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Ueber automorphe Funktionen der
Picard’schen Gruppe |

Von RUD. FUETER, Ziirich

In einer fritheren Arbeit habe ich Funktionen dreier Variabler aufge-
stellt 1), die gegeniiber einer in der Ebene uneigentlich diskontinuier-
lichen Gruppe automorph sind. Im folgenden untersuche ich diese Funk-
tionen ndher. Ich beschrinke mich dabei auf die Pzcard’sche Gruppe,
hebe aber ausdriicklich hervor, daf3 die Ausfithrungen ohne Schwierig-
keit auch auf jede andere Gruppe ausgedehnt werden konnen. Eine
wesentliche Vereinfachung ergibt sich allerdings aus dem Umstande, daf3
die Zusammenhangsverhiltnisse des Diskontinuititsraumes (D. R.) der
Picard’schen Gruppe besonders einfach sind, und am weitgehendsten
denjenigen des Diskontinuititsbereiches der Modulgruppe in der Ebene
entsprechen. Ich beschrinke mich im folgenden auch auf den dreidi-
mensionalen Raum, trotz Einfiihrung der Quaternionen, da sich die vierte
Dimension nicht als notwendig erwiesen hat, und da so die Anschauung
vollstindig gewahrt bleiben kann. Doch kann alles auch in gleicher
Weise mit der vierten Variablen durchdacht werden.

In dem vorliegenden ersten Teile der Untersuchungen werden die
Symmetrieverhiltnisse, die Differenzierbarkeit der Komponenten der
Funktion, sowie ihr Verhalten bei der Anniherung an den im Unend-
lichen liegenden Eckpunkt, d. h. in den rationalen Punkten der kom-
plexen Ebene angegeben. Letzteres ergibt sich durch wesentliche Ver-
wendung der Transformationsformel der von Hecke benutzten Theta-
funktionen, die zum Korper £ (V — 1) gehoren. Sie fithrt auf Bessel sche
Funktionen 3. Art, deren asymptotisches Verhalten man genau kennt.
Die Resultate lassen eine weitgehende, merkwiirdige Analogie mit der
Theorie der elliptischen Modulfunktion erkennen. Nicht nur bildet die
betrachtete Funktion die ganze Umrandung des Diskontinuititsraumes
und ihrer Symmetrieebene auf eine Ebene ab, sondern sie nihert sich
auch bei Annzherung an den im Unendlichen liegenden Eckpunkt einem
bestimmten, von den beiden andern Koordinaten unabhingigen Werte.

1) Ueber automorphe Funktionen in Bezug auf Gruppen, die in der
Ebene uneigentlich diskontinuierlich sind. Crelle’s Journal, Bd. 137 (192%),
S. 66.
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1. Die automorphe Funktion f (2)

Die Picard’sche Gruppe @ enthalte die Substitutionen

=)

wo also @, 8, y, 0 ganze Zahlen des Korpers £(y — 1) sind, die der
Bedingung ad — gy = 1 geniigen. Die imagindre Einheit derselben
werde als die Einheit 7, unter den Quaternionen Einheiten 1, 7, 7,, z,
gewahlt. Die reduszerte Quaternionenvariable 5 = x, 4 7, x, + 7, x, werde
im o12-Koordinatensystem des Raumes versinnbildlicht. Es bedeutet
dann:

S5 = (as + §) (ys -+ )~

die bekannte, urspriinglich von Pozncaré angegebene Raumtransformation,
bei der Kugeln (Ebenen) wieder in Kugeln (Ebenen) iibergehen. Trans-
formiert man & mit:

s:(? Zé‘), B =s1Bs,

Z, I
und setzt:
s'=s5"18s5,

so fiihren alle Substitutionen s’ die Einheitskugel in sich iiber, und,
wegen ad — By =1, geht jeder Punkt des Innern derselben wieder in
einen Punkt des Innern iiber. Zudem entspricht beziiglich s dem obern
Halbraum dieses Innere der Einheitskugel. Die von mir aufgestellten
Funktionen /' (s) haben dann die Eigenschaft, daf3:

£ 8 =7 (3)
wird., Die Funktion:
fle)= /" (s 2)
hat dann die Eigenschaft, daf3:
[(S)=F" (s Ss) =7 (' st a)=f" (s 5) = £ 3)
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wird, also ungedndert bleibt bei allen Substitutionen von &. [’ (2) ist
definiert als Quotient von zwei unendlichen, absolut konvergenten Reihen.
Der Nenner konvergiert zugleich gleichmif3ig in jedem, ganz im Innern
der Einheitskugel liegenden Bereiche, der Zihler ebenfalls in jedem
solchen Bereiche, der aber aufderdem einen im Innern des D. R. von
®B' fest gegebenen Punkt ' und alle seine &dquivalenten Punkte nicht
enthilt. Der Nenner ist zudem reell. Setzt man in f’ (¢) an Stelle von
z den Wert:

ste=(F—2n) (—ns+ 1) =(54—1) (— 5+ 2),

so ergibt die Rechnung, da3 sich f(2) so darstellen lif3t, wobei ge-
meinsame, reelle Faktoren des Zidhlers und Nenners weggelassen sind:

1
T — ’
) gﬂ((y—Z'za)z—i-J—zéﬂ)k

o [(@—ip)s -8 =2 0) (—ia)s+d—af)"—£]" |
R(Z)_%’”((y—z}a)z+§-——z'2ﬂ)"* ’

@ =7, [(59=7(), S= (79):

Die Summen sind iiber alle Substitutionen .S von & zu erstrecken, und

k bedeutet eine natiirliche Zahl = 3. #(a) = ae ist die Norm des
Quaternions a.

