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Ueber automorphe Funktionen der
PicarcTschen Gruppe I

Von Rud. FUETER, Zurich

In einer fruheren Arbeit habe ich Funktionen dreier Variabler aufge-
stellt*), die gegenuber einer in der Ebene uneigentlich diskontinuier-
lichen Gruppe automorph sind. Im folgenden untersuche ich dièse
Funktionen naher. Ich beschranke mich dabei auf die Picard'sche Gruppe,
hebe aber ausdrucklich hervor, dafi die Ausfuhrungen ohne Schwieng-
keit auch auf jede andere Gruppe ausgedehnt werden konnen. Eine
wesenthche Vereinfachung ergibt sich allerdings aus dem Umstande, da(3

die Zusammenhangsverhaltnisse des Diskontinuitatsraumes (D. R.) der
Pzcaréfschen Gruppe besonders einfach sind, und am weitgehendsten
denjenigen des Diskontinuitatsbereiches der Modulgruppe in der Ebene

entsprechen. Ich beschranke mich im folgenden auch auf den dreidi-
mensionalen Raum, trotz Einfuhrung der Quaternionen, da sich die vierte
Dimension nicht als notwendig erwiesen hat, und da so die Anschauung
vollstandig gewahrt bleiben kann. Doch kann ailes auch in gleicher
Weise mit der vierten Variablen durchdacht werden.

In dem vorliegenden ersten Teile der Untersuchungen werden die

Symmetrieverhaltnisse, die Differenzierbarkeit der Komponenten der
Funktion, sowie ihr Verhalten bei der Annaherung an den im Unend-
lichen liegenden Eckpunkt, d. h. in den rationaien Punkten der kom-
plexen Ebene angegeben. Letzteres ergibt sich durch wesentliche Ver-
wendung der Transformationsformel der von Hecke benutzten Theta-
funktionen, die zum Korper k (V — i) gehoren. Sie fuhrt auf Bessel'sche

Funkttonen 3. Art, deren asymptotisches Verhalten man genau kennt.
Die Resultate lassen eine weitgehende, merkwurdige Analogie mit der
Théorie der elliptischen Modulfunktion erkennen. Nicht nur bildet die
betrachtete Funktion die ganze Umrandung des Diskontinuitatsraumes
und ihrer Symmetrieebene auf eine Ebene ab, sondern sie nahert sich
auch bei Annaherung an den im Unendlichen liegenden Eckpunkt einem
bestimmten, von den beiden andern Koordinaten unabhangigen Werte.

l) Ueber automorphe Funktionen in Bezug auf Gruppen, die in der
Ebene uneigentlich diskontinuierlich sind. Crelle's Journal, Bd. 137 (1927),
S. 66.
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1. Die automorphe Funktion / (z)

Die Picard'sche Gruppe (5 enthalte die Substitutionen

wo also a, /?, y, S ganze Zahlen des Korpers k(\J — i) sind, die der
Bedingung ad—fiy=i genugen Die imaginare Einheit derselben
werde als die Einheit zx unter den Quaternionen Einheiten I, zl9 z2, z3

gewahlt Die reduzzerte Quaternionenvanable z xQ -j- zx xx + H ** werde
îm 012-Koordinatensystem des Raumes versinnbildlicht. Es bedeutet
dann:

die bekannte, ursprunglich von Pozncare angegebene Raumtransformation,
bei der Kugeln (Ebenen) wieder in Kugeln (Ebenen) ubergehen. Trans-
formiert man © mit*

=(,',

und setzt

s'=s'1Ssf

so fuhren aile Substitutionen sf die Einheitskugel in sich uber, und,
wegen aô—/?y=i, geht jeder Punkt des Innern derselben wieder in
einen Punkt des Innern uber Zudem entspncht bezughch s dem obern
Halbraum dièses Innere der Einheitskugel Die von mir aufgestellten
Funktionen /' (z) haben dann die Eigenschaft, dafi-

r (s'z)=r (z)

wird. Die Funktion :

hat dann die Eigenschaft, da6 •

f (Sz) f (s-' Se) f (s' r-» z) f (*-» z) / (z)
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wird, also ungeàndert bleibt bei allen Substitutionen von <S. f (z) ist
definiert als Quotient von zwei unendlichen, absolut konvergenten Reihen.
Der Nenner konvergiert zugleich gleichmàfiig in jedem, ganz im Innern
der Einheitskugel liegenden Bereiche, der Zâhler ebenfalls in jedem
solchen Bereiche, der aber auGerdem einen im Innern des D. R. von
<8' fest gegebenen Punkt g und aile seine àquivalenten Punkte nicht
enthàlt. Der Nenner ist zudem reell. Setzt man in /' (z) an Stelle von
z den Wert:

s-i z {z — h) (— h s + i)-1 (z ù — I)"1 (— z + it),

so ergibt die Rechnung, dafi sich f {z) so darstellen lâfit, wobei ge-
meinsame, réelle Faktoren des Zâhlers und Nenners weggelassen sind:

