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Sur l'approximation d’'ordre n dans la
théorie des figures planétaires

par R. WAVRE, Genéve

Cet article fait suite au précédent: Vol. 2, p. 217—224, et je repro-
duirai ci-dessous le systéme fondamental par lequel se terminait le § 3,
page 220. Quant aux notations elles ont été rappelées au § 2, page 217,
et je les emploierai ici dans le méme sens.

§ 1. Le principe des approximations

Dans leurs remarquables travaux sur les figures d’équilibre d’une
masse fluide hétérogene, Clairaut, Laplace, Poincaré, ont négligé systé-
matiquement les termes d'un ordre supérieur au carré de la vitesse
angulaire, Ce procédé, tout a fait légitime pour des rotations lentes
comme celle du soleil, n’est déja plus suffisant pour le cas de la terre
ou linfluence des termes d’ordre quatre commence a se faire sentir,
et c’est jusqu'a l'ordre six qu’il conviendrait de poursuivre les approxi-
mations dans le cas de Jupiter et de Saturne, si 'on voulait comparer
avec précision les chiffres relatifs a la forme et a la rotation de ces astres,
et tenir compte en plus du mouvement de leurs satellites.

J’appellerai «premiere approximation» celle ot l'on tient compte des
termes de lordre de w? et ol on néglige les termes d’ordre supérieur.
La deuxiéme approximation consistera a tenir compte des termes en w2
et w* mais a négliger les termes d’ordre supérieur, etc.; w étant, comme
toujours, la vitesse angulaire.

Posons

1+

R2—e,

1
(1) ;(I)', R %: — @' HR-1R—1 | 4m'f o R'7dR + 207
t

Le systéeme fondamental s’écrit compris I’équation de Poincaré
y P

it M si g=—= —1
v/} g = 0
(2) %W,Rz ={ s
q -g—szg(cG) g == 2
o 7=1,3 4,5 ... .
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Mettons en évidence, dans l’expression du rayon vecteur, le rayon ¢
de la sphére de méme podle que la surface de niveau:

(3) R=1t(1+e).

La fonction ¢ de ¢, 0 et y s’appellera la déformation a partir de la
sphere z. La quantité z¢ représente l'exces du rayon vecteur sur le
rayon de la sphére. La déformation sera toujours nulle sur ’axe polaire.

Développons ¢ formellement en série de puissances de ?
(4) ¢ = w2e® 4 wie® L 8@ - . 02e™ | .

Il n’y a pas lieu d’introduire un terme en w° car pour w — O la stra-
tification est sphérique en vertu du théoréme de M. Lichtenstein.
Le potentiel de la pesanteur se développera d’une manic¢re analogue

() ®=00 L 200 Lt @® L . L om0" | .

Quant a la fonction g (¢), elle sera considérée comme donnée, les in-
connues étant ¢ (7, 0, ) et @ (¢). Si maintenant I'on substitue les déve-
loppements (4) et (5) aux fonctions ¢ et @ dans le syst¢eme fondamental,
on obtiendra une expression formelle que 'on pourra ordonner suivant
les puissances de w? et relativement a toute valeur de ¢. Ces équations
revétiront la forme symbolique

(6) WO FO 4 02 FP 4 ot F? . o™ FP + ... =o0.

Les fonctions # ne dépendent plus de w. Il est a remarquer que
Fq(o) ne peut contenir que P9 et o (%); Fq(l) ne peut contenir que
o9, @ M et 0(®; qu ne peut contenir que @, oM @® A 2

et o (¢) etc. Par équation a w?* pres, nous entendons les relations
% OB L E b et 5 o

dans lesquelles sont négligés les termes en w?* ainsi que ceux d’ordre
supérieur. Revenons a l’expression symbolique (6). Nous considérerons
w comme une nouvelle variable et la relation (6) devra avoir lieu quel
que soit o, #, 6, . Ceci nous oblige a annuler toutes les fonctions

Fq(”). L’approximation d’ordre zéro consiste a poser Fq(o) = 0. Ces re-
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lations établiront simplement les formules connues pour des couches

sphériques concentriques et le potentiel @” qu’elles créent; potentiel
qui se confond, dans ce cas, avec celui de Newton.

L’approximation d’ordre un consistera a écrire Fq(l) = 0. Ces équations
lieront les fonctions ¢ et @ aux fonctions @ et ¢ (/). Elles indiqueront
la déformation de lordre w? et laltération @ du champ de la pesan-
teur, qui proviennent toutes deux du fait que ’astre s’est mis a tourner

lentement. Le systéme 7, = 0 domine, comme on le verra, la théorie
classique.