Setzt man:

E—=(—i) (—alt 1),

so ist { sicherlich ein Punkt des obern Halbraumes und liegt im Innern
des D. R. Die Reihen von f(2) sind dann absolut und gleichmafig
konvergent in jedem endlichen, ganz iiber der o1-Ebene gelegenen Raume
Q, der weder { noch einen seiner iquivalenten Punkte enthilt. Setzt
man also:

w=[f(s) =u,t w2, uy 2,,

so sind #,, #,, u, stetige und endliche Funktionen der drei Variablen
Xo, X1, ¥ In 2.

Im folgenden werden wir uns mit dieser Funktion w — f (z) genauer
beschiftigen.
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2. Symmetrieeigenschaften
Wir wollen den D. R. von & durch die Bedingungen:
ot ritri=1, 0=x=1, —1=uzx <1, (siche Fig. 1),

festlegen. Die 02-Ebene ist dann eine Symmetrieebene dieses D. R.
Ferner wollen wir von der Umgrenzung desselben nur die Flichenstiicke
mit zegativeme x| hinzunehmen. Denn zunichst ist wegen:

—z, 0
I S , . . 1
—-214’21 —Z‘ﬁlzl———-"-xo——xlzl‘{‘—ﬂ«}Zg, Sl-——< Oz.),
1

jeder Punkt der 12-Ebene seinem in bezug auf die 2-Axe spiegelbild-

lichen dquivalent.

)

[~

|

LAMMN

ya
\/

Fig. 1.

Ferner sind wegen S,5 — 2+ 7,, S, = (CI) ZI‘), alle Punkte der Grenz-

fliche x, = — 1 dem Spiegelpunkt in bezug auf die 02-Ebene aquiva-
lent. Wegen:

(—aztd)i = (—x+1)— 242+ 4 2,

ist jeder Punkt x, = 1 seinem Spiegelpunkt in bezug auf die 02-Ebene
dquivalent. Und schlie3lich ist fiir jeden Punkt der Einheitskugel:
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4 (s =y — x84+ 2,7,

seinem Spiegelbild in bezug auf die 02-Ebene aquivalent.

Wir wihlen jetst § im Innern dieses D. R. auf der 02-Ebeme. Dann
ist auch ¢’ ein Quaternion, das nur von den Einheiten 1, 7, abhingt.
Wir setzen:

—symty, C=s-t 5z, wozm >y 3, 0<s<d, 2+ 82>1.

Wir wollen von nun an die Spiegelung an der oz-Ebene durch einen
Strich bezeichnen. Es sei also:

'-— - -
g =xy— 22, + 202,

wihrend der Querstrich stets die Konjugierte, also die Spiegelung um
die 0-Axe bedeute. Dann ist:

n((y—zadst+d—anf)=n(—i(y—sia)s+Jd—2p)s)
=n((y —%a)s' +0—248);
nl(le—2zy)s+8—20) (y—2a)zt+0—2p)" —{ |4
=n(la—ny)s+8—ud) ({—ha)s+0—af)" 4" —
—=((a—a)s' +F—aDal(G—id s +-T—af) i~ —&
—*((a—-zg +ﬂ"“32(3) (& _‘220‘) ‘!“‘5""22 )*l'—é'

Somit wird:

I
AT O

R = SE— 377 +F—08) (G—id)s +F—af) —E1
%) ”((7—2205)2 +5"'22ﬂ)k

Nun ist aber auch:

3:@5
y 0
eine Substitution von &. Wenn also .S alle Substitutionen von & durch-

lduft, so wird auch S dasselbe tun. Somit ist:
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T(5)=T(), . o
4 R ()57 = R (5'), } also 7, f(2) 7" = /(")

Nun ist aber:
2, [(8) 25 == 2, (to 4 2,2, + 2, 2)) 25" = sy — wu, 2, + u, 2, = f(3)',

und es folgt die grundlegende Symmetrieeigenschaft:

£ =7 (3) IL
5 =xg— 2@+ %5, [(2) = up— 20, 21, .

1. Satz: Punkten, dic in besug auf die 02-Ebene spiegelbildlich sind,
entsprechen Funktionswerte, die ebenfalls in besug auf die 02-Ebene spie-
gelbzldlich sind.

Nun nimmt nach dem obigen f(s) auch in bezug auf Punkte der
Umgrenzung, die spiegelbildlich zur o02-Ebene liegen, gleiche Werte an.
Denn diese Punkte sind iquivalent beziiglich der Gruppe &, und es
gilt I. Da diese Werte zugleich spiegelbildlich sein miissen, so miissen
sie auf der 02-Ebene selbst liegen. Dasselbe gilt fiir alle Punkte & auf
der o2-Ebene selbst. Unsere Funktionen geniigen also einem Spiege-
lungsprinzip.

2. Satz: Die Umrandung, sowie die Symmetricebene des D. R. der
Gruppe @ werden auf Punkte der 02-Ebene durch [ (s) abgebildet.

Wenden wir dieses Resultat auf die Funktionen # an, so sieht man:
#, (%o, &y, ;) ist auf der 02-Ebene und auf der Umrandung des D.R. =o0;

Uo (T, — Xy, X)) = 2y (To, Ty, ),
Uy (xo, — Ty, xz):'—‘zﬁ (-To; &y, xz)y
Uy (xo: — Xy, 372): U, (wo, x, xz),

Dieses Resultat legt natiirlich die Vermutung nahe, daf3 f(2) jede
Symmetriehilfte des D. R. auf einen Halbraum abbildet.