(S) n((y — i% a)

Ris) I.

Die Summen sind ùber aile Substitutionen S von © zu erstrecken, und

k bedeutet eine natiirliche Zahl ^r 3. n (a) — aa ist die Norm des

Quaternions a.

Setzt man :

so ist ^ sicherlich ein Punkt des obern Halbraumes und liegt im Innern
des D. R. Die Reihen von f (z) sind dann absolut und gleichmàfiig
konvergent in jedem endlichen, ganz iiber der 01-Ebene gelegenen Raume
Q, der weder £ noch einen seiner àquivalenten Punkte enthàlt. Setzt
man also:

w f(z) — uQ-\-uv zt -f u% z2,

so sind u0, ut, u2 stetige und endliche Funktionen der drei Variablen

x0, xl9 x2 in û.

Im folgenden werden wir uns mit dieser Funktion w f(z) genauer
beschàftigen.
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2. Symmetrieeigenschaften

Wir wollen den D. R von (S durch die Bedingungen

A-\-*\-\-A^i, o ^o ^ |, — | ^ xt < \, (siehe Fig. i),

festlegen. Die O2-Ebene ist dann eine Symmetneebene dièses D. R
Ferner wollen wir von der Umgrenzung desselben nur die Flachenstucke
mit negativeni xx hinzunehmen Denn zunachst ist wegen*

o J'
jeder Punkt der 12-Ebene semem in bezug auf die 2-Axe spiegelbild-
hchen aquivalent

Fig 1

Ferner sind wegen S2z z + ^1, St M, aile Punkte der Grenz-

flache ^ — 1 dem Spiegelpunkt in bezug auf die 02-Ebene aquivalent

Wegen •

(— tt z -f tt) zTl (— *0 -j- ï) — ^1 ^1 + ^2 ^2,

ist jeder Punkt x0 ^ seinem Spiegelpunkt in bezug auf die 02-Ebene

aquivalent. Und schliefihch ist fur jeden Punkt der Einheitskugel :
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z\ (t\s) *
x0 — xx iy -f- x* H

seinem Spiegelbild in bezug auf die 02-Ebcne Équivalent.

Wir wahlen jetzt £ im Innern dièses D. R. auf der 02-Ebene. Dann
ist auch g ein Quaternion, das nur von den Einheiten 1, i2 abhângt.
Wir setzen:

Wir wollen von nun an die Spiegelung an der 02-Ebene durch einen
Strich bezeichnen. Es sei also:

Z — Xq X\ Z\ ~j X% 2% j

wâhrend der Querstrich stets die Konjugierte, also die Spiegelung um
die O-Axe bedeute. Dann ist :

ù Ua — ÙY)* + P— H S) {{y — h a) z

~ («—Ù y) *' + fi- h S) û [( (y- H â)s'

Somit wird:

T[z) Z n{[y — it a) s'-\-S —

it R (s) zt1 y[((«*Y)S
n((y — i2a)z' + S—isp)*

Nun ist aber auch:

y d>

eine Substitution von (8. Wenn also 5 aile Substitutionen von <g durch-

lâuft, so wird auch 5 dasselbe tun. Somit ist:
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2 -A. \f> J y J

Nun ist aber:

H f(*) HX *2 (U0 + ^1*1 + ^2^2) /F1 U0 — «!*! -f &2*2 /(*)',

und es folgt die grundlegende Symmetrieeigenschaft :

/(*') /»' IL

:/, Sâtz: Punkten, dze tn bezug auf dze 02-Ebene spzegelbzldlzch sznd^

entsprechen Funktzonswerte, dze ebenfalls zn bezug auf dze 02-Ebene

spzegelbzldlzch sznd.

