu \equiv \lambda \pmod{2f}$$

ist. Berücksichtigt man dies bei Ausführung der Substitution, so folgt:

$$T_{\rho,f}(z) = \frac{(2\pi)^k}{2f\Gamma(k)} \sum_{(\lambda)} \exp\left(2\pi i_1 S\left(\frac{\rho\lambda}{2f}\right)\right) \sum_{(\nu)} \exp\left(2\pi i_1 S\left(\frac{\Xi\nu}{2}\right)\right)$$

$$\times \int_0^{\infty} \exp\left(-2\pi f\left(x_2 + \frac{1}{f}\right)^2 \frac{1}{\tau} - 2\pi \tau \frac{n(\nu)}{4f}\right) \tau^{-k} d\tau.$$

In der innersten Summe kann ν nur dann null sein, wenn $\lambda \equiv 0 \pmod{2}$, d. h. z. B. $\lambda \equiv 0$ ist. Wir nehmen diesen Wert $\nu \equiv 0$ aus der Summe heraus und deuten dies durch einen Strich an der Summe an. Es wird dann:

²⁾ E. Hecke: Zur Theorie der elliptischen Modulfunktionen. Math. Annalen, Bd. 97, 1926, pg. 222.

³⁾ E. Hecke: a. a. O. pg. 222, Formel (13).

$$T_{\rho,f}(z) = \frac{(2 \pi)^k}{2 f \Gamma(k)} \left[\int_0^{\infty} \exp\left(-2 \pi f (x_2 + \frac{1}{f})^2 \frac{1}{\tau}\right) \tau^{-k} d\tau + \sum_{(\lambda)} \exp\left(2 \pi i_1 S(\frac{\lambda \rho}{2f})\right) \sum_{(\nu)}' \exp\left(2 \pi i_1 S(\frac{\Xi \nu}{2})\right) \mathcal{F}_{\nu} \right],$$

wo λ ein solches Restsystem (mod. 2 f) durchläuft, in dem $\lambda = 0$ auftritt und

$$\mathcal{F}_{V} = \int_{0}^{\infty} \exp\left(-2 \pi f (x_{2} + \frac{1}{f})^{2} \frac{1}{\tau} - 2\pi \tau \frac{n(\nu)}{4 f}\right) \tau^{-k} d\tau$$

ist. Das erste Integral in $T_{\rho,f}(z)$ hat den Wert:

$$\frac{\Gamma(k-1)}{(2 \pi f)^{k-1} (x_2 + \frac{1}{f})^{2k-2}}.$$

In Jy macht man die Substitution:

$$\tau \rightarrow 2 \frac{f x_2 + 1}{\sqrt{\nu \bar{\nu}}} \tau$$
, (positive Quadratwurzel),

dann wird:

$$\mathcal{F}_{V} = \frac{\sqrt{\nu \bar{\nu}}^{k-1}}{2^{k-1} (f x_{2} + 1)^{k-1}} \int_{0}^{\infty} \exp\left(-\frac{1}{2} 2 \pi (f x_{2} + 1) \frac{\sqrt{\nu \bar{\nu}}}{f} (\tau + \frac{1}{\tau})\right) \tau^{-k} d\tau.$$

Dies ist aber nichts anderes wie eine Bessel'sche Funktion dritter Art. Wir setzen nach Watson 4)

$$K_n(z) = \frac{1}{2} \int_0^\infty \exp\left(-\frac{1}{2} z \left(\tau + \frac{1}{\tau}\right)\right) \tau^{-n-1} d\tau.$$

Dann ist:

$$\mathfrak{F}_{\nu} = \frac{\sqrt{\nu \overline{\nu}}^{k-1}}{2^{k-2} (f x_2 + 1)^{k-1}} K_{k-1} \left(2 \pi (f x_2 + 1) \frac{\sqrt{\nu \overline{\nu}}}{f} \right).$$

⁴⁾ G. N. Watson: A treatise on the theory of Bessel Functions. Cambridge, 1922, pg. 183.

