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Sur les systémes cycliques de triples de
Steiner différents pour N premier (ou puis-
sance de nombre premier)

de la forme 6n+1 (suite)

Par S. BAvs, Fribourg

Chapitre I

Effet du groupe {|x, a+ax|| sur les colonnes cycliques de triples

17. Soit lentier guelconque N = 6z -+ 1. Nous entendrons toujours
par un entier > 67 son plus petit reste positif ou nul (mod. NV).
L’ensemble des NV substitutions:

r=|x,a+=x|, a=o0,1,2,...,6n,
constitue un groupe cyclzgue 27), engendré par la substitution czrculazre:
yeeeq
s=|x1+4+x]|.

a, b ¢ ..,k
a, b, ¢y .0s Ry
I'élément qui remplace a; b,, élément qui remplace b, etc. La notation par cycles est

123456 7)
4326715
se note (146) (23) (57). Si un élément n’est pas changé par la substitution, son cycle n’a
que cet €lément; on peut omettre ce cycle. La notation analytique | x, f (x)| est la plus
courte; x parcourt les éléments de la substitution et f (x) signifie I'élément qui remplace x.
C’est celle que nous employons ici.

Une substitution est dite cyclique ou circulaire (nous emploierons le second terme),
lorsqu’elle ne contient qu'un seul cycle. Elle est dite réguliére, lorsqu’elle est formée de
cycles égaux. Toutes les puissances s!, s2, ... s¥—1 sont des substitutions réguliéres; seules
celles d’exposant premier & N sont circulaires. Un groupe de substitutions est dit cyclique,
lorsqu’il est constitué uniquement des puissances d’une substitution. Un groupe de substitu-
tions est dit régulier, lorsque son ordre (nombre des substitutions) est égal 4 son degré
(nombre des éléments). Chacune de ses substitutions, autre que l'identité, est alors réguli¢re

et déplace lous les éléments. Le groupe cyclique {s} est aussi régulier,

27) La maniére la plus claire pour noter une substitution est( ), a, étant

celle-ci: chaque élément est remplacé par celui qui suit dans le cycle. Exemple: (

22



Lorsque /V est premier, ce groupe n’a pas de diviseur propre; lorsque
N est composé, il a les diviseurs |s*|, ol @ est chaque diviseur de V.

Théoréme 1. Les substitutions de ce groupe transforment chaque colonne
cyclique de triples en elle-méme.

18. L’ensemble des @ (/V) substitutions 28):
u=|x gx|, 8 =1es ¢ (/N) entiers premiers a N,

constitue un groupe. Lorsqu’il existe une raczne primitive a (mod. V),
c’est-a-dire un entier ¢ dont la plus petite puissance congrue a 1

(mod. V) est @ (/V)?), le groupe est cyclique et il est engendré par la
substitution :

Z.—:lx,axl.

Dans ce cas les diviseurs propres du groupe sont engendrés par les
substitutions :

2= | o® |

ou @ est un diviseur propre quelconque de ¢ (/). L’ordre du diviseur

1 | z, 0% x| } est naturellement ﬂ .
w

Théoveme 2. Les substitutions du groupe { | %, ax H transjforment une

colonne cyclique de triples en une colonne cyclique de triples.

28) La substitution | X, N—x | du § 13 qui transforme deux colonnes conjuguées l'une
dans Pautre est la derniére de cet ensemble:

|6, N—x|=|x,—x|=|x, (N—1) x| =] x, 6nx]|.

29) Soit @@ =1 (mod. N). Si 3 est le plus petit exposant positif pour lequel cette con-
gruence a lieu, on dit que a appartient 3 Pexposant & (mod. N).

Soit N=p,&1. p,@ ...; on a ¢ (N)= ¢ (p,%) . ¢ (pe%) .... Soit ¢ (N) le p. p. c. m.
des facteurs ¢ (p,%), ¢ (pa%2), ...; $ (N) est Pexposant le plus élevé auquel appartiennent
des nombres (mod. N). On a ¢ (N) = ¢ (N) dans les deux cas seulement: N=p4, 151,
P premier, et N=2p*, A5 1, p premier impair; la chose est aisée & montrer, Si a appar-
tient & Pexposant ¢ (N) (mod. N), il est dit une racine primitive mod. N.
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En effet par la substitution # = |z, ¢ x|, les deux triples de la méme
colonne cyclique:

mympetm—+q, ntgq, p+4q
deviennent ma, na, pa et ma-t+qeo, na-+qa, poa+qa,

qui sont encore deux triples de la méme colonne cyclique.

19. L’ensemble des V. g (/V) substitutions:
w—=|x atbx|, a=o0,1, 2, ..., 67,

b=les @ (V) entiers premiers a JV,

constitue le groupe que nous appellerons ici le groupe wmétacyclique 30).
Lorsque a est une racine primitive (mod. V), le groupe est engendré
par les deux substitutions déja vues:

s=|x, 14+ x| et t=|x,ax]|.

Dans ce cas ses diviseurs non cycliques (nous les appellerons diviseurs
métacycliques) sont engendrés par les deux substitutions:

s:lx,l—-}—xl et 'z;:lx,a“’x]

N.f_(:i_v__)_.

et 'ordre du diviseur {s,v} est ainsi
w

Théorveme 3. Les substitutions du groupe métacyclique transforment
une colonne cyclique en une colonne cyclique, et par suite un systéme
cyclique de triples em un systeme cyclique de triples.

30) La substitution w sera appelée aussi, pour simplifier, une substitution métacyclique.