Weitere, nicht so wichtige Symmetrien findet man auf dieselbe Weise.
Es ist:

Sie=hst,=—x— X+ 4% [(Si8) = [(5);
also:
fl—a)=f(—a+ia+am)=f(l@—iv+tin) =7
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Wird also in f(s) an Stelle von x, der Wert — z, eingesetzt, so indern
#, und u, sich nicht, dagegen wechselt », das Vorzeichen:

Uy ("— Ty, Xy, 372): 2 (xoy Ly, x2)’
2‘1(— Loy, Xy, 992):“‘u1 (wm Ly, xz)y
Uy (— Xoy 1y X)) = 2y (X0, X1, X3).

3. Die Differentialquotienten der u

Es fragt sich, ob die «# partielle Differentialquotienten besitzen. Um
einfacher zu schreiben, wollen wir unter dem partiellen Differentialquo-
tient irgend einer Funktion w = #, 4 %, z, 4 u, z; -} #; z; verstehen.

ow 0 0u . 0 . ouy .
da - dmy Tom AT ¥a N, VO 2

\

Man sieht leicht, daf3 dann die Regel gilt:

dawb 0w
— —=a~—20

oz, ox,
falls @, & konstante Quaternionen sind.

Wir denken uns jetzt um den Punkt £({’) eine Kugel von einem beliebig
kleinen, aber festen Radius g (¢’) errichtet, und um jeden dquivalenten Punkt
die aquivalente Kugel. Die Punkte dieser Kugeln schlief3en wir stets
von der Betrachtung aus. Ferner denken wir uns einen beliebigen, ganz
im obern Halbraum gegebenen endlichen Bereich £. Fiir alle seine
Punkte 2 sei x, = NV > 0, wo /V fest gegeben ist. z sei also auf3erhalb
der genannten Kugeln, und im Innern von £ gelegen. Nun ist:

n((y —2a)s+40—2p)
= (e + y7) (@0 + A + (@ + 4 + (@ + 4)),
wo:
2 (aa—+yy) Ao = 70 + 9y + af + fa,
2 (aa + yy) A =4 (y0 — 0y + af — fa),
2 (ea + yy) 4, = 2,

At g =0T
ao -t yy



Ay, A, A, sind reell. Da x, und A4, stets positiv sind, so ist fiir alle
z von £:

n((y—sa)s+0—78) > N(eatyy) =N

Nun ist:
EES ® (@ Ao + wx-i-A) —}—(wﬁ-Az)z

>

Ty V=0, I, 2.

”( }’—Zga) 3'—*‘—()‘-‘"225)
Fiir den ersten Faktor jedes Summanden gilt:

xy + 4y
(o + Ao + (x, ot A+ (e ‘+‘ Ay)’

I I

=V A L@ LA T @ Ay =N

Somit konvergiert auch 0 7 () /0, fir v =0, 1, 2 in £ gleichmi(ig
und absolut. Man sieht in gleicher Weise, daf3 auch alle hohern par-
tiellen Differentialquotienten existieren und stetig sind. Auf3erdem gilt:

AT (z) = 2k(2k — I)(‘S‘}:n((y—-—i ac)w;i)";’_—z. ﬂk+1

Entsprechend ist:
OR(2)

0w,
- sz (xv_I_Av)[((a_“z‘z}’ Z+ﬂ_223)( —Z,0) 54 0—7 )_l"'é.']-l
) (@ AN+ (o, + A4+ (@4 A)) n((y — 22a) 2+ 0 — 2, 8)*

O ((a—iy) s+8—0d) (y—dve) 55— i) — 1™
+ 2= '
) n((y—éa) s+ d—28)

Die erste Summe konvergiert wieder absolut und gleichmif3ig in £,
da ja der zweite Faktor im Zihler jedes Summanden absolut kleiner
als p'—! ist. Wir miissen also nur noch die gleichmilige Konvergenz
der zweiten Summe beweisen. Dazu setzen wir:

w* =wu*tu*e tur i, — ((oz—--z'2 y) 5 +B8—12,0) ((y——-z'z a) 5s+0— Z8)""
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Dann folgt durch Rechnung:

wr=la—zy)—ad [y —ha)s+I—4f— (0 —24f)
+GG—za)(a—ay) ' @—ad)((y—da)z+d—48)"
=(a—2%4y)(y—zda) ‘—27——22a ((7——2261)3—[—5—2213)—

wobei von der Relation:
¢ —ia) @ —49) = (—aty i) (—y + ad)
Gebrauch gemacht wurde. Da nun:
(y—rra)s+0—aB=(y—aa) (@t A + (@ + A) 5,4 (&4 45) 7)
ist, so wird:

0 w*

0,

o Ny O (o + Ay — (e + A) i — (@, F A45) 7
=—2(y—an) dz, (xo—}—Ao) —1—(:c1—1—A,)2+(x2+A2)2)(

also:

bw*|: 2 _l_z (@y 4 A4y) (2ot Ao— (2, + A) 2, — (2 + Ay) 23)
0z, | aadtyy (@4 4 + (@ + Ay +m+&w

- 2.2 a)‘l ’