Setzen wir dies alles ein, so erhalten wir schließlich:

$$T(z) = \sum_{f=1}^{\infty} \sigma \sum_{(\rho)} T_{\rho,f}(z) ,$$

$$T_{\rho,f}(z) = \frac{\pi}{(k-1) f^{k} (x_{2} + \frac{1}{f})^{2k-2}} + \frac{2 \pi^{k}}{f \Gamma(k) (f x_{2} + 1)^{k-1}} \sum_{(\lambda)} \exp\left((2 \pi i_{1} S(\frac{\lambda \rho}{2 f}))\right)$$

$$\times \sum_{(\nu)} \exp\left(2 \pi i_{1} S(\frac{\Xi \nu}{2})\right) \sqrt{\nu \bar{\nu}}^{k-1} K_{k-1} \left(2 \pi (f x_{2} + 1) \frac{\sqrt{\nu \bar{\nu}}}{f}\right),$$
III.

wo die Summen über ein vollständiges, (mod. f) inkongruentes System von Wurzeln ρ der Kongruenz (7), über ein vollständiges Restsystem λ (mod. 2f) und über alle ganzen Zahlen ν von $k(\sqrt{-1})$ zu erstrecken ist, für die $\nu \equiv \lambda$ (mod. 2f) ist.

Um $K_{k-1}(z)$ für große reelle Werte von z zu berechnen, verwendet man die Formel⁵):

$$K_{k-1}(z) = \left(\frac{\pi}{2z}\right)^{\frac{1}{2}} e^{-z} \left(\sum_{m=0}^{k-2} \frac{(k-1, m)}{(2z)^m} + \theta \frac{(k-1, k-1)}{(2z)^{k-1}}\right), \ 0 < \theta < 1,$$

wo:

$$(n, m) = \frac{\Gamma(n+m+\frac{1}{2})}{\Gamma(m+1) \Gamma(n-m+\frac{1}{2})},$$

ist. Da in der Summe Σ' v niemals null ist, so erhält man die Grenzformel:

$$\lim_{x_2 \to \infty} x_2^{2k-2} T(s) = \frac{\pi}{k-1} \sum_{f=1}^{\infty} \frac{\psi(f)}{f^k} = B_k, \quad k \ge 3, \quad \text{III a.}$$

wo $\psi(f)$ die Anzahl aller Darstellungen von f in der Form

$$f = \alpha \bar{\alpha} + \gamma \bar{\gamma}$$

mit zueinander teilerfremden Zahlen α , γ ist. B_k ist eine von null verschiedene reelle, positive Zahl.

⁵⁾ G. N. Watson: a. a. O. pg. 207.

In gleicher Weise, wenn auch etwas umständlicher, kann der Zähler R(z) entwickelt werden. Legt man die Bezeichnungsweise von 4. zu Grunde und verwendet (3) und (6), so wird:

$$N = ((\alpha - i_2 \gamma) z + \beta^* - i_2 \delta^*) ((\gamma - i_2 \alpha) z + \delta^* - i_2 \beta^*)^{-1} - \xi'$$

$$= 2 (\xi i_2 - 1)^{-1} \left((\xi \gamma - \alpha) \left(z + \frac{\mu}{f} \right) + \frac{\xi \overline{\alpha} + \overline{\gamma}}{f} \right)$$

$$\times \left((\gamma - i_2 \alpha) \left(z + \frac{\mu}{f} \right) + \frac{\overline{\alpha} + i_2 \overline{\gamma}}{f} \right)^{-1},$$

wo
$$\zeta' = (\zeta - i_2) (-i_2 \zeta + 1)^{-1} = (\zeta i_2 - 1)^{-1} (-\zeta + i_2), \mu = \rho + \tau f$$

gesetzt ist. Ist:

$$\Delta_{f,\rho}(\zeta) = \frac{\zeta \overline{\zeta \alpha \gamma} - \overline{\alpha \gamma} + z_0 (\overline{\gamma}^2 - \overline{\alpha}^2) - i_2 f z_2}{fn (\zeta \gamma - \alpha)}, \, \zeta = z_0 + i_2 z_2,$$