Cette appellation de groupe métacyclique pour désigner le groupe des substitutions w,
lorsque N est premier, est due & Kronecker (Netfo, Gruppen und Substitutionen-
theorie, Sam. Schubert LV., p. 133). Weber, Lehrbuch der Algebra, Bd. 1, p. 647¢
appelle métacycliques, les groupes dits résolubles par Frobenius et Holder, c’est-d-dire les
groupes correspondants aux équations résolubles par radicaux, et dont la série des indices
de composition est constituée uniquement de nombres premiers. C’est 1a aussi une extension,
mais dans un autre sens, du mot de Kronecker, puisque, lorsque le degré est premier, les
équations les plus générales, résolubles par radicaux, sont celles dont le groupe est méta-
cyclique au sens de Kronecker.
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20. Théoréeme 4. Le groupe des substitutions permutables au groupe
cyclique | s | est le groupe métacyclique ).
Nous en ferons la preuve en deux parties:

1) La substitution métacyclique w est permutable au groupe {sl ; en
effet :

|z,a,+ x| . |v,a+bx|=|x a+ ba;+ bx|
|x,atbx|. |2, a5+ x| =|% ay+ a+ bx|

31) Cette note rappelle et fixe les données utiles pour lire aisément ce § et les § suivants,

La substitution ¢—1, s. t=2y, est dite la fransformée de la substitution s par la sub-
stitution £; elle est le résultat que donnent le ou les cycles de s quand on fait sur leurs
éléments la substitution £; elle est donc semblable a s, c’est-a-dire constituée du méme
nombre de cycles égaux respectivement 2 ceux de §. Autrement dit §; ne differe de s que
par la notation des éléments. Inversement s==¢.s,.f—1; § est la transformée de s, par
la substitution -1,

Si on a sft==1ts, (1), on a {—1 st=—4¢ et §—1 {s—1¢ et inversement de chacune des deux
derniéres égalités on a les deux autres. A cause de (1), on dit alors que les substitutions
s et t sont permutables entre elles; chacune transforme Pautre en elle-méme.

Le groupe £t—1.G.t= @, est dit le transformé du groupe (G par la substitution ¢;
il est le groupe que donnent les substitutions de (, quand on les transforme chacune par
la substitution £ il est donc constitué de substitutions respectivement semblables & celles de
G et il est évidemment isomorphe au groupe (. D’ailleurs de s, Sg = Sy suit (£—1 sy £).
(¢—1sg t) = t—1 sy t et inversement. Réciproquement G=1¢.G,.t=1; ( est le transformé
de @, par la substitution £—1 ., Nous appellerons encore semblables deux groupes qui,
comme (G et (J;, sont les transformés l'un de Dautre par une substitutfon ¢ ou ¢—1.
Autrement dit, deux groupes semblables ne different entre eux que par la notation des
éléments,

Si on a Ut=1t¢@, cest-a-dire Sqt=1sp ol sy et s parcourent chacun les substitutions

de G, on a t—1 Gt==G et inversement. On dit alors que la substitution ¢ est permutable
au groupe (i, autrement dit, /a substitution t transforme le groupe G en lui-méme.
L’ensemble des substitutions permutables & (G forme un groupe; en effet de sy ¢, =1 sg et

Sq la=—1tg Sy suit 8o (4 ) =1 (sp t;) = (¢ t5) sg, ou Sy et sg sont encore des substitutions
de G.
Soit une fonction ¢, (G le groupe de substitutions qui lui appartient et S le groupe

symétrique ou un diviseur du groupe symétrique contenant (J. Les substitutions de .§ changent
# en un certain nombre de fonctions équivalentes a ¢:

P == P15 P2y P33 +oey Pre (2)

Soit §, =1, Sy, 84, ..., S» des substitutions de § qui changent respectivement ¢ en ¢,,
P25 «eey ¢r. Les complexes de substitutions qui changent ¢ en ¢,, @5, ..., p» sont Us, = C,
Sg 5 ..., Sy et on a:

S=Gs, + Gs;+ ... + Gs, (3)

Le systtme (2) est dit un systtme de fonctions équivalentes conjuguées relativement & S.
Les groupes

§—1 Gs, = G, $—1 @GSy, $3—1 G834 ..., S—1 GSy, (4)

contenus dans S, sont les groupes de substitutions qui appartiennent aux fonctions (2)
respectives; cela ressort immédiatement de ce qui a été dit. Ils sont tous les transformés
de G quel'on peut obtenir au moyen des substitutions de S; en effet, g étant une substitu-
tion quelconque de G, on a: (gs:)—1 G (gs:)=s;—1(g—1 Gg) s;—s:—1 Gs;; donc
toutes les substitutions du complexe G'; transforment G dans le méme groupe s;—1 G §;.
Le systtme (4) est également dit un systéme de diviseurs conjugués dans S.

25



et la congruence ba,=a, (mod. V) a toujours une solution, & étant
premier a V.

2) Inversement si ¢ = | #, /()| est une substitution permutable au
groupe | s |, elle est métacyclique. En effet:

a) On a dans ce cas so=—=osB ou g est premier a NV, car ¢~ !so0,
qui est une substitution de )s! et semblable a s, est circulaire et donc
égale a une puissance sB, ol B est premier a N. De ¢~'so =B,
suit s6 = osB.

b) Il résulte de la:

sG::Ix,I—{—xl.[x,f(x)[':[x,f(l—lr-x)!,
ot =|x f@)].|x8+x|=|x0+7 @]
On doit avoir pour chaque x: /(1 4+ 2x)=g-+ /(#) (mod. NV), soit:

F()= g+ £(0)
F(2)=8+ £ 1),

En additionnant, il reste f(x)=gx -} /(0); autrement dit ¢ est bien
de la forme |x,a2-} b x|, avec & premier a V32),

21. Soit @ une fonction des éléments o, 1, 2, ... 67, G le groupe de
substitutions qui appartient a @ et // un diviseur de G. Soit P le groupe
des substitutions permutables 2 /; une substitution quelconque p de P
change @ en une fonction ¢, dont le groupe G, contient en tout cas
le diviseur p—!' Hp = H.