+ (xo + Ao)z + (xl "‘l" Al)2 'J[‘ (xz + Az)z I

2 I 1
w17 [t A + @+ A 1 (oot Ay
X |2y + 4y |
\/ (xo +- Ao)2 —l— (-771 —l_ A1)2 =+ (xz ']L A2)2

1A

I |
T o T A T @+ A) T @+ 4

Die rechte Seite ist aber nach unsern Annahmen beschrinkt, somit
gibt es ein endliches, festes, von s und .S unabhingiges 4/, so daf3:

E 3
0 %y

oy

< M, 2}}:o, 1, 2.
u
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Ferner ist:

o Ny OW = o —2(uy—as 2y .
W_(w*~§) 1,5‘273‘—“(1”*—?)”@0* gr)gi”(w*_:):’—oylyz-

Da 7 (w* — {') = p'? angenommen ist, so sicht man genau wie oben,
daB3 auch |0 W /0 u¥| beschrinkt ist, also auch:

D

*
0 uy

u ‘
§Ml,‘}:o, 1, 2, W=2Uuz,
z'

wo M, nur von £ und o abhdngt. Da nun:

0Ur _ 0Un0ug QU d 2 N ay
Ow, diGdm, | duidm, | 0udm v}_o’l’z’

ist, muf3 auch:

oW
0 x,

w=[(a—zy) s+ 8—20)(y—da) s+ 5—28)"— ],

sein, wo wieder A/, nur von £ und ¢ abhingt, nicht aber von 5. Da-
mit ist aber die gleichmifJige und absolute Konvergenz auch der zweiten
Reihe vollstindig bewiesen.

Daraus folgt, daf3 7' (s) und R (5) beide stetig differentierbar sind.
Somit ist es auch ihr Quotient, da der Nenner reell ist.

=M, v=0,1,2,

3. Satz: Die drei Koordinaten der Funktion w = f(s) sind stetige
und stetig differentievbare Funktionen in jedem endlichen Bereiche, der
gans iiber der or-Ebene liegt, und weder den Punkt { noch seine dquiva-
lenten Punkte enthilt.

4. Hilfssatz tiber die Abzdhlung der Substitutionen von &

Es sei S = (a ﬂ) irgend eine Substitution von &. Wir setzen:

y 0
f =oaatyy,
fi= 88+ 99, (1)
p =70+ ap.
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Dann ist:

eo=—1+/f. (2)
Denn:
00 = yy03 + e 3B + yBad + adyB,
wo man im 3. Gliede y8 = ad — 1 und im 4. Gliede ad =gy | 1 setat.
Wegen ad — By = 1 folgt dann sofort (2).
- Umgekehrt sei / gegeben, sowie eine Losung ¢ der Kongruenz:

0o =— 1 (mod. ).

Man setze pp + 1 =/;. Wir setzen zunichst voraus, daf3 wir 7 in
der Form:

f=eaa+tyy

darstellen konnen, wo a und y okne gemeinsamen Teiler sezen. Soll dann
0 = y0 -} af sein, so sind # und § eindeutig bestimmt. Denn es folgt:

08 = 0By + e = — I+ a (B8 + 00) = — O+ of:,
00 =yd0 + afd =+ y BB+ 00) =} 7/

Aus diesen beiden Gleichungen fiir 8, J folgt durch Auflésuug:

8= — ;' + a0, (3)

fA=a+7ye-
Wir fragen jetzt, wie viele Darstellungen «, y von f es fiir ein ge-
gebenes p, das (2) geniigt, gibt, so daf3 die Gleichungen (1) erfiillt sind?

Wegen (3) sind ja dann 8, § eindeutig bestimmt. Damit nun (3) durch
ganze Zahlen g, J losbar ist, ist jedenfalls notwendig. daf3:

%_E_ — 4@ } (mod. 7) ist. (4)
7= ap

Es gibt nun wenigstens eine Darstellung /= ae 4 yy mit zueinander
teilerfremden Zahlen ¢, y, fiir die (4) erfiillt ist. Denn setzt man:

y = ap — ff,
so ist:

yy = aago + F288 — foaB — foop.
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Setzt man hier fiir yy den Wert f— aa ein, und pp = ff; — 1, so
wird nach Division durch f:

1= fiaa+ /88 — oaf — oof.
Fithrt man reelle Koordinaten ein:
a=1t+té, B=u+ 1, o =r,+ri,
so lautet die Gleichung:

1=fH@G+8) -+t u) — 27w+ ti0) — 27, (bouy — 8, u).

Diese quaternire quadratische Form hat die Determinante:

/1 0 —7, — 7
o /1 ry — 7,

D — — 7 r f o = 1.
—r, — 7, (o) 7/

Da es nur eine Klasse quaterndrer Formen der Determinante 1 gibt,
so ist unsere Form der Form #°® -} #* + #,® -} #;* iquivalent, wodurch
die Darstellung der eins gegeben ist. Somit sind ¢ und g gefunden.
Setzt man dann:

:;é’—“flé—,
so wird fiir dieses y:
aa—+ yy = oo (1 00) + /288 — foof — foaB =1

Damit haben wir das Resultat, daf3 es zu jeder natiirlichen Zahl f
und jeder Losung der Kongruenz:

00=—1 (mod. f)
wenigstens eine Darstellung /= aa 4 yy gibt, fiir die:

a=—yp (mod. f) (5)

ist. Fiir diese Darstellung konnen wir nach (3) @, J als gawnse Zahlen
berechnen. Aus (3) folgt aber:
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f@d—3y) =aa-tyy=/F, oder ad — By =1.
f (@B + y9) = (aa 4 yy) e = of, oder o = af+7J.

Somit sind e, y auch teilerfremd.