. . . N . 2 .
L’approximation d’ordre deux consistera a écrire Fq‘ ) = o. Ces relations

lieront les fonctions ¢® et @® aux fonctions @%, @V /P et ¢ (/) obtenues
par les approximations précédentes, elles indiqueront la correction a
faire subir a la premiere approximation, correction de I'ordre de w?; etc.

Aprés la premiére approximation, la déformation et le potentiel @
s'écriront ¢ = w?e® et @ — @9 | 2 @Y,

Apres la seconde approximation, ces fonctions s’écriront ¢ = w2V -
wte® et @ = @0 w2 @Y | 4 9P ; etc.

§ 2. Remarques

Les approximations successives constituent un procédé itératif ou plus

exactement récurrent, dans ce sens que les fonctions ¢ et @™ seront
déterminées par les fonctions de rang moins élevé e, £ o1 et
29, ¢, ... "V obtenues précédemment. Les approximations d’ordre
zéro, un, deux, ne fourniront que des surfaces de révolution et il en
sera de méme des suivantes. Mais cela ne veut pas dire que la résolution
simultanée des équations (6) ou méme des équations (7) ne fournissent
également que des surfaces de révolution., Car le procédé récurrent
employé revient a considérer tout d’abord la vitesse angulaire comme
nulle, puis & animer la masse d’une petite rotation, telle que les termes
en w? puissent étre seuls pris en considération, puis une rotation un
peu plus forte qui mette en jeu les termes en w?, etc. Le principe de
raison suffisante vient confirmer cette proposition, en effet, dans cet
astre qui est supposé partir du repos absolu et de I’état sphérique et qui
s'anime d’une rotation croissante, il n’y a aucune raison pour qu’une
dissymétrie se manifeste 4 une longitude plutét qu'a une autre. Cette
remarque devait étre faite, et les figures d’équilibre que nous trouve-
ront répondent davantage a un astre primitivement assez étendu (nébuleuse),
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qui s’est concentré petit a petit, en tournant de plus en plus vite pour
que le moment cinétique reste constant, qu’a une planéte dont la rotation
aurait diminué au cours des si¢cles a cause d’un freinage comme celui
que les marées exercent.

Nous montrerons qu’en premiére et seconde approximations, les figures
sont de révolution. Mais cela n’exclut pas absolument que la terre ait
une forme légérement polyédrale; cela montre simplement que si cette
forme, d’ailleurs invraisemblable, existe réellement, c’est que la terre
a diminué de vitesse angulaire sous l'influence d’astres perturbateurs
comme la lune et le soleil.

L’étude de la stratification au voisinage de l’ensemble de densité
maximum est fort délicate si 'on se refuse a admettre quelques hypo-
theéses supplémentaires sur la répartition des densités.

Dans son livre sur les figures d’équilibre, Poincaré rejette a priori
que la déformation des couches puisse devenir infinie. Cette hypothéese
est nécessaire si I’on veut que la méthode des approximations s’applique,
car si la déformation ¢() devenait infinie au voisinage du centre, le terme
w? ¢ ne pourrait étre envisagé comme de 'ordre de w2 Nous rejetons
également a priori qu’un des coefficients ¢*) puisse devenir infini au
voisinage du centre.

S’il s’agit d’une recherche des figures stables, cette hypothese est
encore plus Jégitime, car la forme générale de l'astre ne peut pas
dépendre de la manie¢re dont se comportent les densités dans un volume
plus petit qu'une téte d’épingle placée au centre de l’astre.

Pour les figures instables, il est bon de remarquer que l'on exclut
ainsi le cas ou la stratification tendrait en forme vers un segment de
droite, ou encore un cercle, quand on se rapproche du centre.

§ 3. L’'approximation d’ordre n

Dans le tableau (2) remplagons R par ¢ (1 4 ¢) et développons ¢ et
@ en série procédant suivant les puissances de w? comme nous lindi-
quions au paragraphe 1. La fonction ¢ apparait pour la premiére fois
a l'approximation d’ordre » ou elle figure linéairement. Nous poserons

1 9et2—9

: 0 :
(8) e§:¢0t1—4(qe—|—t§%)—{—4nz tp—-a—z——a’t

Le systeme fondamental s’écrit alors, il n’y a pas de grande difficulté
a le vérifier, sous la forme suivante pour n > 2
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, 40"

£ g St g = —1
2 Ao
(9) 2 en zq: _ z D1, Ry , —l— ¢n+ z pr si ¢ ==0
o si ¢ > 0.