82) Entendons par chaque entier son plus petit reste positif ou nul (mod. p), p premier.
Le groupe arithmétique de Cauchy est le suivant, d’ordre et de degré p% . Les pk éléments

étant X; 4, ..., 75 Iyy Igy veuy EE==0,1,2,..., p—1; il est ’ensemble des p# substitutions
ot nous n'écrirons que les indices, | (G y Bay coey B8)s (B €15 Ba 4 Cay ooy i+ €2) |3
Cis €3y cony CE==0,1,2,..., p—1, Pour k=1 et N premier, il se réduit 2 notre groupe

cyclique ts !, mais de toute évidence, seulement dans ce cas.

L’ensemble des substitutions permutables au groupe arithmétique est le groupe linéaire,
Il est l'ensemble des substitutions |(ix, iy «oey ik), (ZCg 23+ diy 2eagig 4+ day ..o

Berg gt dr)l, B=1,2,..,k; dy, ds, ..., dp=0, 1, 2, ..., p—1 et le déterminant des
coefficients ¢y, entiers pris dans 0, 1, 2, ..., p—1, remplit la condition: A =| caB[ n’est

pas = o (mod. p). Pour k=1 et N premier, le groupe linéaire se réduit & notre groupe
métacyclique des substitutions w.
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Théoréme 5. La condition nécessaire et suffisante pour que toutes les
fonctions possédant33) le groupe H équivalentes a ¢, puissent se déduizre
de @ par les substitutions de P, est que tous les groupes semblables &
H contenus dans G puissent étre obtemus en transformant H par des
substitutions de G.

La condition est suffisante. Nous supposons donc qu’il n’existe dans
G, en fait de groupes semblables a /A, que le systeme des groupes
CONJugues ¢

sVHs=H; s VHs' =H'; s"VHs"=H"; ...... (14)

obtenus en transformant /A par toutes les substitutions de G.

Soit ¢’ une fonction équivalente a @, possédant le groupe /A etz
une substitution qui change ¢ en ¢'. Le groupe de ¢', G' =771 G7r,
contient les transformés, semblables a /:

T Hry, vV H't, 0V H" 7, ...... (15)

et ne contient point d’autre groupe semblable a /; en effet s’il en
contenait un autre, /A, v H,t~! serait dans G et autre que H, H’,
H", ..., puisque de z H, 7! = H® suivrait A, = z=' A z. Par hypo-
thése, le groupe G' contient /. Donc A est 'un des groupes (15).
S’ll est le premier, 7 est une substitution du groupe P£. S’il est un
autre d’entre eux, soit par exemple le second, s’z sera une substitution
de P puisque:

TV H t=1 (' HS Y e =" o) H(S' ) =H

et qui change @ en ¢, puisque s’ laisse @ inchangée et 7z change @ en ¢'.
La condition est nécessaive. Si elle n'est pas remplie, G contient en
plus du systéme conjugué (14), d’autres groupes semblables & #:

H,, Hy, Hy, ...

Il y a une substitution 7, extérieure a G, qui transforme A en A,. La
substitution z~! changera ¢ en une fonction équivalente ¢’ qui possédera
le groupe /A, puisque son groupe G' = ¢ (G ¢! contient # A, + 1 — H.

83) J’entends par 13 que le groupe qui appartient & chacune de ces fonctions contient le
diviseur H,
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L’ensemble des substitutions changeant ¢ en ¢’ sera Gz-'; soit
gt~ ! T'une quelconque d’entre elles. g7—! n’appartient pas au groupe P2,
sinon (gz—1!)~! = #g—! lui appartiendrait aussi et transformerait /A en
lui-méme. Or ¢ transforme A en H,; par suite g—! devrait transformer
H, en H et g devrait transformer /7 en /,, ce qui n’est pas.

Ainsi aucune des substitutions changeant @ en ¢’ n’appartient au
groupe P; il existe donc des fonctions comme ¢’, possédant le groupe
H, équivalentes a @ et qui ne peuvent se déduire de ¢ par une sub-
stitution de 2.

22. Theoveme 6.3%) Lorsque N est premier, deux systémes cycliques
de triples de Steiner équivalents se déduisent lun de autre par une
substitution métacyclique.

Pour le prouver, il suffit maintenant de s’appuyer sur le théoreme
suivant de Sylow, concernant les groupes d’ordre p” contenus dans un
groupe G d’ordre » — p”p, p premier et o premier a p3%): Zous les
diviseurs H &ordre p™ contenus dans G forment un seul systeme conju-
gué; autrement dit tous ces diviseurs sont les transformés de lun quel-
congque dentre eux par les substitutions de G.

Le groupe cyclique |s| est dordre V. Si V—=p (premier), l'ordre

» du groupe symétrique G, » = p!, est de la forme » —p g, o premier
a p. Donc les diviseurs d’ordre p contenus dans G forment un seul
systéme conjugué; en vertu des théoré¢mes 5 et 4, toutes les fonctions
possédant le groupe s } , €quivalentes a I'une d’elles, peuvent se déduire

de celle-ci par une substitution métacyclique. On a ainsi ce qu’il fallait
démontrer.

Mais le théoréme de Sylow ne nous donne rien, déja dans le cas ou
N =p™ (puissance d’un nombre premier); le groupe cyclique |s| est
d’ordre p” et p” n’est plus en général la plus haute puissance de p

34) Les théorémes 4, 5 et 6 sont de P. Lambossy (§ 1 et 5, note 23). J’ai raccourci seu-
lement sa démonstration du théoréme 4; d’ailleurs pour N premier, le fait découle de ce
qui est dit dans ma note 32) et pour N quelconque le théoréme n’est sans doute pas nouveau,
Le théoréme 5 est démontré par P. Lambossy directement pour le cas du groupe cyclique

s} et du groupe des substitutions permutables & {s | , le groupe métacyclique, Mais sa

démonstration vaut, sans y changer un mot, pour le cas général d’un groupe H quelconque
et du groupe P des substitutions permutables & H, C’est le seul changement que j’y ai
apporté.