so ergibt die Rechnung:

$$N = 2 \left(\zeta i_2 - 1 \right)^{-1} \left(\zeta \gamma - \alpha \right) \left(z + \frac{\mu}{f} + \Delta_{f, \rho} \left(\zeta \right) \right)$$

$$\times \left(\left(\gamma - i_2 \alpha \right) \left(z + \frac{\mu}{f} \right) + \frac{\bar{\alpha} + i_2 \bar{\gamma}}{f} \right)^{-1}.$$

Die Zahl $\Delta_{f,\rho}(\zeta)$ ist ein reduziertes Quaternion, das wir in der Form schreiben:

$$\Delta_{f,\rho}(\zeta) = \varepsilon_{f,\rho}(\zeta) + e_{f,\rho}(\zeta) i_2,$$

wo $\varepsilon_{f,\rho}(\zeta)$ eine komplexe Zahl der 01-Ebene ist. Der reziproke Wert ergibt jetzt:

$$N^{-1} = \frac{1}{2} \left((\gamma - i_2 \alpha) \left(z + \frac{\mu}{f} \right) + \frac{\bar{\alpha} + i_2 \bar{\gamma}}{f} \right) \left(z + \frac{\mu}{f} + \varepsilon_{f,\rho} (\zeta) + e_{f,\rho} (\zeta) i_2 \right)^{-1}$$

$$\times (\zeta \gamma - \alpha)^{-1} (\zeta i_2 - 1)$$

$$= A_{f,\rho} (\zeta) + B_{f,\rho} (\zeta) \left(z + \frac{\mu}{f} + \varepsilon_{f,\rho} (\zeta) + e_{f,\rho} (\zeta) i_2 \right)^{-1} C_{f,\rho} (\zeta),$$

wo:

$$A_{f,\rho}(\zeta) = \frac{1}{2} (\gamma - i_2 \alpha) (\zeta \gamma - \alpha)^{-1} (\zeta i_2 - 1),$$
 $B_{f,\rho}(\zeta) = \frac{1}{2} (\zeta i_2 - 1) (\gamma \zeta - \alpha)^{-1},$
 $C_{f,\rho}(\zeta) = (\zeta \gamma - \alpha)^{-1} (\zeta i_2 - 1),$

ist. In der Bezeichnungsweise ist zu berücksichtigen, daß nach dem Hilfssatz in 4. zu jedem ρ 4 resp. 2, resp. 0 verschiedene Wertepaare α , γ gehören. Setzt man:

$$\Xi' = x_0 + x_1 i_1 + \varepsilon_{f,\rho}(\zeta), \ X_2 = x_2 + e_{f,\rho}(\zeta),$$

so wird:

$$N^{-1} = A_{f, \rho}(\zeta) + B_{f, \rho}(\zeta) \frac{f \overline{\Xi'} - f X_{2} i_{2} + \overline{\mu}}{f X_{2}^{2} + \frac{n (f \Xi' + \mu)}{f}} C_{f, \rho}(\zeta).$$

Diese Darstellung benutzt man, um R(s) in folgende Summen zu zerlegen, wobei nach der Vorschrift von 4. summiert wird:

$$R(z) = R_1(z) + R_2(z) + R_3(z)$$
, wo:

$$R_{1}(z) = \sum_{f=1}^{\infty} \sum_{(\rho,\alpha,\gamma)} \sum_{(\mu)} \frac{A_{f,\rho}(\zeta)}{\left(f(x_{2} + \frac{1}{f})^{2} + \frac{n(f\Xi + \mu)}{f}\right)^{k}},$$

$$R_{2}(z) = \sum_{f=1}^{\infty} \sum_{(\rho,\alpha,\gamma)}$$

$$\sum_{(\mu)} B_{f,\rho}(\xi) \frac{f \overline{\Xi}' - f X_{2} i_{2}}{\left(f(x_{2} + \frac{1}{f})^{2} + \frac{n(f \Xi + \mu)}{f}\right)^{k} \left(f X_{2}^{2} + \frac{n(f \Xi' + \mu)}{f}\right)} C_{f,\rho}(\xi),$$