Wir konnen daher sagen, daf3 es zu jeder natiirlichen Zahl / und
jeder Losung ¢ der Kongruenz:

00 =— 1 (mod. f)

wenigstens eine Substitution S = (;l ‘§) von @ gibt, so daf3:

f=aity7, p=af+79

ist,

Es fragt sich nun, wie viele solcher Substitutionen es gibt? Es sei
o', y' eine weitere Losung, die zu demselben / und ¢ gehére.
Es sei also auch:

da +y'y =f, d =py (mod. f).
Eliminiert man aus dieser Kongruenz und (5) o, so folgt:
ay' —d'y = f,
wo 7 eine ganze Zahl von £(y — 1) ist. Es muf:
[ian = aey'y +d'a'yy —ad'yy’ — ac'yy’
sein. Setzt man hier fir aq den Wert f—yy und fiir yy den Wert
f— oa, so wird:
=71 —yyy'y —awa'a’ —aa'yy —aa'yy' = 1" —(aa’ +yy') (@' +7y"),
oder
2 (1 — )= n (ae’ +7y").

Die rechte Seite ist stets = 0; auf der linken Seite ist m}- =0,
1— 7;9}- = 1. Daher sind nur die beiden Fille méglich, da alle Zahlen
ganz sind:
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a) 777;: I, d. h.

ayl —a'y= /[,
3 _ v=—0, I. 2, 3;
ao’ + yy' =0,

woraus sich fiir ' und y’' ergibt:

’

R I

=—1.7,
r ° .
Y= 2¥.u

dies sind 4 Losungen o', ¥', von denen sich aber je zwei nur um das

Vorzeichen unterscheiden. Umgekehrt sieht man, daf3 diese Losungen
auch wirklich allen Bedingungen geniigen.

b) #7 =0, d. h.:
ay' —a'y =0,
_ _ ”:O, I’ 2’ 3;
aa’ +yy =2 @,

wo (@) ein festes Ideal ist, dessen Norm f2ist: »(p) = /2. Daraus folgt:

v =79y,
fo' =2V, ga;

es miissen daher @y/f und ga/f ganze Zahlen sein. Setzt man:
¢="ro -, [=/[o-7(qo),

wo f, ganz, rational und ¢, ungerade und zu ¢, teilerfremd angenommen
werden darf, so wird:

Y =7 ¢ 3—;%’
o =2 gvo.g_,
Po

und y und a miissen durch @, teilbar sein. Dann folgt aus den (3) ent-
sprechenden Formeln fiir &', 8, ', J':
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fﬂ' :_;'_{"“’0’

= e,
daf3:
’ . - - I
B =(—2)" @ (—y+ao)—,
@o
Y] S - - I
/o =1¥-¢o(a+yo)g,
oder:

-—)Z—I——ocgzo (mod. f£;. ¢i),
a4 yo =0 (mod. f;.¢qi).

Wegen (3) muf3 daher:

ll

8
)

o (mod. ¢,),
=0 (mod. ¢,),
sein. Somit ist:

ad =0 (mod. @,.q@), By =0 (mod. ¢, . ),

was wegen ad — 8y — I nur fiir @, = 1, ¢ = f, = f moglich ist. Daher
gibt es nur die vier Losungen:

o —=—1zY.a,
V= O’ I, 2’ 3°

Py
7 =240

Die so gefundenen 4 Losungen unterscheiden sich zu zwei und zwei
nur durch das Vorzeichen.

Die unter a) und b) gefundenen 8 Ldsungen sind nun alle von einander
verschieden, auf3er im Falle, daf3 « oder y=—o0 oder beide =],
v=o0, I, 2, 3 sind. Dies ist nur fiir /= 1 und 2 moglich. Sie redu-
zieren sich hier auf die Halfte.

Wegen S = (a g ) = (_“ —F ) ergeben die 8, resp. 4 Losungen

y 0 —y — 0
nur 4 resp. 2 verschiedene Substitutionen, da fir — a, — y in (3) auch
g und 0 das umgekehrte Zeichen annehmen. Daraus folgt der
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Hilfssatz: Fede Substitution S — (;f g) von @ legt eindeutig die Zaklen

[ =oa-yy, o =af -+ y0 fest, fiir die

00=—1 (mod. f),

ist.  Ist umgekehrt [ eine natiivliiche Zakhl, und ¢ eine feste Losung der
Kongruens :

952 — 1 (mod. [),

so gibt es genau ¢ (fir f—1 oder — 2 nur 2) Substitutionen S von ®,
fiir die f=aa-+7yy, o =af -+ y0 ist.
Fiir jede durch 4 teilbare natiirliche Zahl 7 hat die Kongruenz

00 =—1 (mod. f)

keine Losung, weil sie fiir /— 4 keine hat. Man sieht aus dem Hilfs-

satz, daf3 die Darstellung /= a&—}—yy- in zwei zueinander teilerfremden
Zahlen «, y genau 8 (resp. 4) mal so oft moglich ist, als die angegebene
Kongruenz inkongruente Losungen hat. Ersetzt man o durch eine (mod. /)
kongruente Wurzel, so dandern sich a, y nicht. Dagegen erhalten 8, §
einen andern Wert. Setzt man ¢* — p + fz, wo z eine ganze Zahl von
k(Y —1) ist, so werden die zugehorigen 8% &* nach (3):

=8+ ar, 0* =0+ yz. (6)

Daraus ergibt sich fiir die Summation unserer Reihen 7 (2) und R (2)
folgendes :

Die auflere Summe wird iiber alle natiirlichen Zahlen / von 1 bis
unendlich zu nehmen sein.