88) C’est le second des trois théorémes de Sylow sur les groupes d’ordre p7 contenus
dans un groupe G d’ordre r, m étant la plus haute puissance de p contenue dans r. Voir,
si Pon veut la référence originale, L. Sylow, Théorémes sur les substitutions,
Mathem, Annalen, 1872, Bd. 5, p. 586, ou par exemple, Netto, Gruppen und Substitu-
tionentheorie, Sam. Schubert LV, p. 103.
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contenue dans p7 !. Il y a plus; P. Lambossy a montré que le théo-
réme sous la forme générale que je lui avais donnée (J.,p. 75): deux fonctions
cycliqgues de n variables x,, %y, ..., ¥, [possédant le groupe cyclique
[(#1 %5 ... 2,) | » =9 ou p™]| équivalentes, se déduisent l'une de Iautre
par une substitution métacyclique, n'est plus vrai pour = p”. Il a
construit pour ce cas des fonctions cycliques équivalentes, qui ne peuvent
pas se déduire l'une de l'autre par une substitution métacyclique. Mais
cela n’empéche nullement que le théoréme reste exact pour le cas des
systemes cycliques de triples; il n’est plus exact dans le cas général de
fonctions cycliques de constitution guelconque, mais les systemes cycliques
de triples sont des fonctions cycliques de nature trés particuliere et il
est parfaitement possible que pour eux le théoréme soit valable pour
N = pm et méme pour NV quelconque (voir § 5 et note 24).

23. Lorsqu’il existe une racine primitive a (mod. V), le groupe méta-
cyclique est engendré par les deux substitutions

s=|lx, 14z, t=|x,ax].

C’est le cas lorsque N = p ou N —=p” (note 29). La substitution s
change chaque systéme cyclique de triples en lui-méme. Représentons
par S un systéme cyclique de triples donné pour N =67+ 1 des
formes p ou p~. La puissance ¢ (V) de la substitution 7 @) —=
| , a?@™) x| = | x, x| changera le syst¢tme S en lui-méme.

Théoréeme 7. Si w est la plus petite puissance positive de # qui change
le systéme S en lui-méme,  est diviseur de ¢ (/V), le systéme .S posséde
. " : N (e
le diviseur métacyclique d’ordre NV ?i——) , is, t‘”z et la série des

w
systemes déduits de S par les puissances de la substitution # se présente
de la fagon suivante:

’ ! ’ !
S: So, Sl’ Sz, cesy 59——1 ’ So, Sl y S2, seey S 2_1,
2 2

Sor Sy -es (16)

le systéeme S; désignant le conjugué de ;.

Les deux premiers points sont immédiats. Pour le troisieme nous
remarquerons d’abord que si la substitution |z, 8x|, @ quelconque,
premier a /V, change S en son conjugué S’, elle change a son tour
S" en S. Cela résulte du fait que |z, gz |.|x,— x| = |, —gx|=
|z, —x|.|x, Bx]|; si |x, Bx| change S en S’, |», —@x| change S
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en lui-méme d’aprés le premier membre; |x, Bz | doit donc changer
S’ en S d’apreés le dernier membre. Alors d’une part le conjugué de
chacun des systémes entrant dans la série (16) doit s’y trouver égale-
ment, puisque |x, —x| est une des puissances de z. D’autre part le

. 3 ' w ..
conjugué d’un systeme .S; ne peut se présenter avant le —~ ieme

systeme qui le suit dans la série, sinon une puissance de ¢ inférieure a
o transformerait .S; en lui-méme, ce qui est impossible.
Il résulte encore de la et des théorémes démontrés que:

I° w est un entier pazr. En particulier on ne peut avoir w = 1;
autrement dit S peut posséder aw plus le demi-groupe métacyclique

{|z,1+ x|, |x a®x|] dordre N%j—v—)

N . : -
2° ¢ V) est un entier zmpazr. En effet » est diviseur de ¢ (V),
w
) N o P (N) P V)
mais non de ¢ ( ), car la substitution # 2 —=|x,a¢ ? x|=|x, —x|

@ (V)

change S en S’, tandis qu’elle changerait S en .S si — était multiple
de w. Par suite w doit contenir tous les facteurs 2 contenus dans ¢ (V).
N . ———g—~—) est donc impair; autrement dit S ne peut posséder un

w
diviseur métacyclique d’ordre pazr.

3° Tous les systemes de la série (16) possedent /le méme diviseur
métacyclique || x, 1+ x|, |z, a® x||; autrement dit, pour chacun d’eux
ce sont les mémes substitutions métacycliques qui les changent en eux-
mémes.

4° Enfin il n’est peut-étre pas inutile de faire observer ici que les
diviseurs {lx, a® x| et {|x, 1 42|, |x, a0 x || sont indépendanis de la

racine primitive ¢ que ’on a choisie. En effet les puissances a®, *?®, ...,

¢ W),
w

a donnent, pour toutes les racines primitives o de &, le méme
systeme de restes (mod. V), car si # est une seconde racine primitive
de N, on a g=a'(mod. V), v 1 et premier a ¢ (V), et les exposants

@ (V)

v, 270, ..., vw sont mod. ¢ (V) incongrus entre eux et ont

N
les mémes restes: w, 2w, ..., Mw, seulement dans un autre ordre.
w
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Drailleurs la série (16) des systémes qui se déduisent de S par les
puissances de la substitution # est évidemment indépendante de g,
puisque le groupe | ] est indépendant de a. Cela suffit aussi pour

établir I'indépendance du diviseur Hx, a® x| ;; la série S, S, S,,

cs ey

Sw , » avec une autre racine primitive, se présentera seulement dans
g

un autre ordre.