$$R_3(z) = \sum_{f=1}^{\infty} \sum_{(\rho,\alpha,\gamma)}$$

$$\sum_{(\mu)} B_{f,\rho}(\zeta) \frac{\overline{\mu}}{\left(f(x_2 + \frac{1}{f})^2 + \frac{n(f\Xi + \mu)}{f}\right)^k \left(fX_2^2 + \frac{n(f\Xi' + \mu)}{f}\right)} C_{f,\rho}(\zeta) .$$

 $R_1(z)$ kann genau nach denselben Methoden, wie T(z) dargestellt werden. Man findet:

$$R_{1}(z) = \frac{\pi}{k-1} \sum_{f=1}^{\infty} \sum_{(\rho,\alpha,\gamma)} \frac{A_{f,\rho}(\zeta)}{f^{k} (x_{2} + \frac{1}{f})^{2k-2}} + \frac{2\pi^{k}}{\Gamma(k)} \sum_{f=1}^{\infty} \frac{1}{f (fx_{2} + 1)^{k-1}} \sum_{(\rho,\alpha,\gamma)} A_{f,\rho}(\zeta) \sum_{(\lambda)} \exp\left(2\pi i_{1} S(\frac{\lambda \rho}{2f})\right) \text{ IV.}$$

$$\sum_{(\gamma)} \exp\left(2\pi i_{1} S(\frac{\Xi \nu}{2})\right) \sqrt{\nu \bar{\nu}}^{k-1} K_{k-1} \left(2\pi (fx_{2} + 1) \frac{\sqrt{\nu \bar{\nu}}}{f}\right),$$

wo die Summen wie bei T(z) auszuführen sind, und α , γ die 4, resp. 2, resp. 0 Darstellungen von f bei gegebenem ρ zu durchlaufen hat. Daraus folgt wieder die Grenzformel:

$$\lim_{x_2 \to \infty} x_2^{2k-2} R_1(z) = \frac{\pi}{k-1} \sum_{f=1}^{\infty} \sum_{(\rho,\alpha,\gamma)} \frac{A_{f,\rho}(\zeta)}{f^k} = D_k, \ k \ge 3, \quad \text{IVa.}$$

wo D_k ein bestimmtes, nur von 1, i_2 abhängiges, von Ξ unabhängiges Quaternion ist. Man sieht übrigens leicht, daß wegen $|\zeta| > 1$:

$$\gamma = 0: f = I, |A_{f,\rho}(\zeta)| = \frac{1}{2} |\zeta i_2 - I|,
\gamma \neq 0: n(\zeta \gamma - \alpha) > I, |\gamma - i_2 \alpha| = |\sqrt{f}|, |A_{f,\rho}(\zeta)| < \frac{1}{2} \sqrt{f} |\zeta i_2 - I|,$$

ist, also stets $|A_{f,\rho}(\zeta)| < \frac{1}{2} \sqrt{f} |\zeta i_2 - 1|$ ist.

Um $R_2(z)$ zu berechnen, führen wir wie für T(z) ein Integral ein, müssen aber außerdem noch setzen:

$$\frac{1}{fX_{2}^{2} + \frac{n(f\Xi' + \mu)}{f}} = 2\pi \int_{0}^{\infty} \exp\left(-2\pi fX_{2}^{2}t - 2\pi t \frac{n(f\Xi' + \mu)}{f}\right) dt.$$

Dann wird:

$$\frac{1}{Q} = \frac{1}{\left(f(x_2 + \frac{1}{f})^2 + \frac{n(f\Xi + \mu)}{f}\right)^k \left(fX_2^2 + \frac{n(f\Xi' + \mu)}{f}\right)}$$

$$= \frac{(2\pi)^{k+1}}{\Gamma(k)} \int_0^{\infty} \int_0^{\infty} \exp\left(-2\pi fX_2^2 t - 2\pi f(x_2 + \frac{1}{f})^2 \tau\right)$$

$$\times \exp\left(-2\pi \frac{n(f\Xi' + \mu)t + n(f\Xi + \mu)\tau}{f}\right) \tau^{k-1} dt d\tau.$$