Dans l'accolade en R du second membre, l'indice inférieur »—1
rappelle qu’il faut remplacer R et @ par leur valeur apres la (z—r1)iéme
approximation

Ry, = L‘[I —+ w2e® 4 . | P2 e(”“‘l)]
0oy — DO L 2 @O | | | 22 @—D)

et l'indice supérieur 27 indique qu’il ne faut considérer dans cette acco-
lade que le coefficient de w?”.

La fonction e® peut étre développée en une série de fonctions sphé-
riques, mais seule la fonction sphérique d’indice ¢ interviendra dans
laccolade du premier membre; il faut poser

& =P X, (c0) + g1 X (O ey A+ i, X7 () spy.

Le tableau doit étre satisfait quelles que soient les valeurs de 0, y
et £ On peut donc procéder a une identification suivant chaque fonction
sphérique fondamentale. Le systeme s’écrit pour » > 2

d¢(n)
72 si g==—1 p=0
at
” 2n dw(n)
(10) |eny :_gwln“l’Rnolg +1 0" ¢ g=o p=o0
7,4 at
O pour toute autre combinaison.

L’accolade en R d’indice p, ¢ indique qu’il faut prendre le coefficient
de la fonction sphérique p, ¢ dans le coefficient de w*~.

Les deux premieres équations détermineront @, les autres la défor-
mation. Les équations sont les mémes avec —p.
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Il importerait de démontrer que les fonctions ¢” sont dominées par
des nombres w;—2* a partir d’'un certain rang

(1) )] < g

pour prouver la convergence des approximations successives. Si, en
effet, la relation (11) pouvait étre établie, la série

e = w2eM L wte® | .+ w¥e ..

serait convergente pour 0 < w < wy . Je n’ai pas recherché cette dé-
monstration. L’introduction d’un calcul matriciel serait utile.

Les tableaux (9) et (10) ont I’avantage d’expliciter le procédé récurrent
dont il était question au paragraphe 2.

§ 4. Un raisonnement par récurrence

Jinvoquerai tout d’abord un théoreme de Laplace: FEn premaere
approximation, la déformation est

eW = ¢4V (2) Xy 1 65!V (2) X (¢ 0)
elle ne dépend que de # et de 6 et n’introduit que les polynémes X
et X,.
Voici ensuite quatre remarques.
1° La déformation ¢® se calcule a partir de ¢!, Les seconds mem-
bres des équations seront indépendants de la longitude i et par con-

séquent tous les termes du premier membre avec p 72 0 correspondront
a des seeconds membres nuls.

2° L.a fonction

5]

est un polynéme d’ordre ¢ en ¢20 et par conséquent il s’exprime a son

tour par une somme de polynémes de Legendre d’ordre pair X,
Xz, coey X2q.
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3° Les seconds membres de (10) ne contiendront que des termes
pairs en ¢ § convertibles a leur tour en polynémes d’ordre pair X,
Xo(c0), X,(cH), .... Dans le tableau (10) les seconds membres seront
donc nuls pour toutes les valeurs impaires de 4.

4° On sait qu'un produit de polynome de Legendre d’ordre g¢,,
Jos .- §» €St un poynéme d’ordre ¢,-} g5+ ...+ ¢, enc @ qui s’exprime
a son tour par une somme de polyndmes de Legendre jusqu’a I'ordre
g1+ 92+ ... + ¢» au plus. Ceci étant, supposons que les fonctions
e, @ . o1 soient respectivement des sommes de polynémes de
Legendre d’ordre 2, 4, ... 2z—2 au plus.

Je dis que ¢ sera une somme de polynémes X d’ordre 2 au plus.

En effet, rapportons-nous au tableau (10) du paragraphe précédent.
Dans le second membre, R doit étre remplacé par

R= ¢[1 T owte® b g e(n—l)]

et, dans 'accolade en R, il ne faudra retenir que le coefficient de w?~.

Dans les différents termes qui le constituent, les fonctions ¢, ¢, .., ¢#—D

ne peuvent figurer que multipliées par les puissances de w? correspon-

dantes; la somme des indices de ces fonctions dans un produit ne pourra
dépasser 2.

. oA . . 0X .

Et cela est vrai, méme si 'on tient compte des termes en . qui

00

figurent dans l'accolade en R par l'intermédiaire de H.

Alors, en vertu de la remarque 4°, les seconds membres de ¢* ne
contiendront aucune fonction sphérique d’ordre supérieur a 27.

En résumé, les seconds membres du tableau (10) seront nuls si 'une
des circonstances suivantes se produit p 3% 0; ¢ impair, a part g = —1;
q > 2n.