Chapitre Il

Le groupe ||x,ax|| et les colonnes cycliques de caractéristiques

24. Les entiers — 3#, ..., — 1,0, 1,..., 3» forment un systeme complet
de restes (mod. V). Nous l'appelons le systeme des plus petits restes
positifs ou négatifs (mod. V). Soit & 'un de ces restes; I’ensemble des
entiers qui ont ce reste (mod. /V) est donné par &6 + m IV, m =0, 1, 2, ....
D’une fagon plus générale, soit & un entier quelconque; l’ensemble des
entiers qui ont le méme reste que 4, (mod. V), est donné par & + m NV,
m—0, 1, 2 ...,

Nous appellerons la valeur absolue du plus petit reste positif ou né-
gatif de l'entier @ (mod. V), le reste adso/u de l'entier 2 (mod. NV).
Les restes absolus (mod. /) sont ainsi O, 1, 2, ..., 3#. Soit 4 I'un de
ces restes; I’ensemble des entiers qui ont ce reste absolu (mod. V) est
donné par + &6 + m N, m =0, 1,2 .... D’une fagon plus générale, soit
b un entier quelconque; Pensemble des entiers qui ont le méme reste
absolu que 4, (mod. V), est donné par + b6+ m N, m=o0, 1,2 ..

Pour simplifier, nous appellerons congruence absolue la relation qui
lie deux entiers ayant le méme reste absolu (mod. V) et nous la no-
terons par le signe & . La congruence absolue aura en partie les
propriétés de la congruence ordinaire (mod. N):

Si a b et 6X¥¢, ona aNX¢ (mod. N); (17)
SiaNbetcXd, ona aNbd (mod. V). (18)
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La premicre congruence est immédiate. Pour la seconde il suffit de
remarquer que:

a2 b équivaut a a =+ 6 (mod. V),
c X4 ’ a ¢ =+ d (mod. N),
et ac X bd ’ a ac = + bd (mod. NV).

De la congruence (18) on a en particulier:
Si a4, puisque m X m, on a  ma X2 mb. (19)

Mais vis-a-vis de I'addition, la congruence absolue n’a plus la propriété
de la congruence ordinaire (mod. V):

De a 24 et ¢ 22 d, ne suit pas nécessairement @ ++ ¢ X 6 | 4, car de

a

i

tbetc=+d, suitatc=+4+d4d,

et le second membre + 4 + & a deux valeurs absolues différentes.

Nous désignerons par a le reste absolu de 'entier @ (mod. V). Tant
qu'il ne s'agit que de multiplications seules, en vertu de (18) et (19),
la congruence absolue a vis-a-vis d’elles exactement les propriétés de
la congruence ordinaire; par conséquent les mémes regles de calcul
pour la multiplication sont valables dans l'un comme dans lautre cas.

25. La substitution »=|x, x|, # premier a N, des /N éléments
o, 1,2, ...,6n (§18), ou ce qui revient au méme, puisque ’élément o
reste inchangé, des 6 éléments 1, 2, ..., 67, se réduit, en y remplagant
chaque élément par son reste absolu (mod. V), a la substitution
6=|xz, x| des 3z éléments 1,2, ..., 32. On peut 'admettre immé-
diatement; mais on le voit trés bien et trés simplement avec la notation
complete (note 27):

I, 2, 3, ..., 37, 3n-|1, 3n+2, ..., 6n
(ﬂr 28, 36, ... 3ng, (3”‘\['1)!9’ (3”"—2)!9’ ceey 6”.‘9)

Comme nous le savons, @ étant premier a /V, les nombres de la
seconde ligne donnent un systéme complet de restes positifs (mod. V)
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et reproduisent les nombres de la premiére ligne. Remplagons dans les
deux lignes chaque élément par son reste absolu (mod. V), autrement

dit chaque élément 2 > 32 par son complément N — a = 3z; nous
obtenons:

(I’ 2, 35 eeenn y 37, 3n, 3n—1I1, ...... ’ I)
B, 28, 38, ey 388|378, 3n—1)B, ..o, B (20)
Comme 3z—»)f=— 32+ v+ 1)8 (mod. N), v=0,1, 2, ...,

37 —1, il est évident que les 37z premiers éléments de la seconde ligne
sont tous les entiers 1, 2, ..., 3#. Ainsi la substitution (20) est partagée
par le trait vertical en deux parties symétriques, qui sont chacune la
méme substitution; elle se réduit donc a la substitution des 37 éléments
1,2, ..., 37n:

I, 2, 3y eeeen y 37 . ’ 36)
(é, 28, 38, ...... , &9)~|£,§3| :

Faisons encore remarquer que, de méme que B, 28, 38, ..., 628
donnent un systéme complet de restes positifs (mod. V), soit les entiers
I, 2,3, ..., 62, B, 28, 38, ..., 32 est un systétme complet de restes
absolus (mod. Z\/:—), soit les entier-s—;, 2, ., 372; (34118, 372+2)8, ...,
6nf reproduisent ces mémes entiers dans l'ordre inverse; (67 --2) g,

Grn43)8, ...... reproduisent indéfiniment la série entiere dans le méme
ordre.

26. La substitution 6 = |z, g« |, @ premier a N, change wune carac-
téristique en une caractéristique.

En effet la substitution correspondante z = |z, # x| change une
colonne cyclique de triples en une colonne cyclique de triples et les
trois triples contenant I'élément 0 de la premiére en les trois triples
contenant ’élément 0 de la seconde. Par conséquent la substitution o

changera la caractéristique de la premiére colonne dans la caractéris-
tique de la seconde.