Die znnere Summe ist zunachst iiber ein (mod. /) inkongruentes System
von Wurzeln ¢ der Kongruenz:

po=—1 (mod. 1) (7)
zu erstrecken.
Die znnerste Summe ist iiber die 4 resp. 2 zugehdrigen «, y, die uns

ein Paar 8, J festlegen, und fiir die /= ax-}-yy ist, und dann noch
iiber die unendlich vielen Werte: £ +-za, d 7y zu erstrecken, wobei
z alle ganzen Zahlen des Korpers £ (\/ — 1) durchliuft.
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5. Der Grenzwert der Funktionen 7 (2) und R (2) fiir x, — °°

Legt man die in 4. angegebene Bezeichnungsweise der Formeln (1)
zu Grunde, so lauten die in 3, aufgestellten Gleichungen jetzt so:

2 ((y— i) 5+ 8 — 48) = (@ + A + (@ + A + (@ + 4,)),

WO :

4, =4+ p) = 70, .

) o= rot i,
A, = — %4 (p — p) =71,
fA2: I

ist. Halt man gemif3 der Schluf3bemerkung von 4. / und p fest, und
setzt:

E:xo‘{_zlxn .a:ft—}—p,

so kann man nach (6) schreiben:

n((y ——z'goc)z—}—()*——z'gp’*) :f<x2—[—~}—)2+7i[—%-w .

Statt iiber alle ganzen Zahlen z von /e(\/_;_l) ist jetzt liber alle gan-
zen Zahlen g zu summieren, fiir die

¢ = p (mod. £) (8)
ist. Daher wird:

T(Z):EO’ZTQ/‘(Z), WO :

=)
Tor(s) =3 - —— :
) (f(x2+~;7)2 + (f~f+ .U)>/e

6=2,f=1,2; 6=4, =3, Z=0(mod. 4), 6 =0, /=0 (mod. 4)

ist. Um 79 ,(2) zu berechnen, benutzen wir in bekannter Weise das
Integral :

I (2a); r

ey 'l 28 — r—1
ﬂkwlﬂ(/e)o exp (—2ant)*1dr.



Dann wird wegen der erlaubten Vertauschung von Integration und
Summation nach Hecke?):