Les équations revétent alors la forme

7,9

& 2 — 0.

Nous ferons voir au paragraphe suivant que ces équations n’admettent

pas d’autres solutions que ¢ =o.

. Dés lors, tous les coefficients ¢, seront nuls identiquement, sauf si
’ % 4 q

Pon a p=0, =0, 2, 4, ... 2.
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La déformation ¢ s’écrit
e = ¢y Xy + ;™ Xy (¢ 0) 4~ ... 4 e X, (c ),
et la déformation totale est apres la #*me approximation

e = w? [60(1) -+ 32(1) Xz (C 9)]
+ w6 2, X, (¢ 0) -} ¢, X, (c 0)]

+ [ 4 e X, (c 6) ... e X, (c0)].

Laplace et Poincaré ont établi que la déformation est en premicre
approximation

e = w? eV + M Xy (¢ )] .

En plus, Legendre a indiqué pour la seconde approximation la forme
générale

e = 5o Xo + 572 Xy (¢ 0) 74 X (¢ 0).

L’analyse précédente permet de conclure:

La déformation apres la n*me approximation, procéde suzvant les poly-
nomes de Legendre X, Xy, Xy, ... jusqu’a Xa,.

Nous avons démontré en méme temps que les surfaces sont de révo-
: - T . .
lution et présentent le plan de symétrie § — - Ce dernier résultat

pouvait étre d’ailleurs prévu par le théoréme de M. Lichtenstein.

§ 5. L’équation homogéne

(n) ) _
q’fs—_‘

dérivées et en supprimant les indices de ¢

L’équation |¢ O s’écrit avec la notation de Newton pour les

1
@'0 g1~ (qe—{—-te')—}—4nz'f od(et?~9) =o.
¢

19



La dérivée @'0 n’est autre que la pesanteur changée de signe, créée
par des sphéres concentriques. Soit D (#) la densité moyenne de la
matiere intérieure a la spheére de rayon £ On a

P'0=—4 a7t D).

L’équation s’écrit sous la forme suivante
1
(12) 1D (ge+te') :f ot 1 [(2—¢q) e+ te']at.
4

Montrons qu’elle n’admet pas d’autre solution bornée au voisinage
de l'origine que ¢=o, si ¢—1,2, 3,4, ... . Différencions cette relation
(12), on trouve facilement

(13) (3+9@—g DettDet6pe +¢De")=o.

’

te , . Lo
En posant 5 = - I'équation (12) s’écrit d’autre part

(14) 1Deregn = ot reln—q+2)ar

On sait qu’on peut faire £ > 1 et que g est nul de 1 a # dans ce cas.
A Dextérieur de I'astre # > 1, la relation se réduit a

e(g +n=o.

1°Si ¢e=0, on a ¢ =0 a 'extérieur et sur la surface libre =1,
mais alors I'équation différentielle (13) n’admet pas d’autre solution a
I'intérieur ¢ < 1 que ¢=0 qui répondent a ces conditions de Cauchy aux
limites.

Rappelons que c’est la dérivée seconde seule qui subit une disconti-
nuité au travers de la surface libre.

2° Si g} g=o0, alors posons y = —g -+ 4+ et 'on a +—=o0 pour
¢t = 1. Dans ce cas ¢ ne serait pas nul pour z = 1. L’équation (14) s’écrit

1
Y Det-veqt :£ ot'=ve(yt -+ 2—29)adt
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Si ¢ = 1, I’équation n’admet pas d’autre solution que 5+ =o0, en effet,
si ¢t s’annule pour # =1 comme (¢ — 1) dans le second membre, elle
s’annulerait comme (# — 1)”*! dans le premier, ce qui est absurde.

Si ¢ > 1, la parenthese du second membre est négative pour # voisin
de 1; il en sera de méme de 7+ puisque D est positif et cela quel que
soit le signe de ¢ qui figure en facteur dans les deux membres. La
fonction #t restant négative lorsque # diminue, la parentheése restera

\

négative et cela jusqu’a #=o0. On aurait donc de £=1 a ¢ =o0:

’
t=<o gp=—g =94 19
M= 1="9",= t’ e

1A

I
—_q[’—f

d’ou l'on déduit

Cette relation est absurde, car ¢ augmenterait au dela de toute limite
quand on se rapproche du centre de l’astre.

L’alternative 2° a conduit a une absurdité, il ne reste que la possi-
bilité 1° qui implique, on 'a vu, ¢ =o.

(Regu le 13 février 1930)
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