36) Les éléments de la substitution étant maintenant 1, 2, ..., 37, on pourrait écrire sim-
plement | x, Bx |; nous préférons garder 'écriture symétrique | x, Bx]|.
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27. L’ensemble des ¢ (V) substitutions :

2
N : o —
o=|z Bz|, B=les 29—(5—2 entiers premiers a V, = 3z,

constitue un groupe, au meéme titre que les @ (V) substitutions |z, 8« | en
constitue un. Il résulte d’ailleurs de ce dernier groupe, en remplagant dans
la moitié de ses substitutions les éléments @ > 3~ par leurs compléments
N —a=—=3n En effet si # est premier a N, N—f l’est aussi et les
deux substitutions:

|z, Bz | et |z, (V—P) x| =|x, —B x|, § premier & N, = 37,
réduites a la manieére du § précédent, donnent chacune la méme substi-

Les W)
2

tution |z, fx|. substitutions |, f2| ou @, premier a N,

est > 37, donnent donc en les réduisant le méme résultat que les

Ll gN) substitutions |z, g |, ou §, premier a N, est = 3x.

28. Si a appartient a 'exposant ¢ (V) (mod. V), les restes des puis-
sances of al, a2, ..., W) —1 forment, comme nous I’avons déja admis
implicitement au § 18, un systéme complet de restes positifs (mod. V),
premiers a N. af@®), qf WM+l g4z redonnent indéfiniment
la méme série de restes (mod. V) dans le méme ordre. Puisque:

W)

+v
a 2

=—a'(mod. V), »=0, 1, 2, ...... , Tt 1,
g _,
a% al, a2, ..., 2 sont un systeme complet de restes absolus (mod. V),

AU
2

P PN) P (M)
: 22 240 B4
compris dans 1,2,...,3%7 a 2 , a *? , a 2 ) eeereeens repro-

premzers a NV ; ils sont dans un certain ordre les entiers premiers a NV

duisent indéfiniment la méme série d’entiers dans le méme ordre.
Le groupe cyclique des substitutions # = |z, # «| est constitué des

puissances de la substitution |z, ax|. Le groupe des substitutions
6= | Bx|, daprés ce qui vient d’étre dit, est cyclique aussi et
constitué¢ des puissances de la substitution 7z = |z, e z|.

29. Dés maintenant nous nous limitons au cas V= 6x - 1 premazer.
Alors @ (V)==06n; tous les entiers 1, 2, ... 6z sont premiers a N; of,
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al, ..., a®—! donnent un systeme complet de restes positifs (mod. V),
c’est-a-dire les entiers 1,2, ..., 62 dans un certain ordre; o o, ..., &®#!

sont un systeme complet de restes absolus (mod. /V), soit les entiers I,
2, ..., 32, dans un certain ordre.

La substitution #—=| x, a x| est circulaire, n’ayant que le cycle:
, may q y

t=(a al a2 ... a% ). (21)

Le groupe ||z,ax|| est régulier (note 27); toutes les puissances
|r,ax|Y=|x,a"x|, v=0,1,2..., autre que l'identité, sont des sub-
stitutions formées de cycles égaux et déplacent tous les éléments. Celles
dont I'exposant > 1 est premier avec 6z sont circulaires; elles corres-
pondent aux autres racines primitives de V. On sait d’ailleurs que les
puissances «’, dont I’exposant » > 1 est premier avec 6#, sont congrues
aux autres racines primitives de V. Plus généralement, soit w un divi-
seur quelconque de 6z La puissance 7% = |z, a® x| est:

(@0 a® a2® ... (=) (ala®+1 20+, a0+ (@121 ... o¥71); (22)

6n ,,, o . ..
elle a donc w cycles de —— éléments chacun, Les substitutions du divi-
w

672
. . 1)
seur { | %, a® x| | sont les puissances #°, %, 2?, ..., z.‘( ® ; celles de ces

X ) 67
uissances pour lesquelles dans l'exposant ww, « est premier avec —
{ o w ’

6z , , .
auront comme (22) des cycles de —— ¢éléments; elles seront évidemment
w

6n
les substitutions du groupe {z} ayant des cycles de 27 ¢léments.
w

La substitution z—|x,ax| est le cycle:

= (al a2... a®*1). (23)

Le groupe { EZ ﬂ” est donc régulier; toutes les puissances |z_c_,c£ [¥=
|f’ E‘_’_{f|, y=o0,1,2, ..., autre que lidentité, sont formées de cycles
égaux et déplacent tous les éléments. Du § 25, nous savons que la sub-
stitution |z, @’ x| vient de la substitution |x,a” x| en y remplagant

chaque élément a > 3~ par son complément N —a = 37; du §27 nous
savons que les 37 substitutions |z, a¥ x| dans lesquelles &' a un reste
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positif (mod. V) = 3~ donnent le groupe entier {|z_:,a_,:c|}. D’autre
part @®#tV=—¢" (mod. N), v=0, 1, 2, ..., 32—1, et les deux puis-
sances |z, o®*tVx| et |z, @’ 2| donneront la méme substitution réduite
| #,0¥ x|. 11 suffit donc pour passer des substitutions du groupe
{rx, o x” a celles du groupe 3 |_;_r_,ﬁ£] }, de réduire dans le sens indiqué,
ou bien les 3z premi¢res puissances de |x,a x|, ou bien les 3z puis-
sances |z, a’ x| dans lesquelles o' (mod. V) est un élément = 3.