Nun nimmt nach dem obigen f (z) auch in bezug auf Punkte der

Umgrenzung, die spiegelbildlich zur 02-Ebene liegen, gleiche Werte an.
Denn dièse Punkte sind aquivalent bezuglich der Gruppe (S, und es

gilt I. Da dièse Werte zugleich spiegelbildlich sein mussen, so mussen
sie auf der 02-Ebene selbst liegen. Dasselbe gilt fur aile Punkte z auf
der 02-Ebene selbst. Unsere Funktionen genugen also einem Spiege-
lungsprinzip.

2. Sâtz: Dze Umrandung, sowze dze Symmetrieebene des Z>. R. der

Gruppe © werden auf Punkte der 02-hbene durch f (z) abgebzldet.

Wenden wir dièses Résultat auf die Funktionen u an, so sieht man:
ut (x0, xt, #2) ist auf der 02-Ebene und auf der Umrandung des D. R. o ;

^i(xOf -—x,, x2) — u^Xoy a?u a?2),

U2 [X0 y Xl X2) U2 (Xq y Xl X2) y

Dièses Résultat legt naturlich die Vermutung nahe, daf3 f(z) jede
Symmetriehalfte des D. R. auf einen Halbraum abbildet.

Weitere, nicht so wichtige Symmetrien findet man auf dieselbe Weise.
Es ist:

Siz iizt1 —x0 — Zi xt -f i% x2 ; f(Stz) f{z) ;

also :

f{— z) / (•— x0 + t\ xx + z2 x2) f (x0 — ix xt + i% x2) f(z)'.
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Wird also in f (z) an Stelle von x0 der Wert — x0 eingesetzt, so andern
u0 und u% sich nicht, dagegen wechselt u± das Vorzeichen:

«i(—a?o, «1, Xt) — ui(x0, x19 x2),

u2{—xOi xl9 xs)= u2(xOy xi9 xt).

3. Die Differentialquotienten der u

Es fragt sich, ob die u partielle Differentialquotienten besitzen. Um
einfacher zu schreiben, wollen wir unter dem partiellen Differentialquo-
tient irgend einer Funktion w u0 -\- ux zx -\- u2 z2 -f- ^3 H verstehen.

à w ô u0 è ut à u2 à us
__

Man sieht leicht, daC dann die Regel gilt:

àawb àw
dxw à x^

'

falls a, b konstante Quaternionen sind.
Wir denken uns jetzt um den Punkt £(£') eine Kugel von einem beliebig

kleinen, aber festen Radius q (çf) errichtet, und um jeden aquivalenten Punkt
die aquivalente Kugel. Die Punkte dieser Kugeln schlieGen wir stets

von der Betrachtung aus. Ferner denken wir uns einen beliebigen, ganz
im obern Halbraum gegebenen endlichen Bereich Q. Fur aile seine
Punkte z sei x2 =r: N > o, wo N fest gegeben ist. z sei also auCerhalb
der genannten Kugeln, und im Innern von Q gelegen. Nun ist:

wo:

2 (aâ+ yy) Ao yô+Jy + ap'+ /^«,

2 («« + yy) ^42 1= 2,

ist.
«a -f yy
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Ao> Alf A2 sind reell. Da x2 und A2 stets positiv sind, so ist fur aile

z von i?:

i*a)s+ S-*\
Nun ist:

X »((y-,;«) g + s—ùp)*'
O, I, 2.

Fur den ersten Faktor jedes Summanden gilt:
x -\- A

(x0 + Aof

y/ (a?0 + Aof
i

~N

Somit konvergiert auch bT(z) jbx^ fur 3/ o, 1, 2 in i? gleichmàBig
und absolut. Man sieht in gleicher Weise, daf3 auch aile hohern par-
tiellen Differentialquotienten existieren und stetig sind. AuOerdem gilt:

Entsprechend ist:

n((y — ita)g+ S —

à Xy

<s> (x0 +Aof + («! + Atf+ (a;2 + ,42)2) « ((y — *, «) 2 + * — », /?)*

(S)

Die erste Summe konvergiert wieder absolut und gleichmàGig in i2,
da ja der zweite Faktor im Zàhler jedes Summanden absolut kleiner
als ç'—1 ist. Wir mùssen also nur noch die gleichmàfiige Konvergenz
der zweiten Summe beweisen. Dazu setzen wir:

~z2ô) ({y—t\a) s +S-
4 Commentazii Mathematici Helvetici 49



Dann folgt durch Rechnungt

«>• (« —*,y)(y —*;«)-* [(y— ita)g-\-d —1\ 0 — (S — t\ fl

(a — it y) (y — it a)-»- 2 (y- /, «)-* (y — i% a) z + S — it fi)-1

wobei von der Relation:

(y —t\ a) (a — h y)-1 (— a + y 4)-1 (— y + a it)

Gebrauch gemacht wurde. Da nun:

{Y — **a)* + S--îsp (y — ùa)((x0 + A0) + {xt + A,) i\-\-(xs-{-As)tt)

ist, so wird:

d w*

— 2(y—t

also :

à w*

j

àx,. aa -f- yyi

(a;,+ ^0 — (a?!

+ (xt + A,)2 -f (a?, +

(a* + ^o)2 + (*, + Atf + (^ + A,f

yy\
~ aa-\-yy\ [(x0 + -^o)2 + (xi

X
V (as, + Aof + fo + A)1 + fo +

1

.)2 + te

Die rechte Seite ist aber nach unsern Annahmen beschrânkt, somit
gibt es ein endliches, festes, von s und 5 unabhàngiges M, so dafi:

o, i, 2.



Ferner ist :

r, V O, 1,2.

Da m (w* — £*) :5r g'2 angenommen ist, so sieht man genau wie oben,
da(3 auch | à W j ô u*\ beschrankt ist, also auch

bUu

du*
<M1,ft\ O, I, 2, W=SUalfi,

wo Mx nur von Q und (> abhangt. Da nun:

b u\ b
O, 1,2,

ist, muf3 auch:

b W
^Mo, v o, 1,2,

sein, wo wieder Mo nur von Q und p abhangt, nicht aber von z. Da-
mit ist aber die gleichmaGige und absolute Konvergenz auch der zweiten
Reihe vollstandig bewiesen.

Daraus folgt, dafi T {z) und R (z) beide stetig differentierbar sind.
Somit ist es auch ihr Quotient, da der Nenner reell ist.

3t Satz: Dte drei Koordinaten der Funktzon w f'(z) stnd stetige
und stetzg dzfferentterbare Funkttonen tn jedem endhchen Berezcke, der

ganz uber der oi-Ebene Izegt, und weder den Punkt £ noch sezne aquzva-
lenten Punkte enthalt.

4. Hilfssatz Uber die Abzâhlung der Substitutionen von (5

Es sei 6" J irgend eine Substitution von <S. Wir setzen :

f aa -f yy



Dann ist:

Denn:

çç yySS -f- ctafifi-j- yfiaô -f- «J

wo man im 3. Gliede y/? aâ— 1 und im 4. Gliede ad — py -f- 1 setzt.
Wegen «J — Py 1 folgt dann sofort (2).

Umgekehrt sei / gegeben, sowie eine Losung p der Kongruenz :

(jç — 1 (mod. /").

Man setze pp -j- 1 n= ^i. Wir setzen zunachst voraus, dafi wir f in
der Form:

f—aâ-\-yy

darstellen konnen, wo a und y ohne gemeinsamen Teiler seien. Soll dann

ç — yS -|- a(i sein, so sind /? und J eindeutig bestimmt. Denn es folgt :

çfi S

Aus diesen beiden Gleichungen fur /?, J folgt durch Auflosuug:

jo a -\- yç.

Wir fragen jetzt, wie viele Darstellungen «, y von / es fur ein ge-
gebenes ç, das (2) genugt, gibt, so dafà die Gleichungen (1) erfullt sind?

Wegen (3) sind ja dann p, S eindeutig bestimmt. Damit nun (3) durch

ganze Zahlen /?, S losbar ist, ist jedenfalls notwendig. dafi:

(mod. f) ist. (4)
y aç

Es gibt nun wenigstens eine Darstellung f=aa-\-yy mit zueinander
teilerfremden Zahlen a, y, fur die (4) erfullt ist. Denn setzt man:

y aç — Pf,

so ist:

yy aaçç + PPP~ fQaj? —
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Setzt man hier fur yy den Wert /— aa ein, und çç ffx
wird nach Division durch /:

i /,*«-f ffifi— çap— çâfi.