Wir substituieren für $t \rightarrow tt$. Ferner schreiben wir (Indices und Funktionszeichen sollen bei den e und ε weggelassen werden):

$$tn(f\Xi' + \mu) + n(f\Xi + \mu) = (1+t) \ n(f\Xi + f\frac{t\varepsilon}{1+t} + \mu) + \frac{tn(\varepsilon)f}{1+t}$$
$$= (1+t) \ n(f\Xi'' + \mu) + f\frac{tn(\varepsilon)}{1+t}, \text{ wo } \Xi'' = \Xi + \frac{t\varepsilon}{1+t} \text{ ist.}$$

Dann folgt:

$$\frac{1}{Q} = \frac{(2\pi)^{k+1}}{\Gamma(k)} \int_{0}^{\infty} dt \int_{0}^{\infty} \exp\left(-2\pi f \left(tX_{2}^{2} + (x_{2} + \frac{1}{f})^{2} + \frac{tn(\varepsilon)}{1+t}\right)\tau\right) \times \exp\left(-2\pi \frac{n(f\Xi'' + \mu)}{f}(1+t)\tau\right)\tau^{k} d\tau.$$

Substituiert man für $\tau \to \frac{\tau}{(1+t)}$, so wird:

$$\frac{1}{Q} = \frac{(2\pi)^{k+1}}{\Gamma(k)} \int_{0}^{\infty} \frac{dt}{(1+t)^{k+1}} \int_{0}^{\infty} \exp\left(-2\pi f U^{2} \tau\right) \times \exp\left(-2\pi \frac{n(f\Xi'' + \mu)}{f} \tau\right) \tau^{k} d\tau,$$

wo:

$$U = \sqrt{\left(x_2 + \frac{te + f^{-1}}{1+t}\right)^2 + \frac{t}{(1+t)^2} n\left(\varepsilon + i_2\left(e - \frac{1}{f}\right)\right)}, \text{ (positive Wurzel)},$$

von der Größenordnung x_2 ist. Summiert man jetzt über alle ganzen Zahlen μ , für die $\mu \equiv \rho \pmod{f}$ ist, so erhält man in dem innern Integral wieder eine Hecke'sche Thetafunktion, die man durch die Substitution $\tau \to \tau^{-1}$ transformieren kann. Wie im frühern Falle wird:

$$\begin{split} &\sum_{(\mu)} \frac{1}{Q} = \frac{(2\pi)^{k+1}}{2f\Gamma(k)} \int_{0}^{\infty} \frac{dt}{(1+t)^{k+1}} \int_{0}^{\infty} \exp\left(-2\pi f U^{2} \frac{1}{\tau}\right) \\ &\times \sum_{(\lambda)} \exp\left(2\pi i_{1} S\left(\frac{\rho \lambda}{2f}\right)\right) \sum_{(\nu)} \exp\left(2\pi i_{1} S\left(\frac{\Xi'' \nu}{2}\right)\right) \exp\left(-2\pi \frac{\nu \nu}{4f} \tau\right) \tau^{-k-1} d\tau, \end{split}$$

wo λ ein vollständiges Restsystem (mod. 2f), worunter auch $\lambda = 0$, durchläuft, und ν alle ganzen Zahlen, für die $\nu \equiv \lambda \pmod{2f}$ ist. In der Summe nehmen wir dasjenige Glied gesondert, für das $\lambda = 0$, $\nu = 0$ ist, was wieder an ihr durch einen Strich angedeutet werde. Dann folgt nach elementarer Rechnung:

$$\begin{split} \sum_{(\mu)} \frac{1}{Q} &= \frac{\pi}{f^{k+1}} \int_{0}^{\infty} \frac{dt}{(1+t)^{k+1} U^{2k}} \\ &+ \frac{(2\pi)^{k+1}}{2f \Gamma(k)} \int_{0}^{\infty} \frac{dt}{(1+t)^{k+1}} \sum_{(\lambda)} \exp\left(2\pi i_1 S\left(\frac{\rho\lambda}{2f}\right)\right) \sum_{(\nu)}' \exp\left(2\pi i_1 S\left(\frac{E''\nu}{2}\right)\right) \\ &\times \int_{0}^{\infty} \exp\left(-2\pi f U^2 \frac{1}{\tau} - 2\pi \frac{\nu\bar{\nu}}{4f} \tau\right) \tau^{-k-1} d\tau. \end{split}$$

Das erste Integral ist von der Größenordnung $1/x_2^{2k}$. Im zweiten substituiert man

$$\tau \to \frac{2 f U}{\sqrt{\nu \bar{\nu}}} \tau;$$

dann folgt wie früher:

$$\sum_{(\mu)} \frac{1}{Q} = \frac{\pi}{f^{k+1}} \int_{0}^{\infty} \frac{dt}{(1+t)^{k+1} U^{2k}} + \frac{\pi^{k+1}}{f^{k+1} \Gamma(k)} \sum_{(\lambda)} \exp\left(2\pi i_{1} S(\frac{\rho\lambda}{2f})\right) \sum_{(\nu)} \sqrt{\frac{1}{\nu} \nu} \int_{0}^{\infty} \exp\left(2\pi i_{1} S(\frac{\Xi''\nu}{2})\right) \times \frac{K_{k} (2\pi \sqrt{\nu} \nu U) dt}{(1+t)^{k+1} U^{k}}, V.$$

$$R_{2}(z) = \sum_{f=1}^{\infty} \sum_{(\rho,\alpha,\gamma)} B_{f,\rho}(\zeta) (f\Xi' - fX_{2}i_{2}) \sum_{(\mu)} \frac{1}{Q} C_{f,\rho}(\zeta).$$

In der Grenze wird, wie früher, wegen der Bemerkung über die Größenordnung des ersten Integrals, und weil $X_2 = x_2 + e_f$, ρ (ξ) ist:

$$\lim_{x_2 \to \infty} x_2^{2k-2} R_2(z) = 0.$$
 Va.

Genau ebenso wird die Reihe $R_3(z)$ berechnet. Nur hat man jetzt die Summe (symbolisch, da $f\overline{\Xi}''$ unter das Integral nach t kommt):

$$\sum_{(\mu)} \frac{\overline{\mu}}{Q} = \sum_{(\mu)} \frac{f\overline{\Xi''} + \overline{\mu}}{Q} - \sum_{(\mu)} f\overline{\Xi''} \frac{\mathbf{I}}{Q}$$

über alle μ zu berechnen. Die erste Summe führt unter dem Integral auf eine *Hecke*'sche Thetareihe zweiter Gattung, deren Transformationsformel so lautet⁶), wie die Differentiation nach Ξ der frühern Formel, pg. 59 ergibt:

$$\sum_{(\mu)} (f \overline{\Xi}'' + \overline{\mu}) \exp \left(-2 \pi \frac{n (f \Xi'' + \mu)}{f} \frac{1}{\tau}\right)$$

$$= \frac{i_1 \tau^2}{4 f} \sum_{(\lambda)} \exp \left(2 \pi i_1 S(\frac{\rho \lambda}{2 f})\right) \sum_{(\nu)} \nu \exp \left(2 \pi i_1 S(\frac{\Xi'' \nu}{2})\right) \exp \left(-2 \pi \frac{\nu \overline{\nu}}{4 f \tau}\right)$$