TP,f(g) — %%0 exp(—-— 25 f (2 ‘|“‘]I?)2 I)Qexp(— 2 nth“E]‘_—_t!i))tk—ldt

~~~

: B
_ ;Zg) Jexp(—an(xz"l"%)%) ?9(2'11; ZEf_l.—zP’ I’zfz.l) .

. . . . . I
Im Integral machen wir jetzt die Substitution z— —. Nach der
7

Transformationsformel 3) wird dann:

. f
:-;—f%exp(Zyzz}S(g%))%yexp(2%2}5(-“25) exp(—2yzt”—4(;l),

wo S( ) die Spur der Zahl in 2(y — 1) bedeutet, A ein vollstindiges
Restsystem (mod. 2 /) und » alle Zahlen durchlauft, fir die:

y = A (mod. 2 f)

ist. Beriicksichtigt man dies bei Ausfithrung der Substitution, so folgt:

__(2a) o P2 .o B
Tp,f(z)__m%;exp(2%215(57))%'6:){})(2%215(7))

XICXP (*’* Zﬂf(w2+~;7)2—lt——2 ytz?:(———sz)—)t“"dt.

In der innersten Summe kann » nur dann null sein, wenn A =0 (mod. 2 f),
d. h.z. B. A=o0 ist. Wir nehmen diesen Wert » — 0 aus der Summe
heraus und deuten dies durch einen Strich an der Summe an. Es wird
dann:

2) E. Hecke: Zur Theorie der elliptischen Modulfunktionen. Math. Annalen,
Bd. 97, 1926, pg. 222,
3) E. Hedke: a. a. O. pg. 222, Formel (13).
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(2 n)*

To,r(3) = m[fexp (—Zﬂf(xz -+ 71:)2%> T *%dzt

—}—%'exp(zﬂz1 —M))(Zv),’exp<2yzz,.$(~———)) ]

wo A ein solches Restsystem (mod. 2 /) durchlduft, in dem A = o auf-
tritt und

Ve :Jexp (—— 2a f(z + }}?)2{,—-—2ﬂt%%/;2> r*dz

ist. Das erste Integral in 7p ,(2) hat den Wert:

I'(k—1)
(2 £ (o )

In 9% macht man die Substitution:

fwz
Vo

z, (positive Quadratwurzel),

dann wird:

_ v A r \/ ”
.‘7\' - Zk_l (fxz“l"' I)k_l Jexp (—_ (fx2 +

Dies ist aber nichts anderes wie eine ZBessel’sche Funktion drztter
Art. Wir setzen nach Watson*)

—(z —|~~—)) T dz.

Ka(e) = feXP( %z(r+—i—)) " 1dz.
Dann ist:
B _;}?k——l \/—2;;_2;—
Py = 3 (7 g Ty B (2 (fa+1) __7_) .

%) G. N.Watson: A treatise on the theory of Bessel Functions. Cambridge,
1922, pg. 183.
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Setzen wir dies alles ein, so erhalten wir schlief3lich:

=1 ®)
To,r(2) = T .
(k= 1) /(e
2 7t . i se
T r® va&+-)b-£?e”(2” LSGD) H

X%"exp (29,2'15(?)>\/T;_k—1 Ky 4 (25:(/’3:2 - I)Y__Z;_),

wo die Summen iiber ein vollstindiges, (mod. /) inkongruentes System
von Wurzeln p der Kongruenz (7), iiber ein vollstindiges Restsystem A
(mod. 2 /) und iiber alle ganzen Zahlen v von £(y — 1) zu erstrecken
ist, fiir die v=A (mod. 2 /) ist.

Um K;_, (2) fiir gro3e reelle Werte von s zu berechnen, verwendet
man die Formel5):

k—2

Kkl(ﬂ)"“mvg __Z(Zo(/e I, m)+ (f — )k_ I)),O<@<I,

WO :

Fetm+y
I'm—+1) I'(n—m—+1)’

(2, m) =

ist. Da in der Summe 2’ v niemals null ist, so erhalt man die Grenz-
formel:

lim %27 (5) = —— ) ‘/J-—(Q — B, k=3, Il a.

X2—> o0 k— Ile
wo  (f) die Anzahl aller Darstellungen von f in der Form

f=aa+yy

mit zueinander teilerfremden Zahlen «, y ist. /5, ist eine von null ver-
schiedene reelle, positive Zahl.

%) G. N. Watson: a. a. O. pg. 207.

61



In gleicher Weise, wenn auch etwas umstindlicher, kann der Zihler
R (5) entwickelt werden. Legt man die Bezeichnungsweise von 4. zu
Grunde und verwendet (3) und (6), so wird:

N:((ac—z’2 }’) 3+ﬂ*_22()¥k) ((}’—2.2“)5—{"()‘*—“2‘2 ﬂ*)_l _
ool )55

x (@—z-z o (&) + 252

Wo ¢ = ((— ) (—h b ) = (Ch—1) (— L) u=pttf

gesetzt ist, Ist:

§§“)’“‘°‘7+~0()’ —"“ )—n[5 -
Aelel = ey —a AR

so ergibt die Rechnung:
V=2 (Eh—07 ty —a) (s + % 4 20 ©))

><((7——-Zza)< 5+ f)JraJrM) g

Die Zahl 4,p ({) ist ein reduziertes Quaternion, das wir in der Form
schreiben:

dse () = &,0 () F €10 (£) 22,

WO ¢rp ({) eine komplexe Zahl der oi-Ebene ist. Der reziproke Wert
ergibt jetzt:

Vi () o+ ) ST (e e )
X (Er — o)1 (¢4 —1)

= 4o @+ Bo O (s + 5+ 00 O F e 0] G 0),
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wo:
Ao Q) =4 —20) §y —a) ' ({2 —1),
Bro () =3 —1) (y{—a) 1,
Cro(Q) =@y — ' ({z— 1),
ist. In der Bezeichnungsweise ist zu beriicksichtigen, daf3 nach dem

Hilfssatz in 4. zu jedem p 4 resp. 2, resp. O verschiedene Wertepaare
a, v gehoren. Setzt man:

E' =wxy 22, F &40 (£), Xo =2+ ¢£p ({),

so wird:

V= A QB ) LR 0 ).
pa L

Diese Darstellung benutzt man, um R (s) in folgende Summen zu
zerlegen, wobei nach der Vorschrift von 4. summiert wird:

R (5) = R, (5) + R, (3) + Ry (5)
v A (s“)
R, £ =
K gugmi‘; PP R T
Ri=3 %
S=1 (p,o,Y)
3 Bio () TE St Cre (©),
w (o L= (fY+ 2= )
Rs(z):j
S=1 (pya,Y) _
2 Bro (&) E ‘u e Cre(f) .

R, (5) kann genau nach denselben Methoden, wie 7'(z) dargestellt
werden. Man findet:
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Re)=2 3 3 M@

T E—1 /=1 (p,a,Y) [* (x, +_;_)2k—2
2afF & / o hp
P I, iy (e OF o (i s GR) 1V

z exp (224, 5 (C) Vo K (zn(f%—}—l)@),

wo die Summen wie bei 7 (5) auszufiihren sind, und &,y die 4, resp. 2,