Fuhrt man réelle Koordinaten ein:

so lautet die Gleichung:

1 A (*î + A2) +/W + »î) — 2 ^o (/o«o + A«i) ~ 2 ^ (4

Dièse quaternare quadratische Form hat die Déterminante:

i, so

— A

D

A o — r0 — rx

o /i rx — r0

r0 rt f o

rt—ro o f
Da es nur eine Klasse quaternarer Formen der Déterminante i gibt,

so ist unsere Form der Form tfQ% + *î8 + u'o2 + «î2 aquivalent, wodurch
die Darstellung der eins gegeben ist. Somit sind a und /? gefunden.
Setzt man dann:

so wird fur dièses y:

f.
Damit haben wir das Résultat, daB es zu jeder naturlichen Zahl /

und jeder Losung der Kongruenz:

çç — j (mod. /)

wenigstens eine Darstellung f=aa-\-yy gibt, fur die:

âEE — yç (mod./) (5)

ist. Fur dièse Darstellung konnen wir nach (3) /?, S als ganze Zahlen
berechnen. Aus (3) folgt aber:
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f (ad — fîy) aa-\-yy f, oder aS — (iy I

f[<*P + yô) («« + 77) p Qf> oder p =1 a(t-\-yS.

Somit sind a, y auch teilerfremd.

Wir konnen daher sagen, daG es zu jeder natùrlichen Zahl /* und

jeder Lôsung ç der Kongruenz:

pp — 1 (mod. f)

wenigstens eine Substitution 6" I J\ von ® gibt, so dai3 :

f—aa-\-yyf ç> ap-\-yÔ
ist.

Es fragt sich nun, wie viele solcher Substitutionen es gibt? Es sei

a', y' eine weitere Losung, die zu demselben f und ç gehore.
Es sei also auch:

a'â' + y'? f>"' Qï' (m°d. f).

Eliminiert man aus dieser Kongruenz und (5) q, so folgt:

ayf —a'y fy,

wo 7\ eine ganze Zahl von k(yjm — 1) ist. Es muC:

/*2 rm aay'y' -\- a'a'yy — aa'yy' — aa'yy*

sein. Setzt man hier fur aa den Wert f— yy und fur yy den Wert

/— aa, so wird:

oder

Die rechte Seite ist stets ^ o ; auf der linken Seite ist f]rt ^ o,

1 — iffl ^ 1. Daher sind nur die beiden Fàlle moglich, da aile Zahlen

ganz sind:
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I, d. h.

|/ O, I. 2, 3;
aa' + yy' o,

woraus sich fur a' und y' ergibt:

dies sind 4 Losungen a', 7', von denen sich aber je zwei nur um das

Vorzeichen unterscheiden. Umgekehrt sieht man, daf3 dièse Losungen
auch wirkhch allen Bedingungen genugen.

b) 7\ri O, d. h. :

a/ — ad y o,
v o, 1, 2, 3,

wo (ç?) ein festes Idéal ist, dessen Norm f2 ist : n (<p) /2. Daraus folgt :

es mussen daher (pylf und 99a// ganze Zahlen sein. Setzt man :

<p fo-<pl, f=fo-n (<p0),

wo /0 ganz, rational und cp0 ungerade und zu q)0 teilerfremd angenommen
werden darf, so wird:

Y i\. <p0 • ~,<Po

und y und a mussen durch ç>0 teilbar sein. Dann folgt aus den (3) ent-

sprechenden Formeln fur a', /?', y', J':
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dafi:

oder:

— y -f- olq o (mod. f0. 9$ >

a -f- yp o (mod. /0. 99?).

Wegen (3) mufi daher:

/? o (mod. 99O),

J o (mod. 990)

sein. Somit ist:

aJ o (mod. 990. 99O), fiy o (mod. 990. 990),

was wegen ad — $y 1 nur fur 990 1, (p /0 / moglich ist. Daher
gibt es nur die vier Losungen :

v o, 1, 2, 3.

Die so gefundenen 4 Losungen unterscheiden sich zu zwei und zwei

nur durch das Vorzeichen.

Die unter a) und b) gefundenen 8 Losungen sind nun aile von einander

verschieden, auCer im Falle, daf3 a oder y o oder beide =i[>
p=zo, 1, 2, 3 sind. Dies ist nur fur /"= 1 und 2 moglich. Sie redu-
zieren sich hier auf die Halfte.