Somit wird:

$$\begin{split} \sum_{(\mu)} \frac{f\overline{\Xi''} + \overline{\mu}}{Q} &= -\frac{(2\pi)^{k+1} i_1}{4 f \Gamma(k)} \int_0^{\infty} \frac{dt}{(1+t)^{k+1}} \sum_{(\lambda)} \exp\left(2 \pi i_1 S\left(\frac{\rho \lambda}{2 f}\right)\right) \\ &\times \sum_{(\nu)} \nu \int_0^{\infty} \exp\left(2 \pi i_1 S\left(\frac{\Xi'' \nu}{2}\right)\right) \exp\left(-2 \pi f U^2 \frac{1}{\tau} - 2 \pi \frac{\nu \nu}{4 f} \tau\right) \tau^{-k} d\tau, \end{split}$$

wo jetzt kein Glied aus der Summe herausgezogen werden muß, da für v = 0, $\lambda = 0$ das Glied wegfällt. Macht man wieder im innern Integral die Substitution:

$$\tau \rightarrow \frac{2 f U}{\sqrt{\nu \bar{\nu}}} \tau$$
,

so wird:

$$\sum_{(\mu)} \frac{f \,\overline{\Xi}'' + \overline{\mu}}{Q} = -\frac{i_1 \,\pi^{k+1}}{4 \,f^k \,\Gamma(k)} \sum_{(\lambda)} \exp\left(2 \,\pi \,i_1 \,S(\frac{\rho \,\lambda}{2 \,f})\right)$$

$$\sum_{(\nu)} \nu \,\sqrt{\nu \overline{\nu}}^{k-1} \int_0^{\infty} \exp\left(2 \,\pi \,i_1 \,S(\frac{\Xi'' \,\nu}{2})\right) \frac{K_{k-1} \,(2 \,\pi \,\sqrt{\nu \overline{\nu}} \,U) \,dt}{(1+t)^{k+1} \,U^{k-1}} \qquad \text{VI.}$$

$$R_3(z) = \sum_{f=1}^{\infty} \sum_{(\rho, \alpha, \gamma)} B_{f, \gamma} \,(\xi) \sum_{(\mu)} \frac{f \,\overline{\Xi}'' + \overline{\mu}}{Q} \,C_{f, \rho} \,(\xi)$$

$$-\sum_{f=1}^{\infty} \sum_{(\rho, \alpha, \gamma)} B_{f, \rho} \,(\xi) \sum_{(\mu)} f \,\overline{\Xi}'' \,\frac{1}{Q} \,C_{f, \rho} \,(\xi),$$

⁶⁾ E, Hecke: a. a. O. pg. 223.

wo für die zweite Summe von R_3 (ζ) die unter V. angegebene Summe einzusetzen ist. Hieraus folgt die Grenzformel:

$$\lim_{x_2 \to \infty} x_2^{2k-2} R_3(z) = 0.$$
 VI a.

IV a, V a, VI a ergeben schließlich die Grenzformel:

$$\lim_{x_2 \to \infty} x_2^{2k-2} R(z) = D_k, \qquad \text{VII.}$$

woraus zusammen mit IIIa. folgt:

$$\lim_{x_2 \to \infty} f(z) = \frac{D_k}{B_k} = A_k,$$
 VIII.

d. h. f(z) nähert sich mit unbegrenzt wachsendem x_2 einem bestimmten endlichen, von x_0 , x_1 unabhängige Quaternion A_k , das die Form hat:

$$A_k = a_0 + a_2 i_2.$$

4. Satz: Die bezüglich der Picard'schen Gruppe automorphe Funktion f(z) besitzt für $x_2 \rightarrow \infty$, also auch in jedem rationalen Punkt der 01-Ebene einen bestimmten, endlichen Wert A_k .

Setzt man:

$$\mathcal{F}(z) = (f(z) - A_k)^{-1},$$

so findet zwischen $\mathcal{F}(z)$ und der elliptischen Modulfunktion j(z) eine weitgehende Analogie statt. Diese Funktion wird für $x_2 \to \infty$ selbst unendlich, und sie hat nur eine Nullstelle für $z = \zeta$. Sie bildet die ganze Umrandung des D. R. auf die Ebene 02 ab.

(Eingegangen den 22. Februar 1931)