Chaque substitution circulaire du groupe ||z, ax || peut prendre la
forme (21) en se servant de la racine primitive appropriée; elle donne
donc en la réduisant, une substitution czrculazre du groupe H{, az||,
puisqu’elle prend alors la forme (23). Si ¢ (37) = @ (6n), (/V est alors
de la forme 47 — 1), les deux groupes “f,ﬂ]} et Hx, ax” ont le
méme nombre de substitutions circulaires; dans le premier groupe sont

ou le complément V— @ d’une racine primitive £ > 37. Si ¢ (37) =
1@ (6n), (V est alors de la forme 4z--1), le groupe ||, ax|| n'a
qu'une substitution circulaire pour deux du groupe ||, ax||; dans ce
cas, si ¢ —= 3z est une racine primitive de N, N —a > 3n en est une
aussz et les deux substitutions |x,ax| et |z, (V—a)x| donnent la
méme substitution réduite | x, o x|.

Soit & un diviseur quelco-r;qa; de 372. La puissance z% — |£, f‘ifl est:

(@0 a? o®® ... a®—%) (al af+! o241 . o3 .. (@@ el L el (24)

elle a donc & cycles de % éléments chacun. Le groupe H % ﬁf” a le

diviseur g |z, & x | [ dont les substitutions sont les puissances 7°, ¢, 7%, ...,

8n
2 —1)d , ,
z(d ) ; celles de ces puissances pour lesquelles dans I'exposant w4,

. n 112
u est premier avec %Z , auront comme (24) des cycles de %’_ ¢léments;
elles seront évidemment les substitutions du groupe gt} ayant des cycles

de % éléments.

Les deux groupes |Z| et {t| sont évidemment framsitifs: par leurs
substitutions chaque élément se trouve successivement changé en tous
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les autres. On sait qu’un groupe régulier transitif est zmprimatif;

chacune de ses substitutions donne une répartition des éléments en

systémes imprimitifs, constitués directement par les éléments de chaque
le 37).

, cycle )

30. Le triple o® o a®* est une caractéristique.

Preuve: Les 6 éléments of, o*, o¥, o®#, a**, o appartiennent aux
trois triples contenant 1’élément o dans la colonne cyclique qui a pour
téte le triple o, a9 a”. En effet les trois triples contenant ’élément o
dans cette colonne sont:

o, % a*; —ab 0, —a® 4 a*; —a*, a® —a*, 0. (25)
On a la congruence:
a®*=—1 (mod. V), (26)

de laquelle il résulte, puisque (¢®” 4 1) = (¢ 4 1) (** — a” -} 1)=0
aussi celle-ci:

a2n = q"* — 0. (27)

Avec ces congruences (26) et (27), les triples (25) s’écrivent immédia-
tement, comme nous devions I’établir:

o, aO, a’ ; a!ln, o, a2n; a4n’ a5n, 0. 38)

37) Un groupe de substitutions est simplement transitif lorsque, & et &’ étant deux
éléments quelconques, il y a dans le groupe une substitution qui change a en a'; doublement
transitif lorsque, (o, B) et (a’, B’) étant deux couples quelconques des éléments, il y a dans
le groupe une substitution qui change le couple (a,B) en (a',B’); etc.

Un groupe de substitutions transitif est imprimitif, lorsque ses éléments se répartissent en
systémes dits imprimitifs tels que par les substitutions du groupe, les éléments de chaque
systéme sont toujours changés, ou entiérement en eux-mémes, ou entiérement en ceux d’un
autre systéme. Si aucune répartition de ce genre n’est possible, le groupe transitif est dit
primitif. 11 résulte immédiatement de la premiére définition donnée que seul un groupe
simplement transitif peut étre imprimitif, Il résulte aussi immédiatement de la seconde
définition que tous les systémes d’une répartition imprimitive ont le méme nombre d’éléments.

38) Cette propriété des 6 éléments af & a5~ et la preuve donnée sont de Netto. C’est au
moyen de cette propriété, ou plutét de la suivante plus générale, qui s’établit immédiatement
de la méme maniére: les 6 éléments a2 a adz+e, a=—o, 1, 2, ..., n—1, sont toujours asso-
ciés & 'élément 0 dans la méme colonne cyclique, qu’il a construit un systtme de triples
de Steiner cyclique pour N -—=6n - 1 premier (§ 4). Voir A, p. 57 ou Nefto, Combi-
natorik, p. 220.
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D’autre part, encore comme suite de la congruence (26), les restes
absolus des 6 éléments en question sont af, a*, ?*. Le triple a0 o” a*

est donc bien une caractéristique.

31. En vertu du § précédent et du § 26, les # triples suivants, déduits
du premier d’entre eux par les z» premicres puissances de la substitution
|z, 02 |:

(28)

sont » caractéristiques. Elles contiennent exactement les 3z éléments
I, 2, ..., 32. Elles forment donc un systeme de # caractéristiques, dans
lequel les » caractéristiques sont sans élément commun (§ 16), nous
dirons désormais tout court un systeme de caractéristiques. Nous appelle-
rons celui-ci, pour des raisons qui apparaitront encore, le systeme des
caractéristiques prznczpales ).

Les puissances suivantes, égale ou supérieures a », de la substitution
| #, @ x| reproduisent indéfiniment et dans le méme ordre la suite de

caractéristiques (28). Nous !’appellerons pour cela, aussi, une colonne
cyclique de caractéristiques. Cette colonne est ffxée par 'une quelcon-
que de ses caractéristiques. Le triple o ¢*t+ o®#+2 ol @ = 7z est donc

toujours une caractéristique principale; il est la caractéristique a*’ a#+2

a?ta’si @' est le plus petit reste positif ou nul de I'entier @ (mod. #).

La caractéristique principale a* a**2 ¢®**2, ¢-=o0, 1,2, ..., 2 — I, est

fixzée par son élément ¢ et plus simplement par l'exposant @. Nous

pouvons donc représenter les z caractéristiques principales (28) par les
nouveaux éléments:

veeeer (071 a2n—1 g32—1) et le sens de cette appellation est claire d’aprés la fin du § 29

et la note jointe. Elle ne tient cependant qu’a une propriété de ces caractéristiques, si

importante qu’elle soit pour elles, et j’ai préféré ici le terme plus simple de caractéristiques
principales.
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La caractéristique principale a* a**2 a?**2, ol « est entier naturel quel-

conque, sera ainsi représentée par I’élément &, & étant le plus petit reste
positif ou nul de l'entier 2 (mod. #).