Wegen 5 \ \\ a \) ergeben die 8, resp. 4 Losungen
\y à) \ — y — 0/

nur 4 resp. 2 verschiedene Substitutionen, da fur — a, — y in (3) auch

/? und $ das umgekehrte Zeichen annehmen. Daraus folgt der
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Hilfssatz: Jede Substitution 5=1 J von <S legt eindeutig dte Zahlen

f cux,-\-yy9 ç ¦= afi -\- yS fest, fur die

ÇQ I (M0d. f),

ist. Ist umgekehrt f eine naturliche Zahl, und ç eine feste Losung der
Kongruenz :

qq~ — I (mod. f),

so gibt es genau 4 (fur /= / oder 2 nur 2) Substitutionen S von (S,

fur die f= aa -J- yy, ç a/? -f- yô ist.

Fur jede durch 4 teilbare naturliche Zahl f hat die Kongruenz

qq — 1 (mod. f)
keine Losung, weil sie fur /"= 4 keine hat. Man sieht aus dem Hilfssatz,

dafi die Darstellung / aa -(- yy in zwei zueinander teilerfremden
Zahlen a, y genau 8 (resp. 4) mal so oft moglich ist, als die angegebene
Kongruenz inkongruente Losungen hat. Ersetzt man ç durch eine (mod. f)
kongruente Wurzel, so andern sich a, y nicht. Dagegen erhalten /?, S

einen andern Wert. Setzt man p* ç -\- fx, wo % eine ganze Zahl von
k {>J —^T) ist, so werden die zugehorigen /?*, S* nach (3) :

^z^ + ar, S* S+rt. (6)

Daraus ergibt sich fur die Summation unserer Reihen T (s) und R (z)

folgendes :

Die aufiere Summe wird uber aile naturlichen Zahlen f von 1 bis
unendlich zu nehmen sein.

Die innere Summe ist zunachst uber ein (mod. /) inkongruentes System
von Wurzeln ç der Kongruenz:

QQ —i (mod./) (7)

zu erstrecken.

Die tnnerste Summe ist uber die 4 resp. 2 zugehorigen a, y, die uns

ein Paar fi, S festlegen, und fur die /=aa + y/ ist, und dann noch
uber die unendlich vielen Werte : fi -j- ra, d -\-ty zu erstrecken, wobei
x aile ganzen Zahlen des Korpers k (\J — 1) durchlauft.
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5. Der 6renzwert der Funktionen T [z) und R (z) filr x2 -> °°

Legt man die in 4. angegebene Bezeichnungsweise der Formeln (1)

zu Grunde, so lauten die in 3. aufgestellten Gleichungen jetzt so:

wo:

/^i — | ^i (p — p) r,,
fA2=i

ist. Hait man gemaC der SchluGbemerkung von 4. f und p fest, und
setzt:

so kann man nach (6) schreiben:

Statt uber aile ganzen Zahlen r von k (y — 1) ist jetzt uber aile gan-
zen Zahlen p zu summieren, fur die

fi p (mod. /) (8)

ist. Daher wird :

p,/(), wo:
/=i (P)

I

(7 2, /= 1,2; cr 4, /^ 3, e|= o (mod. 4), a o, /= o (mod. 4)

ist. Um Tç,f(z) zu berechnen, benutzen wir in bekannter Weise das

Intégral :



Dann wird wegen der erlaubten Vertauschung von Intégration und
Summation nach Hecke2):

Im Intégral machen wir jetzt die Substitution x —>- —. Nach der

Transformationsformel8) wird dann:

i n(fS-\-ti)\2*r V—LJH\
00

f2Je*P (2 se *iS$riï ^/ (X) V 2/ / (v)
(2 se *iS$riï ^exP (2 ^ *i S(^)) exP (— 2
V 2/ / V 2 / ^

wo vS( die Spur der Zahl in k(yj — 1) bedeutet, À ein vollstandiges
Restsystem (mod. 2 f) und v aile Zahlen durchlauft, fur die :

v À (mod. 2 /¦)

ist. Berucksichtigt man dies bei Ausfuhrung der Substitution, so folgt:

(v)

In der innersten Summe kann v nur dann null sein, wenn À o (mod. 2/*),
d. h. z. B. À O ist. Wir nehmen diesen Wert v o aus der Summe
heraus und deuten dies durch einen Strich an der Summe an. Es wird
dann :

2) E. Hecke: Zur Théorie der elliptischen Modulfunktionen. Math. Annalen,
Bd. 97, 1926, pg. 222.