resp. O Darstellungen von f bei gegebenem p zu durchlaufen hat.
Daraus folgt wieder die Grenzformel:

lim a%2R ()= 3 U _p p=3  va
A =1 Py

wo D, ein bestimmtes, nur von 1, z, abhingiges, von £ unabhingiges
Quaternion ist. Man sieht iibrigens leicht, daf3 wegen |{| > 1:

v=0: =140 )| =4 — 1],
yZon(Gy—a>tly—da|=[V7|, |4 @) | <IVFia—1],
ist, also stets | Ao ()| < {;V?]é‘z’z — 1] ist.

Um R, (2) zu berechnen, fiihren wir wie fir 7 (s) ein Integral ein,
miissen aber auf3erdem noch setzen:

oo

~2 (f5’+ﬂ)
e —2q | exp(—2afXir—2a: L TE) g
fXg“}—n(fo_*’—‘u) J‘ ( f )
Dann wird:
r 1
0~ et CET W e A TE )
(ot 2o + 2= iy 4 U E o))
Zytk“‘l

=T ffexp —anth—znf(x2+~)2)

Xexp(——Zyt A +mt}+—”(fa+‘u)1)tk‘ldtdt.



Wir substituieren fiir # — z£. Ferner schreiben wir (Indices und Funk-
tionszeichen sollen bei den ¢ und & weggelassen werden):

MFE )+ w53 @) = (40 dfE 4 f o 4 AL

I + ¢ 14-¢
— (1 4 A n(fE" 4 u)+ f{’:’% ,wo =" =3t ’i’gi st

Dann folgt:

. . 3 7 )
Substituiert man fiir 7 » ————, so wird:

(1+42)

1 (2)t+1 {? ¢ 5 .
- < — <7 [,’r‘ Z)
Ty j exp (—2af

(1T 9F

Xexp(—z d F—;*{_ ) )'cka’r,

[]_—_\/ (Tg +- t—eT—:—ii;_i )2 -} ({f}i Ak ( 7 (e — ) (positive Wurzel),

von der Grofdenordnung ., ist. Summiert man jetzt iiber alle ganzen
Zahlen g, fiir dic g = p (mod. /) ist, so erhidlt man in dem innern Integral
wieder eine FHecke'sche Thetafunktion, die man durch die Substitution
T - t-! transformieren kann. Wie im frithern Falle wird:

=

1 (emptt ¥ F D (2 . 1
S 0= urm) (f:‘mfmj exp (—27/ U )

XZexp (Oyzzl / )2, exp (dzz1

) 0]
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wo A ein vollstindiges Restsystem (mod. z2f), worunter auch A = o,
durchlduft, und v alle ganzen Zahlen, fiir die v = A (mod. 2f) ist. In der
Summe nehmen wir dasjenige Glied gesondert, fiir das A — o0, v = 0 ist,
was wieder an ihr durch einen Strich angedeutet werde. Dann folgt
nach elementarer Rechnung:

):-L=nf dt

o ) o
(2&1)‘""1 d ' . E"
+2f1’(/e) (I—[—-tk“zexp (znz, (7)%‘ exp(zazlS( 5 ))
XJ‘CXP(—anUZ%-—zn:;t) vFldx.

Das erste Integral ist von der Grof3enordnung 1/x,?). Im zweiten
substituiert man

2fU

vy

T > T;

dann folgt wie friiher:
1 a [ dt
o= | gt
0
ﬂk-i-l

+m2exp(23215( ))(,5,v VVJ"J exp(Zyzz}S(dzv))

Ky (2aWvy Uydr V-
(1t

=3 X B¢ -ﬁ%@%é@ﬂﬁ

/=1 (p,o,Y)

X

In der Grenze wird, wie frither, wegen der Bemerkung iiber die Grof3en-
ordnung des ersten Integrals, und weil X, = 2, 4 ¢/p ({) ist:

lim 2% -2 R, (s) = o. Va.

Xg —» o0

Genau ebenso wird die Reihe R;(s) berechnet. Nur hat man jetzt
die Summe (symbolisch, da #Z" unter das Integral nach # kommt):
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by} |

YU _yEtu oyl
w ¢ w ¢ () é

iber alle ¢ zu berechnen. Die erste Summe fithrt unter dem Integral
auf eine Hecke'sche Thetareihe zweiter Gattung, deren Transformations-

formel so lautetf), wie die Differentiation nach E der frihern Formel,
pg. 59 ergibt:

=2 IR o oon(fE"+ w1
%’( E" 4 u) eXp( 2a—— T)

(Zyzz, f))(zv)’vexp<2n215( ZV

4f )

Somit wird:

fE" —}— u (291)“‘21 eA
50 T e f(l—rt“‘%exp(z“"s‘zf))

XZV exp(ZytzlS(—v)exp(——Zyszgm—-ZnYlT) t*dr,
O v ar

wo jetzt kein Glied aus der Summe herausgezogen werden muf3, da fir
v=0, A = 0 das Glied wegfdllt. Macht man wieder im innern Integral
die Substitution:

so wird:

F""

fE" +u 7, qk+ ] oA
5 0 == AT o o (2rasEp)

— 1 [ LBV K1 (2N U) dt
(Z;V\/Wk lf exp (2%215( 2 )) fll—{f-l‘)’*“ = VI.
Y

0

Ri=3 3 By ( 2’”“"”“‘6 ©

/=1 (p,a, T)

— 3 3 B ® Zf”"-——cfp@),

/=1(pyoy ¥)

6) E, Hecke: a.a. O. pg. 223.
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wo fiir die zweite Summe von K&;({) die unter V. angegebene Summe
einzusetzen ist. Hieraus folgt die Grenzformel:

lim x%—2 R, (5) = o. Vla.
x2 —» oo

IVa, Va, VIa ergeben schlie3lich die Grenzformel:

lim 2%~ R () = D, VIL

XQ'——)W
woraus zusammen mit [Ila. folgt:

lim f(2) = Dy = Ay, VIIL.

Xog —» oo Bk

d. h. /() nahert sich mit unbegrenzt wachsendem &z, einem bestimmten
endlichen, von z,, x, unabhingige Quaternion A,, das die Form hat:

1.4k fr— (lo '_4— (22 Z‘g .

4, Salz: Die besiiglich der Picard schen Gruppe automorple Funktion
[ (8) besitst [fiir x,—> oo, also auckh in jedem rationalen Punkt der o1-Ebene
eznen bestemmien, endlichen Wert Ay .

Setzt man:

Fo)=(Fls) — 4)™,

so findet zwischen ¥(2) und der elliptischen Modulfunktion j (5) eine
weitgehende Analogie statt. Diese Funktion wird fiir x, —oc© selbst
unendlich, und sie hat nur eine Nullstelle fiir z = {. Sie bildet die ganze
Umrandung des D. R. auf die Ebene o2 ab.

(Eingegangen den 22. Februar 1931)
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