Les résultats de ce § peuvent alors se résumer ainsi: Une caracté-
ristique principale est changée en elle-méme par la substitution |z, a” x |;
le systéme des caractéristiques principales est changé en lui-mgm;—;ar
la substitution |x, @ x|; dit autrement, le systeme des caractéristiques
principales possé_d-e—_l_e groupe entier ||z, ax|}. Le groupe des permu-
tations des caractéristiques principales entre elles par les substitutions
du groupe cyclique Hf’ a x || est isomorphe au groupe cyclique
((012... n—1) |; le groupe || ¥, a x || lui-méme est triplement isomorphe
a ces deux derniers groupes 40),

32. Soit maintenant une caractéristique quelconque autre que les
caractéristiques (28). Nous pouvons |’écrire:

s af ¢, ou a, b, c, sont trois entiers différents

parmi o, 1, 2, ..., 3#—1, et pour lesquels on n’a pas a=64=c¢ (mod. #).
Aucune puissance de la substitution |x, @ x|, autre que l'identité, ne

peut changer cette caractéristique en elle-méme. En effet, si une puis-
sance de | x, « x|, autre que I'identité et déplagant donc tous les éléments,

changeait cette caractéristique en elle-méme, elle contiendrait le cycle
(2* a? &°) ou son inverse (a®aca?). Or les seules puissances de la

substitution |z, « x| formées de cycles de trois éléments sont (§ 29):

lx’ a” xl — (oaO ar a2n) (“1 antl a2n+1) ...... (“n—l o 2n—1 aSn—l) )

|.1’, “2n T | — (aO a2n d") (dl “2n+1 an+1) ...... (an-—l a?m——-l “2n—1) .

Leurs cycles sont les caractéristiques principales (28) et a® a’ a¢ devrait

étre 'une d’entre elles, ce qui n’est pas.

40) Deux groupes sont simplement isomorphes lorsque, en tant que groupes abstraits, ils
sont identiques. Un groupe G est friplement isomorphe a4 un groupe I', si & chaque
opérateur de I': a, B, Y, ..., correspond un triple d’opérateurs de G: (a,, aq, as), (b, bz, b3),
(¢14 €2, €3)y ...... de fagon telle que, si af=v, a;br=c;; i, kR, [=1, 2, 3 et inversement,
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Les 37 premiéres puissances de la substitution |z, « x| changent la

caractéristique a* a® ¢ en 3x caractéristiques dzfférentes qui sont:

.................. bereriunany (29)

a'a+3n—l “6+3n—1 ac+3n—-1-

En effet chacun de ces 3~ triples est une caractéristique d’apres le § 26.
Deux d’entre eux ne sauraient étre la méme caractéristique, sinon,
a* a® a¢ étant la premicre de deux caractéristiques (29) identiques,

une puissance de |x, @ x| autre que l'identité changerait a® o’ o en elle-
méme, ce qui n'a pas lieu.

Les puissances suivantes, égale ou supérieures a 3z, de la substitution
| #, @ x| reproduisent indéfiniment et dans le méme ordre la suite de

caractéristiques (29). Nous l’appellerons encore une colonne cyclique de
caractéristiques. Cette colonne est fizée par l'une quelconque de ses
caractéristiques que l'on peut appeler sa #f de colonne. o af ¢ étant

l'une quelconque des caractéristiques (29), elle s’écrit plus simplement
a ot ac’, a', b, ¢’ étant respectivement les plus petits restes positifs ou

nuls des exposants «, &, ¢ (mod. 37).

Les résultats obtenus peuvent encore s’énoncer: Une caractéristique
qui n’est pas principale n’est changée en elle-méme que par la sub-
stitution-identité du groupe ||z, @ x||. Chaque colonne cyclique de
caractéristiques est changée en elle-méme par la substitution |x, o x|;
autrement dit, elle posséde le groupe entier ||z, ax|]. Le grou;e—:i—es
permutations des caractéristiques (29) entre elles par les substitutions
du groupe cyclique [|_J_c_, o_c_{” est isomorphe au groupe cyclique

{012 ... 32—1)]|.

33. Il y a # (3n—2) caractéristiques (§ 15). Il y a » caractéristiques
principales. Les #(3#—2) —» — 3n(n—1) caractéristiques restantes se
répartissent donc en z—1 colonnes cycliques de 3» caractéristiques
chacune.
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Cette répartition peut se vérifier encore aisément de la maniére sui-
vante. Les caractéristiques contenant 1’élément «® — 1 sont:

I,2,3; I, 3,4; I,4,5; «oeevey 1, 32—1, 322, (30)

En effet, rappelons que dans une caractéristique, ou la somme de deux
éléments est égale au troisieme, ou la somme des trois éléments est
égale a V. Une caractéristique contenant ’élément 1 ne peut avoir la
somme de ses trois éléments égale a /N, car les deux plus grands élé-
ments qui peuvent étre associés a I dans une caractéristique sont 37—1
et 32z et 1+ (32z—1)+ 32 < N. Il ne peut donc exister une carac-
téristique contenant I’élément 1, autre que les 3#—2 caractéristiques (30).

Chaque colonne cyclique de 3# caractéristiques a trois et trois seules
de ses caractéristiques contenant 1’élément «® — 1 et une des caracté-

- Im—2—1

ristiques principales contient I’élément 1. Il y aura donc —n—TI

colonnes cycliques de 3z caractéristiques.

(Regu le 19 février 1931)
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