3) E. Hecke: a. a. O. pg. 222, Formel (13).
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(X) \ 2T '
(v) \

wo À ein solches Restsystem (mod. 2 /) durchlàuft, in dem À o auf-
tritt und

yv f exp (- 2 * f(xt + ^)2 — ~2^"^) *~k
J \ / t AT

ist. Das erste Intégral in Tpt/(z) hat den Wert:

In yv macht man die Substitution :

t —> 2 -—2 r, (positive Quadratwurzel),
y vv

dann wird :

Dies ist aber nichts anderes wie eine Bessel'sche Funktion dritter
Art. Wir setzen nach Watson4)

Dann ist:

4) G.#AT. Watson: A treatise on the theory of Bessel Functions. Cambridge,
1922, pg. 183.
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Setzen wir dies ailes ein, so erhalten wir schlieGlich:

X 2J' exp 2 a z\ S(^) )V/^~*~1 K*-i (2 n (fx2 + 1) ty
(V) V 2 / \ f

wo die Summen uber ein vollstandiges, (mod. f) inkongruentes System
von Wurzeln p der Kongruenz (7), uber ein vollstandiges Restsystem À

(mod. 2/) und uber aile ganzen Zahlen v von k (\/— 1) zu erstrecken
ist, fur die v À (mod. 2 f) ist.

Um Kk^i (5) fur grotëe réelle Werte von 5 zu berechnen, verwendet
man die Formel5) :

WO :

{n, m)

ist. Da in der Summe 2" v niemals null ist, so erhalt man die Grenz-
formel :

wo \p (f) die Anzahl aller Darstellungen von / in der Form

f z=z aa + YY

mit zueinander teilerfremden Zahlen a, y ist. Bk ist eine von null ver-
schiedene réelle, positive Zahl.

5) G. N. Watson: a. a. O. pg. 207.
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In gleicher Weise, wenn auch etwas umstandhcher, kann der Zahler
R {%) entwickelt werden. Legt man die Bezeichnungsweise von 4. zu
Grunde und verwendet (3) und (6), so wird-

N={(ol — u y) * + /?* - itS*) ((y-u*) * + ô*-z2 /?*)-* - f '

X I (/ ^«)^tyj ~\ y

wo

gesetzt ist. Ist:

_ ~^y _L_ 5 (y2 Z2)

so ergibt die Rechnung*

Die Zahl dj-tp (£) ist ein reduziertes Quaternion, das wir in der Forai
schreiben •

wo e/fp (^) eine komplexe Zahl der 01-Ebene ist. Der reziproke Wert
ergibt jetzt:

x
Afi9 (f + BM ^

62



wo:

Aj* (f \ (y - *. «) (fy - a)-1

ist. In der Bezeichnungsweise ist zu berùcksichtigen, daf3 nach dem
Hilfssatz in 4. zu jedem p 4 resp. 2, resp. o verschiedene Wertepaare
a, y gehoren. Setzt man :

so wird :

Dièse Darstellung benutzt man, um R (s) in folgende Summen zu

zerlegen, wobei nach der Vorschrift von 4. summiert wird :

R {z) Rt (s) + R2 {s) + R, {s), wo :

1 \ yj yj y» /, p

i,

/=i (p,a,y)

/=i (p,a

Rt (z) kann genau nach denselben Methoden, wie T (2) dargestellt
werden. Man findet:



J£" exp 12 si ii SI
(v)

*_i (2 n

wo die Summen wie bei T{z) auszufùhren sind, und a, y die 4, resp. 2,

resp, o Darstellungen von f bei gegebenem p zu durchlaufen hat.
Daraus folgt wieder die Grenzformel :

lim IVa.

wo Z)^ ein bestimmtes, nur von 1, i% abhkngiges, von E unabhàngiges
Quaternion ist. Man sieht ubrigens leicht, da£3 wegen | f | > 1 :

r o: f= I, | A/fP (f) | 11 & — I |

ist, also stets | ^p (f ]< | Vf \£it—\\ ist.

Um i?2 (#) zu berechnen, fùhren wir wie fur 7" (5) ein Intégral ein,
mùssen aber auCerdem noch setzen :

exp (—2nfX\ t-
f

Dann wird :

1

~Q

- j I exp — 2nfX\t — 2$if(xt-\--j

dt.

X exp — 2 *r -Y" dtdt.



Wir substituieren fur t —> it. Ferner schreiben wir (Indices und Funk-
tionszeichen sollen bei den e und a weggelassen werden):

tn{fE' + p) + n{fE + ,,/) (i -f t) n{fS + / ~^-( + p) + ^Z
1 ~f- I f^

Dann folgt:

// (-2^ (-¦¦+<*+-;
o o

X exp —2,t- -

Substituiert man fur z -> 7~~ï_~~r" ' so

dt
Q F (k)

K
o

wo :

U= V / *• -f TTT + 77-f "Âï «(«+».(''- !-
> (positive

von der GroGenordnung i2 ist. Summiert man jetzt uber aile ganzen
Zahlen p, fur die fj ~ p (mod. /") ist, so erhalt man in dem innern Intégral
wieder eine Hecke*sch.z Thetafunktion, die man durch die Substitution
x-^x"1 transformieren kann. Wie im fruhern Falle wird:

J exp{-2

X ^exp U^stë)) 2'exp (2xit S(^)\ exp (_2a ^t) t-*-1 rfx,
(A) \ 2/ / (v)

V 2 ' 4/

5 Commentam Mathematici Helvetici O5



wo À ein vollstàndiges Restsystem (mod. 2/), worunter auch À o,
durchlâuft, und v aile ganzen Zahlen, fur die v À (mod. 2f) ist. In der
Summe nehmen wir dasjenige Glied gesondert, fur das À o, v o ist,
was wieder an ihr durch einen Strich angedeutet werde. Dann folgt
nach elementarer Rechnung:

dt

f

4/
o

Das erste Intégral ist von der GrôCenordnung i/x22k. Im zweiten
substituiert man

2fU

dann folgt wie frùher:

yi i n Ç d

/=i(p,o,Y)

In der Grenze wird, wie frûher, wegen der Bemerkung ùber die Grofien-
ordnung des ersten Intégrais, und weil Xt ~ x2 -\- ejt p (^) ist :

lim xïk-2R2{z) o. Va.

Genau ebenso wird die Reihe Rz (5) berechnet. Nur hat man jetzt
die Summe (symbolisch, da fS" unter das Intégral nach t kommt):
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uber aile ^ zu berechnen. Die erste Summe fuhrt unter dem Intégral
auf eine ffecke'sche Thetareihe zweiter Gattung, deren Transformations-
formel so lautet6), wie die Differentiation nach S der fruhern Formel,
pg. 59 ergibt:

rr,,-,, i -; / n If3" + a) I2* [f* + c) exP (—2 n v/ ^^— -
exp^^S^j^vexp^**^—))exp(-

Somit wird:

x2v
(v)

exp (2 %i1 S(-—))exp(—2 % f U2 2 si —jz t~k d x,J \ 2 / \ T 4/ /

wo jetzt kein Glied aus der Summe herausgezogen werden muf3, da fur
v o, X o das Glied wegfallt. Macht man wieder im innern Intégral
die Substitution:

2fU
yj v v

so wird :

v..

/='(P,«,T)

6) f, Hecke: a. a. O. pg. 223.
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wo fur die zweite Summe von RB (£) die unter V. angegebene Summe
einzusetzen ist. Hieraus folgt die Grenzformel :

lim x**~*Rt(s) o. Via.

IVa, Va, Via ergeben schlieGlich die Grenzformel:

lim xf~~2 R (z) z= Dk VIL

woraus zusammen mit IIIa. folgt:

lim f{z) ^ Ak, VIII.

d. h. f[z) nàhert sich mit unbegrenzt wachsendem #2 einem bestimmten
endlichen, von x0, xx unabhangige Quaternion Ak, das die Form hat:

Ak aQ-\- a2 i2.

4. Satz: Die bezuglich der Picard'schen Gruppe automorphe Funktion

f (z) besitzt fier x2 —>¦ 00, also auch in jedem rationalen Punkt der 01-Ebene

einen bestimmten, endlichen Wert Ak

Setzt man:

-4*r\
so findet zwischen J (5) und der elliptischen Modulfunktion j {£) eine

weitgehende Analogie statt. Dièse Funktion wird fur x2 —? o° selbst

unendlich, und sie hat nur eine Nuilstelle fur z g. Sie bildet die ganze
Umrandung des D. R. auf die Ebene 02 ab.

(Eingegangen den 22. Februar 1931)
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